page_alloc.c 209.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85 86 87 88 89 90 91 92
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93
int _node_numa_mem_[MAX_NUMNODES];
94 95
#endif

96 97 98 99
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

100
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101
volatile unsigned long latent_entropy __latent_entropy;
102 103 104
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
105
/*
106
 * Array of node states.
L
Linus Torvalds 已提交
107
 */
108 109 110 111 112 113 114
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 116 117
#endif
#ifdef CONFIG_MOVABLE_NODE
	[N_MEMORY] = { { [0] = 1UL } },
118 119 120 121 122 123
#endif
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

124 125 126
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

127
unsigned long totalram_pages __read_mostly;
128
unsigned long totalreserve_pages __read_mostly;
129
unsigned long totalcma_pages __read_mostly;
130

131
int percpu_pagelist_fraction;
132
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

152 153 154 155 156 157 158 159 160
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
161 162 163 164

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
165 166
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
167 168 169 170
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
171 172
}

173
void pm_restrict_gfp_mask(void)
174 175
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
176 177
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
178
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179
}
180 181 182

bool pm_suspended_storage(void)
{
183
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 185 186
		return false;
	return true;
}
187 188
#endif /* CONFIG_PM_SLEEP */

189
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190
unsigned int pageblock_order __read_mostly;
191 192
#endif

193
static void __free_pages_ok(struct page *page, unsigned int order);
194

L
Linus Torvalds 已提交
195 196 197 198 199 200
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
201
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
202 203 204
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
205
 */
206
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207
#ifdef CONFIG_ZONE_DMA
208
	 256,
209
#endif
210
#ifdef CONFIG_ZONE_DMA32
211
	 256,
212
#endif
213
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
214
	 32,
215
#endif
M
Mel Gorman 已提交
216
	 32,
217
};
L
Linus Torvalds 已提交
218 219 220

EXPORT_SYMBOL(totalram_pages);

221
static char * const zone_names[MAX_NR_ZONES] = {
222
#ifdef CONFIG_ZONE_DMA
223
	 "DMA",
224
#endif
225
#ifdef CONFIG_ZONE_DMA32
226
	 "DMA32",
227
#endif
228
	 "Normal",
229
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
230
	 "HighMem",
231
#endif
M
Mel Gorman 已提交
232
	 "Movable",
233 234 235
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
236 237
};

238 239 240 241 242 243 244 245 246 247 248 249 250
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

251 252 253 254 255 256
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
257 258 259
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
260 261
};

L
Linus Torvalds 已提交
262
int min_free_kbytes = 1024;
263
int user_min_free_kbytes = -1;
264
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
265

266 267
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
268
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
269

T
Tejun Heo 已提交
270 271 272 273 274 275
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
277 278 279 280 281

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282

M
Miklos Szeredi 已提交
283 284
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
285
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
286
EXPORT_SYMBOL(nr_node_ids);
287
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
288 289
#endif

290 291
int page_group_by_mobility_disabled __read_mostly;

292 293 294
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	unsigned long max_initialise;
	unsigned long reserved_lowmem;

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
			pgdat->node_start_pfn + max_initialise);
	max_initialise += reserved_lowmem;

	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
315 316 317 318
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
319
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
320
{
321 322 323
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
341
	if ((*nr_initialised > pgdat->static_init_size) &&
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
467

468
void set_pageblock_migratetype(struct page *page, int migratetype)
469
{
470 471
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
472 473
		migratetype = MIGRATE_UNMOVABLE;

474 475 476 477
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
478
#ifdef CONFIG_DEBUG_VM
479
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
480
{
481 482 483
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
484
	unsigned long sp, start_pfn;
485

486 487
	do {
		seq = zone_span_seqbegin(zone);
488 489
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
490
		if (!zone_spans_pfn(zone, pfn))
491 492 493
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

494
	if (ret)
495 496 497
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
498

499
	return ret;
500 501 502 503
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
504
	if (!pfn_valid_within(page_to_pfn(page)))
505
		return 0;
L
Linus Torvalds 已提交
506
	if (zone != page_zone(page))
507 508 509 510 511 512 513 514 515 516
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
517
		return 1;
518 519 520
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
521 522
	return 0;
}
N
Nick Piggin 已提交
523 524 525 526 527 528 529
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
	return 0;
}
#endif

530 531
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
532
{
533 534 535 536 537 538 539 540 541 542 543 544 545 546
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
547
			pr_alert(
548
			      "BUG: Bad page state: %lu messages suppressed\n",
549 550 551 552 553 554 555 556
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

557
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
558
		current->comm, page_to_pfn(page));
559 560 561 562 563
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
564
	dump_page_owner(page);
565

566
	print_modules();
L
Linus Torvalds 已提交
567
	dump_stack();
568
out:
569
	/* Leave bad fields for debug, except PageBuddy could make trouble */
570
	page_mapcount_reset(page); /* remove PageBuddy */
571
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
572 573 574 575 576
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
577
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
578
 *
579 580
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
581
 *
582 583
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
584
 *
585
 * The first tail page's ->compound_order holds the order of allocation.
586
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
587
 */
588

589
void free_compound_page(struct page *page)
590
{
591
	__free_pages_ok(page, compound_order(page));
592 593
}

594
void prep_compound_page(struct page *page, unsigned int order)
595 596 597 598
{
	int i;
	int nr_pages = 1 << order;

599
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
600 601 602 603
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
604
		set_page_count(p, 0);
605
		p->mapping = TAIL_MAPPING;
606
		set_compound_head(p, page);
607
	}
608
	atomic_set(compound_mapcount_ptr(page), -1);
609 610
}

611 612
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
613 614
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
615
EXPORT_SYMBOL(_debug_pagealloc_enabled);
616 617
bool _debug_guardpage_enabled __read_mostly;

618 619 620 621
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
622
	return kstrtobool(buf, &_debug_pagealloc_enabled);
623 624 625
}
early_param("debug_pagealloc", early_debug_pagealloc);

626 627
static bool need_debug_guardpage(void)
{
628 629 630 631
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

632 633 634
	if (!debug_guardpage_minorder())
		return false;

635 636 637 638 639
	return true;
}

static void init_debug_guardpage(void)
{
640 641 642
	if (!debug_pagealloc_enabled())
		return;

643 644 645
	if (!debug_guardpage_minorder())
		return;

646 647 648 649 650 651 652
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
653 654 655 656 657 658

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
659
		pr_err("Bad debug_guardpage_minorder value\n");
660 661 662
		return 0;
	}
	_debug_guardpage_minorder = res;
663
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
664 665
	return 0;
}
666
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
667

668
static inline bool set_page_guard(struct zone *zone, struct page *page,
669
				unsigned int order, int migratetype)
670
{
671 672 673
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
674 675 676 677
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
678 679

	page_ext = lookup_page_ext(page);
680
	if (unlikely(!page_ext))
681
		return false;
682

683 684
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

685 686 687 688
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
689 690

	return true;
691 692
}

693 694
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
695
{
696 697 698 699 700 701
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
702 703 704
	if (unlikely(!page_ext))
		return;

705 706
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

707 708 709
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
710 711
}
#else
712
struct page_ext_operations debug_guardpage_ops;
713 714
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
715 716
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
717 718
#endif

719
static inline void set_page_order(struct page *page, unsigned int order)
720
{
H
Hugh Dickins 已提交
721
	set_page_private(page, order);
722
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
723 724 725 726
}

static inline void rmv_page_order(struct page *page)
{
727
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
728
	set_page_private(page, 0);
L
Linus Torvalds 已提交
729 730 731 732 733
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
734
 * (a) the buddy is not in a hole (check before calling!) &&
735
 * (b) the buddy is in the buddy system &&
736 737
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
738
 *
739 740 741 742
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
743
 *
744
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
745
 */
746
static inline int page_is_buddy(struct page *page, struct page *buddy,
747
							unsigned int order)
L
Linus Torvalds 已提交
748
{
749
	if (page_is_guard(buddy) && page_order(buddy) == order) {
750 751 752
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

753 754
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

755 756 757
		return 1;
	}

758
	if (PageBuddy(buddy) && page_order(buddy) == order) {
759 760 761 762 763 764 765 766
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

767 768
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

769
		return 1;
770
	}
771
	return 0;
L
Linus Torvalds 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
787 788 789
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
790
 * So when we are allocating or freeing one, we can derive the state of the
791 792
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
793
 * If a block is freed, and its buddy is also free, then this
794
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
795
 *
796
 * -- nyc
L
Linus Torvalds 已提交
797 798
 */

N
Nick Piggin 已提交
799
static inline void __free_one_page(struct page *page,
800
		unsigned long pfn,
801 802
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
803
{
804 805
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
806
	struct page *buddy;
807 808 809
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
810

811
	VM_BUG_ON(!zone_is_initialized(zone));
812
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
813

814
	VM_BUG_ON(migratetype == -1);
815
	if (likely(!is_migrate_isolate(migratetype)))
816
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
817

818
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
820

821
continue_merging:
822
	while (order < max_order - 1) {
823 824
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
825 826 827

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
828
		if (!page_is_buddy(page, buddy, order))
829
			goto done_merging;
830 831 832 833 834
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
835
			clear_page_guard(zone, buddy, order, migratetype);
836 837 838 839 840
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
841 842 843
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
844 845
		order++;
	}
846 847 848 849 850 851 852 853 854 855 856 857
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

858 859
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
860 861 862 863 864 865 866 867 868 869 870 871
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
872
	set_page_order(page, order);
873 874 875 876 877 878 879 880 881

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
882
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883
		struct page *higher_page, *higher_buddy;
884 885 886 887
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 889
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 891 892 893 894 895 896 897
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
898 899 900
	zone->free_area[order].nr_free++;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

923
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
924
{
925 926 927 928 929
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
930

931
	if (unlikely(atomic_read(&page->_mapcount) != -1))
932 933 934
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
935
	if (unlikely(page_ref_count(page) != 0))
936
		bad_reason = "nonzero _refcount";
937 938 939 940
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
941 942 943 944
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
945
	bad_page(page, bad_reason, bad_flags);
946 947 948 949
}

static inline int free_pages_check(struct page *page)
{
950
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
951 952 953 954
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
955
	return 1;
L
Linus Torvalds 已提交
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1008 1009
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1010
{
1011
	int bad = 0;
1012 1013 1014

	VM_BUG_ON_PAGE(PageTail(page), page);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027

1028 1029
		if (compound)
			ClearPageDoubleMap(page);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1040
	if (PageMappingFlags(page))
1041
		page->mapping = NULL;
1042
	if (memcg_kmem_enabled() && PageKmemcg(page))
1043
		memcg_kmem_uncharge(page, order);
1044 1045 1046 1047
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1048

1049 1050 1051
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1052 1053 1054

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1055
					   PAGE_SIZE << order);
1056
		debug_check_no_obj_freed(page_address(page),
1057
					   PAGE_SIZE << order);
1058
	}
1059 1060 1061
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1062
	kasan_free_pages(page, order);
1063 1064 1065 1066

	return true;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1083 1084 1085 1086 1087 1088
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1089
/*
1090
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1091
 * Assumes all pages on list are in same zone, and of same order.
1092
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098 1099
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1100 1101
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1102
{
1103
	int migratetype = 0;
1104
	int batch_free = 0;
1105
	bool isolated_pageblocks;
1106

1107
	spin_lock(&zone->lock);
1108
	isolated_pageblocks = has_isolate_pageblock(zone);
1109

