page_alloc.c 229.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
127
unsigned long totalreserve_pages __read_mostly;
128
unsigned long totalcma_pages __read_mostly;
129

130
int percpu_pagelist_fraction;
131
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

151 152 153 154 155
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
156 157 158 159
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
160
 */
161 162 163 164

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
165
{
166
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
167 168 169 170
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
171 172
}

173
void pm_restrict_gfp_mask(void)
174
{
175
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
176 177
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
178
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179
}
180 181 182

bool pm_suspended_storage(void)
{
183
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 185 186
		return false;
	return true;
}
187 188
#endif /* CONFIG_PM_SLEEP */

189
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190
unsigned int pageblock_order __read_mostly;
191 192
#endif

193
static void __free_pages_ok(struct page *page, unsigned int order);
194

L
Linus Torvalds 已提交
195 196 197 198 199 200
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
201
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
202 203 204
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
205
 */
206
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
207
#ifdef CONFIG_ZONE_DMA
208
	[ZONE_DMA] = 256,
209
#endif
210
#ifdef CONFIG_ZONE_DMA32
211
	[ZONE_DMA32] = 256,
212
#endif
213
	[ZONE_NORMAL] = 32,
214
#ifdef CONFIG_HIGHMEM
215
	[ZONE_HIGHMEM] = 0,
216
#endif
217
	[ZONE_MOVABLE] = 0,
218
};
L
Linus Torvalds 已提交
219 220 221

EXPORT_SYMBOL(totalram_pages);

222
static char * const zone_names[MAX_NR_ZONES] = {
223
#ifdef CONFIG_ZONE_DMA
224
	 "DMA",
225
#endif
226
#ifdef CONFIG_ZONE_DMA32
227
	 "DMA32",
228
#endif
229
	 "Normal",
230
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
231
	 "HighMem",
232
#endif
M
Mel Gorman 已提交
233
	 "Movable",
234 235 236
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
237 238
};

239
const char * const migratetype_names[MIGRATE_TYPES] = {
240 241 242 243 244 245 246 247 248 249 250 251
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

252 253 254 255 256 257
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
258 259 260
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
261 262
};

L
Linus Torvalds 已提交
263
int min_free_kbytes = 1024;
264
int user_min_free_kbytes = -1;
265
int watermark_boost_factor __read_mostly = 15000;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
275
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
280
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308
		return true;

	return false;
}

/*
309
 * Returns true when the remaining initialisation should be deferred until
310 311
 * later in the boot cycle when it can be parallelised.
 */
312 313
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314
{
315 316 317 318 319 320 321 322 323 324 325
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

326
	/* Always populate low zones for address-constrained allocations */
327
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328
		return false;
329 330 331 332 333

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
334
	nr_initialised++;
335
	if ((nr_initialised > PAGES_PER_SECTION) &&
336 337 338
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
339
	}
340
	return false;
341 342 343 344 345 346 347
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

348
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
349
{
350
	return false;
351 352 353
}
#endif

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
434
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
455

456
void set_pageblock_migratetype(struct page *page, int migratetype)
457
{
458 459
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
460 461
		migratetype = MIGRATE_UNMOVABLE;

462 463 464 465
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
466
#ifdef CONFIG_DEBUG_VM
467
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
468
{
469 470 471
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
472
	unsigned long sp, start_pfn;
473

474 475
	do {
		seq = zone_span_seqbegin(zone);
476 477
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
478
		if (!zone_spans_pfn(zone, pfn))
479 480 481
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

482
	if (ret)
483 484 485
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
486

487
	return ret;
488 489 490 491
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
492
	if (!pfn_valid_within(page_to_pfn(page)))
493
		return 0;
L
Linus Torvalds 已提交
494
	if (zone != page_zone(page))
495 496 497 498 499 500 501
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
502
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
503 504
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
505
		return 1;
506 507 508
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
509 510
	return 0;
}
N
Nick Piggin 已提交
511
#else
512
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
513 514 515 516 517
{
	return 0;
}
#endif

518 519
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
520
{
521 522 523 524 525 526 527 528 529 530 531 532 533 534
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
535
			pr_alert(
536
			      "BUG: Bad page state: %lu messages suppressed\n",
537 538 539 540 541 542 543 544
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

545
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546
		current->comm, page_to_pfn(page));
547 548 549 550 551
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
552
	dump_page_owner(page);
553

554
	print_modules();
L
Linus Torvalds 已提交
555
	dump_stack();
556
out:
557
	/* Leave bad fields for debug, except PageBuddy could make trouble */
558
	page_mapcount_reset(page); /* remove PageBuddy */
559
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
560 561 562 563 564
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
565
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
566
 *
567 568
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
569
 *
570 571
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
572
 *
573
 * The first tail page's ->compound_order holds the order of allocation.
574
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
575
 */
576

577
void free_compound_page(struct page *page)
578
{
579
	__free_pages_ok(page, compound_order(page));
580 581
}

582
void prep_compound_page(struct page *page, unsigned int order)
583 584 585 586
{
	int i;
	int nr_pages = 1 << order;

587
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 589 590 591
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
592
		set_page_count(p, 0);
593
		p->mapping = TAIL_MAPPING;
594
		set_compound_head(p, page);
595
	}
596
	atomic_set(compound_mapcount_ptr(page), -1);
597 598
}

599 600
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
601 602
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603
EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 605
bool _debug_guardpage_enabled __read_mostly;

606 607 608 609
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
610
	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 612 613
}
early_param("debug_pagealloc", early_debug_pagealloc);

614 615
static bool need_debug_guardpage(void)
{
616 617 618 619
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

620 621 622
	if (!debug_guardpage_minorder())
		return false;

623 624 625 626 627
	return true;
}

static void init_debug_guardpage(void)
{
628 629 630
	if (!debug_pagealloc_enabled())
		return;

631 632 633
	if (!debug_guardpage_minorder())
		return;

634 635 636 637 638 639 640
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
641 642 643 644 645 646

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647
		pr_err("Bad debug_guardpage_minorder value\n");
648 649 650
		return 0;
	}
	_debug_guardpage_minorder = res;
651
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 653
	return 0;
}
654
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655

656
static inline bool set_page_guard(struct zone *zone, struct page *page,
657
				unsigned int order, int migratetype)
658
{
659 660 661
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
662 663 664 665
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
666 667

	page_ext = lookup_page_ext(page);
668
	if (unlikely(!page_ext))
669
		return false;
670

671 672
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

673 674 675 676
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 678

	return true;
679 680
}

681 682
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
683
{
684 685 686 687 688 689
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
690 691 692
	if (unlikely(!page_ext))
		return;

693 694
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

695 696 697
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 699
}
#else
700
struct page_ext_operations debug_guardpage_ops;
701 702
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
703 704
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
705 706
#endif

707
static inline void set_page_order(struct page *page, unsigned int order)
708
{
H
Hugh Dickins 已提交
709
	set_page_private(page, order);
710
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
711 712 713 714
}

static inline void rmv_page_order(struct page *page)
{
715
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
716
	set_page_private(page, 0);
L
Linus Torvalds 已提交
717 718 719 720
}

/*
 * This function checks whether a page is free && is the buddy
721
 * we can coalesce a page and its buddy if
722
 * (a) the buddy is not in a hole (check before calling!) &&
723
 * (b) the buddy is in the buddy system &&
724 725
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
726
 *
727 728
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
729
 *
730
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
731
 */
732
static inline int page_is_buddy(struct page *page, struct page *buddy,
733
							unsigned int order)
L
Linus Torvalds 已提交
734
{
735
	if (page_is_guard(buddy) && page_order(buddy) == order) {
736 737 738
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

739 740
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

741 742 743
		return 1;
	}

744
	if (PageBuddy(buddy) && page_order(buddy) == order) {
745 746 747 748 749 750 751 752
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

753 754
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

755
		return 1;
756
	}
757
	return 0;
L
Linus Torvalds 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
773 774
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
775
 * So when we are allocating or freeing one, we can derive the state of the
776 777
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
778
 * If a block is freed, and its buddy is also free, then this
779
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
780
 *
781
 * -- nyc
L
Linus Torvalds 已提交
782 783
 */

N
Nick Piggin 已提交
784
static inline void __free_one_page(struct page *page,
785
		unsigned long pfn,
786 787
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
788
{
789 790
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
791
	struct page *buddy;
792 793 794
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
795

796
	VM_BUG_ON(!zone_is_initialized(zone));
797
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
798

799
	VM_BUG_ON(migratetype == -1);
800
	if (likely(!is_migrate_isolate(migratetype)))
801
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
802

803
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
804
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
805

806
continue_merging:
807
	while (order < max_order - 1) {
808 809
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
810 811 812

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
813
		if (!page_is_buddy(page, buddy, order))
814
			goto done_merging;
815 816 817 818 819
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
820
			clear_page_guard(zone, buddy, order, migratetype);
821 822 823 824 825
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
826 827 828
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
829 830
		order++;
	}
831 832 833 834 835 836 837 838 839 840 841 842
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

843 844
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
845 846 847 848 849 850 851 852 853 854 855 856
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
857
	set_page_order(page, order);
858 859 860 861 862 863 864 865 866

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
867
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
868
		struct page *higher_page, *higher_buddy;
869 870 871 872
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
873 874
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 876 877 878 879 880 881 882
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
883 884 885
	zone->free_area[order].nr_free++;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

908
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
909
{
910 911 912 913 914
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
915

916
	if (unlikely(atomic_read(&page->_mapcount) != -1))
917 918 919
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
920
	if (unlikely(page_ref_count(page) != 0))
921
		bad_reason = "nonzero _refcount";
922 923 924 925
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
926 927 928 929
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
930
	bad_page(page, bad_reason, bad_flags);
931 932 933 934
}

static inline int free_pages_check(struct page *page)
{
935
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 937 938 939
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
940
	return 1;
L
Linus Torvalds 已提交
941 942
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
959
		/* the first tail page: ->mapping may be compound_mapcount() */
960 961 962 963 964 965 966 967
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
968
		 * deferred_list.next -- ignore value.
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

993 994
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
995
{
996
	int bad = 0;
997 998 999

	VM_BUG_ON_PAGE(PageTail(page), page);

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1011

1012 1013
		if (compound)
			ClearPageDoubleMap(page);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1024
	if (PageMappingFlags(page))
1025
		page->mapping = NULL;
1026
	if (memcg_kmem_enabled() && PageKmemcg(page))
1027
		memcg_kmem_uncharge(page, order);
1028 1029 1030 1031
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1032

1033 1034 1035
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1036 1037 1038

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1039
					   PAGE_SIZE << order);
1040
		debug_check_no_obj_freed(page_address(page),
1041
					   PAGE_SIZE << order);
1042
	}
1043 1044 1045
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1046
	kasan_free_pages(page, order);
1047 1048 1049 1050

	return true;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1067 1068 1069 1070 1071 1072
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1073 1074 1075 1076 1077 1078 1079 1080 1081
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1082
/*
1083
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1084
 * Assumes all pages on list are in same zone, and of same order.
1085
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1093 1094
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1095
{
1096
	int migratetype = 0;
1097
	int batch_free = 0;
1098
	int prefetch_nr = 0;
1099
	bool isolated_pageblocks;
1100 1101
	struct page *page, *tmp;
	LIST_HEAD(head);
1102

1103
	while (count) {
1104 1105 1106
		struct list_head *list;

		/*
1107 1108 1109 1110 1111
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1112 1113
		 */
		do {
1114
			batch_free++;
1115 1116 1117 1118
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1119

1120 1121
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1122
			batch_free = count;
1123

1124
		do {
1125
			page = list_last_entry(list, struct page, lru);
1126
			/* must delete to avoid corrupting pcp list */
1127
			list_del(&page->lru);
1128
			pcp->count--;
1129

1130 1131 1132
			if (bulkfree_pcp_prepare(page))
				continue;

1133
			list_add_tail(&page->lru, &head);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1146
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1147
	}
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1167
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1168 1169
}

1170 1171
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1172
				unsigned int order,
1173
				int migratetype)
L
Linus Torvalds 已提交
1174
{
1175
	spin_lock(&zone->lock);
1176 1177 1178 1179
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1180
	__free_one_page(page, pfn, zone, order, migratetype);
1181
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1182 1183
}

1184
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1185
				unsigned long zone, int nid)
1186
{
1187
	mm_zero_struct_page(page);
1188 1189 1190 1191
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1192
	page_kasan_tag_reset(page);
1193 1194 1195 1196 1197 1198 1199 1200 1201

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1202
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203
static void __meminit init_reserved_page(unsigned long pfn)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1220
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1221 1222 1223 1224 1225 1226 1227
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1228 1229 1230 1231 1232 1233
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1234
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235 1236 1237 1238
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1239 1240 1241 1242 1243
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1244 1245 1246 1247

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1248 1249 1250 1251 1252 1253
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1254 1255
		}
	}
1256 1257
}

1258 1259
static void __free_pages_ok(struct page *page, unsigned int order)
{
1260
	unsigned long flags;
M
Minchan Kim 已提交
1261
	int migratetype;
1262
	unsigned long pfn = page_to_pfn(page);
1263

1264
	if (!free_pages_prepare(page, order, true))
1265 1266
		return;

1267
	migratetype = get_pfnblock_migratetype(page, pfn);
1268 1269
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1270
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1271
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1272 1273
}

1274
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275
{
1276
	unsigned int nr_pages = 1 << order;
1277
	struct page *p = page;
1278
	unsigned int loop;
1279

1280 1281 1282
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1283 1284
		__ClearPageReserved(p);
		set_page_count(p, 0);
1285
	}
1286 1287
	__ClearPageReserved(p);
	set_page_count(p, 0);
1288

1289
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1290 1291
	set_page_refcounted(page);
	__free_pages(page, order);
1292 1293
}

1294 1295
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296

1297 1298 1299 1300
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1301
	static DEFINE_SPINLOCK(early_pfn_lock);
1302 1303
	int nid;

1304
	spin_lock(&early_pfn_lock);
1305
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306
	if (nid < 0)
1307
		nid = first_online_node;
1308 1309 1310
	spin_unlock(&early_pfn_lock);

	return nid;
1311 1312 1313 1314
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 1316 1317
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1339 1340 1341
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1342 1343 1344 1345 1346 1347
{
	return true;
}
#endif


1348
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1349 1350 1351 1352
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1353
	return __free_pages_boot_core(page, order);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1385 1386 1387
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1427
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 1429
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1430
{
1431 1432
	struct page *page;
	unsigned long i;
1433

1434
	if (!nr_pages)
1435 1436
		return;

1437 1438
	page = pfn_to_page(pfn);

1439
	/* Free a large naturally-aligned chunk if possible */
1440 1441
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1442
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443
		__free_pages_boot_core(page, pageblock_order);
1444 1445 1446
		return;
	}

1447 1448 1449
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450
		__free_pages_boot_core(page, 0);
1451
	}
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1463

1464
/*
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1477
 */
1478 1479 1480
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1481
{
1482 1483 1484 1485 1486 1487 1488 1489
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1501

1502 1503 1504 1505 1506 1507 1508
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1509
			touch_nmi_watchdog();
1510 1511 1512 1513 1514 1515
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1526 1527 1528 1529 1530 1531
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1532 1533 1534
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1535
			continue;
1536
		} else if (!page || !(pfn & nr_pgmask)) {
1537
			page = pfn_to_page(pfn);
1538
			touch_nmi_watchdog();
1539 1540
		} else {
			page++;
1541
		}
1542
		__init_single_page(page, pfn, zid, nid);
1543
		nr_pages++;
1544
	}
1545
	return (nr_pages);
1546 1547
}

1548
/* Initialise remaining memory on a node */
1549
static int __init deferred_init_memmap(void *data)
1550
{
1551 1552
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1553 1554
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1555
	unsigned long spfn, epfn, first_init_pfn, flags;
1556 1557
	phys_addr_t spa, epa;
	int zid;
1558
	struct zone *zone;
1559
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1560
	u64 i;
1561

1562 1563 1564 1565 1566 1567
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1568
	if (first_init_pfn == ULONG_MAX) {
1569
		pgdat_resize_unlock(pgdat, &flags);
1570
		pgdat_init_report_one_done();
1571 1572 1573
		return 0;
	}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1585
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1598 1599 1600
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1601
		deferred_free_pages(nid, zid, spfn, epfn);
1602
	}
1603
	pgdat_resize_unlock(pgdat, &flags);
1604 1605 1606 1607

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1608
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1609
					jiffies_to_msecs(jiffies - start));
1610 1611

	pgdat_init_report_one_done();
1612 1613
	return 0;
}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1725
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1726 1727 1728

void __init page_alloc_init_late(void)
{
1729 1730 1731
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1732 1733
	int nid;

1734 1735
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1736 1737 1738 1739 1740
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1741
	wait_for_completion(&pgdat_init_all_done_comp);
1742

1743 1744 1745 1746 1747 1748
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1749 1750
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1751
#endif
P
Pavel Tatashin 已提交
1752 1753 1754 1755
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1756 1757 1758

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1759 1760
}

1761
#ifdef CONFIG_CMA
1762
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1763 1764 1765 1766 1767 1768 1769 1770
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1771
	} while (++p, --i);
1772 1773

	set_pageblock_migratetype(page, MIGRATE_CMA);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1788
	adjust_managed_page_count(page, pageblock_nr_pages);
1789 1790
}
#endif
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1804
 * -- nyc
L
Linus Torvalds 已提交
1805
 */
N
Nick Piggin 已提交
1806
static inline void expand(struct zone *zone, struct page *page,
1807 1808
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814 1815
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1816
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1817

1818 1819 1820 1821 1822 1823 1824
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1825
			continue;
1826

1827
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1833
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1834
{
1835 1836
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1837

1838
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1839 1840 1841
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1842
	if (unlikely(page_ref_count(page) != 0))
1843
		bad_reason = "nonzero _count";
1844 1845 1846
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1847 1848 1849
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1850
	}
1851 1852 1853 1854
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1855 1856 1857 1858
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1873 1874
}

1875
static inline bool free_pages_prezeroed(void)
1876 1877
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1878
		page_poisoning_enabled();
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1928
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1929
							unsigned int alloc_flags)
1930 1931
{
	int i;
1932

1933
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1934

1935
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1936 1937
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1938 1939 1940 1941

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1942
	/*
1943
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1944 1945 1946 1947
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1948 1949 1950 1951
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1952 1953
}

1954 1955 1956 1957
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1958
static __always_inline
1959
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1960 1961 1962
						int migratetype)
{
	unsigned int current_order;
1963
	struct free_area *area;
1964 1965 1966 1967 1968
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1969
		page = list_first_entry_or_null(&area->free_list[migratetype],
1970
							struct page, lru);
1971 1972
		if (!page)
			continue;
1973 1974 1975 1976
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1977
		set_pcppage_migratetype(page, migratetype);
1978 1979 1980 1981 1982 1983 1984
		return page;
	}

	return NULL;
}


1985 1986 1987 1988
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1989
static int fallbacks[MIGRATE_TYPES][4] = {
1990 1991
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1992
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1993
#ifdef CONFIG_CMA
1994
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1995
#endif
1996
#ifdef CONFIG_MEMORY_ISOLATION
1997
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1998
#endif
1999 2000
};

2001
#ifdef CONFIG_CMA
2002
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 2004 2005 2006 2007 2008 2009 2010 2011
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2012 2013
/*
 * Move the free pages in a range to the free lists of the requested type.
2014
 * Note that start_page and end_pages are not aligned on a pageblock
2015 2016
 * boundary. If alignment is required, use move_freepages_block()
 */
2017
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2018
			  struct page *start_page, struct page *end_page,
2019
			  int migratetype, int *num_movable)
2020 2021
{
	struct page *page;
2022
	unsigned int order;
2023
	int pages_moved = 0;
2024 2025 2026 2027 2028 2029 2030

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2031
	 * grouping pages by mobility
2032
	 */
2033 2034 2035
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2036 2037 2038 2039 2040 2041 2042
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2043 2044 2045
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2046
		if (!PageBuddy(page)) {
2047 2048 2049 2050 2051 2052 2053 2054 2055
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2056 2057 2058 2059 2060
			page++;
			continue;
		}

		order = page_order(page);
2061 2062
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2063
		page += 1 << order;
2064
		pages_moved += 1 << order;
2065 2066
	}

2067
	return pages_moved;
2068 2069
}

2070
int move_freepages_block(struct zone *zone, struct page *page,
2071
				int migratetype, int *num_movable)
2072 2073 2074 2075
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2076 2077 2078
	if (num_movable)
		*num_movable = 0;

2079
	start_pfn = page_to_pfn(page);
2080
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2081
	start_page = pfn_to_page(start_pfn);
2082 2083
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2084 2085

	/* Do not cross zone boundaries */
2086
	if (!zone_spans_pfn(zone, start_pfn))
2087
		start_page = page;
2088
	if (!zone_spans_pfn(zone, end_pfn))
2089 2090
		return 0;

2091 2092
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2106
/*
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2117
 */
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2154 2155 2156
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2157 2158 2159 2160
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2161 2162
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2163
		unsigned int alloc_flags, int start_type, bool whole_block)
2164
{
2165
	unsigned int current_order = page_order(page);
2166
	struct free_area *area;
2167 2168 2169 2170
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2171

2172 2173 2174 2175
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2176
	if (is_migrate_highatomic(old_block_type))
2177 2178
		goto single_page;

2179 2180 2181
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2182
		goto single_page;
2183 2184
	}

2185 2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));

2194 2195 2196 2197
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2222
	/* moving whole block can fail due to zone boundary conditions */
2223
	if (!free_pages)
2224
		goto single_page;
2225

2226 2227 2228 2229 2230
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2231 2232
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2233 2234 2235 2236 2237 2238

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2239 2240
}

2241 2242 2243 2244 2245 2246 2247 2248
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2259
		if (fallback_mt == MIGRATE_TYPES)
2260 2261 2262 2263
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2264

2265 2266 2267
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2268 2269 2270 2271 2272
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2273
	}
2274 2275

	return -1;
2276 2277
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2292
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2304 2305
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2306 2307
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2308
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2320 2321 2322
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2323
 */
2324 2325
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2326 2327 2328 2329 2330 2331 2332
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2333
	bool ret;
2334 2335 2336

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2337 2338 2339 2340 2341 2342
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2343 2344 2345 2346 2347 2348
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2349 2350 2351 2352
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2353 2354 2355
				continue;

			/*
2356 2357 2358 2359 2360
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2361
			 */
2362
			if (is_migrate_highatomic_page(page)) {
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2385 2386
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2387 2388 2389 2390
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2391 2392 2393
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2394 2395

	return false;
2396 2397
}

2398 2399 2400 2401 2402
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2403 2404 2405 2406
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2407
 */
2408
static __always_inline bool
2409 2410
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2411
{
2412
	struct free_area *area;
2413
	int current_order;
2414
	int min_order = order;
2415
	struct page *page;
2416 2417
	int fallback_mt;
	bool can_steal;
2418

2419 2420 2421 2422 2423 2424 2425 2426
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2427 2428 2429 2430 2431
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2432
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2433
				--current_order) {
2434 2435
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2436
				start_migratetype, false, &can_steal);
2437 2438
		if (fallback_mt == -1)
			continue;
2439

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2451

2452 2453
		goto do_steal;
	}
2454

2455
	return false;
2456

2457 2458 2459 2460 2461 2462 2463 2464
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2465 2466
	}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2477 2478
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2479 2480 2481 2482 2483 2484

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2485 2486
}

2487
/*
L
Linus Torvalds 已提交
2488 2489 2490
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2491
static __always_inline struct page *
2492 2493
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2494 2495 2496
{
	struct page *page;

2497
retry:
2498
	page = __rmqueue_smallest(zone, order, migratetype);
2499
	if (unlikely(!page)) {
2500 2501 2502
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2503 2504
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2505
			goto retry;
2506 2507
	}

2508
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2509
	return page;
L
Linus Torvalds 已提交
2510 2511
}

2512
/*
L
Linus Torvalds 已提交
2513 2514 2515 2516
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2517
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2518
			unsigned long count, struct list_head *list,
2519
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2520
{
2521
	int i, alloced = 0;
2522

2523
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2524
	for (i = 0; i < count; ++i) {
2525 2526
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2527
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2528
			break;
2529

2530 2531 2532
		if (unlikely(check_pcp_refill(page)))
			continue;

2533
		/*
2534 2535 2536 2537 2538 2539 2540 2541
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2542
		 */
2543
		list_add_tail(&page->lru, list);
2544
		alloced++;
2545
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2546 2547
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2548
	}
2549 2550 2551 2552 2553 2554 2555

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2556
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2557
	spin_unlock(&zone->lock);
2558
	return alloced;
L
Linus Torvalds 已提交
2559 2560
}

2561
#ifdef CONFIG_NUMA
2562
/*
2563 2564 2565 2566
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2567 2568
 * Note that this function must be called with the thread pinned to
 * a single processor.
2569
 */
2570
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2571 2572
{
	unsigned long flags;
2573
	int to_drain, batch;
2574

2575
	local_irq_save(flags);
2576
	batch = READ_ONCE(pcp->batch);
2577
	to_drain = min(pcp->count, batch);
2578
	if (to_drain > 0)
2579
		free_pcppages_bulk(zone, to_drain, pcp);
2580
	local_irq_restore(flags);
2581 2582 2583
}
#endif

2584
/*
2585
 * Drain pcplists of the indicated processor and zone.
2586 2587 2588 2589 2590
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2591
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2592
{
N
Nick Piggin 已提交
2593
	unsigned long flags;
2594 2595
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2596

2597 2598
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2599

2600
	pcp = &pset->pcp;
2601
	if (pcp->count)
2602 2603 2604
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2619 2620 2621
	}
}

2622 2623
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2624 2625 2626
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2627
 */
2628
void drain_local_pages(struct zone *zone)
2629
{
2630 2631 2632 2633 2634 2635
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2636 2637
}

2638 2639
static void drain_local_pages_wq(struct work_struct *work)
{
2640 2641 2642 2643 2644 2645 2646 2647
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2648
	drain_local_pages(NULL);
2649
	preempt_enable();
2650 2651
}

2652
/*
2653 2654
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2655 2656
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2657
 * Note that this can be extremely slow as the draining happens in a workqueue.
2658
 */
2659
void drain_all_pages(struct zone *zone)
2660
{
2661 2662 2663 2664 2665 2666 2667 2668
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2669 2670 2671 2672 2673 2674 2675
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2686

2687 2688 2689 2690 2691 2692 2693
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2694 2695
		struct per_cpu_pageset *pcp;
		struct zone *z;
2696
		bool has_pcps = false;
2697 2698

		if (zone) {
2699
			pcp = per_cpu_ptr(zone->pageset, cpu);
2700
			if (pcp->pcp.count)
2701
				has_pcps = true;
2702 2703 2704 2705 2706 2707 2708
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2709 2710
			}
		}
2711

2712 2713 2714 2715 2716
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2717

2718 2719 2720
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2721
		queue_work_on(cpu, mm_percpu_wq, work);
2722
	}
2723 2724 2725 2726
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2727 2728
}

2729
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2730

2731 2732 2733 2734 2735
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2736 2737
void mark_free_pages(struct zone *zone)
{
2738
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2739
	unsigned long flags;
2740
	unsigned int order, t;
2741
	struct page *page;
L
Linus Torvalds 已提交
2742

2743
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2744 2745 2746
		return;

	spin_lock_irqsave(&zone->lock, flags);
2747

2748
	max_zone_pfn = zone_end_pfn(zone);
2749 2750
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2751
			page = pfn_to_page(pfn);
2752

2753 2754 2755 2756 2757
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2758 2759 2760
			if (page_zone(page) != zone)
				continue;

2761 2762
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2763
		}
L
Linus Torvalds 已提交
2764

2765
	for_each_migratetype_order(order, t) {
2766 2767
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2768
			unsigned long i;
L
Linus Torvalds 已提交
2769

2770
			pfn = page_to_pfn(page);
2771 2772 2773 2774 2775
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2776
				swsusp_set_page_free(pfn_to_page(pfn + i));
2777
			}
2778
		}
2779
	}
L
Linus Torvalds 已提交
2780 2781
	spin_unlock_irqrestore(&zone->lock, flags);
}
2782
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2783

2784
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2785
{
2786
	int migratetype;
L
Linus Torvalds 已提交
2787

2788
	if (!free_pcp_prepare(page))
2789
		return false;
2790

2791
	migratetype = get_pfnblock_migratetype(page, pfn);
2792
	set_pcppage_migratetype(page, migratetype);
2793 2794 2795
	return true;
}

2796
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2797 2798 2799 2800 2801 2802
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2803
	__count_vm_event(PGFREE);
2804

2805 2806 2807
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2808
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2809 2810 2811 2812
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2813
		if (unlikely(is_migrate_isolate(migratetype))) {
2814
			free_one_page(zone, page, pfn, 0, migratetype);
2815
			return;
2816 2817 2818 2819
		}
		migratetype = MIGRATE_MOVABLE;
	}

2820
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2821
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2822
	pcp->count++;
N
Nick Piggin 已提交
2823
	if (pcp->count >= pcp->high) {
2824
		unsigned long batch = READ_ONCE(pcp->batch);
2825
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2826
	}
2827
}
2828

2829 2830 2831
/*
 * Free a 0-order page
 */
2832
void free_unref_page(struct page *page)
2833 2834 2835 2836
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2837
	if (!free_unref_page_prepare(page, pfn))
2838 2839 2840
		return;

	local_irq_save(flags);
2841
	free_unref_page_commit(page, pfn);
2842
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2843 2844
}

2845 2846 2847
/*
 * Free a list of 0-order pages
 */
2848
void free_unref_page_list(struct list_head *list)
2849 2850
{
	struct page *page, *next;
2851
	unsigned long flags, pfn;
2852
	int batch_count = 0;
2853 2854 2855 2856

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2857
		if (!free_unref_page_prepare(page, pfn))
2858 2859 2860
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2861

2862
	local_irq_save(flags);
2863
	list_for_each_entry_safe(page, next, list, lru) {
2864 2865 2866
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2867 2868
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2879
	}
2880
	local_irq_restore(flags);
2881 2882
}

N
Nick Piggin 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2895 2896
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2897

2898
	for (i = 1; i < (1 << order); i++)
2899
		set_page_refcounted(page + i);
2900
	split_page_owner(page, order);
N
Nick Piggin 已提交
2901
}
K
K. Y. Srinivasan 已提交
2902
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2903

2904
int __isolate_free_page(struct page *page, unsigned int order)
2905 2906 2907
{
	unsigned long watermark;
	struct zone *zone;
2908
	int mt;
2909 2910 2911 2912

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2913
	mt = get_pageblock_migratetype(page);
2914

2915
	if (!is_migrate_isolate(mt)) {
2916 2917 2918 2919 2920 2921 2922
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2923
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2924 2925
			return 0;

2926
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2927
	}
2928 2929 2930 2931 2932

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2933

2934 2935 2936 2937
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2938 2939
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2940 2941
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2942
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2943
			    && !is_migrate_highatomic(mt))
2944 2945 2946
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2947 2948
	}

2949

2950
	return 1UL << order;
2951 2952
}

2953 2954 2955 2956 2957
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2958
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2959 2960
{
#ifdef CONFIG_NUMA
2961
	enum numa_stat_item local_stat = NUMA_LOCAL;
2962

2963 2964 2965 2966
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2967
	if (zone_to_nid(z) != numa_node_id())
2968 2969
		local_stat = NUMA_OTHER;

2970
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2971
		__inc_numa_state(z, NUMA_HIT);
2972
	else {
2973 2974
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2975
	}
2976
	__inc_numa_state(z, local_stat);
2977 2978 2979
#endif
}

2980 2981
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2982
			unsigned int alloc_flags,
M
Mel Gorman 已提交
2983
			struct per_cpu_pages *pcp,
2984 2985 2986 2987 2988 2989 2990 2991
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
2992
					migratetype, alloc_flags);
2993 2994 2995 2996
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2997
		page = list_first_entry(list, struct page, lru);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3008 3009
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3010 3011 3012 3013
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3014
	unsigned long flags;
3015

3016
	local_irq_save(flags);
3017 3018
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3019
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3020 3021 3022 3023
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3024
	local_irq_restore(flags);
3025 3026 3027
	return page;
}

L
Linus Torvalds 已提交
3028
/*
3029
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3030
 */
3031
static inline
3032
struct page *rmqueue(struct zone *preferred_zone,
3033
			struct zone *zone, unsigned int order,
3034 3035
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3036 3037
{
	unsigned long flags;
3038
	struct page *page;
L
Linus Torvalds 已提交
3039

3040
	if (likely(order == 0)) {
3041
		page = rmqueue_pcplist(preferred_zone, zone, order,
3042
				gfp_flags, migratetype, alloc_flags);
3043 3044
		goto out;
	}
3045

3046 3047 3048 3049 3050 3051
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3052

3053 3054 3055 3056 3057 3058 3059
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3060
		if (!page)
3061
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3062 3063 3064 3065 3066 3067
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3068

3069
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3070
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3071
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3072

3073 3074
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3075
	return page;
N
Nick Piggin 已提交
3076 3077 3078 3079

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3080 3081
}

3082 3083
#ifdef CONFIG_FAIL_PAGE_ALLOC

3084
static struct {
3085 3086
	struct fault_attr attr;

3087
	bool ignore_gfp_highmem;
3088
	bool ignore_gfp_reclaim;
3089
	u32 min_order;
3090 3091
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3092
	.ignore_gfp_reclaim = true,
3093
	.ignore_gfp_highmem = true,
3094
	.min_order = 1,
3095 3096 3097 3098 3099 3100 3101 3102
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3103
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3104
{
3105
	if (order < fail_page_alloc.min_order)
3106
		return false;
3107
	if (gfp_mask & __GFP_NOFAIL)
3108
		return false;
3109
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3110
		return false;
3111 3112
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3113
		return false;
3114 3115 3116 3117 3118 3119 3120 3121

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3122
	umode_t mode = S_IFREG | 0600;
3123 3124
	struct dentry *dir;

3125 3126 3127 3128
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3129

3130
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3131
				&fail_page_alloc.ignore_gfp_reclaim))
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3142
	debugfs_remove_recursive(dir);
3143

3144
	return -ENOMEM;
3145 3146 3147 3148 3149 3150 3151 3152
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3153
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3154
{
3155
	return false;
3156 3157 3158 3159
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3160
/*
3161 3162 3163 3164
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3165
 */
3166 3167 3168
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3169
{
3170
	long min = mark;
L
Linus Torvalds 已提交
3171
	int o;
3172
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3173

3174
	/* free_pages may go negative - that's OK */
3175
	free_pages -= (1 << order) - 1;
3176

R
Rohit Seth 已提交
3177
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3178
		min -= min / 2;
3179 3180 3181 3182 3183 3184

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3185
	if (likely(!alloc_harder)) {
3186
		free_pages -= z->nr_reserved_highatomic;
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3200

3201 3202 3203 3204 3205 3206
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3207 3208 3209 3210 3211 3212
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3213
		return false;
L
Linus Torvalds 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3233 3234
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3235
			return true;
3236
		}
3237
#endif
3238 3239 3240
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3241
	}
3242
	return false;
3243 3244
}

3245
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3246
		      int classzone_idx, unsigned int alloc_flags)
3247 3248 3249 3250 3251
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3252 3253 3254 3255
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3256 3257 3258 3259 3260 3261 3262
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3263 3264 3265 3266 3267 3268 3269 3270

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3271
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3272 3273 3274 3275 3276 3277
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3278
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3279
			unsigned long mark, int classzone_idx)
3280 3281 3282 3283 3284 3285
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3286
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3287
								free_pages);
L
Linus Torvalds 已提交
3288 3289
}

3290
#ifdef CONFIG_NUMA
3291 3292
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3293
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3294
				RECLAIM_DISTANCE;
3295
}
3296
#else	/* CONFIG_NUMA */
3297 3298 3299 3300
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3301 3302
#endif	/* CONFIG_NUMA */

3303 3304 3305 3306 3307 3308 3309 3310 3311
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3312
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3313
{
3314 3315 3316 3317 3318 3319
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3320
	if (zone_idx(zone) != ZONE_NORMAL)
3321
		goto out;
3322 3323 3324 3325 3326 3327 3328 3329

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3330
		goto out;
3331

3332 3333 3334
out:
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3335 3336
}

R
Rohit Seth 已提交
3337
/*
3338
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3339 3340 3341
 * a page.
 */
static struct page *
3342 3343
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3344
{
3345
	struct zoneref *z;
3346
	struct zone *zone;
3347
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3348
	bool no_fallback;
3349

3350
retry:
R
Rohit Seth 已提交
3351
	/*
3352
	 * Scan zonelist, looking for a zone with enough free.
3353
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3354
	 */
3355 3356
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3357
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3358
								ac->nodemask) {
3359
		struct page *page;
3360 3361
		unsigned long mark;

3362 3363
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3364
			!__cpuset_zone_allowed(zone, gfp_mask))
3365
				continue;
3366 3367
		/*
		 * When allocating a page cache page for writing, we
3368 3369
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3370
		 * proportional share of globally allowed dirty pages.
3371
		 * The dirty limits take into account the node's
3372 3373 3374 3375 3376
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3377
		 * exceed the per-node dirty limit in the slowpath
3378
		 * (spread_dirty_pages unset) before going into reclaim,
3379
		 * which is important when on a NUMA setup the allowed
3380
		 * nodes are together not big enough to reach the
3381
		 * global limit.  The proper fix for these situations
3382
		 * will require awareness of nodes in the
3383 3384
		 * dirty-throttling and the flusher threads.
		 */
3385 3386 3387 3388 3389 3390 3391 3392 3393
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3411
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3412
		if (!zone_watermark_fast(zone, order, mark,
3413
				       ac_classzone_idx(ac), alloc_flags)) {
3414 3415
			int ret;

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3426 3427 3428 3429 3430
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3431
			if (node_reclaim_mode == 0 ||
3432
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3433 3434
				continue;

3435
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3436
			switch (ret) {
3437
			case NODE_RECLAIM_NOSCAN:
3438
				/* did not scan */
3439
				continue;
3440
			case NODE_RECLAIM_FULL:
3441
				/* scanned but unreclaimable */
3442
				continue;
3443 3444
			default:
				/* did we reclaim enough */
3445
				if (zone_watermark_ok(zone, order, mark,
3446
						ac_classzone_idx(ac), alloc_flags))
3447 3448 3449
					goto try_this_zone;

				continue;
3450
			}
R
Rohit Seth 已提交
3451 3452
		}

3453
try_this_zone:
3454
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3455
				gfp_mask, alloc_flags, ac->migratetype);
3456
		if (page) {
3457
			prep_new_page(page, order, gfp_mask, alloc_flags);
3458 3459 3460 3461 3462 3463 3464 3465

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3466
			return page;
3467 3468 3469 3470 3471 3472 3473 3474
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3475
		}
3476
	}
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3487
	return NULL;
M
Martin Hicks 已提交
3488 3489
}

3490
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3491 3492
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3493
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3494

3495
	if (!__ratelimit(&show_mem_rs))
3496 3497 3498 3499 3500 3501 3502 3503
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3504
		if (tsk_is_oom_victim(current) ||
3505 3506
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3507
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3508 3509
		filter &= ~SHOW_MEM_FILTER_NODES;

3510
	show_mem(filter, nodemask);
3511 3512
}

3513
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3514 3515 3516 3517 3518 3519
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3520
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3521 3522
		return;

3523 3524 3525
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3526
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3527 3528
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3529
	va_end(args);
J
Joe Perches 已提交
3530

3531
	cpuset_print_current_mems_allowed();
3532
	pr_cont("\n");
3533
	dump_stack();
3534
	warn_alloc_show_mem(gfp_mask, nodemask);
3535 3536
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3557 3558
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3559
	const struct alloc_context *ac, unsigned long *did_some_progress)
3560
{
3561 3562 3563
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3564
		.memcg = NULL,
3565 3566 3567
		.gfp_mask = gfp_mask,
		.order = order,
	};
3568 3569
	struct page *page;

3570 3571 3572
	*did_some_progress = 0;

	/*
3573 3574
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3575
	 */
3576
	if (!mutex_trylock(&oom_lock)) {
3577
		*did_some_progress = 1;
3578
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3579 3580
		return NULL;
	}
3581

3582 3583 3584
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3585 3586 3587
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3588
	 */
3589 3590 3591
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3592
	if (page)
3593 3594
		goto out;

3595 3596 3597 3598 3599 3600
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3601 3602 3603 3604 3605 3606 3607 3608
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3627

3628
	/* Exhausted what can be done so it's blame time */
3629
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3630
		*did_some_progress = 1;
3631

3632 3633 3634 3635 3636 3637
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3638 3639
					ALLOC_NO_WATERMARKS, ac);
	}
3640
out:
3641
	mutex_unlock(&oom_lock);
3642 3643 3644
	return page;
}

3645 3646 3647 3648 3649 3650
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3651 3652 3653 3654
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3655
		unsigned int alloc_flags, const struct alloc_context *ac,
3656
		enum compact_priority prio, enum compact_result *compact_result)
3657
{
3658
	struct page *page;
3659
	unsigned long pflags;
3660
	unsigned int noreclaim_flag;
3661 3662

	if (!order)
3663 3664
		return NULL;

3665
	psi_memstall_enter(&pflags);
3666
	noreclaim_flag = memalloc_noreclaim_save();
3667

3668
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3669
									prio);
3670

3671
	memalloc_noreclaim_restore(noreclaim_flag);
3672
	psi_memstall_leave(&pflags);
3673

3674
	if (*compact_result <= COMPACT_INACTIVE)
3675
		return NULL;
3676

3677 3678 3679 3680 3681
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3682

3683
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3684

3685 3686
	if (page) {
		struct zone *zone = page_zone(page);
3687

3688 3689 3690 3691 3692
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3693

3694 3695 3696 3697 3698
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3699

3700
	cond_resched();
3701 3702 3703

	return NULL;
}
3704

3705 3706 3707 3708
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3709
		     int *compaction_retries)
3710 3711
{
	int max_retries = MAX_COMPACT_RETRIES;
3712
	int min_priority;
3713 3714 3715
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3716 3717 3718 3719

	if (!order)
		return false;

3720 3721 3722
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3723 3724 3725 3726 3727
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3728 3729
	if (compaction_failed(compact_result))
		goto check_priority;
3730 3731 3732 3733 3734 3735 3736

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3737 3738 3739 3740
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3741 3742

	/*
3743
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3744 3745 3746 3747 3748 3749 3750 3751
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3752 3753 3754 3755
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3756

3757 3758 3759 3760 3761
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3762 3763
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3764

3765
	if (*compact_priority > min_priority) {
3766 3767
		(*compact_priority)--;
		*compaction_retries = 0;
3768
		ret = true;
3769
	}
3770 3771 3772
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3773
}
3774 3775 3776
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3777
		unsigned int alloc_flags, const struct alloc_context *ac,
3778
		enum compact_priority prio, enum compact_result *compact_result)
3779
{
3780
	*compact_result = COMPACT_SKIPPED;
3781 3782
	return NULL;
}
3783 3784

static inline bool
3785 3786
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3787
		     enum compact_priority *compact_priority,
3788
		     int *compaction_retries)
3789
{
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3808 3809
	return false;
}
3810
#endif /* CONFIG_COMPACTION */
3811

3812
#ifdef CONFIG_LOCKDEP
3813
static struct lockdep_map __fs_reclaim_map =
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3825
	if (current->flags & PF_MEMALLOC)
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3848 3849 3850
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3851
		__fs_reclaim_acquire();
3852 3853 3854 3855 3856 3857
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3858
		__fs_reclaim_release();
3859 3860 3861 3862
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3863 3864
/* Perform direct synchronous page reclaim */
static int
3865 3866
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3867 3868
{
	struct reclaim_state reclaim_state;
3869
	int progress;
3870
	unsigned int noreclaim_flag;
3871
	unsigned long pflags;
3872 3873 3874 3875 3876

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3877
	psi_memstall_enter(&pflags);
3878
	fs_reclaim_acquire(gfp_mask);
3879
	noreclaim_flag = memalloc_noreclaim_save();
3880
	reclaim_state.reclaimed_slab = 0;
3881
	current->reclaim_state = &reclaim_state;
3882

3883 3884
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3885

3886
	current->reclaim_state = NULL;
3887
	memalloc_noreclaim_restore(noreclaim_flag);
3888
	fs_reclaim_release(gfp_mask);
3889
	psi_memstall_leave(&pflags);
3890 3891 3892

	cond_resched();

3893 3894 3895 3896 3897 3898
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3899
		unsigned int alloc_flags, const struct alloc_context *ac,
3900
		unsigned long *did_some_progress)
3901 3902 3903 3904
{
	struct page *page = NULL;
	bool drained = false;

3905
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3906 3907
	if (unlikely(!(*did_some_progress)))
		return NULL;
3908

3909
retry:
3910
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3911 3912 3913

	/*
	 * If an allocation failed after direct reclaim, it could be because
3914 3915
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3916 3917
	 */
	if (!page && !drained) {
3918
		unreserve_highatomic_pageblock(ac, false);
3919
		drain_all_pages(NULL);
3920 3921 3922 3923
		drained = true;
		goto retry;
	}

3924 3925 3926
	return page;
}

3927 3928
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3929 3930 3931
{
	struct zoneref *z;
	struct zone *zone;
3932
	pg_data_t *last_pgdat = NULL;
3933
	enum zone_type high_zoneidx = ac->high_zoneidx;
3934

3935 3936
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3937
		if (last_pgdat != zone->zone_pgdat)
3938
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3939 3940
		last_pgdat = zone->zone_pgdat;
	}
3941 3942
}

3943
static inline unsigned int
3944 3945
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3946
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3947

3948
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3949
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3950

3951 3952 3953 3954
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3955
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3956
	 */
3957
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3958

3959
	if (gfp_mask & __GFP_ATOMIC) {
3960
		/*
3961 3962
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3963
		 */
3964
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3965
			alloc_flags |= ALLOC_HARDER;
3966
		/*
3967
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3968
		 * comment for __cpuset_node_allowed().
3969
		 */
3970
		alloc_flags &= ~ALLOC_CPUSET;
3971
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3972 3973
		alloc_flags |= ALLOC_HARDER;

3974 3975 3976
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

3977 3978 3979 3980
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3981 3982 3983
	return alloc_flags;
}

3984
static bool oom_reserves_allowed(struct task_struct *tsk)
3985
{
3986 3987 3988 3989 3990 3991 3992 3993
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3994 3995
		return false;

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4007
	if (gfp_mask & __GFP_MEMALLOC)
4008
		return ALLOC_NO_WATERMARKS;
4009
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4010 4011 4012 4013 4014 4015 4016
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4017

4018 4019 4020 4021 4022 4023
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4024 4025
}

M
Michal Hocko 已提交
4026 4027 4028
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4029 4030 4031 4032
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4033 4034 4035 4036 4037 4038
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4039
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4040 4041 4042
{
	struct zone *zone;
	struct zoneref *z;
4043
	bool ret = false;
M
Michal Hocko 已提交
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4055 4056 4057 4058
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4059 4060
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4061
		return unreserve_highatomic_pageblock(ac, true);
4062
	}
M
Michal Hocko 已提交
4063

4064 4065 4066 4067 4068
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4069 4070 4071 4072
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4073
		unsigned long reclaimable;
4074 4075
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4076

4077 4078
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4079 4080

		/*
4081 4082
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4083
		 */
4084 4085 4086 4087 4088
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4089 4090 4091 4092 4093 4094 4095
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4096
				unsigned long write_pending;
4097

4098 4099
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4100

4101
				if (2 * write_pending > reclaimable) {
4102 4103 4104 4105
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4106

4107 4108
			ret = true;
			goto out;
M
Michal Hocko 已提交
4109 4110 4111
		}
	}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4125 4126
}

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4160 4161
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4162
						struct alloc_context *ac)
4163
{
4164
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4165
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4166
	struct page *page = NULL;
4167
	unsigned int alloc_flags;
4168
	unsigned long did_some_progress;
4169
	enum compact_priority compact_priority;
4170
	enum compact_result compact_result;
4171 4172 4173
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4174
	int reserve_flags;
L
Linus Torvalds 已提交
4175

4176 4177 4178 4179 4180 4181 4182 4183
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4184 4185 4186 4187 4188
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4189 4190 4191 4192 4193 4194 4195 4196

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4208
	if (alloc_flags & ALLOC_KSWAPD)
4209
		wake_all_kswapds(order, gfp_mask, ac);
4210 4211 4212 4213 4214 4215 4216 4217 4218

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4219 4220
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4221 4222 4223 4224 4225 4226
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4227
	 */
4228 4229 4230 4231
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4232 4233
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4234
						INIT_COMPACT_PRIORITY,
4235 4236 4237 4238
						&compact_result);
		if (page)
			goto got_pg;

4239 4240 4241 4242
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4243
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4256 4257
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4258
			 * using async compaction.
4259
			 */
4260
			compact_priority = INIT_COMPACT_PRIORITY;
4261 4262
		}
	}
4263

4264
retry:
4265
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4266
	if (alloc_flags & ALLOC_KSWAPD)
4267
		wake_all_kswapds(order, gfp_mask, ac);
4268

4269 4270 4271
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4272

4273
	/*
4274 4275 4276
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4277
	 */
4278
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4279
		ac->nodemask = NULL;
4280 4281 4282 4283
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4284
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4285
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4286 4287
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4288

4289
	/* Caller is not willing to reclaim, we can't balance anything */
4290
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4291 4292
		goto nopage;

4293 4294
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4295 4296
		goto nopage;

4297 4298 4299 4300 4301 4302 4303
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4304
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4305
					compact_priority, &compact_result);
4306 4307
	if (page)
		goto got_pg;
4308

4309 4310
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4311
		goto nopage;
4312

M
Michal Hocko 已提交
4313 4314
	/*
	 * Do not retry costly high order allocations unless they are
4315
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4316
	 */
4317
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4318
		goto nopage;
M
Michal Hocko 已提交
4319 4320

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4321
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4322 4323
		goto retry;

4324 4325 4326 4327 4328 4329 4330
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4331
			should_compact_retry(ac, order, alloc_flags,
4332
				compact_result, &compact_priority,
4333
				&compaction_retries))
4334 4335
		goto retry;

4336 4337 4338

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4339 4340
		goto retry_cpuset;

4341 4342 4343 4344 4345
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4346
	/* Avoid allocations with no watermarks from looping endlessly */
4347 4348
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4349
	     (gfp_mask & __GFP_NOMEMALLOC)))
4350 4351
		goto nopage;

4352
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4353 4354
	if (did_some_progress) {
		no_progress_loops = 0;
4355
		goto retry;
M
Michal Hocko 已提交
4356
	}
4357

L
Linus Torvalds 已提交
4358
nopage:
4359 4360
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4361 4362
		goto retry_cpuset;

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4400 4401 4402 4403
		cond_resched();
		goto retry;
	}
fail:
4404
	warn_alloc(gfp_mask, ac->nodemask,
4405
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4406
got_pg:
4407
	return page;
L
Linus Torvalds 已提交
4408
}
4409

4410
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4411
		int preferred_nid, nodemask_t *nodemask,
4412 4413
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4414
{
4415
	ac->high_zoneidx = gfp_zone(gfp_mask);
4416
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4417 4418
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4419

4420
	if (cpusets_enabled()) {
4421 4422 4423
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4424 4425
		else
			*alloc_flags |= ALLOC_CPUSET;
4426 4427
	}

4428 4429
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4430

4431
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4432 4433

	if (should_fail_alloc_page(gfp_mask, order))
4434
		return false;
4435

4436 4437 4438
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4439 4440
	return true;
}
4441

4442
/* Determine whether to spread dirty pages and what the first usable zone */
4443
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4444
{
4445
	/* Dirty zone balancing only done in the fast path */
4446
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4447

4448 4449 4450 4451 4452
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4453 4454 4455 4456 4457 4458 4459 4460
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4461 4462
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4463 4464 4465
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4466
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4467 4468
	struct alloc_context ac = { };

4469 4470 4471 4472 4473 4474 4475 4476 4477
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4478
	gfp_mask &= gfp_allowed_mask;
4479
	alloc_mask = gfp_mask;
4480
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4481 4482
		return NULL;

4483
	finalise_ac(gfp_mask, &ac);
4484

4485 4486 4487 4488
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4489
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4490

4491
	/* First allocation attempt */
4492
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4493 4494
	if (likely(page))
		goto out;
4495

4496
	/*
4497 4498 4499 4500
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4501
	 */
4502
	alloc_mask = current_gfp_context(gfp_mask);
4503
	ac.spread_dirty_pages = false;
4504

4505 4506 4507 4508
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4509
	if (unlikely(ac.nodemask != nodemask))
4510
		ac.nodemask = nodemask;
4511

4512
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4513

4514
out:
4515 4516 4517 4518
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4519 4520
	}

4521 4522
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4523
	return page;
L
Linus Torvalds 已提交
4524
}
4525
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4526 4527

/*
4528 4529 4530
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4531
 */
H
Harvey Harrison 已提交
4532
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4533
{
4534 4535
	struct page *page;

4536
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4543
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4544
{
4545
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4546 4547 4548
}
EXPORT_SYMBOL(get_zeroed_page);

4549
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4550
{
4551 4552 4553 4554
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4555 4556
}

4557 4558 4559 4560 4561
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4562 4563
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4564
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4565 4566
{
	if (addr != 0) {
N
Nick Piggin 已提交
4567
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572 4573
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4585 4586
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4606
void __page_frag_cache_drain(struct page *page, unsigned int count)
4607 4608 4609
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4610 4611
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4612
}
4613
EXPORT_SYMBOL(__page_frag_cache_drain);
4614

4615 4616
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4617 4618 4619 4620 4621 4622 4623
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4624
		page = __page_frag_cache_refill(nc, gfp_mask);
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4635
		page_ref_add(page, size - 1);
4636 4637

		/* reset page count bias and offset to start of new frag */
4638
		nc->pfmemalloc = page_is_pfmemalloc(page);
4639 4640 4641 4642 4643 4644 4645 4646
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4647
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4648 4649 4650 4651 4652 4653 4654
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4655
		set_page_count(page, size);
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4667
EXPORT_SYMBOL(page_frag_alloc);
4668 4669 4670 4671

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4672
void page_frag_free(void *addr)
4673 4674 4675
{
	struct page *page = virt_to_head_page(addr);

4676 4677
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4678
}
4679
EXPORT_SYMBOL(page_frag_free);
4680

4681 4682
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4716
	return make_alloc_exact(addr, order, size);
4717 4718 4719
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4720 4721 4722
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4723
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4724 4725 4726 4727 4728 4729
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4730
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4731
{
4732
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4733 4734 4735 4736 4737 4738
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4758 4759 4760 4761 4762 4763 4764
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4765 4766
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4767
 */
4768
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4769
{
4770
	struct zoneref *z;
4771 4772
	struct zone *zone;

4773
	/* Just pick one node, since fallback list is circular */
4774
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4775

4776
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4777

4778
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4779
		unsigned long size = zone_managed_pages(zone);
4780
		unsigned long high = high_wmark_pages(zone);
4781 4782
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787
	}

	return sum;
}

4788 4789 4790 4791 4792
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4793
 */
4794
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4795
{
A
Al Viro 已提交
4796
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4797
}
4798
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4799

4800 4801 4802 4803 4804
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4805
 */
4806
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4807
{
M
Mel Gorman 已提交
4808
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4809
}
4810 4811

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4812
{
4813
	if (IS_ENABLED(CONFIG_NUMA))
4814
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4815 4816
}

4817 4818 4819 4820 4821 4822
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4823
	unsigned long reclaimable;
4824 4825 4826 4827
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4828
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4829 4830

	for_each_zone(zone)
4831
		wmark_low += low_wmark_pages(zone);
4832 4833 4834 4835 4836

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4837
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4849 4850 4851
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4852
	 */
4853 4854 4855
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4856

4857 4858 4859 4860 4861 4862
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4863 4864
void si_meminfo(struct sysinfo *val)
{
4865
	val->totalram = totalram_pages();
4866
	val->sharedram = global_node_page_state(NR_SHMEM);
4867
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4868
	val->bufferram = nr_blockdev_pages();
4869
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4879 4880
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4881 4882
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4883 4884
	pg_data_t *pgdat = NODE_DATA(nid);

4885
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4886
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4887
	val->totalram = managed_pages;
4888
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4889
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4890
#ifdef CONFIG_HIGHMEM
4891 4892 4893 4894
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
4895
			managed_highpages += zone_managed_pages(zone);
4896 4897 4898 4899 4900
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4901
#else
4902 4903
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4904
#endif
L
Linus Torvalds 已提交
4905 4906 4907 4908
	val->mem_unit = PAGE_SIZE;
}
#endif

4909
/*
4910 4911
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4912
 */
4913
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4914 4915
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4916
		return false;
4917

4918 4919 4920 4921 4922 4923 4924 4925 4926
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4927 4928
}

L
Linus Torvalds 已提交
4929 4930
#define K(x) ((x) << (PAGE_SHIFT-10))

4931 4932 4933 4934 4935
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4936 4937
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4938 4939 4940
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4941
#ifdef CONFIG_MEMORY_ISOLATION
4942
		[MIGRATE_ISOLATE]	= 'I',
4943
#endif
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4955
	printk(KERN_CONT "(%s) ", tmp);
4956 4957
}

L
Linus Torvalds 已提交
4958 4959 4960 4961
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4962 4963 4964 4965
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4966
 */
4967
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4968
{
4969
	unsigned long free_pcp = 0;
4970
	int cpu;
L
Linus Torvalds 已提交
4971
	struct zone *zone;
M
Mel Gorman 已提交
4972
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4973

4974
	for_each_populated_zone(zone) {
4975
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4976
			continue;
4977

4978 4979
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4980 4981
	}

K
KOSAKI Motohiro 已提交
4982 4983
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4984 4985
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4986
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4987
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4988 4989 4990 4991 4992 4993 4994
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4995 4996 4997
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4998 4999
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5000
		global_node_page_state(NR_FILE_MAPPED),
5001
		global_node_page_state(NR_SHMEM),
5002 5003 5004
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5005
		free_pcp,
5006
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5007

M
Mel Gorman 已提交
5008
	for_each_online_pgdat(pgdat) {
5009
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5010 5011
			continue;

M
Mel Gorman 已提交
5012 5013 5014 5015 5016 5017 5018 5019
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5020
			" mapped:%lukB"
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5041
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5042 5043
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5044
			K(node_page_state(pgdat, NR_SHMEM)),
5045 5046 5047 5048 5049 5050 5051 5052
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5053 5054
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5055 5056
	}

5057
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5058 5059
		int i;

5060
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5061
			continue;
5062 5063 5064 5065 5066

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5067
		show_node(zone);
5068 5069
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5070 5071 5072 5073
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5074 5075 5076 5077 5078
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5079
			" writepending:%lukB"
L
Linus Torvalds 已提交
5080
			" present:%lukB"
5081
			" managed:%lukB"
5082
			" mlocked:%lukB"
5083
			" kernel_stack:%lukB"
5084 5085
			" pagetables:%lukB"
			" bounce:%lukB"
5086 5087
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5088
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5089 5090
			"\n",
			zone->name,
5091
			K(zone_page_state(zone, NR_FREE_PAGES)),
5092 5093 5094
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5095 5096 5097 5098 5099
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5100
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5101
			K(zone->present_pages),
5102
			K(zone_managed_pages(zone)),
5103
			K(zone_page_state(zone, NR_MLOCK)),
5104
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5105 5106
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5107 5108
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5109
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5110 5111
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5112 5113
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5114 5115
	}

5116
	for_each_populated_zone(zone) {
5117 5118
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5119
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5120

5121
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5122
			continue;
L
Linus Torvalds 已提交
5123
		show_node(zone);
5124
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5125 5126 5127

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5128 5129 5130 5131
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5132
			total += nr[order] << order;
5133 5134 5135 5136 5137 5138

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5139 5140
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5141
		for (order = 0; order < MAX_ORDER; order++) {
5142 5143
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5144 5145 5146
			if (nr[order])
				show_migration_types(types[order]);
		}
5147
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5148 5149
	}

5150 5151
	hugetlb_show_meminfo();

5152
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5153

L
Linus Torvalds 已提交
5154 5155 5156
	show_swap_cache_info();
}

5157 5158 5159 5160 5161 5162
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5163 5164
/*
 * Builds allocation fallback zone lists.
5165 5166
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5167
 */
5168
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5169
{
5170
	struct zone *zone;
5171
	enum zone_type zone_type = MAX_NR_ZONES;
5172
	int nr_zones = 0;
5173 5174

	do {
5175
		zone_type--;
5176
		zone = pgdat->node_zones + zone_type;
5177
		if (managed_zone(zone)) {
5178
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5179
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5180
		}
5181
	} while (zone_type);
5182

5183
	return nr_zones;
L
Linus Torvalds 已提交
5184 5185 5186
}

#ifdef CONFIG_NUMA
5187 5188 5189

static int __parse_numa_zonelist_order(char *s)
{
5190 5191 5192 5193 5194 5195 5196 5197
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5198 5199 5200 5201 5202 5203 5204
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5205 5206 5207
	if (!s)
		return 0;

5208
	return __parse_numa_zonelist_order(s);
5209 5210 5211
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5212 5213
char numa_zonelist_order[] = "Node";

5214 5215 5216
/*
 * sysctl handler for numa_zonelist_order
 */
5217
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5218
		void __user *buffer, size_t *length,
5219 5220
		loff_t *ppos)
{
5221
	char *str;
5222 5223
	int ret;

5224 5225 5226 5227 5228
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5229

5230 5231
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5232
	return ret;
5233 5234 5235
}


5236
#define MAX_NODE_LOAD (nr_online_nodes)
5237 5238
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5239
/**
5240
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5253
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5254
{
5255
	int n, val;
L
Linus Torvalds 已提交
5256
	int min_val = INT_MAX;
D
David Rientjes 已提交
5257
	int best_node = NUMA_NO_NODE;
5258
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5259

5260 5261 5262 5263 5264
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5265

5266
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5275 5276 5277
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5278
		/* Give preference to headless and unused nodes */
5279 5280
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5299 5300 5301 5302 5303 5304

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5305 5306
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5307
{
5308 5309 5310 5311 5312 5313 5314 5315 5316
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5317

5318 5319 5320 5321 5322
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5323 5324
}

5325 5326 5327 5328 5329
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5330 5331
	struct zoneref *zonerefs;
	int nr_zones;
5332

5333 5334 5335 5336 5337
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5338 5339
}

5340 5341 5342 5343 5344 5345 5346 5347 5348
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5349 5350
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5351
	nodemask_t used_mask;
5352
	int local_node, prev_node;
L
Linus Torvalds 已提交
5353 5354 5355

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5356
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5357 5358
	prev_node = local_node;
	nodes_clear(used_mask);
5359 5360

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5361 5362 5363 5364 5365 5366
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5367 5368
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5369 5370
			node_load[node] = load;

5371
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5372 5373 5374
		prev_node = node;
		load--;
	}
5375

5376
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5377
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5378 5379
}

5380 5381 5382 5383 5384 5385 5386 5387 5388
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5389
	struct zoneref *z;
5390

5391
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5392
				   gfp_zone(GFP_KERNEL),
5393
				   NULL);
5394
	return zone_to_nid(z->zone);
5395 5396
}
#endif
5397

5398 5399
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5400 5401
#else	/* CONFIG_NUMA */

5402
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5403
{
5404
	int node, local_node;
5405 5406
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5407 5408 5409

	local_node = pgdat->node_id;

5410 5411 5412
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5413

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5425 5426
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5427
	}
5428 5429 5430
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5431 5432
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5433 5434
	}

5435 5436
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5437 5438 5439 5440
}

#endif	/* CONFIG_NUMA */

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5458
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5459

5460
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5461
{
5462
	int nid;
5463
	int __maybe_unused cpu;
5464
	pg_data_t *self = data;
5465 5466 5467
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5468

5469 5470 5471
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5472

5473 5474 5475 5476
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5477 5478
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5479 5480 5481
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5482

5483 5484
			build_zonelists(pgdat);
		}
5485

5486 5487 5488 5489 5490 5491 5492 5493 5494
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5495
		for_each_online_cpu(cpu)
5496
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5497
#endif
5498
	}
5499 5500

	spin_unlock(&lock);
5501 5502
}

5503 5504 5505
static noinline void __init
build_all_zonelists_init(void)
{
5506 5507
	int cpu;

5508
	__build_all_zonelists(NULL);
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5526 5527 5528 5529
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5530 5531
/*
 * unless system_state == SYSTEM_BOOTING.
5532
 *
5533
 * __ref due to call of __init annotated helper build_all_zonelists_init
5534
 * [protected by SYSTEM_BOOTING].
5535
 */
5536
void __ref build_all_zonelists(pg_data_t *pgdat)
5537 5538
{
	if (system_state == SYSTEM_BOOTING) {
5539
		build_all_zonelists_init();
5540
	} else {
5541
		__build_all_zonelists(pgdat);
5542 5543
		/* cpuset refresh routine should be here */
	}
5544
	vm_total_pages = nr_free_pagecache_pages();
5545 5546 5547 5548 5549 5550 5551
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5552
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5553 5554 5555 5556
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5557
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5558 5559 5560
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5561
#ifdef CONFIG_NUMA
5562
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5563
#endif
L
Linus Torvalds 已提交
5564 5565
}

5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5590 5591
/*
 * Initially all pages are reserved - free ones are freed
5592
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5593 5594
 * done. Non-atomic initialization, single-pass.
 */
5595
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5596 5597
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5598
{
5599
	unsigned long pfn, end_pfn = start_pfn + size;
5600
	struct page *page;
L
Linus Torvalds 已提交
5601

5602 5603 5604
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5605
#ifdef CONFIG_ZONE_DEVICE
5606 5607
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5608 5609 5610 5611
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5612
	 */
5613 5614 5615 5616 5617 5618 5619 5620 5621
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5622

5623
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5624
		/*
5625 5626
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5627
		 */
5628 5629
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5630
				continue;
5631 5632 5633 5634 5635 5636
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5637
		}
5638

5639 5640 5641
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5642
			__SetPageReserved(page);
5643

5644 5645 5646 5647 5648
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5649
		 * kernel allocations are made.
5650 5651 5652 5653 5654 5655 5656 5657
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5658
			cond_resched();
5659
		}
L
Linus Torvalds 已提交
5660
	}
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
#ifdef CONFIG_SPARSEMEM
	/*
	 * If the zone does not span the rest of the section then
	 * we should at least initialize those pages. Otherwise we
	 * could blow up on a poisoned page in some paths which depend
	 * on full sections being initialized (e.g. memory hotplug).
	 */
	while (end_pfn % PAGES_PER_SECTION) {
		__init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
		end_pfn++;
	}
#endif
L
Linus Torvalds 已提交
5673 5674
}

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5750
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5751
{
5752
	unsigned int order, t;
5753 5754
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5755 5756 5757 5758
		zone->free_area[order].nr_free = 0;
	}
}

5759 5760 5761 5762 5763
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5764

5765
static int zone_batchsize(struct zone *zone)
5766
{
5767
#ifdef CONFIG_MMU
5768 5769 5770 5771
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5772
	 * size of the zone.
5773
	 */
5774
	batch = zone_managed_pages(zone) / 1024;
5775 5776 5777
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5778 5779 5780 5781 5782
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5783 5784 5785
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5786
	 *
5787 5788 5789 5790
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5791
	 */
5792
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5793

5794
	return batch;
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5812 5813
}

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5841
/* a companion to pageset_set_high() */
5842 5843
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5844
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5845 5846
}

5847
static void pageset_init(struct per_cpu_pageset *p)
5848 5849
{
	struct per_cpu_pages *pcp;
5850
	int migratetype;
5851

5852 5853
	memset(p, 0, sizeof(*p));

5854
	pcp = &p->pcp;
5855 5856
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5857 5858
}

5859 5860 5861 5862 5863 5864
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5865
/*
5866
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5867 5868
 * to the value high for the pageset p.
 */
5869
static void pageset_set_high(struct per_cpu_pageset *p,
5870 5871
				unsigned long high)
{
5872 5873 5874
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5875

5876
	pageset_update(&p->pcp, high, batch);
5877 5878
}

5879 5880
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5881 5882
{
	if (percpu_pagelist_fraction)
5883
		pageset_set_high(pcp,
5884
			(zone_managed_pages(zone) /
5885 5886 5887 5888 5889
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5890 5891 5892 5893 5894 5895 5896 5897
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5898
void __meminit setup_zone_pageset(struct zone *zone)
5899 5900 5901
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5902 5903
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5904 5905
}

5906
/*
5907 5908
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5909
 */
5910
void __init setup_per_cpu_pageset(void)
5911
{
5912
	struct pglist_data *pgdat;
5913
	struct zone *zone;
5914

5915 5916
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5917 5918 5919 5920

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5921 5922
}

5923
static __meminit void zone_pcp_init(struct zone *zone)
5924
{
5925 5926 5927 5928 5929 5930
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5931

5932
	if (populated_zone(zone))
5933 5934 5935
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5936 5937
}

5938
void __meminit init_currently_empty_zone(struct zone *zone,
5939
					unsigned long zone_start_pfn,
5940
					unsigned long size)
5941 5942
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5943
	int zone_idx = zone_idx(zone) + 1;
5944

5945 5946
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5947 5948 5949

	zone->zone_start_pfn = zone_start_pfn;

5950 5951 5952 5953 5954 5955
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5956
	zone_init_free_lists(zone);
5957
	zone->initialized = 1;
5958 5959
}

T
Tejun Heo 已提交
5960
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5961
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5962

5963 5964 5965
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5966 5967
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5968
{
5969
	unsigned long start_pfn, end_pfn;
5970
	int nid;
5971

5972 5973
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5974

5975 5976
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5977 5978 5979
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5980 5981 5982
	}

	return nid;
5983 5984 5985 5986
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5987
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5988
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5989
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5990
 *
5991 5992 5993
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5994
 */
5995
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5996
{
5997 5998
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5999

6000 6001 6002
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6003

6004
		if (start_pfn < end_pfn)
6005 6006 6007
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6008 6009 6010
	}
}

6011 6012
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6013
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6014
 *
6015 6016
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6017 6018 6019
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6020 6021
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6022

6023 6024
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6025 6026 6027 6028
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6029 6030 6031
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6032 6033
 *
 * It returns the start and end page frame of a node based on information
6034
 * provided by memblock_set_node(). If called for a node
6035
 * with no available memory, a warning is printed and the start and end
6036
 * PFNs will be 0.
6037
 */
6038
void __init get_pfn_range_for_nid(unsigned int nid,
6039 6040
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6041
	unsigned long this_start_pfn, this_end_pfn;
6042
	int i;
6043

6044 6045 6046
	*start_pfn = -1UL;
	*end_pfn = 0;

6047 6048 6049
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6050 6051
	}

6052
	if (*start_pfn == -1UL)
6053 6054 6055
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6056 6057 6058 6059 6060
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6061
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6079
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6080 6081 6082 6083 6084 6085 6086
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6087
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6102 6103 6104 6105 6106 6107
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6108 6109 6110 6111 6112 6113
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6114 6115 6116 6117
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6118
static unsigned long __init zone_spanned_pages_in_node(int nid,
6119
					unsigned long zone_type,
6120 6121
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6122 6123
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6124 6125
					unsigned long *ignored)
{
6126
	/* When hotadd a new node from cpu_up(), the node should be empty */
6127 6128 6129
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6130
	/* Get the start and end of the zone */
6131 6132
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6133 6134
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6135
				zone_start_pfn, zone_end_pfn);
6136 6137

	/* Check that this node has pages within the zone's required range */
6138
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6139 6140 6141
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6142 6143
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6144 6145

	/* Return the spanned pages */
6146
	return *zone_end_pfn - *zone_start_pfn;
6147 6148 6149 6150
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6151
 * then all holes in the requested range will be accounted for.
6152
 */
6153
unsigned long __init __absent_pages_in_range(int nid,
6154 6155 6156
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6157 6158 6159
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6160

6161 6162 6163 6164
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6165
	}
6166
	return nr_absent;
6167 6168 6169 6170 6171 6172 6173
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6174
 * It returns the number of pages frames in memory holes within a range.
6175 6176 6177 6178 6179 6180 6181 6182
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6183
static unsigned long __init zone_absent_pages_in_node(int nid,
6184
					unsigned long zone_type,
6185 6186
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6187 6188
					unsigned long *ignored)
{
6189 6190
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6191
	unsigned long zone_start_pfn, zone_end_pfn;
6192
	unsigned long nr_absent;
6193

6194
	/* When hotadd a new node from cpu_up(), the node should be empty */
6195 6196 6197
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6198 6199
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6200

M
Mel Gorman 已提交
6201 6202 6203
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6204 6205 6206 6207 6208 6209 6210
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6228 6229 6230 6231
		}
	}

	return nr_absent;
6232
}
6233

T
Tejun Heo 已提交
6234
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6235
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6236
					unsigned long zone_type,
6237 6238
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6239 6240
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6241 6242
					unsigned long *zones_size)
{
6243 6244 6245 6246 6247 6248 6249 6250
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6251 6252 6253
	return zones_size[zone_type];
}

6254
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6255
						unsigned long zone_type,
6256 6257
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6258 6259 6260 6261 6262 6263 6264
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6265

T
Tejun Heo 已提交
6266
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6267

6268
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6269 6270 6271 6272
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6273
{
6274
	unsigned long realtotalpages = 0, totalpages = 0;
6275 6276
	enum zone_type i;

6277 6278
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6279
		unsigned long zone_start_pfn, zone_end_pfn;
6280
		unsigned long size, real_size;
6281

6282 6283 6284
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6285 6286
						  &zone_start_pfn,
						  &zone_end_pfn,
6287 6288
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6289 6290
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6291 6292 6293 6294
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6295 6296 6297 6298 6299 6300 6301 6302
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6303 6304 6305 6306 6307
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6308 6309 6310
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6311 6312
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6313 6314 6315
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6316
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6317 6318 6319
{
	unsigned long usemapsize;

6320
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6321 6322
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6323 6324 6325 6326 6327 6328
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6329
static void __ref setup_usemap(struct pglist_data *pgdat,
6330 6331 6332
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6333
{
6334
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6335
	zone->pageblock_flags = NULL;
6336
	if (usemapsize)
6337
		zone->pageblock_flags =
6338
			memblock_alloc_node_nopanic(usemapsize,
6339
							 pgdat->node_id);
6340 6341
}
#else
6342 6343
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6344 6345
#endif /* CONFIG_SPARSEMEM */

6346
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6347

6348
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6349
void __init set_pageblock_order(void)
6350
{
6351 6352
	unsigned int order;

6353 6354 6355 6356
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6357 6358 6359 6360 6361
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6362 6363
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6364 6365
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6366 6367 6368 6369 6370
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6371 6372
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6373 6374 6375
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6376
 */
6377
void __init set_pageblock_order(void)
6378 6379
{
}
6380 6381 6382

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6383
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6384
						unsigned long present_pages)
6385 6386 6387 6388 6389 6390 6391 6392
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6393
	 * populated regions may not be naturally aligned on page boundary.
6394 6395 6396 6397 6398 6399 6400 6401 6402
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6423
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6424
{
6425
	pgdat_resize_init(pgdat);
6426 6427 6428 6429

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6430
	init_waitqueue_head(&pgdat->kswapd_wait);
6431
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6432

6433
	pgdat_page_ext_init(pgdat);
6434
	spin_lock_init(&pgdat->lru_lock);
6435
	lruvec_init(node_lruvec(pgdat));
6436 6437 6438 6439 6440
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6441
	atomic_long_set(&zone->managed_pages, remaining_pages);
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6482

6483
	pgdat_init_internals(pgdat);
6484 6485
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6486 6487
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6488
		unsigned long size, freesize, memmap_pages;
6489
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6490

6491
		size = zone->spanned_pages;
6492
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6493

6494
		/*
6495
		 * Adjust freesize so that it accounts for how much memory
6496 6497 6498
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6499
		memmap_pages = calc_memmap_size(size, freesize);
6500 6501 6502 6503 6504 6505 6506 6507
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6508
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6509 6510
					zone_names[j], memmap_pages, freesize);
		}
6511

6512
		/* Account for reserved pages */
6513 6514
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6515
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6516
					zone_names[0], dma_reserve);
6517 6518
		}

6519
		if (!is_highmem_idx(j))
6520
			nr_kernel_pages += freesize;
6521 6522 6523
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6524
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6525

6526 6527 6528 6529 6530
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6531
		zone_init_internals(zone, j, nid, freesize);
6532

6533
		if (!size)
L
Linus Torvalds 已提交
6534 6535
			continue;

6536
		set_pageblock_order();
6537 6538
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6539
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6540 6541 6542
	}
}

6543
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6544
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6545
{
6546
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6547 6548
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6549 6550 6551 6552
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6553 6554
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6555 6556
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6557
		unsigned long size, end;
A
Andy Whitcroft 已提交
6558 6559
		struct page *map;

6560 6561 6562 6563 6564
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6565
		end = pgdat_end_pfn(pgdat);
6566 6567
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6568
		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6569
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6570
	}
6571 6572 6573
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6574
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6575 6576 6577
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6578
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6579
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6580
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6581
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6582
			mem_map -= offset;
T
Tejun Heo 已提交
6583
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6584
	}
L
Linus Torvalds 已提交
6585 6586
#endif
}
6587 6588 6589
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6590

6591 6592 6593 6594 6595 6596 6597 6598 6599
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6600
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6601 6602
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6603
{
6604
	pg_data_t *pgdat = NODE_DATA(nid);
6605 6606
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6607

6608
	/* pg_data_t should be reset to zero when it's allocated */
6609
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6610

L
Linus Torvalds 已提交
6611 6612
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6613
	pgdat->per_cpu_nodestats = NULL;
6614 6615
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6616
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6617 6618
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6619 6620
#else
	start_pfn = node_start_pfn;
6621 6622 6623
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6624 6625

	alloc_node_mem_map(pgdat);
6626
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6627

6628
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6629 6630
}

M
Mike Rapoport 已提交
6631
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6654 6655 6656 6657 6658 6659
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6660 6661 6662 6663 6664
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6665
 */
6666
void __init zero_resv_unavail(void)
6667 6668 6669
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6670
	phys_addr_t next = 0;
6671 6672

	/*
6673
	 * Loop through unavailable ranges not covered by memblock.memory.
6674 6675
	 */
	pgcnt = 0;
6676 6677
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6678 6679
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6680 6681
		next = end;
	}
6682
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6683

6684 6685 6686 6687 6688
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6689
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6690
}
M
Mike Rapoport 已提交
6691
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6692

T
Tejun Heo 已提交
6693
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6694 6695 6696 6697 6698

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6699
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6700
{
6701
	unsigned int highest;
M
Miklos Szeredi 已提交
6702

6703
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6704 6705 6706 6707
	nr_node_ids = highest + 1;
}
#endif

6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6730
	unsigned long start, end, mask;
6731
	int last_nid = -1;
6732
	int i, nid;
6733

6734
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6758
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6759
static unsigned long __init find_min_pfn_for_node(int nid)
6760
{
6761
	unsigned long min_pfn = ULONG_MAX;
6762 6763
	unsigned long start_pfn;
	int i;
6764

6765 6766
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6767

6768
	if (min_pfn == ULONG_MAX) {
6769
		pr_warn("Could not find start_pfn for node %d\n", nid);
6770 6771 6772 6773
		return 0;
	}

	return min_pfn;
6774 6775 6776 6777 6778 6779
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6780
 * memblock_set_node().
6781 6782 6783 6784 6785 6786
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6787 6788 6789
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6790
 * Populate N_MEMORY for calculating usable_nodes.
6791
 */
A
Adrian Bunk 已提交
6792
static unsigned long __init early_calculate_totalpages(void)
6793 6794
{
	unsigned long totalpages = 0;
6795 6796 6797 6798 6799
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6800

6801 6802
		totalpages += pages;
		if (pages)
6803
			node_set_state(nid, N_MEMORY);
6804
	}
6805
	return totalpages;
6806 6807
}

M
Mel Gorman 已提交
6808 6809 6810 6811 6812 6813
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6814
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6815 6816 6817 6818
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6819
	/* save the state before borrow the nodemask */
6820
	nodemask_t saved_node_state = node_states[N_MEMORY];
6821
	unsigned long totalpages = early_calculate_totalpages();
6822
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6823
	struct memblock_region *r;
6824 6825 6826 6827 6828 6829 6830 6831 6832

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6833 6834
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6835 6836
				continue;

E
Emil Medve 已提交
6837
			nid = r->nid;
6838

E
Emil Medve 已提交
6839
			usable_startpfn = PFN_DOWN(r->base);
6840 6841 6842 6843 6844 6845 6846
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6847

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6878
	/*
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6906
		required_movablecore = min(totalpages, required_movablecore);
6907 6908 6909 6910 6911
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6912 6913 6914 6915 6916
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6917
		goto out;
M
Mel Gorman 已提交
6918 6919 6920 6921 6922 6923 6924

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6925
	for_each_node_state(nid, N_MEMORY) {
6926 6927
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6944
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6945 6946
			unsigned long size_pages;

6947
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6990
			 * satisfied
M
Mel Gorman 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7004
	 * satisfied
M
Mel Gorman 已提交
7005 7006 7007 7008 7009
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7010
out2:
M
Mel Gorman 已提交
7011 7012 7013 7014
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7015

7016
out:
7017
	/* restore the node_state */
7018
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7019 7020
}

7021 7022
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7023 7024 7025
{
	enum zone_type zone_type;

7026
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7027
		struct zone *zone = &pgdat->node_zones[zone_type];
7028
		if (populated_zone(zone)) {
7029 7030 7031
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7032
				node_set_state(nid, N_NORMAL_MEMORY);
7033 7034
			break;
		}
7035 7036 7037
	}
}

7038 7039
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7040
 * @max_zone_pfn: an array of max PFNs for each zone
7041 7042
 *
 * This will call free_area_init_node() for each active node in the system.
7043
 * Using the page ranges provided by memblock_set_node(), the size of each
7044 7045 7046 7047 7048 7049 7050 7051 7052
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7053 7054
	unsigned long start_pfn, end_pfn;
	int i, nid;
7055

7056 7057 7058 7059 7060
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7061 7062 7063 7064

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7065 7066
		if (i == ZONE_MOVABLE)
			continue;
7067 7068 7069 7070 7071 7072

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7073
	}
M
Mel Gorman 已提交
7074 7075 7076

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7077
	find_zone_movable_pfns_for_nodes();
7078 7079

	/* Print out the zone ranges */
7080
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7081 7082 7083
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7084
		pr_info("  %-8s ", zone_names[i]);
7085 7086
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7087
			pr_cont("empty\n");
7088
		else
7089 7090 7091 7092
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7093
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7094 7095 7096
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7097
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7098 7099
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7100 7101
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7102
	}
7103

7104
	/* Print out the early node map */
7105
	pr_info("Early memory node ranges\n");
7106
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7107 7108 7109
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7110 7111

	/* Initialise every node */
7112
	mminit_verify_pageflags_layout();
7113
	setup_nr_node_ids();
7114
	zero_resv_unavail();
7115 7116
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7117
		free_area_init_node(nid, NULL,
7118
				find_min_pfn_for_node(nid), NULL);
7119 7120 7121

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7122 7123
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7124 7125
	}
}
M
Mel Gorman 已提交
7126

7127 7128
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7129 7130
{
	unsigned long long coremem;
7131 7132
	char *endptr;

M
Mel Gorman 已提交
7133 7134 7135
	if (!p)
		return -EINVAL;

7136 7137 7138 7139 7140
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7141

7142 7143 7144 7145 7146
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7147

7148 7149 7150
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7151 7152
	return 0;
}
M
Mel Gorman 已提交
7153

7154 7155 7156 7157 7158 7159
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7160 7161 7162 7163 7164 7165
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7166 7167
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7168 7169 7170 7171 7172 7173 7174 7175
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7176 7177
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7178 7179
}

M
Mel Gorman 已提交
7180
early_param("kernelcore", cmdline_parse_kernelcore);
7181
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7182

T
Tejun Heo 已提交
7183
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7184

7185 7186
void adjust_managed_page_count(struct page *page, long count)
{
7187
	atomic_long_add(count, &page_zone(page)->managed_pages);
7188
	totalram_pages_add(count);
7189 7190
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7191
		totalhigh_pages_add(count);
7192
#endif
7193
}
7194
EXPORT_SYMBOL(adjust_managed_page_count);
7195

7196
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7197
{
7198 7199
	void *pos;
	unsigned long pages = 0;
7200

7201 7202 7203
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7215
		if ((unsigned int)poison <= 0xFF)
7216 7217 7218
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7219 7220 7221
	}

	if (pages && s)
7222 7223
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7224 7225 7226

	return pages;
}
7227
EXPORT_SYMBOL(free_reserved_area);
7228

7229 7230 7231 7232
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7233
	totalram_pages_inc();
7234
	atomic_long_inc(&page_zone(page)->managed_pages);
7235
	totalhigh_pages_inc();
7236 7237 7238
}
#endif

7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7261 7262 7263 7264
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7275
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7276
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7277
		", %luK highmem"
7278
#endif
J
Joe Perches 已提交
7279 7280 7281 7282 7283
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7284
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7285
		totalcma_pages << (PAGE_SHIFT - 10),
7286
#ifdef	CONFIG_HIGHMEM
7287
		totalhigh_pages() << (PAGE_SHIFT - 10),
7288
#endif
J
Joe Perches 已提交
7289
		str ? ", " : "", str ? str : "");
7290 7291
}

7292
/**
7293 7294
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7295
 *
7296
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7297 7298
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7299 7300 7301
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7302 7303 7304 7305 7306 7307
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7308 7309
void __init free_area_init(unsigned long *zones_size)
{
7310
	zero_resv_unavail();
7311
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7312 7313 7314
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7315
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7316 7317
{

7318 7319
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7320

7321 7322 7323 7324 7325 7326 7327
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7328

7329 7330 7331 7332 7333 7334 7335 7336 7337
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7338 7339 7340 7341
}

void __init page_alloc_init(void)
{
7342 7343 7344 7345 7346 7347
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7348 7349
}

7350
/*
7351
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7352 7353 7354 7355 7356 7357
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7358
	enum zone_type i, j;
7359 7360

	for_each_online_pgdat(pgdat) {
7361 7362 7363

		pgdat->totalreserve_pages = 0;

7364 7365
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7366
			long max = 0;
7367
			unsigned long managed_pages = zone_managed_pages(zone);
7368 7369 7370 7371 7372 7373 7374

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7375 7376
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7377

7378 7379
			if (max > managed_pages)
				max = managed_pages;
7380

7381
			pgdat->totalreserve_pages += max;
7382

7383 7384 7385 7386 7387 7388
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7389 7390
/*
 * setup_per_zone_lowmem_reserve - called whenever
7391
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7392 7393 7394 7395 7396 7397
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7398
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7399

7400
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7401 7402
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7403
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7404 7405 7406

			zone->lowmem_reserve[j] = 0;

7407 7408
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7409 7410
				struct zone *lower_zone;

7411
				idx--;
L
Linus Torvalds 已提交
7412
				lower_zone = pgdat->node_zones + idx;
7413 7414 7415 7416 7417 7418 7419 7420

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7421
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7422 7423 7424
			}
		}
	}
7425 7426 7427

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7428 7429
}

7430
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7440
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7441 7442 7443
	}

	for_each_zone(zone) {
7444 7445
		u64 tmp;

7446
		spin_lock_irqsave(&zone->lock, flags);
7447
		tmp = (u64)pages_min * zone_managed_pages(zone);
7448
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7449 7450
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7451 7452 7453 7454
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7455
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7456
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7457
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7458
			 */
7459
			unsigned long min_pages;
L
Linus Torvalds 已提交
7460

7461
			min_pages = zone_managed_pages(zone) / 1024;
7462
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7463
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7464
		} else {
N
Nick Piggin 已提交
7465 7466
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7467 7468
			 * proportionate to the zone's size.
			 */
7469
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7470 7471
		}

7472 7473 7474 7475 7476 7477
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7478
			    mult_frac(zone_managed_pages(zone),
7479 7480
				      watermark_scale_factor, 10000));

7481 7482
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7483
		zone->watermark_boost = 0;
7484

7485
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7486
	}
7487 7488 7489

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7490 7491
}

7492 7493 7494 7495 7496 7497 7498 7499 7500
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7501 7502 7503
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7504
	__setup_per_zone_wmarks();
7505
	spin_unlock(&lock);
7506 7507
}

L
Linus Torvalds 已提交
7508 7509 7510 7511 7512 7513 7514
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7515
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7532
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7533 7534
{
	unsigned long lowmem_kbytes;
7535
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7536 7537

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7550
	setup_per_zone_wmarks();
7551
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7552
	setup_per_zone_lowmem_reserve();
7553 7554 7555 7556 7557 7558

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7559 7560
	return 0;
}
7561
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7562 7563

/*
7564
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7565 7566 7567
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7568
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7569
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7570
{
7571 7572 7573 7574 7575 7576
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7577 7578
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7579
		setup_per_zone_wmarks();
7580
	}
L
Linus Torvalds 已提交
7581 7582 7583
	return 0;
}

7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7611
#ifdef CONFIG_NUMA
7612
static void setup_min_unmapped_ratio(void)
7613
{
7614
	pg_data_t *pgdat;
7615 7616
	struct zone *zone;

7617
	for_each_online_pgdat(pgdat)
7618
		pgdat->min_unmapped_pages = 0;
7619

7620
	for_each_zone(zone)
7621 7622
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7623
}
7624

7625 7626

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7627
	void __user *buffer, size_t *length, loff_t *ppos)
7628 7629 7630
{
	int rc;

7631
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7632 7633 7634
	if (rc)
		return rc;

7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7645 7646 7647
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7648
	for_each_zone(zone)
7649 7650
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7664 7665
	return 0;
}
7666 7667
#endif

L
Linus Torvalds 已提交
7668 7669 7670 7671 7672 7673
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7674
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7675 7676
 * if in function of the boot time zone sizes.
 */
7677
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7678
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7679
{
7680
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7681 7682 7683 7684
	setup_per_zone_lowmem_reserve();
	return 0;
}

7685 7686
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7687 7688
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7689
 */
7690
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7691
	void __user *buffer, size_t *length, loff_t *ppos)
7692 7693
{
	struct zone *zone;
7694
	int old_percpu_pagelist_fraction;
7695 7696
	int ret;

7697 7698 7699
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7700
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7715

7716
	for_each_populated_zone(zone) {
7717 7718
		unsigned int cpu;

7719
		for_each_possible_cpu(cpu)
7720 7721
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7722
	}
7723
out:
7724
	mutex_unlock(&pcp_batch_high_lock);
7725
	return ret;
7726 7727
}

7728
#ifdef CONFIG_NUMA
7729
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7780 7781
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7782
{
7783
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7784 7785
	unsigned long log2qty, size;
	void *table = NULL;
7786
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7787 7788 7789 7790

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7791
		numentries = nr_kernel_pages;
7792
		numentries -= arch_reserved_kernel_pages();
7793 7794 7795 7796

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7797

P
Pavel Tatashin 已提交
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7808 7809 7810 7811 7812
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7813 7814

		/* Make sure we've got at least a 0-order allocation.. */
7815 7816 7817 7818 7819 7820 7821 7822
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7823
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7824
	}
7825
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7826 7827 7828 7829 7830 7831

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7832
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7833

7834 7835
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7836 7837 7838
	if (numentries > max)
		numentries = max;

7839
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7840

7841
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7842 7843
	do {
		size = bucketsize << log2qty;
7844 7845
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7846 7847
				table = memblock_alloc_nopanic(size,
							       SMP_CACHE_BYTES);
7848
			else
7849 7850
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7851
		} else if (hashdist) {
7852
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7853
		} else {
7854 7855
			/*
			 * If bucketsize is not a power-of-two, we may free
7856 7857
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7858
			 */
7859
			if (get_order(size) < MAX_ORDER) {
7860 7861
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7862
			}
L
Linus Torvalds 已提交
7863 7864 7865 7866 7867 7868
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7869 7870
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7871 7872 7873 7874 7875 7876 7877 7878

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7879

K
KAMEZAWA Hiroyuki 已提交
7880
/*
7881 7882 7883
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7884
 * PageLRU check without isolation or lru_lock could race so that
7885 7886 7887
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7888
 */
7889
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7890
			 int migratetype, int flags)
7891 7892
{
	unsigned long pfn, iter, found;
7893

7894
	/*
7895 7896 7897 7898 7899
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7900 7901
	 */

7902 7903 7904 7905 7906 7907 7908 7909 7910
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7911 7912 7913 7914
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7915
		if (!pfn_valid_within(check))
7916
			continue;
7917

7918
		page = pfn_to_page(check);
7919

7920
		if (PageReserved(page))
7921
			goto unmovable;
7922

7923 7924 7925 7926 7927 7928 7929 7930
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7931 7932 7933 7934 7935 7936
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7937 7938
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7939

7940
			if (!hugepage_migration_supported(page_hstate(head)))
7941 7942
				goto unmovable;

7943 7944
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7945 7946 7947
			continue;
		}

7948 7949 7950 7951
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7952
		 * because their page->_refcount is zero at all time.
7953
		 */
7954
		if (!page_ref_count(page)) {
7955 7956 7957 7958
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7959

7960 7961 7962 7963
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
7964
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7965 7966
			continue;

7967 7968 7969
		if (__PageMovable(page))
			continue;

7970 7971 7972
		if (!PageLRU(page))
			found++;
		/*
7973 7974 7975
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7986
			goto unmovable;
7987
	}
7988
	return false;
7989 7990
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7991 7992
	if (flags & REPORT_FAILURE)
		dump_page(pfn_to_page(pfn+iter), "unmovable page");
7993
	return true;
7994 7995
}

7996
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8011 8012
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8013 8014
{
	/* This function is based on compact_zone() from compaction.c. */
8015
	unsigned long nr_reclaimed;
8016 8017 8018 8019
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8020
	migrate_prep();
8021

8022
	while (pfn < end || !list_empty(&cc->migratepages)) {
8023 8024 8025 8026 8027
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8028 8029
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8030
			pfn = isolate_migratepages_range(cc, pfn, end);
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8041 8042 8043
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8044

8045
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8046
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8047
	}
8048 8049 8050 8051 8052
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8053 8054 8055 8056 8057 8058
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8059 8060 8061 8062
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8063
 * @gfp_mask:	GFP mask to use during compaction
8064 8065
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8066
 * aligned.  The PFN range must belong to a single zone.
8067
 *
8068 8069 8070
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8071 8072 8073 8074 8075
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8076
int alloc_contig_range(unsigned long start, unsigned long end,
8077
		       unsigned migratetype, gfp_t gfp_mask)
8078 8079
{
	unsigned long outer_start, outer_end;
8080 8081
	unsigned int order;
	int ret = 0;
8082

8083 8084 8085 8086
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8087
		.mode = MIGRATE_SYNC,
8088
		.ignore_skip_hint = true,
8089
		.no_set_skip_hint = true,
8090
		.gfp_mask = current_gfp_context(gfp_mask),
8091 8092 8093
	};
	INIT_LIST_HEAD(&cc.migratepages);

8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8119
				       pfn_max_align_up(end), migratetype, 0);
8120
	if (ret)
8121
		return ret;
8122

8123 8124
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8125 8126 8127 8128 8129 8130 8131
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8132
	 */
8133
	ret = __alloc_contig_migrate_range(&cc, start, end);
8134
	if (ret && ret != -EBUSY)
8135
		goto done;
8136
	ret =0;
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8156
	drain_all_pages(cc.zone);
8157 8158 8159 8160 8161

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8162 8163
			outer_start = start;
			break;
8164 8165 8166 8167
		}
		outer_start &= ~0UL << order;
	}

8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8181
	/* Make sure the range is really isolated. */
8182
	if (test_pages_isolated(outer_start, end, false)) {
8183
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8184
			__func__, outer_start, end);
8185 8186 8187 8188
		ret = -EBUSY;
		goto done;
	}

8189
	/* Grab isolated pages from freelists. */
8190
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8204
				pfn_max_align_up(end), migratetype);
8205 8206 8207 8208 8209
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8210 8211 8212 8213 8214 8215 8216 8217 8218
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8219 8220 8221
}
#endif

8222
#ifdef CONFIG_MEMORY_HOTPLUG
8223 8224 8225 8226
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8227 8228
void __meminit zone_pcp_update(struct zone *zone)
{
8229
	unsigned cpu;
8230
	mutex_lock(&pcp_batch_high_lock);
8231
	for_each_possible_cpu(cpu)
8232 8233
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8234
	mutex_unlock(&pcp_batch_high_lock);
8235 8236 8237
}
#endif

8238 8239 8240
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8241 8242
	int cpu;
	struct per_cpu_pageset *pset;
8243 8244 8245 8246

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8247 8248 8249 8250
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8251 8252 8253 8254 8255 8256
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8257
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8258
/*
8259 8260
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8261 8262 8263 8264 8265 8266
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8267
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8268 8269 8270 8271 8272 8273 8274 8275
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8276
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8277 8278 8279 8280 8281 8282 8283 8284 8285
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8296 8297 8298 8299
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8300 8301
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8313 8314 8315 8316 8317 8318

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8319
	unsigned int order;
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif