page_alloc.c 243.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75
#include "internal.h"
76
#include "shuffle.h"
A
Alexander Duyck 已提交
77
#include "page_reporting.h"
L
Linus Torvalds 已提交
78

79 80
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
81
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
82

83 84 85 86 87
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

88 89
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106 107
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
114
/*
115
 * Array of node states.
L
Linus Torvalds 已提交
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

206 207 208 209 210
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
211 212 213 214
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
215
 */
216 217 218 219

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
220
{
221
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 223 224 225
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
226 227
}

228
void pm_restrict_gfp_mask(void)
229
{
230
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 232
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
233
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234
}
235 236 237

bool pm_suspended_storage(void)
{
238
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 240 241
		return false;
	return true;
}
242 243
#endif /* CONFIG_PM_SLEEP */

244
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245
unsigned int pageblock_order __read_mostly;
246 247
#endif

248
static void __free_pages_ok(struct page *page, unsigned int order);
249

L
Linus Torvalds 已提交
250 251 252 253 254 255
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
256
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
257 258 259
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
260
 */
261
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262
#ifdef CONFIG_ZONE_DMA
263
	[ZONE_DMA] = 256,
264
#endif
265
#ifdef CONFIG_ZONE_DMA32
266
	[ZONE_DMA32] = 256,
267
#endif
268
	[ZONE_NORMAL] = 32,
269
#ifdef CONFIG_HIGHMEM
270
	[ZONE_HIGHMEM] = 0,
271
#endif
272
	[ZONE_MOVABLE] = 0,
273
};
L
Linus Torvalds 已提交
274

275
static char * const zone_names[MAX_NR_ZONES] = {
276
#ifdef CONFIG_ZONE_DMA
277
	 "DMA",
278
#endif
279
#ifdef CONFIG_ZONE_DMA32
280
	 "DMA32",
281
#endif
282
	 "Normal",
283
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
284
	 "HighMem",
285
#endif
M
Mel Gorman 已提交
286
	 "Movable",
287 288 289
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
290 291
};

292
const char * const migratetype_names[MIGRATE_TYPES] = {
293 294 295 296 297 298 299 300 301 302 303 304
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

305 306 307 308 309 310
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
311 312 313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
314 315
};

L
Linus Torvalds 已提交
316
int min_free_kbytes = 1024;
317
int user_min_free_kbytes = -1;
318 319 320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
330
int watermark_boost_factor __read_mostly = 15000;
331
#endif
332
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
333

334 335 336
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
337

T
Tejun Heo 已提交
338
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 340
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341
static unsigned long required_kernelcore __initdata;
342
static unsigned long required_kernelcore_percent __initdata;
343
static unsigned long required_movablecore __initdata;
344
static unsigned long required_movablecore_percent __initdata;
345
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
347 348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352

M
Miklos Szeredi 已提交
353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
549

550
void set_pageblock_migratetype(struct page *page, int migratetype)
551
{
552 553
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
554 555
		migratetype = MIGRATE_UNMOVABLE;

556 557 558 559
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
560
#ifdef CONFIG_DEBUG_VM
561
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
562
{
563 564 565
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
566
	unsigned long sp, start_pfn;
567

568 569
	do {
		seq = zone_span_seqbegin(zone);
570 571
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
572
		if (!zone_spans_pfn(zone, pfn))
573 574 575
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

576
	if (ret)
577 578 579
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
580

581
	return ret;
582 583 584 585
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
586
	if (!pfn_valid_within(page_to_pfn(page)))
587
		return 0;
L
Linus Torvalds 已提交
588
	if (zone != page_zone(page))
589 590 591 592 593 594 595
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
596
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 598
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
599
		return 1;
600 601 602
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
603 604
	return 0;
}
N
Nick Piggin 已提交
605
#else
606
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
607 608 609 610 611
{
	return 0;
}
#endif

612 613
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
614
{
615 616 617 618 619 620 621 622 623 624 625 626 627 628
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
629
			pr_alert(
630
			      "BUG: Bad page state: %lu messages suppressed\n",
631 632 633 634 635 636 637 638
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

639
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640
		current->comm, page_to_pfn(page));
641 642 643 644 645
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
646
	dump_page_owner(page);
647

648
	print_modules();
L
Linus Torvalds 已提交
649
	dump_stack();
650
out:
651
	/* Leave bad fields for debug, except PageBuddy could make trouble */
652
	page_mapcount_reset(page); /* remove PageBuddy */
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654 655 656 657 658
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
659
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
660
 *
661 662
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
663
 *
664 665
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
666
 *
667
 * The first tail page's ->compound_order holds the order of allocation.
668
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
669
 */
670

671
void free_compound_page(struct page *page)
672
{
673
	mem_cgroup_uncharge(page);
674
	__free_pages_ok(page, compound_order(page));
675 676
}

677
void prep_compound_page(struct page *page, unsigned int order)
678 679 680 681
{
	int i;
	int nr_pages = 1 << order;

682
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 684 685 686
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
687
		set_page_count(p, 0);
688
		p->mapping = TAIL_MAPPING;
689
		set_compound_head(p, page);
690
	}
691
	atomic_set(compound_mapcount_ptr(page), -1);
692 693
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
694 695
}

696 697
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
698

699 700 701
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
702
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
703
EXPORT_SYMBOL(_debug_pagealloc_enabled);
704 705

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706

707 708
static int __init early_debug_pagealloc(char *buf)
{
709
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
710 711 712
}
early_param("debug_pagealloc", early_debug_pagealloc);

713
void init_debug_pagealloc(void)
714
{
715 716 717
	if (!debug_pagealloc_enabled())
		return;

718 719
	static_branch_enable(&_debug_pagealloc_enabled);

720 721 722
	if (!debug_guardpage_minorder())
		return;

723
	static_branch_enable(&_debug_guardpage_enabled);
724 725
}

726 727 728 729 730
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
731
		pr_err("Bad debug_guardpage_minorder value\n");
732 733 734
		return 0;
	}
	_debug_guardpage_minorder = res;
735
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
736 737
	return 0;
}
738
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739

740
static inline bool set_page_guard(struct zone *zone, struct page *page,
741
				unsigned int order, int migratetype)
742
{
743
	if (!debug_guardpage_enabled())
744 745 746 747
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
748

749
	__SetPageGuard(page);
750 751 752 753
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
754 755

	return true;
756 757
}

758 759
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
760
{
761 762 763
	if (!debug_guardpage_enabled())
		return;

764
	__ClearPageGuard(page);
765

766 767 768
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
769 770
}
#else
771 772
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
773 774
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
775 776
#endif

777
static inline void set_page_order(struct page *page, unsigned int order)
778
{
H
Hugh Dickins 已提交
779
	set_page_private(page, order);
780
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
781 782 783 784
}

/*
 * This function checks whether a page is free && is the buddy
785
 * we can coalesce a page and its buddy if
786
 * (a) the buddy is not in a hole (check before calling!) &&
787
 * (b) the buddy is in the buddy system &&
788 789
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
790
 *
791 792
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
793
 *
794
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
795
 */
796
static inline bool page_is_buddy(struct page *page, struct page *buddy,
797
							unsigned int order)
L
Linus Torvalds 已提交
798
{
799 800
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
801

802 803
	if (page_order(buddy) != order)
		return false;
804

805 806 807 808 809 810
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
811

812
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
813

814
	return true;
L
Linus Torvalds 已提交
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
900 901 902 903
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

904 905 906 907 908 909
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
953 954
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
955
 * So when we are allocating or freeing one, we can derive the state of the
956 957
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
958
 * If a block is freed, and its buddy is also free, then this
959
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
960
 *
961
 * -- nyc
L
Linus Torvalds 已提交
962 963
 */

N
Nick Piggin 已提交
964
static inline void __free_one_page(struct page *page,
965
		unsigned long pfn,
966
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
967
		int migratetype, bool report)
L
Linus Torvalds 已提交
968
{
969
	struct capture_control *capc = task_capc(zone);
970
	unsigned long uninitialized_var(buddy_pfn);
971
	unsigned long combined_pfn;
972
	unsigned int max_order;
973 974
	struct page *buddy;
	bool to_tail;
975 976

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
977

978
	VM_BUG_ON(!zone_is_initialized(zone));
979
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
980

981
	VM_BUG_ON(migratetype == -1);
982
	if (likely(!is_migrate_isolate(migratetype)))
983
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
984

985
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
986
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
987

988
continue_merging:
989
	while (order < max_order - 1) {
990 991 992 993 994
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
995 996
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
997 998 999

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
1000
		if (!page_is_buddy(page, buddy, order))
1001
			goto done_merging;
1002 1003 1004 1005
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1006
		if (page_is_guard(buddy))
1007
			clear_page_guard(zone, buddy, order, migratetype);
1008
		else
1009
			del_page_from_free_list(buddy, zone, order);
1010 1011 1012
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1013 1014
		order++;
	}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1027 1028
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
1041
	set_page_order(page, order);
1042

1043
	if (is_shuffle_order(order))
1044
		to_tail = shuffle_pick_tail();
1045
	else
1046
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1047

1048
	if (to_tail)
1049
		add_to_free_list_tail(page, zone, order, migratetype);
1050
	else
1051
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1052 1053 1054 1055

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1080
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1081
{
1082 1083 1084 1085 1086
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1087

1088
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 1090 1091
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1092
	if (unlikely(page_ref_count(page) != 0))
1093
		bad_reason = "nonzero _refcount";
1094 1095 1096 1097
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1098 1099 1100 1101
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1102
	bad_page(page, bad_reason, bad_flags);
1103 1104 1105 1106
}

static inline int free_pages_check(struct page *page)
{
1107
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1108 1109 1110 1111
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1112
	return 1;
L
Linus Torvalds 已提交
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1131
		/* the first tail page: ->mapping may be compound_mapcount() */
1132 1133 1134 1135 1136 1137 1138 1139
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1140
		 * deferred_list.next -- ignore value.
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1165 1166 1167 1168 1169 1170 1171 1172
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
}

1173 1174
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1175
{
1176
	int bad = 0;
1177 1178 1179

	VM_BUG_ON_PAGE(PageTail(page), page);

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1191

1192 1193
		if (compound)
			ClearPageDoubleMap(page);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1204
	if (PageMappingFlags(page))
1205
		page->mapping = NULL;
1206
	if (memcg_kmem_enabled() && PageKmemcg(page))
1207
		__memcg_kmem_uncharge_page(page, order);
1208 1209 1210 1211
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1212

1213 1214 1215
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1216 1217 1218

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1219
					   PAGE_SIZE << order);
1220
		debug_check_no_obj_freed(page_address(page),
1221
					   PAGE_SIZE << order);
1222
	}
1223 1224 1225
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1226
	kernel_poison_pages(page, 1 << order, 0);
1227 1228 1229 1230 1231 1232 1233
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1234
	if (debug_pagealloc_enabled_static())
1235 1236
		kernel_map_pages(page, 1 << order, 0);

1237
	kasan_free_nondeferred_pages(page, order);
1238 1239 1240 1241

	return true;
}

1242
#ifdef CONFIG_DEBUG_VM
1243 1244 1245 1246 1247 1248
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1249 1250 1251 1252
{
	return free_pages_prepare(page, 0, true);
}

1253
static bool bulkfree_pcp_prepare(struct page *page)
1254
{
1255
	if (debug_pagealloc_enabled_static())
1256 1257 1258
		return free_pages_check(page);
	else
		return false;
1259 1260
}
#else
1261 1262 1263 1264 1265 1266
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1267 1268
static bool free_pcp_prepare(struct page *page)
{
1269
	if (debug_pagealloc_enabled_static())
1270 1271 1272
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1273 1274
}

1275 1276 1277 1278 1279 1280
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1281 1282 1283 1284 1285 1286 1287 1288 1289
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1290
/*
1291
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1292
 * Assumes all pages on list are in same zone, and of same order.
1293
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1294 1295 1296 1297 1298 1299 1300
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1301 1302
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1303
{
1304
	int migratetype = 0;
1305
	int batch_free = 0;
1306
	int prefetch_nr = 0;
1307
	bool isolated_pageblocks;
1308 1309
	struct page *page, *tmp;
	LIST_HEAD(head);
1310

1311
	while (count) {
1312 1313 1314
		struct list_head *list;

		/*
1315 1316 1317 1318 1319
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1320 1321
		 */
		do {
1322
			batch_free++;
1323 1324 1325 1326
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1327

1328 1329
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1330
			batch_free = count;
1331

1332
		do {
1333
			page = list_last_entry(list, struct page, lru);
1334
			/* must delete to avoid corrupting pcp list */
1335
			list_del(&page->lru);
1336
			pcp->count--;
1337

1338 1339 1340
			if (bulkfree_pcp_prepare(page))
				continue;

1341
			list_add_tail(&page->lru, &head);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1354
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1355
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1372
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 1374
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1375
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1376 1377
}

1378 1379
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1380
				unsigned int order,
1381
				int migratetype)
L
Linus Torvalds 已提交
1382
{
1383
	spin_lock(&zone->lock);
1384 1385 1386 1387
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1388
	__free_one_page(page, pfn, zone, order, migratetype, true);
1389
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1390 1391
}

1392
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393
				unsigned long zone, int nid)
1394
{
1395
	mm_zero_struct_page(page);
1396 1397 1398 1399
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1400
	page_kasan_tag_reset(page);
1401 1402 1403 1404 1405 1406 1407 1408 1409