1110
	while (count) {
N
Nick Piggin 已提交
1111
		struct page *page;
1112 1113 1114
		struct list_head *list;

		/*
1115 1116 1117 1118 1119
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1120 1121
		 */
		do {
1122
			batch_free++;
1123 1124 1125 1126
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1127

1128 1129
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1130
			batch_free = count;
1131

1132
		do {
1133 1134
			int mt;	/* migratetype of the to-be-freed page */

1135
			page = list_last_entry(list, struct page, lru);
1136 1137
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1138

1139
			mt = get_pcppage_migratetype(page);
1140 1141 1142
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1143
			if (unlikely(isolated_pageblocks))
1144 1145
				mt = get_pageblock_migratetype(page);

1146 1147 1148
			if (bulkfree_pcp_prepare(page))
				continue;

1149
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150
			trace_mm_page_pcpu_drain(page, 0, mt);
1151
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1152
	}
1153
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1154 1155
}

1156 1157
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1158
				unsigned int order,
1159
				int migratetype)
L
Linus Torvalds 已提交
1160
{
1161
	spin_lock(&zone->lock);
1162 1163 1164 1165
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1166
	__free_one_page(page, pfn, zone, order, migratetype);
1167
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1168 1169
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1218 1219 1220 1221 1222 1223
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1224
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1225 1226 1227 1228
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1229 1230 1231 1232 1233
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1234 1235 1236 1237

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1238 1239 1240
			SetPageReserved(page);
		}
	}
1241 1242
}

1243 1244
static void __free_pages_ok(struct page *page, unsigned int order)
{
1245
	unsigned long flags;
M
Minchan Kim 已提交
1246
	int migratetype;
1247
	unsigned long pfn = page_to_pfn(page);
1248

1249
	if (!free_pages_prepare(page, order, true))
1250 1251
		return;

1252
	migratetype = get_pfnblock_migratetype(page, pfn);
1253 1254
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1255
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1256
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1257 1258
}

1259
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1260
{
1261
	unsigned int nr_pages = 1 << order;
1262
	struct page *p = page;
1263
	unsigned int loop;
1264

1265 1266 1267
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1268 1269
		__ClearPageReserved(p);
		set_page_count(p, 0);
1270
	}
1271 1272
	__ClearPageReserved(p);
	set_page_count(p, 0);
1273

1274
	page_zone(page)->managed_pages += nr_pages;
1275 1276
	set_page_refcounted(page);
	__free_pages(page, order);
1277 1278
}

1279 1280
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1281

1282 1283 1284 1285
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1286
	static DEFINE_SPINLOCK(early_pfn_lock);
1287 1288
	int nid;

1289
	spin_lock(&early_pfn_lock);
1290
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1291
	if (nid < 0)
1292
		nid = first_online_node;
1293 1294 1295
	spin_unlock(&early_pfn_lock);

	return nid;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	return true;
}
#endif


1331
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 1333 1334 1335
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1336
	return __free_pages_boot_core(page, order);
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1408
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409
static void __init deferred_free_range(struct page *page,
1410 1411 1412 1413 1414 1415 1416 1417
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1418 1419
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1420
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1421
		__free_pages_boot_core(page, pageblock_order);
1422 1423 1424
		return;
	}

1425 1426 1427
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1428
		__free_pages_boot_core(page, 0);
1429
	}
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1441

1442
/* Initialise remaining memory on a node */
1443
static int __init deferred_init_memmap(void *data)
1444
{
1445 1446
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1447 1448 1449 1450 1451 1452 1453
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1454
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1455

1456
	if (first_init_pfn == ULONG_MAX) {
1457
		pgdat_init_report_one_done();
1458 1459 1460 1461 1462 1463
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1479
		struct page *page = NULL;
1480 1481 1482
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1483 1484 1485 1486 1487 1488 1489 1490 1491

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1492
			if (!pfn_valid_within(pfn))
1493
				goto free_range;
1494

1495 1496
			/*
			 * Ensure pfn_valid is checked every
1497
			 * pageblock_nr_pages for memory holes
1498
			 */
1499
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1500 1501
				if (!pfn_valid(pfn)) {
					page = NULL;
1502
					goto free_range;
1503 1504 1505 1506 1507
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1508
				goto free_range;
1509 1510 1511
			}

			/* Minimise pfn page lookups and scheduler checks */
1512
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1513 1514
				page++;
			} else {
1515 1516 1517 1518 1519 1520
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1521 1522 1523
				page = pfn_to_page(pfn);
				cond_resched();
			}
1524 1525 1526

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1527
				goto free_range;
1528 1529 1530
			}

			__init_single_page(page, pfn, zid, nid);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1547
		}
1548 1549 1550
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1551

1552 1553 1554 1555 1556 1557
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1558
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1559
					jiffies_to_msecs(jiffies - start));
1560 1561

	pgdat_init_report_one_done();
1562 1563
	return 0;
}
1564
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1565 1566 1567

void __init page_alloc_init_late(void)
{
1568 1569 1570
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1571 1572
	int nid;

1573 1574
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1575 1576 1577 1578 1579
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1580
	wait_for_completion(&pgdat_init_all_done_comp);
1581 1582 1583

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1584 1585 1586 1587
#endif

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1588 1589
}

1590
#ifdef CONFIG_CMA
1591
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1617
	adjust_managed_page_count(page, pageblock_nr_pages);
1618 1619
}
#endif
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1633
 * -- nyc
L
Linus Torvalds 已提交
1634
 */
N
Nick Piggin 已提交
1635
static inline void expand(struct zone *zone, struct page *page,
1636 1637
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1645
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1646

1647 1648 1649 1650 1651 1652 1653
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1654
			continue;
1655

1656
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1662
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1663
{
1664 1665
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1666

1667
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1668 1669 1670
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1671
	if (unlikely(page_ref_count(page) != 0))
1672
		bad_reason = "nonzero _count";
1673 1674 1675
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1676 1677 1678
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1679
	}
1680 1681 1682 1683
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1684 1685 1686 1687
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1702 1703
}

1704
static inline bool free_pages_prezeroed(void)
1705 1706
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1707
		page_poisoning_enabled();
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1757
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1758
							unsigned int alloc_flags)
1759 1760
{
	int i;
1761

1762
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1763

1764
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1765 1766
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1767 1768 1769 1770

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1771
	/*
1772
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1773 1774 1775 1776
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1777 1778 1779 1780
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1781 1782
}

1783 1784 1785 1786
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1787 1788
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1789 1790 1791
						int migratetype)
{
	unsigned int current_order;
1792
	struct free_area *area;
1793 1794 1795 1796 1797
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1798
		page = list_first_entry_or_null(&area->free_list[migratetype],
1799
							struct page, lru);
1800 1801
		if (!page)
			continue;
1802 1803 1804 1805
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1806
		set_pcppage_migratetype(page, migratetype);
1807 1808 1809 1810 1811 1812 1813
		return page;
	}

	return NULL;
}


1814 1815 1816 1817
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1818
static int fallbacks[MIGRATE_TYPES][4] = {
1819 1820 1821
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1822
#ifdef CONFIG_CMA
1823
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1824
#endif
1825
#ifdef CONFIG_MEMORY_ISOLATION
1826
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1827
#endif
1828 1829
};

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1841 1842
/*
 * Move the free pages in a range to the free lists of the requested type.
1843
 * Note that start_page and end_pages are not aligned on a pageblock
1844 1845
 * boundary. If alignment is required, use move_freepages_block()
 */
1846
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1847
			  struct page *start_page, struct page *end_page,
1848
			  int migratetype, int *num_movable)
1849 1850
{
	struct page *page;
1851
	unsigned int order;
1852
	int pages_moved = 0;
1853 1854 1855 1856 1857 1858 1859

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1860
	 * grouping pages by mobility
1861
	 */
1862
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1863 1864
#endif

1865 1866 1867
	if (num_movable)
		*num_movable = 0;

1868 1869 1870 1871 1872 1873
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1874 1875 1876
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1877
		if (!PageBuddy(page)) {
1878 1879 1880 1881 1882 1883 1884 1885 1886
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1887 1888 1889 1890 1891
			page++;
			continue;
		}

		order = page_order(page);
1892 1893
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1894
		page += 1 << order;
1895
		pages_moved += 1 << order;
1896 1897
	}

1898
	return pages_moved;
1899 1900
}

1901
int move_freepages_block(struct zone *zone, struct page *page,
1902
				int migratetype, int *num_movable)
1903 1904 1905 1906 1907
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1908
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1909
	start_page = pfn_to_page(start_pfn);
1910 1911
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1912 1913

	/* Do not cross zone boundaries */
1914
	if (!zone_spans_pfn(zone, start_pfn))
1915
		start_page = page;
1916
	if (!zone_spans_pfn(zone, end_pfn))
1917 1918
		return 0;

1919 1920
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1934
/*
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1945
 */
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
1970 1971 1972 1973
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
1974 1975
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
1976
					int start_type, bool whole_block)
1977
{
1978
	unsigned int current_order = page_order(page);
1979
	struct free_area *area;
1980 1981 1982 1983
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
1984

1985 1986 1987 1988
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
1989
	if (is_migrate_highatomic(old_block_type))
1990 1991
		goto single_page;

1992 1993 1994
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
1995
		goto single_page;
1996 1997
	}

1998 1999 2000 2001
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2026
	/* moving whole block can fail due to zone boundary conditions */
2027
	if (!free_pages)
2028
		goto single_page;
2029

2030 2031 2032 2033 2034
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2035 2036
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2037 2038 2039 2040 2041 2042

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2043 2044
}

2045 2046 2047 2048 2049 2050 2051 2052
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2063
		if (fallback_mt == MIGRATE_TYPES)
2064 2065 2066 2067
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2068

2069 2070 2071
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2072 2073 2074 2075 2076
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2077
	}
2078 2079

	return -1;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2108 2109
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2110 2111
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2112
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2124 2125 2126
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2127
 */
2128 2129
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2130 2131 2132 2133 2134 2135 2136
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2137
	bool ret;
2138 2139 2140

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2141 2142 2143 2144 2145 2146
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2147 2148 2149 2150 2151 2152
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2153 2154 2155 2156
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2157 2158 2159
				continue;

			/*
2160 2161 2162 2163 2164
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2165
			 */
2166
			if (is_migrate_highatomic_page(page)) {
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2189 2190
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2191 2192 2193 2194
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2195 2196 2197
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2198 2199

	return false;
2200 2201
}

2202 2203 2204 2205 2206 2207 2208
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
 */
static inline bool
2209
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2210
{
2211
	struct free_area *area;
2212
	unsigned int current_order;
2213
	struct page *page;
2214 2215
	int fallback_mt;
	bool can_steal;
2216 2217

	/* Find the largest possible block of pages in the other list */
2218 2219 2220
	for (current_order = MAX_ORDER-1;
				current_order >= order && current_order <= MAX_ORDER-1;
				--current_order) {
2221 2222
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2223
				start_migratetype, false, &can_steal);
2224 2225
		if (fallback_mt == -1)
			continue;
2226

2227
		page = list_first_entry(&area->free_list[fallback_mt],
2228
						struct page, lru);
2229

2230 2231
		steal_suitable_fallback(zone, page, start_migratetype,
								can_steal);
2232

2233 2234
		trace_mm_page_alloc_extfrag(page, order, current_order,
			start_migratetype, fallback_mt);
2235

2236
		return true;
2237 2238
	}

2239
	return false;
2240 2241
}

2242
/*
L
Linus Torvalds 已提交
2243 2244 2245
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2246
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2247
				int migratetype)
L
Linus Torvalds 已提交
2248 2249 2250
{
	struct page *page;

2251
retry:
2252
	page = __rmqueue_smallest(zone, order, migratetype);
2253
	if (unlikely(!page)) {
2254 2255 2256
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2257 2258
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2259 2260
	}

2261
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2262
	return page;
L
Linus Torvalds 已提交
2263 2264
}

2265
/*
L
Linus Torvalds 已提交
2266 2267 2268 2269
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2270
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2271
			unsigned long count, struct list_head *list,
2272
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2273
{
2274
	int i, alloced = 0;
2275

2276
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2277
	for (i = 0; i < count; ++i) {
2278
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2279
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2280
			break;
2281

2282 2283 2284
		if (unlikely(check_pcp_refill(page)))
			continue;

2285 2286 2287 2288 2289 2290 2291 2292 2293
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2294
		if (likely(!cold))
2295 2296 2297
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2298
		list = &page->lru;
2299
		alloced++;
2300
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2301 2302
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2303
	}
2304 2305 2306 2307 2308 2309 2310

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2311
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2312
	spin_unlock(&zone->lock);
2313
	return alloced;
L
Linus Torvalds 已提交
2314 2315
}

2316
#ifdef CONFIG_NUMA
2317
/*
2318 2319 2320 2321
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2322 2323
 * Note that this function must be called with the thread pinned to
 * a single processor.
2324
 */
2325
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2326 2327
{
	unsigned long flags;
2328
	int to_drain, batch;
2329

2330
	local_irq_save(flags);
2331
	batch = READ_ONCE(pcp->batch);
2332
	to_drain = min(pcp->count, batch);
2333 2334 2335 2336
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2337
	local_irq_restore(flags);
2338 2339 2340
}
#endif

2341
/*
2342
 * Drain pcplists of the indicated processor and zone.
2343 2344 2345 2346 2347
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2348
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2349
{
N
Nick Piggin 已提交
2350
	unsigned long flags;
2351 2352
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2353

2354 2355
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2356

2357 2358 2359 2360 2361 2362 2363
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2364

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2378 2379 2380
	}
}

2381 2382
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2383 2384 2385
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2386
 */
2387
void drain_local_pages(struct zone *zone)
2388
{
2389 2390 2391 2392 2393 2394
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2395 2396
}

2397 2398
static void drain_local_pages_wq(struct work_struct *work)
{
2399 2400 2401 2402 2403 2404 2405 2406
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2407
	drain_local_pages(NULL);
2408
	preempt_enable();
2409 2410
}

2411
/*
2412 2413
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2414 2415
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2416
 * Note that this can be extremely slow as the draining happens in a workqueue.
2417
 */
2418
void drain_all_pages(struct zone *zone)
2419
{
2420 2421 2422 2423 2424 2425 2426 2427
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2428 2429 2430 2431 2432 2433 2434
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2435 2436 2437 2438
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2449

2450 2451 2452 2453 2454 2455 2456
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2457 2458
		struct per_cpu_pageset *pcp;
		struct zone *z;
2459
		bool has_pcps = false;
2460 2461

		if (zone) {
2462
			pcp = per_cpu_ptr(zone->pageset, cpu);
2463
			if (pcp->pcp.count)
2464
				has_pcps = true;
2465 2466 2467 2468 2469 2470 2471
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2472 2473
			}
		}
2474

2475 2476 2477 2478 2479
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2480

2481 2482 2483
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2484
		queue_work_on(cpu, mm_percpu_wq, work);
2485
	}
2486 2487 2488 2489
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2490 2491
}

2492
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2493 2494 2495

void mark_free_pages(struct zone *zone)
{
2496 2497
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2498
	unsigned int order, t;
2499
	struct page *page;
L
Linus Torvalds 已提交
2500

2501
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2502 2503 2504
		return;

	spin_lock_irqsave(&zone->lock, flags);
2505

2506
	max_zone_pfn = zone_end_pfn(zone);
2507 2508
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2509
			page = pfn_to_page(pfn);
2510 2511 2512 2513

			if (page_zone(page) != zone)
				continue;

2514 2515
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2516
		}
L
Linus Torvalds 已提交
2517

2518
	for_each_migratetype_order(order, t) {
2519 2520
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2521
			unsigned long i;
L
Linus Torvalds 已提交
2522

2523
			pfn = page_to_pfn(page);
2524
			for (i = 0; i < (1UL << order); i++)
2525
				swsusp_set_page_free(pfn_to_page(pfn + i));
2526
		}
2527
	}
L
Linus Torvalds 已提交
2528 2529
	spin_unlock_irqrestore(&zone->lock, flags);
}
2530
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2531 2532 2533

/*
 * Free a 0-order page
2534
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2535
 */
2536
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2537 2538 2539
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2540
	unsigned long flags;
2541
	unsigned long pfn = page_to_pfn(page);
2542
	int migratetype;
L
Linus Torvalds 已提交
2543

2544
	if (!free_pcp_prepare(page))
2545 2546
		return;

2547
	migratetype = get_pfnblock_migratetype(page, pfn);
2548
	set_pcppage_migratetype(page, migratetype);
2549 2550
	local_irq_save(flags);
	__count_vm_event(PGFREE);
2551

2552 2553 2554
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2555
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2556 2557 2558 2559
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2560
		if (unlikely(is_migrate_isolate(migratetype))) {
2561
			free_one_page(zone, page, pfn, 0, migratetype);
2562 2563 2564 2565 2566
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2567
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2568
	if (!cold)
2569
		list_add(&page->lru, &pcp->lists[migratetype]);
2570 2571
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2572
	pcp->count++;
N
Nick Piggin 已提交
2573
	if (pcp->count >= pcp->high) {
2574
		unsigned long batch = READ_ONCE(pcp->batch);
2575 2576
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2577
	}
2578 2579

out:
2580
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2581 2582
}

2583 2584 2585
/*
 * Free a list of 0-order pages
 */
2586
void free_hot_cold_page_list(struct list_head *list, bool cold)
2587 2588 2589 2590
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2591
		trace_mm_page_free_batched(page, cold);
2592 2593 2594 2595
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2608 2609
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2620
	for (i = 1; i < (1 << order); i++)
2621
		set_page_refcounted(page + i);
2622
	split_page_owner(page, order);
N
Nick Piggin 已提交
2623
}
K
K. Y. Srinivasan 已提交
2624
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2625

2626
int __isolate_free_page(struct page *page, unsigned int order)
2627 2628 2629
{
	unsigned long watermark;
	struct zone *zone;
2630
	int mt;
2631 2632 2633 2634

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2635
	mt = get_pageblock_migratetype(page);
2636

2637
	if (!is_migrate_isolate(mt)) {
2638 2639 2640 2641 2642 2643 2644
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2645
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2646 2647
			return 0;

2648
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2649
	}
2650 2651 2652 2653 2654

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2655

2656 2657 2658 2659
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2660 2661
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2662 2663
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2664
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2665
			    && !is_migrate_highatomic(mt))
2666 2667 2668
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2669 2670
	}

2671

2672
	return 1UL << order;
2673 2674
}

2675 2676 2677 2678 2679
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2680
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2681 2682 2683 2684
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2685
	if (z->node != numa_node_id())
2686 2687
		local_stat = NUMA_OTHER;

2688
	if (z->node == preferred_zone->node)
2689
		__inc_zone_state(z, NUMA_HIT);
2690
	else {
2691 2692 2693
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2694
	__inc_zone_state(z, local_stat);
2695 2696 2697
#endif
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;
2735
	unsigned long flags;
2736

2737
	local_irq_save(flags);
2738 2739 2740 2741 2742 2743 2744
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2745
	local_irq_restore(flags);
2746 2747 2748
	return page;
}

L
Linus Torvalds 已提交
2749
/*
2750
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2751
 */
2752
static inline
2753
struct page *rmqueue(struct zone *preferred_zone,
2754
			struct zone *zone, unsigned int order,
2755 2756
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2757 2758
{
	unsigned long flags;
2759
	struct page *page;
L
Linus Torvalds 已提交
2760

2761
	if (likely(order == 0)) {
2762 2763 2764 2765
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2766

2767 2768 2769 2770 2771 2772
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2773

2774 2775 2776 2777 2778 2779 2780
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2781
		if (!page)
2782 2783 2784 2785 2786 2787 2788
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2789

2790
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2791
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2792
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2793

2794 2795
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2796
	return page;
N
Nick Piggin 已提交
2797 2798 2799 2800

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2801 2802
}

2803 2804
#ifdef CONFIG_FAIL_PAGE_ALLOC

2805
static struct {
2806 2807
	struct fault_attr attr;

2808
	bool ignore_gfp_highmem;
2809
	bool ignore_gfp_reclaim;
2810
	u32 min_order;
2811 2812
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2813
	.ignore_gfp_reclaim = true,
2814
	.ignore_gfp_highmem = true,
2815
	.min_order = 1,
2816 2817 2818 2819 2820 2821 2822 2823
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2824
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2825
{
2826
	if (order < fail_page_alloc.min_order)
2827
		return false;
2828
	if (gfp_mask & __GFP_NOFAIL)
2829
		return false;
2830
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2831
		return false;
2832 2833
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2834
		return false;
2835 2836 2837 2838 2839 2840 2841 2842

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2843
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2844 2845
	struct dentry *dir;

2846 2847 2848 2849
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2850

2851
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2852
				&fail_page_alloc.ignore_gfp_reclaim))
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2863
	debugfs_remove_recursive(dir);
2864

2865
	return -ENOMEM;
2866 2867 2868 2869 2870 2871 2872 2873
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2874
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2875
{
2876
	return false;
2877 2878 2879 2880
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2881
/*
2882 2883 2884 2885
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2886
 */
2887 2888 2889
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2890
{
2891
	long min = mark;
L
Linus Torvalds 已提交
2892
	int o;
2893
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2894

2895
	/* free_pages may go negative - that's OK */
2896
	free_pages -= (1 << order) - 1;
2897

R
Rohit Seth 已提交
2898
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2899
		min -= min / 2;
2900 2901 2902 2903 2904 2905

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2906
	if (likely(!alloc_harder))
2907 2908
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2909
		min -= min / 4;
2910

2911 2912 2913
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2914
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2915
#endif
2916

2917 2918 2919 2920 2921 2922
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2923
		return false;
L
Linus Torvalds 已提交
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2951
	}
2952
	return false;
2953 2954
}

2955
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2956
		      int classzone_idx, unsigned int alloc_flags)
2957 2958 2959 2960 2961
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

2988
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2989
			unsigned long mark, int classzone_idx)
2990 2991 2992 2993 2994 2995
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

2996
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2997
								free_pages);
L
Linus Torvalds 已提交
2998 2999
}

3000
#ifdef CONFIG_NUMA
3001 3002
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3003
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3004
				RECLAIM_DISTANCE;
3005
}
3006
#else	/* CONFIG_NUMA */
3007 3008 3009 3010
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3011 3012
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3013
/*
3014
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3015 3016 3017
 * a page.
 */
static struct page *
3018 3019
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3020
{
3021
	struct zoneref *z = ac->preferred_zoneref;
3022
	struct zone *zone;
3023 3024
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3025
	/*
3026
	 * Scan zonelist, looking for a zone with enough free.
3027
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3028
	 */
3029
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3030
								ac->nodemask) {
3031
		struct page *page;
3032 3033
		unsigned long mark;

3034 3035
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3036
			!__cpuset_zone_allowed(zone, gfp_mask))
3037
				continue;
3038 3039
		/*
		 * When allocating a page cache page for writing, we
3040 3041
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3042
		 * proportional share of globally allowed dirty pages.
3043
		 * The dirty limits take into account the node's
3044 3045 3046 3047 3048
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3049
		 * exceed the per-node dirty limit in the slowpath
3050
		 * (spread_dirty_pages unset) before going into reclaim,
3051
		 * which is important when on a NUMA setup the allowed
3052
		 * nodes are together not big enough to reach the
3053
		 * global limit.  The proper fix for these situations
3054
		 * will require awareness of nodes in the
3055 3056
		 * dirty-throttling and the flusher threads.
		 */
3057 3058 3059 3060 3061 3062 3063 3064 3065
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3066

3067
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3068
		if (!zone_watermark_fast(zone, order, mark,
3069
				       ac_classzone_idx(ac), alloc_flags)) {
3070 3071
			int ret;

3072 3073 3074 3075 3076
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3077
			if (node_reclaim_mode == 0 ||
3078
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3079 3080
				continue;

3081
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3082
			switch (ret) {
3083
			case NODE_RECLAIM_NOSCAN:
3084
				/* did not scan */
3085
				continue;
3086
			case NODE_RECLAIM_FULL:
3087
				/* scanned but unreclaimable */
3088
				continue;
3089 3090
			default:
				/* did we reclaim enough */
3091
				if (zone_watermark_ok(zone, order, mark,
3092
						ac_classzone_idx(ac), alloc_flags))
3093 3094 3095
					goto try_this_zone;

				continue;
3096
			}
R
Rohit Seth 已提交
3097 3098
		}

3099
try_this_zone:
3100
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3101
				gfp_mask, alloc_flags, ac->migratetype);
3102
		if (page) {
3103
			prep_new_page(page, order, gfp_mask, alloc_flags);
3104 3105 3106 3107 3108 3109 3110 3111

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3112 3113
			return page;
		}
3114
	}
3115

3116
	return NULL;
M
Martin Hicks 已提交
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3133
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3134 3135
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3136
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3137

3138
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3150
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3151 3152
		filter &= ~SHOW_MEM_FILTER_NODES;

3153
	show_mem(filter, nodemask);
3154 3155
}

3156
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3157 3158 3159 3160 3161 3162
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3163
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3164 3165
		return;

3166
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3167

3168 3169 3170 3171 3172
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3173

3174 3175 3176 3177 3178 3179
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3180
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3181

3182
	dump_stack();
3183
	warn_alloc_show_mem(gfp_mask, nodemask);
3184 3185
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3206 3207
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3208
	const struct alloc_context *ac, unsigned long *did_some_progress)
3209
{
3210 3211 3212
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3213
		.memcg = NULL,
3214 3215 3216
		.gfp_mask = gfp_mask,
		.order = order,
	};
3217 3218
	struct page *page;

3219 3220 3221
	*did_some_progress = 0;

	/*
3222 3223
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3224
	 */
3225
	if (!mutex_trylock(&oom_lock)) {
3226
		*did_some_progress = 1;
3227
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3228 3229
		return NULL;
	}
3230

3231 3232 3233 3234 3235
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3236 3237
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3238
	if (page)
3239 3240
		goto out;

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3265

3266
	/* Exhausted what can be done so it's blamo time */
3267
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3268
		*did_some_progress = 1;
3269

3270 3271 3272 3273 3274 3275
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3276 3277
					ALLOC_NO_WATERMARKS, ac);
	}
3278
out:
3279
	mutex_unlock(&oom_lock);
3280 3281 3282
	return page;
}

3283 3284 3285 3286 3287 3288
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3289 3290 3291 3292
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3293
		unsigned int alloc_flags, const struct alloc_context *ac,
3294
		enum compact_priority prio, enum compact_result *compact_result)
3295
{
3296
	struct page *page;
3297
	unsigned int noreclaim_flag;
3298 3299

	if (!order)
3300 3301
		return NULL;

3302
	noreclaim_flag = memalloc_noreclaim_save();
3303
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3304
									prio);
3305
	memalloc_noreclaim_restore(noreclaim_flag);
3306

3307
	if (*compact_result <= COMPACT_INACTIVE)
3308
		return NULL;
3309

3310 3311 3312 3313 3314
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3315

3316
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3317

3318 3319
	if (page) {
		struct zone *zone = page_zone(page);
3320

3321 3322 3323 3324 3325
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3326

3327 3328 3329 3330 3331
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3332

3333
	cond_resched();
3334 3335 3336

	return NULL;
}
3337

3338 3339 3340 3341
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3342
		     int *compaction_retries)
3343 3344
{
	int max_retries = MAX_COMPACT_RETRIES;
3345
	int min_priority;
3346 3347 3348
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3349 3350 3351 3352

	if (!order)
		return false;

3353 3354 3355
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3356 3357 3358 3359 3360
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3361 3362
	if (compaction_failed(compact_result))
		goto check_priority;
3363 3364 3365 3366 3367 3368 3369

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3370 3371 3372 3373
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

	/*
	 * !costly requests are much more important than __GFP_REPEAT
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3385 3386 3387 3388
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3389

3390 3391 3392 3393 3394
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3395 3396
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3397

3398
	if (*compact_priority > min_priority) {
3399 3400
		(*compact_priority)--;
		*compaction_retries = 0;
3401
		ret = true;
3402
	}
3403 3404 3405
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3406
}
3407 3408 3409
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3410
		unsigned int alloc_flags, const struct alloc_context *ac,
3411
		enum compact_priority prio, enum compact_result *compact_result)
3412
{
3413
	*compact_result = COMPACT_SKIPPED;
3414 3415
	return NULL;
}
3416 3417

static inline bool
3418 3419
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3420
		     enum compact_priority *compact_priority,
3421
		     int *compaction_retries)
3422
{
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3441 3442
	return false;
}
3443
#endif /* CONFIG_COMPACTION */
3444

3445 3446
/* Perform direct synchronous page reclaim */
static int
3447 3448
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3449 3450
{
	struct reclaim_state reclaim_state;
3451
	int progress;
3452
	unsigned int noreclaim_flag;
3453 3454 3455 3456 3457

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3458
	noreclaim_flag = memalloc_noreclaim_save();
3459 3460
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3461
	current->reclaim_state = &reclaim_state;
3462

3463 3464
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3465

3466
	current->reclaim_state = NULL;
3467
	lockdep_clear_current_reclaim_state();
3468
	memalloc_noreclaim_restore(noreclaim_flag);
3469 3470 3471

	cond_resched();

3472 3473 3474 3475 3476 3477
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3478
		unsigned int alloc_flags, const struct alloc_context *ac,
3479
		unsigned long *did_some_progress)
3480 3481 3482 3483
{
	struct page *page = NULL;
	bool drained = false;

3484
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3485 3486
	if (unlikely(!(*did_some_progress)))
		return NULL;
3487

3488
retry:
3489
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3490 3491 3492

	/*
	 * If an allocation failed after direct reclaim, it could be because
3493 3494
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3495 3496
	 */
	if (!page && !drained) {
3497
		unreserve_highatomic_pageblock(ac, false);
3498
		drain_all_pages(NULL);
3499 3500 3501 3502
		drained = true;
		goto retry;
	}

3503 3504 3505
	return page;
}

3506
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3507 3508 3509
{
	struct zoneref *z;
	struct zone *zone;
3510
	pg_data_t *last_pgdat = NULL;
3511

3512
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3513 3514
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3515
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3516 3517
		last_pgdat = zone->zone_pgdat;
	}
3518 3519
}

3520
static inline unsigned int
3521 3522
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3523
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3524

3525
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3526
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3527

3528 3529 3530 3531
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3532
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3533
	 */
3534
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3535

3536
	if (gfp_mask & __GFP_ATOMIC) {
3537
		/*
3538 3539
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3540
		 */
3541
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3542
			alloc_flags |= ALLOC_HARDER;
3543
		/*
3544
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3545
		 * comment for __cpuset_node_allowed().
3546
		 */
3547
		alloc_flags &= ~ALLOC_CPUSET;
3548
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3549 3550
		alloc_flags |= ALLOC_HARDER;

3551
#ifdef CONFIG_CMA
3552
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3553 3554
		alloc_flags |= ALLOC_CMA;
#endif
3555 3556 3557
	return alloc_flags;
}

3558 3559
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3573 3574
}

M
Michal Hocko 已提交
3575 3576 3577
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3578 3579 3580 3581
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3582 3583 3584 3585 3586 3587
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3588
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3589 3590 3591 3592
{
	struct zone *zone;
	struct zoneref *z;

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3603 3604 3605 3606
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3607 3608
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3609
		return unreserve_highatomic_pageblock(ac, true);
3610
	}
M
Michal Hocko 已提交
3611

3612 3613 3614 3615 3616
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3617 3618 3619 3620
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3621
		unsigned long reclaimable;
3622 3623
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3624

3625 3626
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3627 3628

		/*
3629 3630
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3631
		 */
3632 3633 3634 3635 3636
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3637 3638 3639 3640 3641 3642 3643
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3644
				unsigned long write_pending;
3645

3646 3647
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3648

3649
				if (2 * write_pending > reclaimable) {
3650 3651 3652 3653
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3654

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3669 3670 3671 3672 3673 3674 3675
			return true;
		}
	}

	return false;
}

3676 3677
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3678
						struct alloc_context *ac)
3679
{
3680
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3681
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3682
	struct page *page = NULL;
3683
	unsigned int alloc_flags;
3684
	unsigned long did_some_progress;
3685
	enum compact_priority compact_priority;
3686
	enum compact_result compact_result;
3687 3688
	int compaction_retries;
	int no_progress_loops;
3689 3690
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3691
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3692

3693 3694 3695 3696 3697 3698
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3699 3700
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3701
		return NULL;
3702
	}
L
Linus Torvalds 已提交
3703

3704 3705 3706 3707 3708 3709 3710 3711
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3712 3713 3714 3715 3716
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3717 3718 3719 3720 3721 3722 3723 3724

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3747 3748
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3749 3750 3751 3752 3753 3754
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3755
	 */
3756 3757 3758 3759
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3760 3761
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3762
						INIT_COMPACT_PRIORITY,
3763 3764 3765 3766
						&compact_result);
		if (page)
			goto got_pg;

3767 3768 3769 3770
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3771
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3784 3785
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3786
			 * using async compaction.
3787
			 */
3788
			compact_priority = INIT_COMPACT_PRIORITY;
3789 3790
		}
	}
3791

3792
retry:
3793
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3794 3795 3796
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3797 3798 3799
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3800 3801 3802 3803 3804
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3805
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3806 3807 3808 3809 3810
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3811
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3812
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3813 3814
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3815

3816
	/* Caller is not willing to reclaim, we can't balance anything */
3817
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3818 3819
		goto nopage;

3820 3821
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
3822
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3823 3824 3825
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3826
	}
3827

3828 3829
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3830 3831
		goto nopage;

3832 3833 3834 3835 3836 3837 3838
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3839
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3840
					compact_priority, &compact_result);
3841 3842
	if (page)
		goto got_pg;
3843

3844 3845
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3846
		goto nopage;
3847

M
Michal Hocko 已提交
3848 3849 3850 3851
	/*
	 * Do not retry costly high order allocations unless they are
	 * __GFP_REPEAT
	 */
3852
	if (costly_order && !(gfp_mask & __GFP_REPEAT))
3853
		goto nopage;
M
Michal Hocko 已提交
3854 3855

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3856
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3857 3858
		goto retry;

3859 3860 3861 3862 3863 3864 3865
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3866
			should_compact_retry(ac, order, alloc_flags,
3867
				compact_result, &compact_priority,
3868
				&compaction_retries))
3869 3870
		goto retry;

3871 3872 3873 3874 3875 3876 3877
	/*
	 * It's possible we raced with cpuset update so the OOM would be
	 * premature (see below the nopage: label for full explanation).
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3878 3879 3880 3881 3882
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3883
	/* Avoid allocations with no watermarks from looping endlessly */
3884 3885 3886
	if (test_thread_flag(TIF_MEMDIE) &&
	    (alloc_flags == ALLOC_NO_WATERMARKS ||
	     (gfp_mask & __GFP_NOMEMALLOC)))
3887 3888
		goto nopage;

3889
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3890 3891
	if (did_some_progress) {
		no_progress_loops = 0;
3892
		goto retry;
M
Michal Hocko 已提交
3893
	}
3894

L
Linus Torvalds 已提交
3895
nopage:
3896
	/*
3897 3898 3899 3900 3901
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
3902 3903 3904 3905
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

3943 3944 3945 3946
		cond_resched();
		goto retry;
	}
fail:
3947
	warn_alloc(gfp_mask, ac->nodemask,
3948
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
3949
got_pg:
3950
	return page;
L
Linus Torvalds 已提交
3951
}
3952

3953 3954 3955 3956
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
		struct zonelist *zonelist, nodemask_t *nodemask,
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
3957
{
3958 3959 3960 3961
	ac->high_zoneidx = gfp_zone(gfp_mask);
	ac->zonelist = zonelist;
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3962

3963
	if (cpusets_enabled()) {
3964 3965 3966
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
3967 3968
		else
			*alloc_flags |= ALLOC_CPUSET;
3969 3970
	}

3971 3972
	lockdep_trace_alloc(gfp_mask);

3973
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3974 3975

	if (should_fail_alloc_page(gfp_mask, order))
3976
		return false;
3977

3978 3979 3980 3981 3982
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
3983

3984 3985 3986 3987
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
3988
	/* Dirty zone balancing only done in the fast path */
3989
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3990

3991 3992 3993 3994 3995
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
			struct zonelist *zonelist, nodemask_t *nodemask)
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4017

4018
	/* First allocation attempt */
4019
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4020 4021
	if (likely(page))
		goto out;
4022

4023
	/*
4024 4025 4026 4027
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4028
	 */
4029
	alloc_mask = current_gfp_context(gfp_mask);
4030
	ac.spread_dirty_pages = false;
4031

4032 4033 4034 4035
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4036
	if (unlikely(ac.nodemask != nodemask))
4037
		ac.nodemask = nodemask;
4038

4039
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4040

4041
out:
4042 4043 4044 4045
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4046 4047
	}

4048 4049 4050 4051 4052
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4053
	return page;
L
Linus Torvalds 已提交
4054
}
4055
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4056 4057 4058 4059

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4060
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4061
{
4062 4063 4064 4065 4066 4067 4068 4069
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4077
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4078
{
4079
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4080 4081 4082
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4083
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4084
{
N
Nick Piggin 已提交
4085
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4086
		if (order == 0)
4087
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4095
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4096 4097
{
	if (addr != 0) {
N
Nick Piggin 已提交
4098
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4116 4117
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4137
void __page_frag_cache_drain(struct page *page, unsigned int count)
4138 4139 4140 4141
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4142 4143
		unsigned int order = compound_order(page);

4144 4145 4146 4147 4148 4149
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4150
EXPORT_SYMBOL(__page_frag_cache_drain);
4151

4152 4153
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4154 4155 4156 4157 4158 4159 4160
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4161
		page = __page_frag_cache_refill(nc, gfp_mask);
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4172
		page_ref_add(page, size - 1);
4173 4174

		/* reset page count bias and offset to start of new frag */
4175
		nc->pfmemalloc = page_is_pfmemalloc(page);
4176 4177 4178 4179 4180 4181 4182 4183
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4184
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4185 4186 4187 4188 4189 4190 4191
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4192
		set_page_count(page, size);
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4204
EXPORT_SYMBOL(page_frag_alloc);
4205 4206 4207 4208

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4209
void page_frag_free(void *addr)
4210 4211 4212 4213 4214 4215
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4216
EXPORT_SYMBOL(page_frag_free);
4217

4218 4219
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4253
	return make_alloc_exact(addr, order, size);
4254 4255 4256
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4257 4258 4259
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4260
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4261 4262 4263 4264 4265 4266
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4267
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4268
{
4269
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4270 4271 4272 4273 4274 4275
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4295 4296 4297 4298 4299 4300 4301
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4302 4303
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4304
 */
4305
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4306
{
4307
	struct zoneref *z;
4308 4309
	struct zone *zone;

4310
	/* Just pick one node, since fallback list is circular */
4311
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4312

4313
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4314

4315
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4316
		unsigned long size = zone->managed_pages;
4317
		unsigned long high = high_wmark_pages(zone);
4318 4319
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324
	}

	return sum;
}

4325 4326 4327 4328 4329
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4330
 */
4331
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4332
{
A
Al Viro 已提交
4333
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4334
}
4335
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4336

4337 4338 4339 4340 4341
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4342
 */
4343
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4344
{
M
Mel Gorman 已提交
4345
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4346
}
4347 4348

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4349
{
4350
	if (IS_ENABLED(CONFIG_NUMA))
4351
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4352 4353
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4364
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
	available += global_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4397 4398 4399
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4400
	val->sharedram = global_node_page_state(NR_SHMEM);
4401
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4413 4414
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4415 4416
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4417 4418
	pg_data_t *pgdat = NODE_DATA(nid);

4419 4420 4421
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4422
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4423
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4424
#ifdef CONFIG_HIGHMEM
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4435
#else
4436 4437
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4438
#endif
L
Linus Torvalds 已提交
4439 4440 4441 4442
	val->mem_unit = PAGE_SIZE;
}
#endif

4443
/*
4444 4445
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4446
 */
4447
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4448 4449
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4450
		return false;
4451

4452 4453 4454 4455 4456 4457 4458 4459 4460
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4461 4462
}

L
Linus Torvalds 已提交
4463 4464
#define K(x) ((x) << (PAGE_SHIFT-10))

4465 4466 4467 4468 4469
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4470 4471
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4472 4473 4474
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4475
#ifdef CONFIG_MEMORY_ISOLATION
4476
		[MIGRATE_ISOLATE]	= 'I',
4477
#endif
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4489
	printk(KERN_CONT "(%s) ", tmp);
4490 4491
}

L
Linus Torvalds 已提交
4492 4493 4494 4495
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4496 4497 4498 4499
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4500
 */
4501
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4502
{
4503
	unsigned long free_pcp = 0;
4504
	int cpu;
L
Linus Torvalds 已提交
4505
	struct zone *zone;
M
Mel Gorman 已提交
4506
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4507

4508
	for_each_populated_zone(zone) {
4509
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4510
			continue;
4511

4512 4513
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4514 4515
	}

K
KOSAKI Motohiro 已提交
4516 4517
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4518 4519
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4520
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4521
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4522 4523 4524 4525 4526 4527 4528
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4529 4530 4531
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4532 4533
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
4534
		global_node_page_state(NR_FILE_MAPPED),
4535
		global_node_page_state(NR_SHMEM),
4536
		global_page_state(NR_PAGETABLE),
4537
		global_page_state(NR_BOUNCE),
4538 4539
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4540
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4541

M
Mel Gorman 已提交
4542
	for_each_online_pgdat(pgdat) {
4543
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4544 4545
			continue;

M
Mel Gorman 已提交
4546 4547 4548 4549 4550 4551 4552 4553
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4554
			" mapped:%lukB"
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4575
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4576 4577
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4578
			K(node_page_state(pgdat, NR_SHMEM)),
4579 4580 4581 4582 4583 4584 4585 4586
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4587 4588
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4589 4590
	}

4591
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4592 4593
		int i;

4594
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4595
			continue;
4596 4597 4598 4599 4600

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4601
		show_node(zone);
4602 4603
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4604 4605 4606 4607
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4608 4609 4610 4611 4612
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4613
			" writepending:%lukB"
L
Linus Torvalds 已提交
4614
			" present:%lukB"
4615
			" managed:%lukB"
4616 4617 4618
			" mlocked:%lukB"
			" slab_reclaimable:%lukB"
			" slab_unreclaimable:%lukB"
4619
			" kernel_stack:%lukB"
4620 4621
			" pagetables:%lukB"
			" bounce:%lukB"
4622 4623
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4624
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4625 4626
			"\n",
			zone->name,
4627
			K(zone_page_state(zone, NR_FREE_PAGES)),
4628 4629 4630
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4631 4632 4633 4634 4635
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4636
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4637
			K(zone->present_pages),
4638
			K(zone->managed_pages),
4639 4640 4641
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4642
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4643 4644
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4645 4646
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4647
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4648 4649
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4650 4651
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4652 4653
	}

4654
	for_each_populated_zone(zone) {
4655 4656
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4657
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4658

4659
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4660
			continue;
L
Linus Torvalds 已提交
4661
		show_node(zone);
4662
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4663 4664 4665

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4666 4667 4668 4669
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4670
			total += nr[order] << order;
4671 4672 4673 4674 4675 4676

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4677 4678
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4679
		for (order = 0; order < MAX_ORDER; order++) {
4680 4681
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4682 4683 4684
			if (nr[order])
				show_migration_types(types[order]);
		}
4685
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4686 4687
	}

4688 4689
	hugetlb_show_meminfo();

4690
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4691

L
Linus Torvalds 已提交
4692 4693 4694
	show_swap_cache_info();
}

4695 4696 4697 4698 4699 4700
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4701 4702
/*
 * Builds allocation fallback zone lists.
4703 4704
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4705
 */
4706
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4707
				int nr_zones)
L
Linus Torvalds 已提交
4708
{
4709
	struct zone *zone;
4710
	enum zone_type zone_type = MAX_NR_ZONES;
4711 4712

	do {
4713
		zone_type--;
4714
		zone = pgdat->node_zones + zone_type;
4715
		if (managed_zone(zone)) {
4716 4717
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4718
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4719
		}
4720
	} while (zone_type);
4721

4722
	return nr_zones;
L
Linus Torvalds 已提交
4723 4724
}

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4746
#ifdef CONFIG_NUMA
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4770
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4771 4772 4773 4774 4775 4776 4777
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4788 4789 4790 4791 4792 4793
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4794
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4795
		void __user *buffer, size_t *length,
4796 4797 4798 4799
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4800
	static DEFINE_MUTEX(zl_order_mutex);
4801

4802
	mutex_lock(&zl_order_mutex);
4803 4804 4805 4806 4807 4808 4809
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4810
	ret = proc_dostring(table, write, buffer, length, ppos);
4811
	if (ret)
4812
		goto out;
4813 4814
	if (write) {
		int oldval = user_zonelist_order;
4815 4816 4817

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4818 4819 4820
			/*
			 * bogus value.  restore saved string
			 */
4821
			strncpy((char *)table->data, saved_string,
4822 4823
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4824 4825
		} else if (oldval != user_zonelist_order) {
			mutex_lock(&zonelists_mutex);
4826
			build_all_zonelists(NULL, NULL);
4827 4828
			mutex_unlock(&zonelists_mutex);
		}
4829
	}
4830 4831 4832
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4833 4834 4835
}


4836
#define MAX_NODE_LOAD (nr_online_nodes)
4837 4838
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4839
/**
4840
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4853
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4854
{
4855
	int n, val;
L
Linus Torvalds 已提交
4856
	int min_val = INT_MAX;
D
David Rientjes 已提交
4857
	int best_node = NUMA_NO_NODE;
4858
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4859

4860 4861 4862 4863 4864
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4865

4866
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871 4872 4873 4874

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4875 4876 4877
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4878
		/* Give preference to headless and unused nodes */
4879 4880
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4899 4900 4901 4902 4903 4904 4905

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4906
{
4907
	int j;
L
Linus Torvalds 已提交
4908
	struct zonelist *zonelist;
4909

4910
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4911
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4912
		;
4913
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4914 4915
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4916 4917
}

4918 4919 4920 4921 4922 4923 4924 4925
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

4926
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4927
	j = build_zonelists_node(pgdat, zonelist, 0);
4928 4929
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4930 4931
}

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

4947
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4948 4949 4950 4951 4952
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
4953
			if (managed_zone(z)) {
4954 4955
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
4956
				check_highest_zone(zone_type);
4957 4958 4959
			}
		}
	}
4960 4961
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
4962 4963
}

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
4983 4984 4985 4986
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
4987
#endif /* CONFIG_64BIT */
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
4999
	int i, node, load;
L
Linus Torvalds 已提交
5000
	nodemask_t used_mask;
5001 5002
	int local_node, prev_node;
	struct zonelist *zonelist;
5003
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
5004 5005

	/* initialize zonelists */
5006
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
5007
		zonelist = pgdat->node_zonelists + i;
5008 5009
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
5010 5011 5012 5013
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5014
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5015 5016
	prev_node = local_node;
	nodes_clear(used_mask);
5017 5018

	memset(node_order, 0, sizeof(node_order));
5019
	i = 0;
5020

L
Linus Torvalds 已提交
5021 5022 5023 5024 5025 5026
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5027 5028
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5029 5030
			node_load[node] = load;

L
Linus Torvalds 已提交
5031 5032
		prev_node = node;
		load--;
5033 5034 5035
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
5036
			node_order[i++] = node;	/* remember order */
5037
	}
L
Linus Torvalds 已提交
5038

5039 5040
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
5041
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
5042
	}
5043 5044

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5045 5046
}

5047 5048 5049 5050 5051 5052 5053 5054 5055
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5056
	struct zoneref *z;
5057

5058
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5059
				   gfp_zone(GFP_KERNEL),
5060 5061
				   NULL);
	return z->zone->node;
5062 5063
}
#endif
5064

5065 5066
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5067 5068
#else	/* CONFIG_NUMA */

5069 5070 5071 5072 5073 5074
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5075
{
5076
	int node, local_node;
5077 5078
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5079 5080 5081

	local_node = pgdat->node_id;

5082
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5083
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5096
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5097
	}
5098 5099 5100
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5101
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5102 5103
	}

5104 5105
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5106 5107 5108 5109
}

#endif	/* CONFIG_NUMA */

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5127
static void setup_zone_pageset(struct zone *zone);
5128

5129 5130 5131 5132 5133 5134
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5135
/* return values int ....just for stop_machine() */
5136
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5137
{
5138
	int nid;
5139
	int cpu;
5140
	pg_data_t *self = data;
5141

5142 5143 5144
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5145 5146 5147 5148 5149

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5150
	for_each_online_node(nid) {
5151 5152 5153
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5154
	}
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5169
	for_each_possible_cpu(cpu) {
5170 5171
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5186 5187 5188
	return 0;
}

5189 5190 5191 5192 5193 5194 5195 5196
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5197 5198 5199
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5200 5201 5202 5203 5204
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5205
 */
5206
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5207
{
5208 5209
	set_zonelist_order();

5210
	if (system_state == SYSTEM_BOOTING) {
5211
		build_all_zonelists_init();
5212
	} else {
5213
#ifdef CONFIG_MEMORY_HOTPLUG
5214 5215
		if (zone)
			setup_zone_pageset(zone);
5216
#endif
5217 5218
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5219
		stop_machine(__build_all_zonelists, pgdat, NULL);
5220 5221
		/* cpuset refresh routine should be here */
	}
5222
	vm_total_pages = nr_free_pagecache_pages();
5223 5224 5225 5226 5227 5228 5229
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5230
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5231 5232 5233 5234
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5235 5236 5237 5238 5239
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5240
#ifdef CONFIG_NUMA
5241
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5242
#endif
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5250
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5251
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5252
{
5253
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5254
	unsigned long end_pfn = start_pfn + size;
5255
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5256
	unsigned long pfn;
5257
	unsigned long nr_initialised = 0;
5258 5259 5260
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5261

5262 5263 5264
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5265 5266 5267 5268 5269 5270 5271
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5272
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5273
		/*
5274 5275
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5276
		 */
5277 5278 5279
		if (context != MEMMAP_EARLY)
			goto not_early;

5280 5281 5282 5283 5284 5285 5286 5287 5288
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5289
			continue;
5290
		}
5291 5292 5293 5294
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5295 5296

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5314
			}
D
Dave Hansen 已提交
5315
		}
5316
#endif
5317

5318
not_early:
5319 5320 5321 5322 5323
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5324
		 * kernel allocations are made.
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5339 5340 5341
	}
}

5342
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5343
{
5344
	unsigned int order, t;
5345 5346
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5347 5348 5349 5350 5351 5352
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5353
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5354 5355
#endif

5356
static int zone_batchsize(struct zone *zone)
5357
{
5358
#ifdef CONFIG_MMU
5359 5360 5361 5362
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5363
	 * size of the zone.  But no more than 1/2 of a meg.
5364 5365 5366
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5367
	batch = zone->managed_pages / 1024;
5368 5369
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5370 5371 5372 5373 5374
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5375 5376 5377
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5378
	 *
5379 5380 5381 5382
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5383
	 */
5384
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5385

5386
	return batch;
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5404 5405
}

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5433
/* a companion to pageset_set_high() */
5434 5435
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5436
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5437 5438
}

5439
static void pageset_init(struct per_cpu_pageset *p)
5440 5441
{
	struct per_cpu_pages *pcp;
5442
	int migratetype;
5443

5444 5445
	memset(p, 0, sizeof(*p));

5446
	pcp = &p->pcp;
5447
	pcp->count = 0;
5448 5449
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5450 5451
}

5452 5453 5454 5455 5456 5457
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5458
/*
5459
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5460 5461
 * to the value high for the pageset p.
 */
5462
static void pageset_set_high(struct per_cpu_pageset *p,
5463 5464
				unsigned long high)
{
5465 5466 5467
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5468

5469
	pageset_update(&p->pcp, high, batch);
5470 5471
}

5472 5473
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5474 5475
{
	if (percpu_pagelist_fraction)
5476
		pageset_set_high(pcp,
5477 5478 5479 5480 5481 5482
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5483 5484 5485 5486 5487 5488 5489 5490
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5491
static void __meminit setup_zone_pageset(struct zone *zone)
5492 5493 5494
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5495 5496
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5497 5498
}

5499
/*
5500 5501
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5502
 */
5503
void __init setup_per_cpu_pageset(void)
5504
{
5505
	struct pglist_data *pgdat;
5506
	struct zone *zone;
5507

5508 5509
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5510 5511 5512 5513

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5514 5515
}

5516
static __meminit void zone_pcp_init(struct zone *zone)
5517
{
5518 5519 5520 5521 5522 5523
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5524

5525
	if (populated_zone(zone))
5526 5527 5528
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5529 5530
}

5531
int __meminit init_currently_empty_zone(struct zone *zone,
5532
					unsigned long zone_start_pfn,
5533
					unsigned long size)
5534 5535
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5536

5537 5538 5539 5540
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5541 5542 5543 5544 5545 5546
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5547
	zone_init_free_lists(zone);
5548
	zone->initialized = 1;
5549 5550

	return 0;
5551 5552
}

T
Tejun Heo 已提交
5553
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5554
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5555

5556 5557 5558
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5559 5560
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5561
{
5562
	unsigned long start_pfn, end_pfn;
5563
	int nid;
5564

5565 5566
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5567

5568 5569
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5570 5571 5572
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5573 5574 5575
	}

	return nid;
5576 5577 5578 5579
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5580
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5581
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5582
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5583
 *
5584 5585 5586
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5587
 */
5588
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5589
{
5590 5591
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5592

5593 5594 5595
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5596

5597
		if (start_pfn < end_pfn)
5598 5599 5600
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5601 5602 5603
	}
}

5604 5605
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5606
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5607
 *
5608 5609
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5610 5611 5612
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5613 5614
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5615

5616 5617
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5618 5619 5620 5621
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5622 5623 5624
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5625 5626
 *
 * It returns the start and end page frame of a node based on information
5627
 * provided by memblock_set_node(). If called for a node
5628
 * with no available memory, a warning is printed and the start and end
5629
 * PFNs will be 0.
5630
 */
5631
void __meminit get_pfn_range_for_nid(unsigned int nid,
5632 5633
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5634
	unsigned long this_start_pfn, this_end_pfn;
5635
	int i;
5636

5637 5638 5639
	*start_pfn = -1UL;
	*end_pfn = 0;

5640 5641 5642
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5643 5644
	}

5645
	if (*start_pfn == -1UL)
5646 5647 5648
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5649 5650 5651 5652 5653
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5654
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5672
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5673 5674 5675 5676 5677 5678 5679
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5680
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5695 5696 5697 5698 5699 5700
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5701 5702 5703 5704 5705 5706
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5707 5708 5709 5710
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5711
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5712
					unsigned long zone_type,
5713 5714
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5715 5716
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5717 5718
					unsigned long *ignored)
{
5719
	/* When hotadd a new node from cpu_up(), the node should be empty */
5720 5721 5722
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5723
	/* Get the start and end of the zone */
5724 5725
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5726 5727
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5728
				zone_start_pfn, zone_end_pfn);
5729 5730

	/* Check that this node has pages within the zone's required range */
5731
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5732 5733 5734
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5735 5736
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5737 5738

	/* Return the spanned pages */
5739
	return *zone_end_pfn - *zone_start_pfn;
5740 5741 5742 5743
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5744
 * then all holes in the requested range will be accounted for.
5745
 */
5746
unsigned long __meminit __absent_pages_in_range(int nid,
5747 5748 5749
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5750 5751 5752
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5753

5754 5755 5756 5757
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5758
	}
5759
	return nr_absent;
5760 5761 5762 5763 5764 5765 5766
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5767
 * It returns the number of pages frames in memory holes within a range.
5768 5769 5770 5771 5772 5773 5774 5775
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5776
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5777
					unsigned long zone_type,
5778 5779
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5780 5781
					unsigned long *ignored)
{
5782 5783
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5784
	unsigned long zone_start_pfn, zone_end_pfn;
5785
	unsigned long nr_absent;
5786

5787
	/* When hotadd a new node from cpu_up(), the node should be empty */
5788 5789 5790
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5791 5792
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5793

M
Mel Gorman 已提交
5794 5795 5796
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5797 5798 5799 5800 5801 5802 5803
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5821 5822 5823 5824
		}
	}

	return nr_absent;
5825
}
5826

T
Tejun Heo 已提交
5827
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5828
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5829
					unsigned long zone_type,
5830 5831
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5832 5833
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5834 5835
					unsigned long *zones_size)
{
5836 5837 5838 5839 5840 5841 5842 5843
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5844 5845 5846
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5847
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5848
						unsigned long zone_type,
5849 5850
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5851 5852 5853 5854 5855 5856 5857
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5858

T
Tejun Heo 已提交
5859
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5860

5861
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5862 5863 5864 5865
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5866
{
5867
	unsigned long realtotalpages = 0, totalpages = 0;
5868 5869
	enum zone_type i;

5870 5871
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5872
		unsigned long zone_start_pfn, zone_end_pfn;
5873
		unsigned long size, real_size;
5874

5875 5876 5877
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5878 5879
						  &zone_start_pfn,
						  &zone_end_pfn,
5880 5881
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5882 5883
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5884 5885 5886 5887
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5888 5889 5890 5891 5892 5893 5894 5895
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5896 5897 5898 5899 5900
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5901 5902 5903
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5904 5905
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5906 5907 5908
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5909
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5910 5911 5912
{
	unsigned long usemapsize;

5913
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5914 5915
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5916 5917 5918 5919 5920 5921 5922
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5923 5924 5925
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5926
{
5927
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5928
	zone->pageblock_flags = NULL;
5929
	if (usemapsize)
5930 5931 5932
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5933 5934
}
#else
5935 5936
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5937 5938
#endif /* CONFIG_SPARSEMEM */

5939
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5940

5941
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5942
void __paginginit set_pageblock_order(void)
5943
{
5944 5945
	unsigned int order;

5946 5947 5948 5949
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

5950 5951 5952 5953 5954
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

5955 5956
	/*
	 * Assume the largest contiguous order of interest is a huge page.
5957 5958
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
5959 5960 5961 5962 5963
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5964 5965
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5966 5967 5968
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
5969
 */
5970
void __paginginit set_pageblock_order(void)
5971 5972
{
}
5973 5974 5975

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
5986
	 * populated regions may not be naturally aligned on page boundary.
5987 5988 5989 5990 5991 5992 5993 5994 5995
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
5996 5997 5998 5999 6000
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6001 6002
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6003
 */
6004
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6005
{
6006
	enum zone_type j;
6007
	int nid = pgdat->node_id;
6008
	int ret;
L
Linus Torvalds 已提交
6009

6010
	pgdat_resize_init(pgdat);
6011 6012 6013 6014
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6015 6016 6017 6018 6019
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6020
#endif
L
Linus Torvalds 已提交
6021
	init_waitqueue_head(&pgdat->kswapd_wait);
6022
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6023 6024 6025
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6026
	pgdat_page_ext_init(pgdat);
6027
	spin_lock_init(&pgdat->lru_lock);
6028
	lruvec_init(node_lruvec(pgdat));
6029

L
Linus Torvalds 已提交
6030 6031
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6032
		unsigned long size, realsize, freesize, memmap_pages;
6033
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6034

6035 6036
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6037

6038
		/*
6039
		 * Adjust freesize so that it accounts for how much memory
6040 6041 6042
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6043
		memmap_pages = calc_memmap_size(size, realsize);
6044 6045 6046 6047 6048 6049 6050 6051
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6052
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6053 6054
					zone_names[j], memmap_pages, freesize);
		}
6055

6056
		/* Account for reserved pages */
6057 6058
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6059
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6060
					zone_names[0], dma_reserve);
6061 6062
		}

6063
		if (!is_highmem_idx(j))
6064
			nr_kernel_pages += freesize;
6065 6066 6067
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6068
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6069

6070 6071 6072 6073 6074 6075
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6076
#ifdef CONFIG_NUMA
6077
		zone->node = nid;
6078
#endif
L
Linus Torvalds 已提交
6079
		zone->name = zone_names[j];
6080
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6081
		spin_lock_init(&zone->lock);
6082
		zone_seqlock_init(zone);
6083
		zone_pcp_init(zone);
6084

L
Linus Torvalds 已提交
6085 6086 6087
		if (!size)
			continue;

6088
		set_pageblock_order();
6089
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6090
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6091
		BUG_ON(ret);
6092
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6093 6094 6095
	}
}

6096
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6097
{
6098
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6099 6100
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6101 6102 6103 6104
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6105
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6106 6107
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6108 6109
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6110
		unsigned long size, end;
A
Andy Whitcroft 已提交
6111 6112
		struct page *map;

6113 6114 6115 6116 6117
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6118
		end = pgdat_end_pfn(pgdat);
6119 6120
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6121 6122
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6123 6124
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6125
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6126
	}
6127
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6128 6129 6130
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6131
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6132
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6133
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6134
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6135
			mem_map -= offset;
T
Tejun Heo 已提交
6136
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6137
	}
L
Linus Torvalds 已提交
6138
#endif
A
Andy Whitcroft 已提交
6139
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6140 6141
}

6142 6143
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6144
{
6145
	pg_data_t *pgdat = NODE_DATA(nid);
6146 6147
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6148

6149
	/* pg_data_t should be reset to zero when it's allocated */
6150
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6151

L
Linus Torvalds 已提交
6152 6153
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6154
	pgdat->per_cpu_nodestats = NULL;
6155 6156
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6157
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6158 6159
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6160 6161
#else
	start_pfn = node_start_pfn;
6162 6163 6164
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6165 6166

	alloc_node_mem_map(pgdat);
6167 6168 6169 6170 6171
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6172

6173
	reset_deferred_meminit(pgdat);
6174
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6175 6176
}

T
Tejun Heo 已提交
6177
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6178 6179 6180 6181 6182

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6183
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6184
{
6185
	unsigned int highest;
M
Miklos Szeredi 已提交
6186

6187
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6188 6189 6190 6191
	nr_node_ids = highest + 1;
}
#endif

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6214
	unsigned long start, end, mask;
6215
	int last_nid = -1;
6216
	int i, nid;
6217

6218
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6242
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6243
static unsigned long __init find_min_pfn_for_node(int nid)
6244
{
6245
	unsigned long min_pfn = ULONG_MAX;
6246 6247
	unsigned long start_pfn;
	int i;
6248

6249 6250
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6251

6252
	if (min_pfn == ULONG_MAX) {
6253
		pr_warn("Could not find start_pfn for node %d\n", nid);
6254 6255 6256 6257
		return 0;
	}

	return min_pfn;
6258 6259 6260 6261 6262 6263
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6264
 * memblock_set_node().
6265 6266 6267 6268 6269 6270
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6271 6272 6273
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6274
 * Populate N_MEMORY for calculating usable_nodes.
6275
 */
A
Adrian Bunk 已提交
6276
static unsigned long __init early_calculate_totalpages(void)
6277 6278
{
	unsigned long totalpages = 0;
6279 6280 6281 6282 6283
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6284

6285 6286
		totalpages += pages;
		if (pages)
6287
			node_set_state(nid, N_MEMORY);
6288
	}
6289
	return totalpages;
6290 6291
}

M
Mel Gorman 已提交
6292 6293 6294 6295 6296 6297
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6298
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6299 6300 6301 6302
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6303
	/* save the state before borrow the nodemask */
6304
	nodemask_t saved_node_state = node_states[N_MEMORY];
6305
	unsigned long totalpages = early_calculate_totalpages();
6306
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6307
	struct memblock_region *r;
6308 6309 6310 6311 6312 6313 6314 6315 6316

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6317 6318
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6319 6320
				continue;

E
Emil Medve 已提交
6321
			nid = r->nid;
6322

E
Emil Medve 已提交
6323
			usable_startpfn = PFN_DOWN(r->base);
6324 6325 6326 6327 6328 6329 6330
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6331

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6362
	/*
6363
	 * If movablecore=nn[KMG] was specified, calculate what size of
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6379
		required_movablecore = min(totalpages, required_movablecore);
6380 6381 6382 6383 6384
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6385 6386 6387 6388 6389
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6390
		goto out;
M
Mel Gorman 已提交
6391 6392 6393 6394 6395 6396 6397

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6398
	for_each_node_state(nid, N_MEMORY) {
6399 6400
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6417
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6418 6419
			unsigned long size_pages;

6420
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6463
			 * satisfied
M
Mel Gorman 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6477
	 * satisfied
M
Mel Gorman 已提交
6478 6479 6480 6481 6482
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6483
out2:
M
Mel Gorman 已提交
6484 6485 6486 6487
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6488

6489
out:
6490
	/* restore the node_state */
6491
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6492 6493
}

6494 6495
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6496 6497 6498
{
	enum zone_type zone_type;

6499 6500 6501 6502
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6503
		struct zone *zone = &pgdat->node_zones[zone_type];
6504
		if (populated_zone(zone)) {
6505 6506 6507 6508
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6509 6510
			break;
		}
6511 6512 6513
	}
}

6514 6515
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6516
 * @max_zone_pfn: an array of max PFNs for each zone
6517 6518
 *
 * This will call free_area_init_node() for each active node in the system.
6519
 * Using the page ranges provided by memblock_set_node(), the size of each
6520 6521 6522 6523 6524 6525 6526 6527 6528
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6529 6530
	unsigned long start_pfn, end_pfn;
	int i, nid;
6531

6532 6533 6534 6535 6536
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6537 6538 6539 6540

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6541 6542
		if (i == ZONE_MOVABLE)
			continue;
6543 6544 6545 6546 6547 6548

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6549
	}
M
Mel Gorman 已提交
6550 6551 6552

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6553
	find_zone_movable_pfns_for_nodes();
6554 6555

	/* Print out the zone ranges */
6556
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6557 6558 6559
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6560
		pr_info("  %-8s ", zone_names[i]);
6561 6562
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6563
			pr_cont("empty\n");
6564
		else
6565 6566 6567 6568
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6569
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6570 6571 6572
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6573
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6574 6575
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6576 6577
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6578
	}
6579

6580
	/* Print out the early node map */
6581
	pr_info("Early memory node ranges\n");
6582
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6583 6584 6585
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6586 6587

	/* Initialise every node */
6588
	mminit_verify_pageflags_layout();
6589
	setup_nr_node_ids();
6590 6591
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6592
		free_area_init_node(nid, NULL,
6593
				find_min_pfn_for_node(nid), NULL);
6594 6595 6596

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6597 6598
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6599 6600
	}
}
M
Mel Gorman 已提交
6601

6602
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6603 6604 6605 6606 6607 6608
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6609
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6610

6611
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6612 6613 6614 6615
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6616

6617 6618 6619 6620 6621 6622
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6623 6624 6625 6626 6627 6628
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6641
early_param("kernelcore", cmdline_parse_kernelcore);
6642
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6643

T
Tejun Heo 已提交
6644
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6645

6646 6647 6648 6649 6650
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6651 6652 6653 6654
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6655 6656
	spin_unlock(&managed_page_count_lock);
}
6657
EXPORT_SYMBOL(adjust_managed_page_count);
6658

6659
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6660
{
6661 6662
	void *pos;
	unsigned long pages = 0;
6663

6664 6665 6666
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6667
		if ((unsigned int)poison <= 0xFF)
6668 6669
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6670 6671 6672
	}

	if (pages && s)
6673 6674
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6675 6676 6677

	return pages;
}
6678
EXPORT_SYMBOL(free_reserved_area);
6679

6680 6681 6682 6683 6684
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6685
	page_zone(page)->managed_pages++;
6686 6687 6688 6689
	totalhigh_pages++;
}
#endif

6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6712 6713 6714 6715
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6726
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6727
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6728
		", %luK highmem"
6729
#endif
J
Joe Perches 已提交
6730 6731 6732 6733 6734 6735 6736
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6737
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6738
		totalhigh_pages << (PAGE_SHIFT - 10),
6739
#endif
J
Joe Perches 已提交
6740
		str ? ", " : "", str ? str : "");
6741 6742
}

6743
/**
6744 6745
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6746
 *
6747
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6748 6749
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6750 6751 6752
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6753 6754 6755 6756 6757 6758
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6759 6760
void __init free_area_init(unsigned long *zones_size)
{
6761
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6762 6763 6764
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6765
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6766 6767
{

6768 6769
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6770

6771 6772 6773 6774 6775 6776 6777
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6778

6779 6780 6781 6782 6783 6784 6785 6786 6787
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6788 6789 6790 6791
}

void __init page_alloc_init(void)
{
6792 6793 6794 6795 6796 6797
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6798 6799
}

6800
/*
6801
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6802 6803 6804 6805 6806 6807
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6808
	enum zone_type i, j;
6809 6810

	for_each_online_pgdat(pgdat) {
6811 6812 6813

		pgdat->totalreserve_pages = 0;

6814 6815
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6816
			long max = 0;
6817 6818 6819 6820 6821 6822 6823

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6824 6825
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6826

6827 6828
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6829

6830
			pgdat->totalreserve_pages += max;
6831

6832 6833 6834 6835 6836 6837
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6838 6839
/*
 * setup_per_zone_lowmem_reserve - called whenever
6840
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6841 6842 6843 6844 6845 6846
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6847
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6848

6849
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6850 6851
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6852
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6853 6854 6855

			zone->lowmem_reserve[j] = 0;

6856 6857
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6858 6859
				struct zone *lower_zone;

6860 6861
				idx--;

L
Linus Torvalds 已提交
6862 6863 6864 6865
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6866
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6867
					sysctl_lowmem_reserve_ratio[idx];
6868
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6869 6870 6871
			}
		}
	}
6872 6873 6874

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6875 6876
}

6877
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6887
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6888 6889 6890
	}

	for_each_zone(zone) {
6891 6892
		u64 tmp;

6893
		spin_lock_irqsave(&zone->lock, flags);
6894
		tmp = (u64)pages_min * zone->managed_pages;
6895
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6896 6897
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6898 6899 6900 6901
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6902
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6903
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6904
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6905
			 */
6906
			unsigned long min_pages;
L
Linus Torvalds 已提交
6907

6908
			min_pages = zone->managed_pages / 1024;
6909
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6910
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6911
		} else {
N
Nick Piggin 已提交
6912 6913
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6914 6915
			 * proportionate to the zone's size.
			 */
6916
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6917 6918
		}

6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6930

6931
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
6932
	}
6933 6934 6935

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6936 6937
}

6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
6952 6953 6954 6955 6956 6957 6958
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
6959
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
6976
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
6977 6978
{
	unsigned long lowmem_kbytes;
6979
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
6980 6981

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
6994
	setup_per_zone_wmarks();
6995
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
6996
	setup_per_zone_lowmem_reserve();
6997 6998 6999 7000 7001 7002

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7003 7004
	return 0;
}
7005
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7006 7007

/*
7008
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7009 7010 7011
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7012
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7013
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7014
{
7015 7016 7017 7018 7019 7020
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7021 7022
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7023
		setup_per_zone_wmarks();
7024
	}
L
Linus Torvalds 已提交
7025 7026 7027
	return 0;
}

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7043
#ifdef CONFIG_NUMA
7044
static void setup_min_unmapped_ratio(void)
7045
{
7046
	pg_data_t *pgdat;
7047 7048
	struct zone *zone;

7049
	for_each_online_pgdat(pgdat)
7050
		pgdat->min_unmapped_pages = 0;
7051

7052
	for_each_zone(zone)
7053
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7054 7055
				sysctl_min_unmapped_ratio) / 100;
}
7056

7057 7058

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7059
	void __user *buffer, size_t *length, loff_t *ppos)
7060 7061 7062
{
	int rc;

7063
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7064 7065 7066
	if (rc)
		return rc;

7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7077 7078 7079
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7080
	for_each_zone(zone)
7081
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7082
				sysctl_min_slab_ratio) / 100;
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7096 7097
	return 0;
}
7098 7099
#endif

L
Linus Torvalds 已提交
7100 7101 7102 7103 7104 7105
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7106
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7107 7108
 * if in function of the boot time zone sizes.
 */
7109
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7110
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7111
{
7112
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7113 7114 7115 7116
	setup_per_zone_lowmem_reserve();
	return 0;
}

7117 7118
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7119 7120
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7121
 */
7122
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7123
	void __user *buffer, size_t *length, loff_t *ppos)
7124 7125
{
	struct zone *zone;
7126
	int old_percpu_pagelist_fraction;
7127 7128
	int ret;

7129 7130 7131
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7132
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7147

7148
	for_each_populated_zone(zone) {
7149 7150
		unsigned int cpu;

7151
		for_each_possible_cpu(cpu)
7152 7153
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7154
	}
7155
out:
7156
	mutex_unlock(&pcp_batch_high_lock);
7157
	return ret;
7158 7159
}

7160
#ifdef CONFIG_NUMA
7161
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

L
Linus Torvalds 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7197 7198
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7199
{
7200
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7201 7202 7203 7204 7205 7206
	unsigned long log2qty, size;
	void *table = NULL;

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7207
		numentries = nr_kernel_pages;
7208
		numentries -= arch_reserved_kernel_pages();
7209 7210 7211 7212

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7213 7214 7215 7216 7217 7218

		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7219 7220

		/* Make sure we've got at least a 0-order allocation.. */
7221 7222 7223 7224 7225 7226 7227 7228
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7229
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7230
	}
7231
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236 7237

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7238
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7239

7240 7241
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7242 7243 7244
	if (numentries > max)
		numentries = max;

7245
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7246 7247 7248 7249

	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7250
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7251 7252 7253
		else if (hashdist)
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
		else {
7254 7255
			/*
			 * If bucketsize is not a power-of-two, we may free
7256 7257
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7258
			 */
7259
			if (get_order(size) < MAX_ORDER) {
7260
				table = alloc_pages_exact(size, GFP_ATOMIC);
7261 7262
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
			}
L
Linus Torvalds 已提交
7263 7264 7265 7266 7267 7268
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7269 7270
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7271 7272 7273 7274 7275 7276 7277 7278

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7279

K
KAMEZAWA Hiroyuki 已提交
7280
/*
7281 7282 7283
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7284
 * PageLRU check without isolation or lru_lock could race so that
7285 7286 7287
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7288
 */
7289 7290
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7291 7292
{
	unsigned long pfn, iter, found;
7293 7294
	int mt;

7295 7296
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7297
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7298 7299
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7300
		return false;
7301 7302
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7303
		return false;
7304 7305 7306 7307 7308

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7309
		if (!pfn_valid_within(check))
7310
			continue;
7311

7312
		page = pfn_to_page(check);
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7324 7325 7326 7327
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7328
		 * because their page->_refcount is zero at all time.
7329
		 */
7330
		if (!page_ref_count(page)) {
7331 7332 7333 7334
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7335

7336 7337 7338 7339 7340 7341 7342
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7343 7344 7345
		if (__PageMovable(page))
			continue;

7346 7347 7348
		if (!PageLRU(page))
			found++;
		/*
7349 7350 7351
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7362
			return true;
7363
	}
7364
	return false;
7365 7366 7367 7368
}

bool is_pageblock_removable_nolock(struct page *page)
{
7369 7370
	struct zone *zone;
	unsigned long pfn;
7371 7372 7373 7374 7375

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7376 7377
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7378
	 */
7379 7380 7381 7382 7383
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7384
	if (!zone_spans_pfn(zone, pfn))
7385 7386
		return false;

7387
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7388
}
K
KAMEZAWA Hiroyuki 已提交
7389

7390
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7405 7406
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7407 7408
{
	/* This function is based on compact_zone() from compaction.c. */
7409
	unsigned long nr_reclaimed;
7410 7411 7412 7413
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7414
	migrate_prep();
7415

7416
	while (pfn < end || !list_empty(&cc->migratepages)) {
7417 7418 7419 7420 7421
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7422 7423
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7424
			pfn = isolate_migratepages_range(cc, pfn, end);
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7435 7436 7437
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7438

7439
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7440
				    NULL, 0, cc->mode, MR_CMA);
7441
	}
7442 7443 7444 7445 7446
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7447 7448 7449 7450 7451 7452
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7453 7454 7455 7456
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7457
 * @gfp_mask:	GFP mask to use during compaction
7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7470
int alloc_contig_range(unsigned long start, unsigned long end,
7471
		       unsigned migratetype, gfp_t gfp_mask)
7472 7473
{
	unsigned long outer_start, outer_end;
7474 7475
	unsigned int order;
	int ret = 0;
7476

7477 7478 7479 7480
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7481
		.mode = MIGRATE_SYNC,
7482
		.ignore_skip_hint = true,
7483
		.gfp_mask = current_gfp_context(gfp_mask),
7484 7485 7486
	};
	INIT_LIST_HEAD(&cc.migratepages);

7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7512 7513
				       pfn_max_align_up(end), migratetype,
				       false);
7514
	if (ret)
7515
		return ret;
7516

7517 7518 7519 7520
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7521
	ret = __alloc_contig_migrate_range(&cc, start, end);
7522
	if (ret && ret != -EBUSY)
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7543
	drain_all_pages(cc.zone);
7544 7545 7546 7547 7548

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7549 7550
			outer_start = start;
			break;
7551 7552 7553 7554
		}
		outer_start &= ~0UL << order;
	}

7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7568
	/* Make sure the range is really isolated. */
7569
	if (test_pages_isolated(outer_start, end, false)) {
7570 7571
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
7572 7573 7574 7575
		ret = -EBUSY;
		goto done;
	}

7576
	/* Grab isolated pages from freelists. */
7577
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7591
				pfn_max_align_up(end), migratetype);
7592 7593 7594 7595 7596
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7597 7598 7599 7600 7601 7602 7603 7604 7605
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7606 7607 7608
}
#endif

7609
#ifdef CONFIG_MEMORY_HOTPLUG
7610 7611 7612 7613
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7614 7615
void __meminit zone_pcp_update(struct zone *zone)
{
7616
	unsigned cpu;
7617
	mutex_lock(&pcp_batch_high_lock);
7618
	for_each_possible_cpu(cpu)
7619 7620
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7621
	mutex_unlock(&pcp_batch_high_lock);
7622 7623 7624
}
#endif

7625 7626 7627
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7628 7629
	int cpu;
	struct per_cpu_pageset *pset;
7630 7631 7632 7633

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7634 7635 7636 7637
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7638 7639 7640 7641 7642 7643
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7644
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7645
/*
7646 7647
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7648 7649 7650 7651 7652 7653
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7654
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7682 7683 7684 7685
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7686 7687
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7699 7700 7701 7702 7703 7704

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7705
	unsigned int order;
7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}