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1410
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411
static void __meminit init_reserved_page(unsigned long pfn)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1428
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 1430 1431 1432 1433 1434 1435
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1436 1437 1438 1439 1440 1441
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1442
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 1444 1445 1446
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1447 1448 1449 1450 1451
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1452 1453 1454 1455

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1456 1457 1458 1459 1460 1461
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1462 1463
		}
	}
1464 1465
}

1466 1467
static void __free_pages_ok(struct page *page, unsigned int order)
{
1468
	unsigned long flags;
M
Minchan Kim 已提交
1469
	int migratetype;
1470
	unsigned long pfn = page_to_pfn(page);
1471

1472
	if (!free_pages_prepare(page, order, true))
1473 1474
		return;

1475
	migratetype = get_pfnblock_migratetype(page, pfn);
1476 1477
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1478
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1480 1481
}

1482
void __free_pages_core(struct page *page, unsigned int order)
1483
{
1484
	unsigned int nr_pages = 1 << order;
1485
	struct page *p = page;
1486
	unsigned int loop;
1487

1488 1489 1490
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1491 1492
		__ClearPageReserved(p);
		set_page_count(p, 0);
1493
	}
1494 1495
	__ClearPageReserved(p);
	set_page_count(p, 0);
1496

1497
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 1499
	set_page_refcounted(page);
	__free_pages(page, order);
1500 1501
}

1502 1503
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1504

1505 1506 1507 1508
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1509
	static DEFINE_SPINLOCK(early_pfn_lock);
1510 1511
	int nid;

1512
	spin_lock(&early_pfn_lock);
1513
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1514
	if (nid < 0)
1515
		nid = first_online_node;
1516 1517 1518
	spin_unlock(&early_pfn_lock);

	return nid;
1519 1520 1521 1522
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 1524
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1525 1526 1527
{
	int nid;

1528
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1542
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1543 1544 1545 1546
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1547
	__free_pages_core(page, order);
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1579 1580 1581
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1610
		cond_resched();
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1622
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1623 1624
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1625
{
1626 1627
	struct page *page;
	unsigned long i;
1628

1629
	if (!nr_pages)
1630 1631
		return;

1632 1633
	page = pfn_to_page(pfn);

1634
	/* Free a large naturally-aligned chunk if possible */
1635 1636
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1637
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1638
		__free_pages_core(page, pageblock_order);
1639 1640 1641
		return;
	}

1642 1643 1644
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1645
		__free_pages_core(page, 0);
1646
	}
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1658

1659
/*
1660 1661 1662 1663 1664 1665 1666 1667
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1668
 */
1669
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1670
{
1671 1672 1673 1674 1675 1676
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1677

1678 1679 1680 1681
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1682
static void __init deferred_free_pages(unsigned long pfn,
1683 1684 1685 1686
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1687

1688
	for (; pfn < end_pfn; pfn++) {
1689
		if (!deferred_pfn_valid(pfn)) {
1690 1691 1692 1693 1694
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1695
			touch_nmi_watchdog();
1696 1697 1698 1699 1700 1701
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1702 1703
}

1704 1705 1706 1707 1708
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1709
static unsigned long  __init deferred_init_pages(struct zone *zone,
1710 1711
						 unsigned long pfn,
						 unsigned long end_pfn)
1712 1713
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1714
	int nid = zone_to_nid(zone);
1715
	unsigned long nr_pages = 0;
1716
	int zid = zone_idx(zone);
1717 1718
	struct page *page = NULL;

1719
	for (; pfn < end_pfn; pfn++) {
1720
		if (!deferred_pfn_valid(pfn)) {
1721
			page = NULL;
1722
			continue;
1723
		} else if (!page || !(pfn & nr_pgmask)) {
1724
			page = pfn_to_page(pfn);
1725
			touch_nmi_watchdog();
1726 1727
		} else {
			page++;
1728
		}
1729
		__init_single_page(page, pfn, zid, nid);
1730
		nr_pages++;
1731
	}
1732
	return (nr_pages);
1733 1734
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1819
/* Initialise remaining memory on a node */
1820
static int __init deferred_init_memmap(void *data)
1821
{
1822
	pg_data_t *pgdat = data;
1823 1824 1825
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1826 1827
	unsigned long start = jiffies;
	struct zone *zone;
1828
	int zid;
1829
	u64 i;
1830

1831 1832 1833 1834 1835 1836
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1837
	if (first_init_pfn == ULONG_MAX) {
1838
		pgdat_resize_unlock(pgdat, &flags);
1839
		pgdat_init_report_one_done();
1840 1841 1842
		return 0;
	}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1854 1855 1856 1857 1858

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1859

1860
	/*
1861 1862 1863
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1864
	 */
1865 1866 1867
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1868
	pgdat_resize_unlock(pgdat, &flags);
1869 1870 1871 1872

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1873 1874
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1875 1876

	pgdat_init_report_one_done();
1877 1878
	return 0;
}
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1899
	pg_data_t *pgdat = zone->zone_pgdat;
1900
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1901 1902
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1931 1932 1933 1934
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1935
		pgdat_resize_unlock(pgdat, &flags);
1936 1937
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1938 1939
	}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1950

1951 1952 1953
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1954

1955
		/* If our quota has been met we can stop here */
1956 1957 1958 1959
		if (nr_pages >= nr_pages_needed)
			break;
	}

1960
	pgdat->first_deferred_pfn = spfn;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1978
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1979 1980 1981

void __init page_alloc_init_late(void)
{
1982
	struct zone *zone;
1983
	int nid;
1984 1985

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1986

1987 1988
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1989 1990 1991 1992 1993
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1994
	wait_for_completion(&pgdat_init_all_done_comp);
1995

1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2004 2005 2006 2007 2008 2009
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2010 2011
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2012
#endif
2013

P
Pavel Tatashin 已提交
2014 2015
	/* Discard memblock private memory */
	memblock_discard();
2016

2017 2018 2019
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2020 2021
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2022 2023
}

2024
#ifdef CONFIG_CMA
2025
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2026 2027 2028 2029 2030 2031 2032 2033
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2034
	} while (++p, --i);
2035 2036

	set_pageblock_migratetype(page, MIGRATE_CMA);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2051
	adjust_managed_page_count(page, pageblock_nr_pages);
2052 2053
}
#endif
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2067
 * -- nyc
L
Linus Torvalds 已提交
2068
 */
N
Nick Piggin 已提交
2069
static inline void expand(struct zone *zone, struct page *page,
2070
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2077
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2078

2079 2080 2081 2082 2083 2084 2085
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2086
			continue;
2087

2088
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2089 2090 2091 2092
		set_page_order(&page[size], high);
	}
}

2093
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2094
{
2095 2096
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2097

2098
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2099 2100 2101
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2102
	if (unlikely(page_ref_count(page) != 0))
2103
		bad_reason = "nonzero _refcount";
2104 2105 2106
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2107 2108 2109
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2110
	}
2111 2112 2113 2114
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2115 2116 2117 2118
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2133 2134
}

2135
static inline bool free_pages_prezeroed(void)
2136
{
2137 2138
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2139 2140
}

2141
#ifdef CONFIG_DEBUG_VM
2142 2143 2144 2145 2146 2147
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2148
{
2149
	if (debug_pagealloc_enabled_static())
2150 2151 2152
		return check_new_page(page);
	else
		return false;
2153 2154
}

2155
static inline bool check_new_pcp(struct page *page)
2156 2157 2158 2159
{
	return check_new_page(page);
}
#else
2160 2161 2162 2163 2164 2165
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2166 2167 2168
{
	return check_new_page(page);
}
2169
static inline bool check_new_pcp(struct page *page)
2170
{
2171
	if (debug_pagealloc_enabled_static())
2172 2173 2174
		return check_new_page(page);
	else
		return false;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2191 2192 2193 2194 2195 2196 2197
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2198
	if (debug_pagealloc_enabled_static())
2199
		kernel_map_pages(page, 1 << order, 1);
2200
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2201
	kernel_poison_pages(page, 1 << order, 1);
2202 2203 2204
	set_page_owner(page, order, gfp_flags);
}

2205
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2206
							unsigned int alloc_flags)
2207
{
2208
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2209

2210 2211
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2212 2213 2214 2215

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2216
	/*
2217
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2218 2219 2220 2221
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2222 2223 2224 2225
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2226 2227
}

2228 2229 2230 2231
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2232
static __always_inline
2233
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2234 2235 2236
						int migratetype)
{
	unsigned int current_order;
2237
	struct free_area *area;
2238 2239 2240 2241 2242
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2243
		page = get_page_from_free_area(area, migratetype);
2244 2245
		if (!page)
			continue;
2246 2247
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2248
		set_pcppage_migratetype(page, migratetype);
2249 2250 2251 2252 2253 2254 2255
		return page;
	}

	return NULL;
}


2256 2257 2258 2259
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2260
static int fallbacks[MIGRATE_TYPES][4] = {
2261 2262
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2263
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2264
#ifdef CONFIG_CMA
2265
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2266
#endif
2267
#ifdef CONFIG_MEMORY_ISOLATION
2268
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2269
#endif
2270 2271
};

2272
#ifdef CONFIG_CMA
2273
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2274 2275 2276 2277 2278 2279 2280 2281 2282
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2283 2284
/*
 * Move the free pages in a range to the free lists of the requested type.
2285
 * Note that start_page and end_pages are not aligned on a pageblock
2286 2287
 * boundary. If alignment is required, use move_freepages_block()
 */
2288
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2289
			  struct page *start_page, struct page *end_page,
2290
			  int migratetype, int *num_movable)
2291 2292
{
	struct page *page;
2293
	unsigned int order;
2294
	int pages_moved = 0;
2295 2296 2297 2298 2299 2300 2301 2302

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2303 2304 2305 2306 2307 2308 2309 2310 2311
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2312 2313 2314 2315
			page++;
			continue;
		}

2316 2317 2318 2319
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2320
		order = page_order(page);
2321
		move_to_free_list(page, zone, order, migratetype);
2322
		page += 1 << order;
2323
		pages_moved += 1 << order;
2324 2325
	}

2326
	return pages_moved;
2327 2328
}

2329
int move_freepages_block(struct zone *zone, struct page *page,
2330
				int migratetype, int *num_movable)
2331 2332 2333 2334
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2335 2336 2337
	if (num_movable)
		*num_movable = 0;

2338
	start_pfn = page_to_pfn(page);
2339
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2340
	start_page = pfn_to_page(start_pfn);
2341 2342
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2343 2344

	/* Do not cross zone boundaries */
2345
	if (!zone_spans_pfn(zone, start_pfn))
2346
		start_page = page;
2347
	if (!zone_spans_pfn(zone, end_pfn))
2348 2349
		return 0;

2350 2351
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2365
/*
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2376
 */
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2398 2399 2400 2401 2402 2403
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
		return;
2412 2413 2414

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2427 2428 2429 2430 2431 2432
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2433 2434 2435
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2436 2437 2438 2439
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2440 2441
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2442
		unsigned int alloc_flags, int start_type, bool whole_block)
2443
{
2444
	unsigned int current_order = page_order(page);
2445 2446 2447 2448
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2449

2450 2451 2452 2453
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2454
	if (is_migrate_highatomic(old_block_type))
2455 2456
		goto single_page;

2457 2458 2459
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2460
		goto single_page;
2461 2462
	}

2463 2464 2465 2466 2467 2468 2469
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2470
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2471

2472 2473 2474 2475
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2500
	/* moving whole block can fail due to zone boundary conditions */
2501
	if (!free_pages)
2502
		goto single_page;
2503

2504 2505 2506 2507 2508
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2509 2510
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2511 2512 2513 2514

	return;

single_page:
2515
	move_to_free_list(page, zone, current_order, start_type);
2516 2517
}

2518 2519 2520 2521 2522 2523 2524 2525
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2536
		if (fallback_mt == MIGRATE_TYPES)
2537 2538
			break;

2539
		if (free_area_empty(area, fallback_mt))
2540
			continue;
2541

2542 2543 2544
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2545 2546 2547 2548 2549
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2550
	}
2551 2552

	return -1;
2553 2554
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2569
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2581 2582
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2583 2584
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2585
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2597 2598 2599
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2600
 */
2601 2602
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2603 2604 2605 2606 2607 2608 2609
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2610
	bool ret;
2611 2612 2613

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2614 2615 2616 2617 2618 2619
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2620 2621 2622 2623 2624 2625
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2626
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2627
			if (!page)
2628 2629 2630
				continue;

			/*
2631 2632 2633 2634 2635
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2636
			 */
2637
			if (is_migrate_highatomic_page(page)) {
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2660 2661
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2662 2663 2664 2665
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2666 2667 2668
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2669 2670

	return false;
2671 2672
}

2673 2674 2675 2676 2677
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2678 2679 2680 2681
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2682
 */
2683
static __always_inline bool
2684 2685
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2686
{
2687
	struct free_area *area;
2688
	int current_order;
2689
	int min_order = order;
2690
	struct page *page;
2691 2692
	int fallback_mt;
	bool can_steal;
2693

2694 2695 2696 2697 2698 2699 2700 2701
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2702 2703 2704 2705 2706
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2707
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2708
				--current_order) {
2709 2710
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2711
				start_migratetype, false, &can_steal);
2712 2713
		if (fallback_mt == -1)
			continue;
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2726

2727 2728
		goto do_steal;
	}
2729

2730
	return false;
2731

2732 2733 2734 2735 2736 2737 2738 2739
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2740 2741
	}

2742 2743 2744 2745 2746 2747 2748
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2749
	page = get_page_from_free_area(area, fallback_mt);
2750

2751 2752
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2753 2754 2755 2756 2757 2758

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2759 2760
}

2761
/*
L
Linus Torvalds 已提交
2762 2763 2764
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2765
static __always_inline struct page *
2766 2767
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2768 2769 2770
{
	struct page *page;

2771
retry:
2772
	page = __rmqueue_smallest(zone, order, migratetype);
2773
	if (unlikely(!page)) {
2774 2775 2776
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2777 2778
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2779
			goto retry;
2780 2781
	}

2782
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2783
	return page;
L
Linus Torvalds 已提交
2784 2785
}

2786
/*
L
Linus Torvalds 已提交
2787 2788 2789 2790
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2791
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2792
			unsigned long count, struct list_head *list,
2793
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2794
{
2795
	int i, alloced = 0;
2796

2797
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2798
	for (i = 0; i < count; ++i) {
2799 2800
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2801
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2802
			break;
2803

2804 2805 2806
		if (unlikely(check_pcp_refill(page)))
			continue;

2807
		/*
2808 2809 2810 2811 2812 2813 2814 2815
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2816
		 */
2817
		list_add_tail(&page->lru, list);
2818
		alloced++;
2819
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2820 2821
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2822
	}
2823 2824 2825 2826 2827 2828 2829

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2830
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2831
	spin_unlock(&zone->lock);
2832
	return alloced;
L
Linus Torvalds 已提交
2833 2834
}

2835
#ifdef CONFIG_NUMA
2836
/*
2837 2838 2839 2840
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2841 2842
 * Note that this function must be called with the thread pinned to
 * a single processor.
2843
 */
2844
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2845 2846
{
	unsigned long flags;
2847
	int to_drain, batch;
2848

2849
	local_irq_save(flags);
2850
	batch = READ_ONCE(pcp->batch);
2851
	to_drain = min(pcp->count, batch);
2852
	if (to_drain > 0)
2853
		free_pcppages_bulk(zone, to_drain, pcp);
2854
	local_irq_restore(flags);
2855 2856 2857
}
#endif

2858
/*
2859
 * Drain pcplists of the indicated processor and zone.
2860 2861 2862 2863 2864
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2865
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2866
{
N
Nick Piggin 已提交
2867
	unsigned long flags;
2868 2869
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2870

2871 2872
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2873

2874
	pcp = &pset->pcp;
2875
	if (pcp->count)
2876 2877 2878
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2893 2894 2895
	}
}

2896 2897
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2898 2899 2900
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2901
 */
2902
void drain_local_pages(struct zone *zone)
2903
{
2904 2905 2906 2907 2908 2909
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2910 2911
}

2912 2913
static void drain_local_pages_wq(struct work_struct *work)
{
2914 2915 2916 2917
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2926
	drain_local_pages(drain->zone);
2927
	preempt_enable();
2928 2929
}

2930
/*
2931 2932
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2933 2934
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2935
 * Note that this can be extremely slow as the draining happens in a workqueue.
2936
 */
2937
void drain_all_pages(struct zone *zone)
2938
{
2939 2940 2941 2942 2943 2944 2945 2946
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2947 2948 2949 2950 2951 2952 2953
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2964

2965 2966 2967 2968 2969 2970 2971
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2972 2973
		struct per_cpu_pageset *pcp;
		struct zone *z;
2974
		bool has_pcps = false;
2975 2976

		if (zone) {
2977
			pcp = per_cpu_ptr(zone->pageset, cpu);
2978
			if (pcp->pcp.count)
2979
				has_pcps = true;
2980 2981 2982 2983 2984 2985 2986
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2987 2988
			}
		}
2989

2990 2991 2992 2993 2994
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2995

2996
	for_each_cpu(cpu, &cpus_with_pcps) {
2997 2998 2999 3000 3001
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3002
	}
3003
	for_each_cpu(cpu, &cpus_with_pcps)
3004
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3005 3006

	mutex_unlock(&pcpu_drain_mutex);
3007 3008
}

3009
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3010

3011 3012 3013 3014 3015
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3016 3017
void mark_free_pages(struct zone *zone)
{
3018
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3019
	unsigned long flags;
3020
	unsigned int order, t;
3021
	struct page *page;
L
Linus Torvalds 已提交
3022

3023
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3024 3025 3026
		return;

	spin_lock_irqsave(&zone->lock, flags);
3027

3028
	max_zone_pfn = zone_end_pfn(zone);
3029 3030
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3031
			page = pfn_to_page(pfn);
3032

3033 3034 3035 3036 3037
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3038 3039 3040
			if (page_zone(page) != zone)
				continue;

3041 3042
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3043
		}
L
Linus Torvalds 已提交
3044

3045
	for_each_migratetype_order(order, t) {
3046 3047
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3048
			unsigned long i;
L
Linus Torvalds 已提交
3049

3050
			pfn = page_to_pfn(page);
3051 3052 3053 3054 3055
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3056
				swsusp_set_page_free(pfn_to_page(pfn + i));
3057
			}
3058
		}
3059
	}
L
Linus Torvalds 已提交
3060 3061
	spin_unlock_irqrestore(&zone->lock, flags);
}
3062
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3063

3064
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3065
{
3066
	int migratetype;
L
Linus Torvalds 已提交
3067

3068
	if (!free_pcp_prepare(page))
3069
		return false;
3070

3071
	migratetype = get_pfnblock_migratetype(page, pfn);
3072
	set_pcppage_migratetype(page, migratetype);
3073 3074 3075
	return true;
}

3076
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3077 3078 3079 3080 3081 3082
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3083
	__count_vm_event(PGFREE);
3084

3085 3086 3087
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3088
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3089 3090 3091 3092
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3093
		if (unlikely(is_migrate_isolate(migratetype))) {
3094
			free_one_page(zone, page, pfn, 0, migratetype);
3095
			return;
3096 3097 3098 3099
		}
		migratetype = MIGRATE_MOVABLE;
	}

3100
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3101
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3102
	pcp->count++;
N
Nick Piggin 已提交
3103
	if (pcp->count >= pcp->high) {
3104
		unsigned long batch = READ_ONCE(pcp->batch);
3105
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3106
	}
3107
}
3108

3109 3110 3111
/*
 * Free a 0-order page
 */
3112
void free_unref_page(struct page *page)
3113 3114 3115 3116
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3117
	if (!free_unref_page_prepare(page, pfn))
3118 3119 3120
		return;

	local_irq_save(flags);
3121
	free_unref_page_commit(page, pfn);
3122
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3123 3124
}

3125 3126 3127
/*
 * Free a list of 0-order pages
 */
3128
void free_unref_page_list(struct list_head *list)
3129 3130
{
	struct page *page, *next;
3131
	unsigned long flags, pfn;
3132
	int batch_count = 0;
3133 3134 3135 3136

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3137
		if (!free_unref_page_prepare(page, pfn))
3138 3139 3140
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3141

3142
	local_irq_save(flags);
3143
	list_for_each_entry_safe(page, next, list, lru) {
3144 3145 3146
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3147 3148
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3159
	}
3160
	local_irq_restore(flags);
3161 3162
}

N
Nick Piggin 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3175 3176
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3177

3178
	for (i = 1; i < (1 << order); i++)
3179
		set_page_refcounted(page + i);
3180
	split_page_owner(page, order);
N
Nick Piggin 已提交
3181
}
K
K. Y. Srinivasan 已提交
3182
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3183

3184
int __isolate_free_page(struct page *page, unsigned int order)
3185 3186 3187
{
	unsigned long watermark;
	struct zone *zone;
3188
	int mt;
3189 3190 3191 3192

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3193
	mt = get_pageblock_migratetype(page);
3194

3195
	if (!is_migrate_isolate(mt)) {
3196 3197 3198 3199 3200 3201
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3202
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3203
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3204 3205
			return 0;

3206
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3207
	}
3208 3209

	/* Remove page from free list */
3210

3211
	del_page_from_free_list(page, zone, order);
3212

3213 3214 3215 3216
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3217 3218
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3219 3220
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3221
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3222
			    && !is_migrate_highatomic(mt))
3223 3224 3225
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3226 3227
	}

3228

3229
	return 1UL << order;
3230 3231
}

3232 3233 3234 3235
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3236
 * @mt: The page's pageblock's migratetype
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3249
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3250 3251
}

3252 3253 3254 3255 3256
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3257
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3258 3259
{
#ifdef CONFIG_NUMA
3260
	enum numa_stat_item local_stat = NUMA_LOCAL;
3261

3262 3263 3264 3265
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3266
	if (zone_to_nid(z) != numa_node_id())
3267 3268
		local_stat = NUMA_OTHER;

3269
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3270
		__inc_numa_state(z, NUMA_HIT);
3271
	else {
3272 3273
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3274
	}
3275
	__inc_numa_state(z, local_stat);
3276 3277 3278
#endif
}

3279 3280
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3281
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3282
			struct per_cpu_pages *pcp,
3283 3284 3285 3286 3287 3288 3289 3290
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3291
					migratetype, alloc_flags);
3292 3293 3294 3295
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3296
		page = list_first_entry(list, struct page, lru);
3297 3298 3299 3300 3301 3302 3303 3304 3305
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3306 3307
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3308 3309 3310 3311
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3312
	unsigned long flags;
3313

3314
	local_irq_save(flags);
3315 3316
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3317
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3318
	if (page) {
3319
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3320 3321
		zone_statistics(preferred_zone, zone);
	}
3322
	local_irq_restore(flags);
3323 3324 3325
	return page;
}

L
Linus Torvalds 已提交
3326
/*
3327
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3328
 */
3329
static inline
3330
struct page *rmqueue(struct zone *preferred_zone,
3331
			struct zone *zone, unsigned int order,
3332 3333
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3334 3335
{
	unsigned long flags;
3336
	struct page *page;
L
Linus Torvalds 已提交
3337

3338
	if (likely(order == 0)) {
3339 3340
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3341 3342
		goto out;
	}
3343

3344 3345 3346 3347 3348 3349
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3350

3351 3352 3353 3354 3355 3356 3357
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3358
		if (!page)
3359
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3360 3361 3362 3363 3364 3365
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3366

3367
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3368
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3369
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3370

3371
out:
3372 3373 3374 3375 3376 3377
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3378
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3379
	return page;
N
Nick Piggin 已提交
3380 3381 3382 3383

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3384 3385
}

3386 3387
#ifdef CONFIG_FAIL_PAGE_ALLOC

3388
static struct {
3389 3390
	struct fault_attr attr;

3391
	bool ignore_gfp_highmem;
3392
	bool ignore_gfp_reclaim;
3393
	u32 min_order;
3394 3395
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3396
	.ignore_gfp_reclaim = true,
3397
	.ignore_gfp_highmem = true,
3398
	.min_order = 1,
3399 3400 3401 3402 3403 3404 3405 3406
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3407
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3408
{
3409
	if (order < fail_page_alloc.min_order)
3410
		return false;
3411
	if (gfp_mask & __GFP_NOFAIL)
3412
		return false;
3413
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3414
		return false;
3415 3416
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3417
		return false;
3418 3419 3420 3421 3422 3423 3424 3425

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3426
	umode_t mode = S_IFREG | 0600;
3427 3428
	struct dentry *dir;

3429 3430
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3431

3432 3433 3434 3435 3436
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3437

3438
	return 0;
3439 3440 3441 3442 3443 3444 3445 3446
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3447
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3448
{
3449
	return false;
3450 3451 3452 3453
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3454 3455 3456 3457 3458 3459
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3460
/*
3461 3462 3463 3464
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3465
 */
3466 3467 3468
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3469
{
3470
	long min = mark;
L
Linus Torvalds 已提交
3471
	int o;
3472
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3473

3474
	/* free_pages may go negative - that's OK */
3475
	free_pages -= (1 << order) - 1;
3476

R
Rohit Seth 已提交
3477
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3478
		min -= min / 2;
3479 3480 3481 3482 3483 3484

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3485
	if (likely(!alloc_harder)) {
3486
		free_pages -= z->nr_reserved_highatomic;
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3500

3501 3502 3503 3504 3505 3506
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3507 3508 3509 3510 3511 3512
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3513
		return false;
L
Linus Torvalds 已提交
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3528
			if (!free_area_empty(area, mt))
3529 3530 3531 3532
				return true;
		}

#ifdef CONFIG_CMA
3533
		if ((alloc_flags & ALLOC_CMA) &&
3534
		    !free_area_empty(area, MIGRATE_CMA)) {
3535
			return true;
3536
		}
3537
#endif
3538
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3539
			return true;
L
Linus Torvalds 已提交
3540
	}
3541
	return false;
3542 3543
}

3544
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3545
		      int classzone_idx, unsigned int alloc_flags)
3546 3547 3548 3549 3550
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3551 3552 3553 3554
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3555 3556 3557 3558 3559 3560 3561
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3562 3563 3564 3565 3566 3567 3568 3569

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3570
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3571 3572 3573 3574 3575 3576
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3577
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3578
			unsigned long mark, int classzone_idx)
3579 3580 3581 3582 3583 3584
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3585
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3586
								free_pages);
L
Linus Torvalds 已提交
3587 3588
}

3589
#ifdef CONFIG_NUMA
3590 3591
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3592
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3593
				node_reclaim_distance;
3594
}
3595
#else	/* CONFIG_NUMA */
3596 3597 3598 3599
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3600 3601
#endif	/* CONFIG_NUMA */

3602 3603 3604 3605 3606 3607 3608 3609 3610
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3611
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3612
{
3613
	unsigned int alloc_flags;
3614

3615 3616 3617 3618 3619
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3620 3621

#ifdef CONFIG_ZONE_DMA32
3622 3623 3624
	if (!zone)
		return alloc_flags;

3625
	if (zone_idx(zone) != ZONE_NORMAL)
3626
		return alloc_flags;
3627 3628 3629 3630 3631 3632 3633 3634

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3635
		return alloc_flags;
3636

3637
	alloc_flags |= ALLOC_NOFRAGMENT;
3638 3639
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3640 3641
}

R
Rohit Seth 已提交
3642
/*
3643
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3644 3645 3646
 * a page.
 */
static struct page *
3647 3648
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3649
{
3650
	struct zoneref *z;
3651
	struct zone *zone;
3652
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3653
	bool no_fallback;
3654

3655
retry:
R
Rohit Seth 已提交
3656
	/*
3657
	 * Scan zonelist, looking for a zone with enough free.
3658
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3659
	 */
3660 3661
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3662
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3663
								ac->nodemask) {
3664
		struct page *page;
3665 3666
		unsigned long mark;

3667 3668
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3669
			!__cpuset_zone_allowed(zone, gfp_mask))
3670
				continue;
3671 3672
		/*
		 * When allocating a page cache page for writing, we
3673 3674
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3675
		 * proportional share of globally allowed dirty pages.
3676
		 * The dirty limits take into account the node's
3677 3678 3679 3680 3681
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3682
		 * exceed the per-node dirty limit in the slowpath
3683
		 * (spread_dirty_pages unset) before going into reclaim,
3684
		 * which is important when on a NUMA setup the allowed
3685
		 * nodes are together not big enough to reach the
3686
		 * global limit.  The proper fix for these situations
3687
		 * will require awareness of nodes in the
3688 3689
		 * dirty-throttling and the flusher threads.
		 */
3690 3691 3692 3693 3694 3695 3696 3697 3698
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3716
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3717
		if (!zone_watermark_fast(zone, order, mark,
3718
				       ac_classzone_idx(ac), alloc_flags)) {
3719 3720
			int ret;

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3731 3732 3733 3734 3735
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3736
			if (node_reclaim_mode == 0 ||
3737
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3738 3739
				continue;

3740
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3741
			switch (ret) {
3742
			case NODE_RECLAIM_NOSCAN:
3743
				/* did not scan */
3744
				continue;
3745
			case NODE_RECLAIM_FULL:
3746
				/* scanned but unreclaimable */
3747
				continue;
3748 3749
			default:
				/* did we reclaim enough */
3750
				if (zone_watermark_ok(zone, order, mark,
3751
						ac_classzone_idx(ac), alloc_flags))
3752 3753 3754
					goto try_this_zone;

				continue;
3755
			}
R
Rohit Seth 已提交
3756 3757
		}

3758
try_this_zone:
3759
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3760
				gfp_mask, alloc_flags, ac->migratetype);
3761
		if (page) {
3762
			prep_new_page(page, order, gfp_mask, alloc_flags);
3763 3764 3765 3766 3767 3768 3769 3770

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3771
			return page;
3772 3773 3774 3775 3776 3777 3778 3779
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3780
		}
3781
	}
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3792
	return NULL;
M
Martin Hicks 已提交
3793 3794
}

3795
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3796 3797 3798 3799 3800 3801 3802 3803 3804
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3805
		if (tsk_is_oom_victim(current) ||
3806 3807
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3808
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3809 3810
		filter &= ~SHOW_MEM_FILTER_NODES;

3811
	show_mem(filter, nodemask);
3812 3813
}

3814
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3815 3816 3817
{
	struct va_format vaf;
	va_list args;
3818
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3819

3820
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3821 3822
		return;

3823 3824 3825
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3826
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3827 3828
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3829
	va_end(args);
J
Joe Perches 已提交
3830

3831
	cpuset_print_current_mems_allowed();
3832
	pr_cont("\n");
3833
	dump_stack();
3834
	warn_alloc_show_mem(gfp_mask, nodemask);
3835 3836
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3857 3858
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3859
	const struct alloc_context *ac, unsigned long *did_some_progress)
3860
{
3861 3862 3863
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3864
		.memcg = NULL,
3865 3866 3867
		.gfp_mask = gfp_mask,
		.order = order,
	};
3868 3869
	struct page *page;

3870 3871 3872
	*did_some_progress = 0;

	/*
3873 3874
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3875
	 */
3876
	if (!mutex_trylock(&oom_lock)) {
3877
		*did_some_progress = 1;
3878
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3879 3880
		return NULL;
	}
3881

3882 3883 3884
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3885 3886 3887
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3888
	 */
3889 3890 3891
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3892
	if (page)
3893 3894
		goto out;

3895 3896 3897 3898 3899 3900
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3901 3902 3903 3904 3905 3906 3907 3908
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3927

3928
	/* Exhausted what can be done so it's blame time */
3929
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3930
		*did_some_progress = 1;
3931

3932 3933 3934 3935 3936 3937
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3938 3939
					ALLOC_NO_WATERMARKS, ac);
	}
3940
out:
3941
	mutex_unlock(&oom_lock);
3942 3943 3944
	return page;
}

3945 3946 3947 3948 3949 3950
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3951 3952 3953 3954
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3955
		unsigned int alloc_flags, const struct alloc_context *ac,
3956
		enum compact_priority prio, enum compact_result *compact_result)
3957
{
3958
	struct page *page = NULL;
3959
	unsigned long pflags;
3960
	unsigned int noreclaim_flag;
3961 3962

	if (!order)
3963 3964
		return NULL;

3965
	psi_memstall_enter(&pflags);
3966
	noreclaim_flag = memalloc_noreclaim_save();
3967

3968
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3969
								prio, &page);
3970

3971
	memalloc_noreclaim_restore(noreclaim_flag);
3972
	psi_memstall_leave(&pflags);
3973

3974 3975 3976 3977 3978
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3979

3980 3981 3982 3983 3984 3985 3986
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3987

3988 3989
	if (page) {
		struct zone *zone = page_zone(page);
3990

3991 3992 3993 3994 3995
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3996

3997 3998 3999 4000 4001
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4002

4003
	cond_resched();
4004 4005 4006

	return NULL;
}
4007

4008 4009 4010 4011
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4012
		     int *compaction_retries)
4013 4014
{
	int max_retries = MAX_COMPACT_RETRIES;
4015
	int min_priority;
4016 4017 4018
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4019 4020 4021 4022

	if (!order)
		return false;

4023 4024 4025
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4026 4027 4028 4029 4030
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4031 4032
	if (compaction_failed(compact_result))
		goto check_priority;
4033

4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4043 4044 4045
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4046 4047
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4048
	 */
4049
	if (compaction_withdrawn(compact_result)) {
4050
		goto check_priority;
4051
	}
4052 4053

	/*
4054
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4055 4056 4057 4058 4059 4060 4061 4062
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4063 4064 4065 4066
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4067

4068 4069 4070 4071 4072
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4073 4074
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4075

4076
	if (*compact_priority > min_priority) {
4077 4078
		(*compact_priority)--;
		*compaction_retries = 0;
4079
		ret = true;
4080
	}
4081 4082 4083
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4084
}
4085 4086 4087
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4088
		unsigned int alloc_flags, const struct alloc_context *ac,
4089
		enum compact_priority prio, enum compact_result *compact_result)
4090
{
4091
	*compact_result = COMPACT_SKIPPED;
4092 4093
	return NULL;
}
4094 4095

static inline bool
4096 4097
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4098
		     enum compact_priority *compact_priority,
4099
		     int *compaction_retries)
4100
{
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4119 4120
	return false;
}
4121
#endif /* CONFIG_COMPACTION */
4122

4123
#ifdef CONFIG_LOCKDEP
4124
static struct lockdep_map __fs_reclaim_map =
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4136
	if (current->flags & PF_MEMALLOC)
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4159 4160 4161
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4162
		__fs_reclaim_acquire();
4163 4164 4165 4166 4167 4168
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4169
		__fs_reclaim_release();
4170 4171 4172 4173
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4174 4175
/* Perform direct synchronous page reclaim */
static int
4176 4177
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4178
{
4179
	int progress;
4180
	unsigned int noreclaim_flag;
4181
	unsigned long pflags;
4182 4183 4184 4185 4186

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4187
	psi_memstall_enter(&pflags);
4188
	fs_reclaim_acquire(gfp_mask);
4189
	noreclaim_flag = memalloc_noreclaim_save();
4190

4191 4192
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4193

4194
	memalloc_noreclaim_restore(noreclaim_flag);
4195
	fs_reclaim_release(gfp_mask);
4196
	psi_memstall_leave(&pflags);
4197 4198 4199

	cond_resched();

4200 4201 4202 4203 4204 4205
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4206
		unsigned int alloc_flags, const struct alloc_context *ac,
4207
		unsigned long *did_some_progress)
4208 4209 4210 4211
{
	struct page *page = NULL;
	bool drained = false;

4212
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4213 4214
	if (unlikely(!(*did_some_progress)))
		return NULL;
4215

4216
retry:
4217
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4218 4219 4220

	/*
	 * If an allocation failed after direct reclaim, it could be because
4221 4222
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4223 4224
	 */
	if (!page && !drained) {
4225
		unreserve_highatomic_pageblock(ac, false);
4226
		drain_all_pages(NULL);
4227 4228 4229 4230
		drained = true;
		goto retry;
	}

4231 4232 4233
	return page;
}

4234 4235
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4236 4237 4238
{
	struct zoneref *z;
	struct zone *zone;
4239
	pg_data_t *last_pgdat = NULL;
4240
	enum zone_type high_zoneidx = ac->high_zoneidx;
4241

4242 4243
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4244
		if (last_pgdat != zone->zone_pgdat)
4245
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4246 4247
		last_pgdat = zone->zone_pgdat;
	}
4248 4249
}

4250
static inline unsigned int
4251 4252
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4253
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4254

4255 4256 4257 4258 4259
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4260
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4261
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4262

4263 4264 4265 4266
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4267
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4268
	 */
4269 4270
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4271

4272
	if (gfp_mask & __GFP_ATOMIC) {
4273
		/*
4274 4275
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4276
		 */
4277
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4278
			alloc_flags |= ALLOC_HARDER;
4279
		/*
4280
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4281
		 * comment for __cpuset_node_allowed().
4282
		 */
4283
		alloc_flags &= ~ALLOC_CPUSET;
4284
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4285 4286
		alloc_flags |= ALLOC_HARDER;

4287 4288 4289 4290
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4291 4292 4293
	return alloc_flags;
}

4294
static bool oom_reserves_allowed(struct task_struct *tsk)
4295
{
4296 4297 4298 4299 4300 4301 4302 4303
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4304 4305
		return false;

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4317
	if (gfp_mask & __GFP_MEMALLOC)
4318
		return ALLOC_NO_WATERMARKS;
4319
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4320 4321 4322 4323 4324 4325 4326
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4327

4328 4329 4330 4331 4332 4333
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4334 4335
}

M
Michal Hocko 已提交
4336 4337 4338
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4339 4340 4341 4342
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4343 4344 4345 4346 4347 4348
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4349
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4350 4351 4352
{
	struct zone *zone;
	struct zoneref *z;
4353
	bool ret = false;
M
Michal Hocko 已提交
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4365 4366 4367 4368
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4369 4370
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4371
		return unreserve_highatomic_pageblock(ac, true);
4372
	}
M
Michal Hocko 已提交
4373

4374 4375 4376 4377 4378
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4379 4380 4381 4382
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4383
		unsigned long reclaimable;
4384 4385
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4386

4387 4388
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4389 4390

		/*
4391 4392
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4393
		 */
4394 4395 4396 4397 4398
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4399 4400 4401 4402 4403 4404 4405
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4406
				unsigned long write_pending;
4407

4408 4409
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4410

4411
				if (2 * write_pending > reclaimable) {
4412 4413 4414 4415
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4416

4417 4418
			ret = true;
			goto out;
M
Michal Hocko 已提交
4419 4420 4421
		}
	}

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4435 4436
}

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4470 4471
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4472
						struct alloc_context *ac)
4473
{
4474
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4475
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4476
	struct page *page = NULL;
4477
	unsigned int alloc_flags;
4478
	unsigned long did_some_progress;
4479
	enum compact_priority compact_priority;
4480
	enum compact_result compact_result;
4481 4482 4483
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4484
	int reserve_flags;
L
Linus Torvalds 已提交
4485

4486 4487 4488 4489 4490 4491 4492 4493
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4494 4495 4496 4497 4498
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4499 4500 4501 4502 4503 4504 4505 4506

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4518
	if (alloc_flags & ALLOC_KSWAPD)
4519
		wake_all_kswapds(order, gfp_mask, ac);
4520 4521 4522 4523 4524 4525 4526 4527 4528

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4529 4530
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4531 4532 4533 4534 4535 4536
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4537
	 */
4538 4539 4540 4541
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4542 4543
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4544
						INIT_COMPACT_PRIORITY,
4545 4546 4547 4548
						&compact_result);
		if (page)
			goto got_pg;

4549 4550 4551 4552 4553
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4554 4555 4556 4557
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4558 4559
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4574 4575

			/*
4576 4577
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4578
			 * using async compaction.
4579
			 */
4580
			compact_priority = INIT_COMPACT_PRIORITY;
4581 4582
		}
	}
4583

4584
retry:
4585
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4586
	if (alloc_flags & ALLOC_KSWAPD)
4587
		wake_all_kswapds(order, gfp_mask, ac);
4588

4589 4590 4591
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4592

4593
	/*
4594 4595 4596
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4597
	 */
4598
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4599
		ac->nodemask = NULL;
4600 4601 4602 4603
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4604
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4605
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4606 4607
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4608

4609
	/* Caller is not willing to reclaim, we can't balance anything */
4610
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4611 4612
		goto nopage;

4613 4614
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4615 4616
		goto nopage;

4617 4618 4619 4620 4621 4622 4623
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4624
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4625
					compact_priority, &compact_result);
4626 4627
	if (page)
		goto got_pg;
4628

4629 4630
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4631
		goto nopage;
4632

M
Michal Hocko 已提交
4633 4634
	/*
	 * Do not retry costly high order allocations unless they are
4635
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4636
	 */
4637
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4638
		goto nopage;
M
Michal Hocko 已提交
4639 4640

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4641
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4642 4643
		goto retry;

4644 4645 4646 4647 4648 4649 4650
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4651
			should_compact_retry(ac, order, alloc_flags,
4652
				compact_result, &compact_priority,
4653
				&compaction_retries))
4654 4655
		goto retry;

4656 4657 4658

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4659 4660
		goto retry_cpuset;

4661 4662 4663 4664 4665
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4666
	/* Avoid allocations with no watermarks from looping endlessly */
4667 4668
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4669
	     (gfp_mask & __GFP_NOMEMALLOC)))
4670 4671
		goto nopage;

4672
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4673 4674
	if (did_some_progress) {
		no_progress_loops = 0;
4675
		goto retry;
M
Michal Hocko 已提交
4676
	}
4677

L
Linus Torvalds 已提交
4678
nopage:
4679 4680
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4681 4682
		goto retry_cpuset;

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4720 4721 4722 4723
		cond_resched();
		goto retry;
	}
fail:
4724
	warn_alloc(gfp_mask, ac->nodemask,
4725
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4726
got_pg:
4727
	return page;
L
Linus Torvalds 已提交
4728
}
4729

4730
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4731
		int preferred_nid, nodemask_t *nodemask,
4732 4733
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4734
{
4735
	ac->high_zoneidx = gfp_zone(gfp_mask);
4736
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4737 4738
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4739

4740
	if (cpusets_enabled()) {
4741 4742 4743
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4744 4745
		else
			*alloc_flags |= ALLOC_CPUSET;
4746 4747
	}

4748 4749
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4750

4751
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4752 4753

	if (should_fail_alloc_page(gfp_mask, order))
4754
		return false;
4755

4756 4757 4758
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4759 4760
	return true;
}
4761

4762
/* Determine whether to spread dirty pages and what the first usable zone */
4763
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4764
{
4765
	/* Dirty zone balancing only done in the fast path */
4766
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4767

4768 4769 4770 4771 4772
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4773 4774 4775 4776 4777 4778 4779 4780
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4781 4782
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4783 4784 4785
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4786
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4787 4788
	struct alloc_context ac = { };

4789 4790 4791 4792 4793 4794 4795 4796 4797
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4798
	gfp_mask &= gfp_allowed_mask;
4799
	alloc_mask = gfp_mask;
4800
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4801 4802
		return NULL;

4803
	finalise_ac(gfp_mask, &ac);
4804

4805 4806 4807 4808
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4809
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4810

4811
	/* First allocation attempt */
4812
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4813 4814
	if (likely(page))
		goto out;
4815

4816
	/*
4817 4818 4819 4820
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4821
	 */
4822
	alloc_mask = current_gfp_context(gfp_mask);
4823
	ac.spread_dirty_pages = false;
4824

4825 4826 4827 4828
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4829
	ac.nodemask = nodemask;
4830

4831
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4832

4833
out:
4834
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4835
	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4836 4837
		__free_pages(page, order);
		page = NULL;
4838 4839
	}

4840 4841
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4842
	return page;
L
Linus Torvalds 已提交
4843
}
4844
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4845 4846

/*
4847 4848 4849
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4850
 */
H
Harvey Harrison 已提交
4851
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4852
{
4853 4854
	struct page *page;

4855
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4856 4857 4858 4859 4860 4861
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4862
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4863
{
4864
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4865 4866 4867
}
EXPORT_SYMBOL(get_zeroed_page);

4868
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4869
{
4870 4871 4872 4873
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4874 4875
}

4876 4877 4878 4879 4880
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4881 4882
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4883
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4884 4885
{
	if (addr != 0) {
N
Nick Piggin 已提交
4886
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4904 4905
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4925
void __page_frag_cache_drain(struct page *page, unsigned int count)
4926 4927 4928
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4929 4930
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4931
}
4932
EXPORT_SYMBOL(__page_frag_cache_drain);
4933

4934 4935
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4936 4937 4938 4939 4940 4941 4942
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4943
		page = __page_frag_cache_refill(nc, gfp_mask);
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4954
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4955 4956

		/* reset page count bias and offset to start of new frag */
4957
		nc->pfmemalloc = page_is_pfmemalloc(page);
4958
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4959 4960 4961 4962 4963 4964 4965
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4966
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4967 4968 4969 4970 4971 4972 4973
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4974
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4975 4976

		/* reset page count bias and offset to start of new frag */
4977
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4978 4979 4980 4981 4982 4983 4984 4985
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4986
EXPORT_SYMBOL(page_frag_alloc);
4987 4988 4989 4990

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4991
void page_frag_free(void *addr)
4992 4993 4994
{
	struct page *page = virt_to_head_page(addr);

4995 4996
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4997
}
4998
EXPORT_SYMBOL(page_frag_free);
4999

5000 5001
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5016 5017 5018
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5019
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5020 5021 5022 5023 5024 5025 5026 5027
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5028 5029
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5030 5031 5032 5033 5034 5035
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5036 5037 5038
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5039
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5040
	return make_alloc_exact(addr, order, size);
5041 5042 5043
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5044 5045 5046
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5047
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5048
 * @size: the number of bytes to allocate
5049
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5050 5051 5052
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5053 5054
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5055
 */
5056
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5057
{
5058
	unsigned int order = get_order(size);
5059 5060 5061 5062 5063 5064
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5065 5066 5067 5068 5069
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5089 5090 5091 5092
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5093
 * nr_free_zone_pages() counts the number of pages which are beyond the
5094 5095
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5096 5097
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5098 5099
 *
 * Return: number of pages beyond high watermark.
5100
 */
5101
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5102
{
5103
	struct zoneref *z;
5104 5105
	struct zone *zone;

5106
	/* Just pick one node, since fallback list is circular */
5107
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5108

5109
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5110

5111
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5112
		unsigned long size = zone_managed_pages(zone);
5113
		unsigned long high = high_wmark_pages(zone);
5114 5115
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
	}

	return sum;
}

5121 5122 5123 5124 5125
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5126 5127 5128
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5129
 */
5130
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5131
{
A
Al Viro 已提交
5132
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5133
}
5134
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5135

5136 5137 5138 5139 5140
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5141 5142
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
5143
 */
5144
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5145
{
M
Mel Gorman 已提交
5146
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5147
}
5148 5149

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5150
{
5151
	if (IS_ENABLED(CONFIG_NUMA))
5152
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5153 5154
}

5155 5156 5157 5158 5159 5160
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5161
	unsigned long reclaimable;
5162 5163 5164 5165
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5166
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5167 5168

	for_each_zone(zone)
5169
		wmark_low += low_wmark_pages(zone);
5170 5171 5172 5173 5174

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5175
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5187 5188 5189
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5190
	 */
5191 5192 5193
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5194

5195 5196 5197 5198 5199 5200
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5201 5202
void si_meminfo(struct sysinfo *val)
{
5203
	val->totalram = totalram_pages();
5204
	val->sharedram = global_node_page_state(NR_SHMEM);
5205
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5206
	val->bufferram = nr_blockdev_pages();
5207
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5217 5218
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5219 5220
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5221 5222
	pg_data_t *pgdat = NODE_DATA(nid);

5223
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5224
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5225
	val->totalram = managed_pages;
5226
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5227
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5228
#ifdef CONFIG_HIGHMEM
5229 5230 5231 5232
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5233
			managed_highpages += zone_managed_pages(zone);
5234 5235 5236 5237 5238
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5239
#else
5240 5241
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5242
#endif
L
Linus Torvalds 已提交
5243 5244 5245 5246
	val->mem_unit = PAGE_SIZE;
}
#endif

5247
/*
5248 5249
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5250
 */
5251
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5252 5253
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5254
		return false;
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5265 5266
}

L
Linus Torvalds 已提交
5267 5268
#define K(x) ((x) << (PAGE_SHIFT-10))

5269 5270 5271 5272 5273
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5274 5275
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5276 5277 5278
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5279
#ifdef CONFIG_MEMORY_ISOLATION
5280
		[MIGRATE_ISOLATE]	= 'I',
5281
#endif
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5293
	printk(KERN_CONT "(%s) ", tmp);
5294 5295
}

L
Linus Torvalds 已提交
5296 5297 5298 5299
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5300 5301 5302 5303
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5304
 */
5305
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5306
{
5307
	unsigned long free_pcp = 0;
5308
	int cpu;
L
Linus Torvalds 已提交
5309
	struct zone *zone;
M
Mel Gorman 已提交
5310
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5311

5312
	for_each_populated_zone(zone) {
5313
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314
			continue;
5315

5316 5317
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5318 5319
	}

K
KOSAKI Motohiro 已提交
5320 5321
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5323
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5325
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5326 5327 5328 5329 5330 5331 5332
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5333 5334
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5335 5336
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5337
		global_node_page_state(NR_FILE_MAPPED),
5338
		global_node_page_state(NR_SHMEM),
5339 5340 5341
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5342
		free_pcp,
5343
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5344

M
Mel Gorman 已提交
5345
	for_each_online_pgdat(pgdat) {
5346
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5347 5348
			continue;

M
Mel Gorman 已提交
5349 5350 5351 5352 5353 5354 5355 5356
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5357
			" mapped:%lukB"
5358 5359 5360 5361 5362 5363 5364 5365 5366
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
M
Mel Gorman 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5377
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5378 5379
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5380
			K(node_page_state(pgdat, NR_SHMEM)),
5381 5382 5383 5384 5385 5386 5387
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5388 5389
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5390 5391
	}

5392
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5393 5394
		int i;

5395
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5396
			continue;
5397 5398 5399 5400 5401

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5402
		show_node(zone);
5403 5404
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5405 5406 5407 5408
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5409
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5410 5411 5412 5413 5414
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5415
			" writepending:%lukB"
L
Linus Torvalds 已提交
5416
			" present:%lukB"
5417
			" managed:%lukB"
5418
			" mlocked:%lukB"
5419
			" kernel_stack:%lukB"
5420 5421 5422
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
5423 5424
			" pagetables:%lukB"
			" bounce:%lukB"
5425 5426
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5427
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5428 5429
			"\n",
			zone->name,
5430
			K(zone_page_state(zone, NR_FREE_PAGES)),
5431 5432 5433
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5434
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5435 5436 5437 5438 5439
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5440
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5441
			K(zone->present_pages),
5442
			K(zone_managed_pages(zone)),
5443
			K(zone_page_state(zone, NR_MLOCK)),
5444
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5445 5446 5447
#ifdef CONFIG_SHADOW_CALL_STACK
			zone_page_state(zone, NR_KERNEL_SCS_KB),
#endif
5448 5449
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5450 5451
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5452
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5453 5454
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5455 5456
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5457 5458
	}

5459
	for_each_populated_zone(zone) {
5460 5461
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5462
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5463

5464
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5465
			continue;
L
Linus Torvalds 已提交
5466
		show_node(zone);
5467
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5468 5469 5470

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5471 5472 5473 5474
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5475
			total += nr[order] << order;
5476 5477 5478

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5479
				if (!free_area_empty(area, type))
5480 5481
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5482 5483
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5484
		for (order = 0; order < MAX_ORDER; order++) {
5485 5486
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5487 5488 5489
			if (nr[order])
				show_migration_types(types[order]);
		}
5490
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5491 5492
	}

5493 5494
	hugetlb_show_meminfo();

5495
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5496

L
Linus Torvalds 已提交
5497 5498 5499
	show_swap_cache_info();
}

5500 5501 5502 5503 5504 5505
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5506 5507
/*
 * Builds allocation fallback zone lists.
5508 5509
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5510
 */
5511
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5512
{
5513
	struct zone *zone;
5514
	enum zone_type zone_type = MAX_NR_ZONES;
5515
	int nr_zones = 0;
5516 5517

	do {
5518
		zone_type--;
5519
		zone = pgdat->node_zones + zone_type;
5520
		if (managed_zone(zone)) {
5521
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5522
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5523
		}
5524
	} while (zone_type);
5525

5526
	return nr_zones;
L
Linus Torvalds 已提交
5527 5528 5529
}

#ifdef CONFIG_NUMA
5530 5531 5532

static int __parse_numa_zonelist_order(char *s)
{
5533 5534 5535 5536 5537 5538 5539 5540
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5541 5542 5543 5544 5545 5546 5547
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5548 5549 5550
	if (!s)
		return 0;

5551
	return __parse_numa_zonelist_order(s);
5552 5553 5554
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5555 5556
char numa_zonelist_order[] = "Node";

5557 5558 5559
/*
 * sysctl handler for numa_zonelist_order
 */
5560
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5561
		void __user *buffer, size_t *length,
5562 5563
		loff_t *ppos)
{
5564
	char *str;
5565 5566
	int ret;

5567 5568 5569 5570 5571
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5572

5573 5574
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5575
	return ret;
5576 5577 5578
}


5579
#define MAX_NODE_LOAD (nr_online_nodes)
5580 5581
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5582
/**
5583
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5594 5595
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5596
 */
5597
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5598
{
5599
	int n, val;
L
Linus Torvalds 已提交
5600
	int min_val = INT_MAX;
D
David Rientjes 已提交
5601
	int best_node = NUMA_NO_NODE;
5602
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5603

5604 5605 5606 5607 5608
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5609

5610
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615 5616 5617 5618

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5619 5620 5621
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5622
		/* Give preference to headless and unused nodes */
5623 5624
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5643 5644 5645 5646 5647 5648

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5649 5650
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5651
{
5652 5653 5654 5655 5656 5657 5658 5659 5660
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5661

5662 5663 5664 5665 5666
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5667 5668
}

5669 5670 5671 5672 5673
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5674 5675
	struct zoneref *zonerefs;
	int nr_zones;
5676

5677 5678 5679 5680 5681
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5682 5683
}

5684 5685 5686 5687 5688 5689 5690 5691 5692
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5693 5694
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5695
	nodemask_t used_mask;
5696
	int local_node, prev_node;
L
Linus Torvalds 已提交
5697 5698 5699

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5700
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5701 5702
	prev_node = local_node;
	nodes_clear(used_mask);
5703 5704

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5705 5706 5707 5708 5709 5710
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5711 5712
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5713 5714
			node_load[node] = load;

5715
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5716 5717 5718
		prev_node = node;
		load--;
	}
5719

5720
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5721
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5722 5723
}

5724 5725 5726 5727 5728 5729 5730 5731 5732
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5733
	struct zoneref *z;
5734

5735
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5736
				   gfp_zone(GFP_KERNEL),
5737
				   NULL);
5738
	return zone_to_nid(z->zone);
5739 5740
}
#endif
5741

5742 5743
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5744 5745
#else	/* CONFIG_NUMA */

5746
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5747
{
5748
	int node, local_node;
5749 5750
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5751 5752 5753

	local_node = pgdat->node_id;

5754 5755 5756
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5757

5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5769 5770
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5771
	}
5772 5773 5774
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5775 5776
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5777 5778
	}

5779 5780
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5781 5782 5783 5784
}

#endif	/* CONFIG_NUMA */

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5802
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5803

5804
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5805
{
5806
	int nid;
5807
	int __maybe_unused cpu;
5808
	pg_data_t *self = data;
5809 5810 5811
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5812

5813 5814 5815
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5816

5817 5818 5819 5820
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5821 5822
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5823 5824 5825
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5826

5827 5828
			build_zonelists(pgdat);
		}
5829

5830 5831 5832 5833 5834 5835 5836 5837 5838
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5839
		for_each_online_cpu(cpu)
5840
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5841
#endif
5842
	}
5843 5844

	spin_unlock(&lock);
5845 5846
}

5847 5848 5849
static noinline void __init
build_all_zonelists_init(void)
{
5850 5851
	int cpu;

5852
	__build_all_zonelists(NULL);
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5870 5871 5872 5873
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5874 5875
/*
 * unless system_state == SYSTEM_BOOTING.
5876
 *
5877
 * __ref due to call of __init annotated helper build_all_zonelists_init
5878
 * [protected by SYSTEM_BOOTING].
5879
 */
5880
void __ref build_all_zonelists(pg_data_t *pgdat)
5881 5882
{
	if (system_state == SYSTEM_BOOTING) {
5883
		build_all_zonelists_init();
5884
	} else {
5885
		__build_all_zonelists(pgdat);
5886 5887
		/* cpuset refresh routine should be here */
	}
5888
	vm_total_pages = nr_free_pagecache_pages();
5889 5890 5891 5892 5893 5894 5895
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5896
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5897 5898 5899 5900
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5901
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5902 5903 5904
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5905
#ifdef CONFIG_NUMA
5906
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5907
#endif
L
Linus Torvalds 已提交
5908 5909
}

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

5934 5935 5936 5937
#ifdef CONFIG_SPARSEMEM
/* Skip PFNs that belong to non-present sections */
static inline __meminit unsigned long next_pfn(unsigned long pfn)
{
5938
	const unsigned long section_nr = pfn_to_section_nr(++pfn);
5939 5940 5941

	if (present_section_nr(section_nr))
		return pfn;
5942
	return section_nr_to_pfn(next_present_section_nr(section_nr));
5943 5944 5945 5946 5947 5948 5949 5950
}
#else
static inline __meminit unsigned long next_pfn(unsigned long pfn)
{
	return pfn++;
}
#endif

L
Linus Torvalds 已提交
5951 5952
/*
 * Initially all pages are reserved - free ones are freed
5953
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5954 5955
 * done. Non-atomic initialization, single-pass.
 */
5956
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5957 5958
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5959
{
5960
	unsigned long pfn, end_pfn = start_pfn + size;
5961
	struct page *page;
L
Linus Torvalds 已提交
5962

5963 5964 5965
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5966
#ifdef CONFIG_ZONE_DEVICE
5967 5968
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5969 5970 5971 5972
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5973
	 */
5974 5975 5976 5977 5978 5979 5980 5981 5982
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5983

5984
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
5985
		/*
5986 5987
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5988
		 */
5989
		if (context == MEMMAP_EARLY) {
5990
			if (!early_pfn_valid(pfn)) {
5991
				pfn = next_pfn(pfn);
5992
				continue;
5993
			}
5994 5995
			if (!early_pfn_in_nid(pfn, nid)) {
				pfn++;
5996
				continue;
5997
			}
5998 5999 6000 6001
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
6002
		}
6003

6004 6005 6006
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
6007
			__SetPageReserved(page);
6008

6009 6010 6011 6012 6013
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
6014
		 * kernel allocations are made.
6015 6016 6017 6018 6019 6020 6021 6022
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6023
			cond_resched();
6024
		}
6025
		pfn++;
L
Linus Torvalds 已提交
6026 6027 6028
	}
}

6029 6030 6031
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6032
				   unsigned long nr_pages,
6033 6034
				   struct dev_pagemap *pgmap)
{
6035
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6036
	struct pglist_data *pgdat = zone->zone_pgdat;
6037
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6038 6039 6040 6041
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6042
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6043 6044 6045 6046 6047 6048 6049
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6050
	if (altmap) {
6051
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6052
		nr_pages = end_pfn - start_pfn;
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6070 6071 6072
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6073 6074
		 */
		page->pgmap = pgmap;
6075
		page->zone_device_data = NULL;
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6090
		 * because this is done early in section_activate()
6091 6092 6093 6094 6095 6096 6097
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6098
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6099
		nr_pages, jiffies_to_msecs(jiffies - start));
6100 6101 6102
}

#endif
6103
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6104
{
6105
	unsigned int order, t;
6106 6107
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6108 6109 6110 6111
		zone->free_area[order].nr_free = 0;
	}
}

6112 6113 6114 6115 6116
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
6117

6118
static int zone_batchsize(struct zone *zone)
6119
{
6120
#ifdef CONFIG_MMU
6121 6122 6123 6124
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6125
	 * size of the zone.
6126
	 */
6127
	batch = zone_managed_pages(zone) / 1024;
6128 6129 6130
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6131 6132 6133 6134 6135
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6136 6137 6138
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6139
	 *
6140 6141 6142 6143
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6144
	 */
6145
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6146

6147
	return batch;
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6165 6166
}

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6194
/* a companion to pageset_set_high() */
6195 6196
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6197
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6198 6199
}

6200
static void pageset_init(struct per_cpu_pageset *p)
6201 6202
{
	struct per_cpu_pages *pcp;
6203
	int migratetype;
6204

6205 6206
	memset(p, 0, sizeof(*p));

6207
	pcp = &p->pcp;
6208 6209
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6210 6211
}

6212 6213 6214 6215 6216 6217
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6218
/*
6219
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6220 6221
 * to the value high for the pageset p.
 */
6222
static void pageset_set_high(struct per_cpu_pageset *p,
6223 6224
				unsigned long high)
{
6225 6226 6227
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6228

6229
	pageset_update(&p->pcp, high, batch);
6230 6231
}

6232 6233
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6234 6235
{
	if (percpu_pagelist_fraction)
6236
		pageset_set_high(pcp,
6237
			(zone_managed_pages(zone) /
6238 6239 6240 6241 6242
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6243 6244 6245 6246 6247 6248 6249 6250
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6251
void __meminit setup_zone_pageset(struct zone *zone)
6252 6253 6254
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6255 6256
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6257 6258
}

6259
/*
6260 6261
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6262
 */
6263
void __init setup_per_cpu_pageset(void)
6264
{
6265
	struct pglist_data *pgdat;
6266
	struct zone *zone;
6267

6268 6269
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6270 6271 6272 6273

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6274 6275
}

6276
static __meminit void zone_pcp_init(struct zone *zone)
6277
{
6278 6279 6280 6281 6282 6283
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6284

6285
	if (populated_zone(zone))
6286 6287 6288
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6289 6290
}

6291
void __meminit init_currently_empty_zone(struct zone *zone,
6292
					unsigned long zone_start_pfn,
6293
					unsigned long size)
6294 6295
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6296
	int zone_idx = zone_idx(zone) + 1;
6297

6298 6299
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6300 6301 6302

	zone->zone_start_pfn = zone_start_pfn;

6303 6304 6305 6306 6307 6308
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6309
	zone_init_free_lists(zone);
6310
	zone->initialized = 1;
6311 6312
}

T
Tejun Heo 已提交
6313
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6314
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6315

6316 6317 6318
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6319 6320
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6321
{
6322
	unsigned long start_pfn, end_pfn;
6323
	int nid;
6324

6325 6326
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6327

6328
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6329
	if (nid != NUMA_NO_NODE) {
6330 6331 6332
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6333 6334 6335
	}

	return nid;
6336 6337 6338 6339
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6340
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6341
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6342
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6343
 *
6344 6345 6346
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6347
 */
6348
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6349
{
6350 6351
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6352

6353 6354 6355
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6356

6357
		if (start_pfn < end_pfn)
6358 6359 6360
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6361 6362 6363
	}
}

6364 6365
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6366
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6367
 *
6368 6369
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6370 6371 6372
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6373 6374
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6375

6376 6377
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6378 6379 6380 6381
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6382 6383 6384
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6385 6386
 *
 * It returns the start and end page frame of a node based on information
6387
 * provided by memblock_set_node(). If called for a node
6388
 * with no available memory, a warning is printed and the start and end
6389
 * PFNs will be 0.
6390
 */
6391
void __init get_pfn_range_for_nid(unsigned int nid,
6392 6393
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6394
	unsigned long this_start_pfn, this_end_pfn;
6395
	int i;
6396

6397 6398 6399
	*start_pfn = -1UL;
	*end_pfn = 0;

6400 6401 6402
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6403 6404
	}

6405
	if (*start_pfn == -1UL)
6406 6407 6408
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6409 6410 6411 6412 6413
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6414
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6432
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6433 6434 6435 6436 6437 6438 6439
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6440
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6455 6456 6457 6458 6459 6460
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6461 6462 6463 6464 6465 6466
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6467 6468 6469 6470
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6471
static unsigned long __init zone_spanned_pages_in_node(int nid,
6472
					unsigned long zone_type,
6473 6474
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6475 6476
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6477 6478
					unsigned long *ignored)
{
6479 6480
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6481
	/* When hotadd a new node from cpu_up(), the node should be empty */
6482 6483 6484
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6485
	/* Get the start and end of the zone */
6486 6487
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6488 6489
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6490
				zone_start_pfn, zone_end_pfn);
6491 6492

	/* Check that this node has pages within the zone's required range */
6493
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6494 6495 6496
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6497 6498
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6499 6500

	/* Return the spanned pages */
6501
	return *zone_end_pfn - *zone_start_pfn;
6502 6503 6504 6505
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6506
 * then all holes in the requested range will be accounted for.
6507
 */
6508
unsigned long __init __absent_pages_in_range(int nid,
6509 6510 6511
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6512 6513 6514
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6515

6516 6517 6518 6519
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6520
	}
6521
	return nr_absent;
6522 6523 6524 6525 6526 6527 6528
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6529
 * Return: the number of pages frames in memory holes within a range.
6530 6531 6532 6533 6534 6535 6536 6537
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6538
static unsigned long __init zone_absent_pages_in_node(int nid,
6539
					unsigned long zone_type,
6540 6541
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6542 6543
					unsigned long *ignored)
{
6544 6545
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6546
	unsigned long zone_start_pfn, zone_end_pfn;
6547
	unsigned long nr_absent;
6548

6549
	/* When hotadd a new node from cpu_up(), the node should be empty */
6550 6551 6552
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6553 6554
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6555

M
Mel Gorman 已提交
6556 6557 6558
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6559 6560 6561 6562 6563 6564 6565
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6583 6584 6585 6586
		}
	}

	return nr_absent;
6587
}
6588

T
Tejun Heo 已提交
6589
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6590
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6591
					unsigned long zone_type,
6592 6593
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6594 6595
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6596 6597
					unsigned long *zones_size)
{
6598 6599 6600 6601 6602 6603 6604 6605
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6606 6607 6608
	return zones_size[zone_type];
}

6609
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6610
						unsigned long zone_type,
6611 6612
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6613 6614 6615 6616 6617 6618 6619
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6620

T
Tejun Heo 已提交
6621
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6622

6623
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6624 6625 6626 6627
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6628
{
6629
	unsigned long realtotalpages = 0, totalpages = 0;
6630 6631
	enum zone_type i;

6632 6633
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6634
		unsigned long zone_start_pfn, zone_end_pfn;
6635
		unsigned long size, real_size;
6636

6637 6638 6639
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6640 6641
						  &zone_start_pfn,
						  &zone_end_pfn,
6642 6643
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6644 6645
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6646 6647 6648 6649
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6650 6651 6652 6653 6654 6655 6656 6657
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6658 6659 6660 6661 6662
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6663 6664 6665
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6666 6667
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6668 6669 6670
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6671
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6672 6673 6674
{
	unsigned long usemapsize;

6675
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6676 6677
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6678 6679 6680 6681 6682 6683
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6684
static void __ref setup_usemap(struct pglist_data *pgdat,
6685 6686 6687
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6688
{
6689
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6690
	zone->pageblock_flags = NULL;
6691
	if (usemapsize) {
6692
		zone->pageblock_flags =
6693 6694
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6695 6696 6697 6698
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6699 6700
}
#else
6701 6702
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6703 6704
#endif /* CONFIG_SPARSEMEM */

6705
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6706

6707
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6708
void __init set_pageblock_order(void)
6709
{
6710 6711
	unsigned int order;

6712 6713 6714 6715
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6716 6717 6718 6719 6720
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6721 6722
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6723 6724
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6725 6726 6727 6728 6729
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6730 6731
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6732 6733 6734
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6735
 */
6736
void __init set_pageblock_order(void)
6737 6738
{
}
6739 6740 6741

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6742
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6743
						unsigned long present_pages)
6744 6745 6746 6747 6748 6749 6750 6751
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6752
	 * populated regions may not be naturally aligned on page boundary.
6753 6754 6755 6756 6757 6758 6759 6760 6761
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6762 6763 6764
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6765 6766 6767 6768 6769
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6784
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6785
{
6786
	pgdat_resize_init(pgdat);
6787 6788 6789 6790

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6791
	init_waitqueue_head(&pgdat->kswapd_wait);
6792
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6793

6794
	pgdat_page_ext_init(pgdat);
6795
	spin_lock_init(&pgdat->lru_lock);
6796
	lruvec_init(&pgdat->__lruvec);
6797 6798 6799 6800 6801
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6802
	atomic_long_set(&zone->managed_pages, remaining_pages);
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6843

6844
	pgdat_init_internals(pgdat);
6845 6846
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6847 6848
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6849
		unsigned long size, freesize, memmap_pages;
6850
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6851

6852
		size = zone->spanned_pages;
6853
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6854

6855
		/*
6856
		 * Adjust freesize so that it accounts for how much memory
6857 6858 6859
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6860
		memmap_pages = calc_memmap_size(size, freesize);
6861 6862 6863 6864 6865 6866 6867 6868
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6869
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6870 6871
					zone_names[j], memmap_pages, freesize);
		}
6872

6873
		/* Account for reserved pages */
6874 6875
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6876
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6877
					zone_names[0], dma_reserve);
6878 6879
		}

6880
		if (!is_highmem_idx(j))
6881
			nr_kernel_pages += freesize;
6882 6883 6884
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6885
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6886

6887 6888 6889 6890 6891
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6892
		zone_init_internals(zone, j, nid, freesize);
6893

6894
		if (!size)
L
Linus Torvalds 已提交
6895 6896
			continue;

6897
		set_pageblock_order();
6898 6899
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6900
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6901 6902 6903
	}
}

6904
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6905
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6906
{
6907
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6908 6909
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6910 6911 6912 6913
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6914 6915
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6916 6917
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6918
		unsigned long size, end;
A
Andy Whitcroft 已提交
6919 6920
		struct page *map;

6921 6922 6923 6924 6925
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6926
		end = pgdat_end_pfn(pgdat);
6927 6928
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6929 6930
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6931 6932 6933
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6934
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6935
	}
6936 6937 6938
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6939
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6940 6941 6942
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6943
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6944
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6945
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6946
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6947
			mem_map -= offset;
T
Tejun Heo 已提交
6948
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6949
	}
L
Linus Torvalds 已提交
6950 6951
#endif
}
6952 6953 6954
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6955

6956 6957 6958 6959 6960 6961 6962 6963 6964
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6965
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6966 6967
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6968
{
6969
	pg_data_t *pgdat = NODE_DATA(nid);
6970 6971
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6972

6973
	/* pg_data_t should be reset to zero when it's allocated */
6974
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6975

L
Linus Torvalds 已提交
6976 6977
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6978
	pgdat->per_cpu_nodestats = NULL;
6979 6980
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6981
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6982 6983
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6984 6985
#else
	start_pfn = node_start_pfn;
6986 6987 6988
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6989 6990

	alloc_node_mem_map(pgdat);
6991
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6992

6993
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6994 6995
}

M
Mike Rapoport 已提交
6996
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6997
/*
6998 6999
 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
 * PageReserved(). Return the number of struct pages that were initialized.
7000
 */
7001
static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
7012 7013 7014 7015 7016 7017 7018
		/*
		 * Use a fake node/zone (0) for now. Some of these pages
		 * (in memblock.reserved but not in memblock.memory) will
		 * get re-initialized via reserve_bootmem_region() later.
		 */
		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
		__SetPageReserved(pfn_to_page(pfn));
7019 7020 7021 7022 7023 7024
		pgcnt++;
	}

	return pgcnt;
}

7025 7026 7027 7028 7029
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
7030
 * flags). We must explicitly initialize those struct pages.
7031 7032 7033 7034
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
7035 7036
 * layout is manually configured via memmap=, or when the highest physical
 * address (max_pfn) does not end on a section boundary.
7037
 */
7038
static void __init init_unavailable_mem(void)
7039 7040 7041
{
	phys_addr_t start, end;
	u64 i, pgcnt;
7042
	phys_addr_t next = 0;
7043 7044

	/*
7045
	 * Loop through unavailable ranges not covered by memblock.memory.
7046 7047
	 */
	pgcnt = 0;
7048 7049
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7050
		if (next < start)
7051 7052
			pgcnt += init_unavailable_range(PFN_DOWN(next),
							PFN_UP(start));
7053 7054
		next = end;
	}
7055 7056 7057 7058 7059 7060 7061 7062

	/*
	 * Early sections always have a fully populated memmap for the whole
	 * section - see pfn_valid(). If the last section has holes at the
	 * end and that section is marked "online", the memmap will be
	 * considered initialized. Make sure that memmap has a well defined
	 * state.
	 */
7063 7064
	pgcnt += init_unavailable_range(PFN_DOWN(next),
					round_up(max_pfn, PAGES_PER_SECTION));
7065

7066 7067 7068 7069 7070
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
7071
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7072
}
7073 7074 7075 7076
#else
static inline void __init init_unavailable_mem(void)
{
}
M
Mike Rapoport 已提交
7077
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7078

T
Tejun Heo 已提交
7079
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
7080 7081 7082 7083 7084

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7085
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7086
{
7087
	unsigned int highest;
M
Miklos Szeredi 已提交
7088

7089
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7090 7091 7092 7093
	nr_node_ids = highest + 1;
}
#endif

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7110
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7111 7112 7113 7114 7115
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7116
	unsigned long start, end, mask;
7117
	int last_nid = NUMA_NO_NODE;
7118
	int i, nid;
7119

7120
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7144
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
7145
static unsigned long __init find_min_pfn_for_node(int nid)
7146
{
7147
	unsigned long min_pfn = ULONG_MAX;
7148 7149
	unsigned long start_pfn;
	int i;
7150

7151 7152
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
7153

7154
	if (min_pfn == ULONG_MAX) {
7155
		pr_warn("Could not find start_pfn for node %d\n", nid);
7156 7157 7158 7159
		return 0;
	}

	return min_pfn;
7160 7161 7162 7163 7164
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7165
 * Return: the minimum PFN based on information provided via
7166
 * memblock_set_node().
7167 7168 7169 7170 7171 7172
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7173 7174 7175
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7176
 * Populate N_MEMORY for calculating usable_nodes.
7177
 */
A
Adrian Bunk 已提交
7178
static unsigned long __init early_calculate_totalpages(void)
7179 7180
{
	unsigned long totalpages = 0;
7181 7182 7183 7184 7185
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7186

7187 7188
		totalpages += pages;
		if (pages)
7189
			node_set_state(nid, N_MEMORY);
7190
	}
7191
	return totalpages;
7192 7193
}

M
Mel Gorman 已提交
7194 7195 7196 7197 7198 7199
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7200
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7201 7202 7203 7204
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7205
	/* save the state before borrow the nodemask */
7206
	nodemask_t saved_node_state = node_states[N_MEMORY];
7207
	unsigned long totalpages = early_calculate_totalpages();
7208
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7209
	struct memblock_region *r;
7210 7211 7212 7213 7214 7215 7216 7217 7218

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7219 7220
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7221 7222
				continue;

E
Emil Medve 已提交
7223
			nid = r->nid;
7224

E
Emil Medve 已提交
7225
			usable_startpfn = PFN_DOWN(r->base);
7226 7227 7228 7229 7230 7231 7232
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7233

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7264
	/*
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7292
		required_movablecore = min(totalpages, required_movablecore);
7293 7294 7295 7296 7297
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7298 7299 7300 7301 7302
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7303
		goto out;
M
Mel Gorman 已提交
7304 7305 7306 7307 7308 7309 7310

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7311
	for_each_node_state(nid, N_MEMORY) {
7312 7313
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7330
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7331 7332
			unsigned long size_pages;

7333
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7376
			 * satisfied
M
Mel Gorman 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7390
	 * satisfied
M
Mel Gorman 已提交
7391 7392 7393 7394 7395
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7396
out2:
M
Mel Gorman 已提交
7397 7398 7399 7400
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7401

7402
out:
7403
	/* restore the node_state */
7404
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7405 7406
}

7407 7408
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7409 7410 7411
{
	enum zone_type zone_type;

7412
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7413
		struct zone *zone = &pgdat->node_zones[zone_type];
7414
		if (populated_zone(zone)) {
7415 7416 7417
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7418
				node_set_state(nid, N_NORMAL_MEMORY);
7419 7420
			break;
		}
7421 7422 7423
	}
}

7424 7425
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7426
 * @max_zone_pfn: an array of max PFNs for each zone
7427 7428
 *
 * This will call free_area_init_node() for each active node in the system.
7429
 * Using the page ranges provided by memblock_set_node(), the size of each
7430 7431 7432 7433 7434 7435 7436 7437 7438
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7439 7440
	unsigned long start_pfn, end_pfn;
	int i, nid;
7441

7442 7443 7444 7445 7446
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7447 7448 7449 7450

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7451 7452
		if (i == ZONE_MOVABLE)
			continue;
7453 7454 7455 7456 7457 7458

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7459
	}
M
Mel Gorman 已提交
7460 7461 7462

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7463
	find_zone_movable_pfns_for_nodes();
7464 7465

	/* Print out the zone ranges */
7466
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7467 7468 7469
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7470
		pr_info("  %-8s ", zone_names[i]);
7471 7472
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7473
			pr_cont("empty\n");
7474
		else
7475 7476 7477 7478
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7479
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7480 7481 7482
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7483
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7484 7485
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7486 7487
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7488
	}
7489

7490 7491 7492 7493 7494
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7495
	pr_info("Early memory node ranges\n");
7496
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7497 7498 7499
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7500 7501
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7502 7503

	/* Initialise every node */
7504
	mminit_verify_pageflags_layout();
7505
	setup_nr_node_ids();
7506
	init_unavailable_mem();
7507 7508
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7509
		free_area_init_node(nid, NULL,
7510
				find_min_pfn_for_node(nid), NULL);
7511 7512 7513

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7514 7515
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7516 7517
	}
}
M
Mel Gorman 已提交
7518

7519 7520
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7521 7522
{
	unsigned long long coremem;
7523 7524
	char *endptr;

M
Mel Gorman 已提交
7525 7526 7527
	if (!p)
		return -EINVAL;

7528 7529 7530 7531 7532
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7533

7534 7535 7536 7537 7538
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7539

7540 7541 7542
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7543 7544
	return 0;
}
M
Mel Gorman 已提交
7545

7546 7547 7548 7549 7550 7551
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7552 7553 7554 7555 7556 7557
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7558 7559
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7560 7561 7562 7563 7564 7565 7566 7567
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7568 7569
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7570 7571
}

M
Mel Gorman 已提交
7572
early_param("kernelcore", cmdline_parse_kernelcore);
7573
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7574

T
Tejun Heo 已提交
7575
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7576

7577 7578
void adjust_managed_page_count(struct page *page, long count)
{
7579
	atomic_long_add(count, &page_zone(page)->managed_pages);
7580
	totalram_pages_add(count);
7581 7582
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7583
		totalhigh_pages_add(count);
7584
#endif
7585
}
7586
EXPORT_SYMBOL(adjust_managed_page_count);
7587

7588
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7589
{
7590 7591
	void *pos;
	unsigned long pages = 0;
7592

7593 7594 7595
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7607
		if ((unsigned int)poison <= 0xFF)
7608 7609 7610
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7611 7612 7613
	}

	if (pages && s)
7614 7615
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7616 7617 7618 7619

	return pages;
}

7620 7621 7622 7623
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7624
	totalram_pages_inc();
7625
	atomic_long_inc(&page_zone(page)->managed_pages);
7626
	totalhigh_pages_inc();
7627 7628 7629
}
#endif

7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7652 7653 7654 7655
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7666
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7667
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7668
		", %luK highmem"
7669
#endif
J
Joe Perches 已提交
7670 7671 7672 7673 7674
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7675
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7676
		totalcma_pages << (PAGE_SHIFT - 10),
7677
#ifdef	CONFIG_HIGHMEM
7678
		totalhigh_pages() << (PAGE_SHIFT - 10),
7679
#endif
J
Joe Perches 已提交
7680
		str ? ", " : "", str ? str : "");
7681 7682
}

7683
/**
7684 7685
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7686
 *
7687
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7688 7689
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7690 7691 7692
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7693 7694 7695 7696 7697 7698
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7699 7700
void __init free_area_init(unsigned long *zones_size)
{
7701
	init_unavailable_mem();
7702
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7703 7704 7705
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7706
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7707 7708
{

7709 7710
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7711

7712 7713 7714 7715 7716 7717 7718
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7719

7720 7721 7722 7723 7724 7725 7726 7727 7728
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7729 7730
}

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7744 7745
void __init page_alloc_init(void)
{
7746 7747
	int ret;

7748 7749 7750 7751 7752
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7753 7754 7755 7756
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7757 7758
}

7759
/*
7760
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7761 7762 7763 7764 7765 7766
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7767
	enum zone_type i, j;
7768 7769

	for_each_online_pgdat(pgdat) {
7770 7771 7772

		pgdat->totalreserve_pages = 0;

7773 7774
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7775
			long max = 0;
7776
			unsigned long managed_pages = zone_managed_pages(zone);
7777 7778 7779 7780 7781 7782 7783

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7784 7785
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7786

7787 7788
			if (max > managed_pages)
				max = managed_pages;
7789

7790
			pgdat->totalreserve_pages += max;
7791

7792 7793 7794 7795 7796 7797
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7798 7799
/*
 * setup_per_zone_lowmem_reserve - called whenever
7800
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7801 7802 7803 7804 7805 7806
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7807
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7808

7809
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7810 7811
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7812
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7813 7814 7815

			zone->lowmem_reserve[j] = 0;

7816 7817
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7818 7819
				struct zone *lower_zone;

7820
				idx--;
L
Linus Torvalds 已提交
7821
				lower_zone = pgdat->node_zones + idx;
7822 7823 7824 7825 7826 7827 7828 7829

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7830
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7831 7832 7833
			}
		}
	}
7834 7835 7836

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7837 7838
}

7839
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7849
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7850 7851 7852
	}

	for_each_zone(zone) {
7853 7854
		u64 tmp;

7855
		spin_lock_irqsave(&zone->lock, flags);
7856
		tmp = (u64)pages_min * zone_managed_pages(zone);
7857
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7858 7859
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7860 7861 7862 7863
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7864
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7865
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7866
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7867
			 */
7868
			unsigned long min_pages;
L
Linus Torvalds 已提交
7869

7870
			min_pages = zone_managed_pages(zone) / 1024;
7871
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7872
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7873
		} else {
N
Nick Piggin 已提交
7874 7875
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7876 7877
			 * proportionate to the zone's size.
			 */
7878
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7879 7880
		}

7881 7882 7883 7884 7885 7886
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7887
			    mult_frac(zone_managed_pages(zone),
7888 7889
				      watermark_scale_factor, 10000));

7890 7891
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7892
		zone->watermark_boost = 0;
7893

7894
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7895
	}
7896 7897 7898

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7899 7900
}

7901 7902 7903 7904 7905 7906 7907 7908 7909
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7910 7911 7912
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7913
	__setup_per_zone_wmarks();
7914
	spin_unlock(&lock);
7915 7916
}

L
Linus Torvalds 已提交
7917 7918 7919 7920 7921 7922 7923
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7924
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7941
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7942 7943
{
	unsigned long lowmem_kbytes;
7944
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7945 7946

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7947 7948 7949 7950 7951 7952
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
7953 7954
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
7955 7956 7957 7958
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7959
	setup_per_zone_wmarks();
7960
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7961
	setup_per_zone_lowmem_reserve();
7962 7963 7964 7965 7966 7967

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7968 7969
	return 0;
}
7970
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7971 7972

/*
7973
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7974 7975 7976
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7977
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7978
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7979
{
7980 7981 7982 7983 7984 7985
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7986 7987
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7988
		setup_per_zone_wmarks();
7989
	}
L
Linus Torvalds 已提交
7990 7991 7992
	return 0;
}

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

8020
#ifdef CONFIG_NUMA
8021
static void setup_min_unmapped_ratio(void)
8022
{
8023
	pg_data_t *pgdat;
8024 8025
	struct zone *zone;

8026
	for_each_online_pgdat(pgdat)
8027
		pgdat->min_unmapped_pages = 0;
8028

8029
	for_each_zone(zone)
8030 8031
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8032
}
8033

8034 8035

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8036
	void __user *buffer, size_t *length, loff_t *ppos)
8037 8038 8039
{
	int rc;

8040
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8041 8042 8043
	if (rc)
		return rc;

8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8054 8055 8056
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8057
	for_each_zone(zone)
8058 8059
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8073 8074
	return 0;
}
8075 8076
#endif

L
Linus Torvalds 已提交
8077 8078 8079 8080 8081 8082
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8083
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8084 8085
 * if in function of the boot time zone sizes.
 */
8086
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8087
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8088
{
8089
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
8090 8091 8092 8093
	setup_per_zone_lowmem_reserve();
	return 0;
}

8094 8095 8096 8097 8098 8099 8100 8101 8102
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8103 8104
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8105 8106
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8107
 */
8108
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8109
	void __user *buffer, size_t *length, loff_t *ppos)
8110 8111
{
	struct zone *zone;
8112
	int old_percpu_pagelist_fraction;
8113 8114
	int ret;

8115 8116 8117
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8118
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8133

8134 8135
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8136
out:
8137
	mutex_unlock(&pcp_batch_high_lock);
8138
	return ret;
8139 8140
}

8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8180 8181
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8182
{
8183
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8184 8185
	unsigned long log2qty, size;
	void *table = NULL;
8186
	gfp_t gfp_flags;
8187
	bool virt;
L
Linus Torvalds 已提交
8188 8189 8190 8191

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8192
		numentries = nr_kernel_pages;
8193
		numentries -= arch_reserved_kernel_pages();
8194 8195 8196 8197

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8198

P
Pavel Tatashin 已提交
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8209 8210 8211 8212 8213
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8214 8215

		/* Make sure we've got at least a 0-order allocation.. */
8216 8217 8218 8219 8220 8221 8222 8223
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8224
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8225
	}
8226
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8227 8228 8229 8230 8231 8232

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8233
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8234

8235 8236
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8237 8238 8239
	if (numentries > max)
		numentries = max;

8240
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8241

8242
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8243
	do {
8244
		virt = false;
L
Linus Torvalds 已提交
8245
		size = bucketsize << log2qty;
8246 8247
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8248
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8249
			else
8250 8251
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8252
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8253
			table = __vmalloc(size, gfp_flags);
8254
			virt = true;
8255
		} else {
8256 8257
			/*
			 * If bucketsize is not a power-of-two, we may free
8258 8259
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8260
			 */
8261 8262
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8263 8264 8265 8266 8267 8268
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8269 8270 8271
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8272 8273 8274 8275 8276 8277 8278 8279

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8280

K
KAMEZAWA Hiroyuki 已提交
8281
/*
8282 8283
 * This function checks whether pageblock includes unmovable pages or not.
 *
8284
 * PageLRU check without isolation or lru_lock could race so that
8285 8286 8287
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8288 8289 8290 8291 8292
 *
 * Returns a page without holding a reference. If the caller wants to
 * dereference that page (e.g., dumping), it has to make sure that that it
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8293
 */
8294 8295
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8296
{
8297 8298
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8299

8300
	/*
8301 8302 8303 8304 8305
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8306 8307
	 */

8308 8309 8310 8311 8312 8313 8314
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8315
			return NULL;
8316

8317
		return page;
8318
	}
8319

8320 8321
	for (; iter < pageblock_nr_pages; iter++) {
		if (!pfn_valid_within(pfn + iter))
8322
			continue;
8323

8324
		page = pfn_to_page(pfn + iter);
8325

8326
		if (PageReserved(page))
8327
			return page;
8328

8329 8330 8331 8332 8333 8334 8335 8336
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8337 8338
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8339
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8340
		 * We need not scan over tail pages because we don't
8341 8342
		 * handle each tail page individually in migration.
		 */
8343
		if (PageHuge(page) || PageTransCompound(page)) {
8344 8345
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8346

8347 8348 8349 8350
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8351
				return page;
8352
			}
8353

8354
			skip_pages = compound_nr(head) - (page - head);
8355
			iter += skip_pages - 1;
8356 8357 8358
			continue;
		}

8359 8360 8361 8362
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8363
		 * because their page->_refcount is zero at all time.
8364
		 */
8365
		if (!page_ref_count(page)) {
8366 8367 8368 8369
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8370

8371 8372 8373 8374
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8375
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8376 8377
			continue;

8378
		if (__PageMovable(page) || PageLRU(page))
8379 8380
			continue;

8381
		/*
8382 8383 8384
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8385 8386 8387 8388 8389 8390 8391 8392 8393
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
8394
		return page;
8395
	}
8396
	return NULL;
8397 8398
}

8399
#ifdef CONFIG_CONTIG_ALLOC
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8413 8414
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8415 8416
{
	/* This function is based on compact_zone() from compaction.c. */
8417
	unsigned long nr_reclaimed;
8418 8419 8420 8421
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8422
	migrate_prep();
8423

8424
	while (pfn < end || !list_empty(&cc->migratepages)) {
8425 8426 8427 8428 8429
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8430 8431
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8432
			pfn = isolate_migratepages_range(cc, pfn, end);
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8443 8444 8445
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8446

8447
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8448
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8449
	}
8450 8451 8452 8453 8454
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8455 8456 8457 8458 8459 8460
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8461 8462 8463 8464
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8465
 * @gfp_mask:	GFP mask to use during compaction
8466 8467
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8468
 * aligned.  The PFN range must belong to a single zone.
8469
 *
8470 8471 8472
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8473
 *
8474
 * Return: zero on success or negative error code.  On success all
8475 8476 8477
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8478
int alloc_contig_range(unsigned long start, unsigned long end,
8479
		       unsigned migratetype, gfp_t gfp_mask)
8480 8481
{
	unsigned long outer_start, outer_end;
8482 8483
	unsigned int order;
	int ret = 0;
8484

8485 8486 8487 8488
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8489
		.mode = MIGRATE_SYNC,
8490
		.ignore_skip_hint = true,
8491
		.no_set_skip_hint = true,
8492
		.gfp_mask = current_gfp_context(gfp_mask),
8493
		.alloc_contig = true,
8494 8495 8496
	};
	INIT_LIST_HEAD(&cc.migratepages);

8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8522
				       pfn_max_align_up(end), migratetype, 0);
8523
	if (ret < 0)
8524
		return ret;
8525

8526 8527
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8528 8529 8530 8531 8532 8533 8534
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8535
	 */
8536
	ret = __alloc_contig_migrate_range(&cc, start, end);
8537
	if (ret && ret != -EBUSY)
8538
		goto done;
8539
	ret =0;
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8564 8565
			outer_start = start;
			break;
8566 8567 8568 8569
		}
		outer_start &= ~0UL << order;
	}

8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8583
	/* Make sure the range is really isolated. */
8584
	if (test_pages_isolated(outer_start, end, 0)) {
8585
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8586
			__func__, outer_start, end);
8587 8588 8589 8590
		ret = -EBUSY;
		goto done;
	}

8591
	/* Grab isolated pages from freelists. */
8592
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8606
				pfn_max_align_up(end), migratetype);
8607 8608
	return ret;
}
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8710
#endif /* CONFIG_CONTIG_ALLOC */
8711

8712
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8713
{
8714 8715 8716 8717 8718 8719 8720 8721 8722
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8723 8724
}

8725 8726 8727 8728
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8729 8730
void __meminit zone_pcp_update(struct zone *zone)
{
8731
	mutex_lock(&pcp_batch_high_lock);
8732
	__zone_pcp_update(zone);
8733
	mutex_unlock(&pcp_batch_high_lock);
8734 8735
}

8736 8737 8738
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8739 8740
	int cpu;
	struct per_cpu_pageset *pset;
8741 8742 8743 8744

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8745 8746 8747 8748
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8749 8750 8751 8752 8753 8754
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8755
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8756
/*
8757 8758
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8759
 */
8760
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8761 8762 8763 8764
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8765
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8766 8767
	unsigned long pfn;
	unsigned long flags;
8768 8769
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8770 8771 8772 8773 8774
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8775 8776
		return offlined_pages;

8777
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8778 8779 8780 8781 8782 8783 8784 8785 8786
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8787 8788 8789 8790 8791 8792
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
8793
			offlined_pages++;
8794 8795 8796
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8797 8798 8799
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8800
		offlined_pages += 1 << order;
8801
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8802 8803 8804
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8805 8806

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8807 8808
}
#endif
8809 8810 8811 8812 8813 8814

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8815
	unsigned int order;
8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif