page_alloc.c 243.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
71
#include <linux/padata.h>
72
#include <linux/khugepaged.h>
L
Linus Torvalds 已提交
73

74
#include <asm/sections.h>
L
Linus Torvalds 已提交
75
#include <asm/tlbflush.h>
76
#include <asm/div64.h>
L
Linus Torvalds 已提交
77
#include "internal.h"
78
#include "shuffle.h"
A
Alexander Duyck 已提交
79
#include "page_reporting.h"
L
Linus Torvalds 已提交
80

81 82
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
83
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
84

85 86 87 88 89
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

90 91
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

103
/* work_structs for global per-cpu drains */
104 105 106 107
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
108 109
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110

111
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
112
volatile unsigned long latent_entropy __latent_entropy;
113 114 115
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
116
/*
117
 * Array of node states.
L
Linus Torvalds 已提交
118
 */
119 120 121 122 123 124 125
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
126 127
#endif
	[N_MEMORY] = { { [0] = 1UL } },
128 129 130 131 132
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

133 134
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
135
unsigned long totalreserve_pages __read_mostly;
136
unsigned long totalcma_pages __read_mostly;
137

138
int percpu_pagelist_fraction;
139
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	ret = kstrtobool(buf, &bool_result);
160 161
	if (ret)
		return ret;
162 163 164 165 166 167
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
168
	return 0;
169 170 171 172 173 174 175 176 177
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	ret = kstrtobool(buf, &bool_result);
178 179
	if (ret)
		return ret;
180 181 182 183 184 185
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
186
	return 0;
187 188
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

208 209 210 211 212
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
213 214 215 216
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
217
 */
218 219 220 221

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
222
{
223
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
224 225 226 227
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
228 229
}

230
void pm_restrict_gfp_mask(void)
231
{
232
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
233 234
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
235
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236
}
237 238 239

bool pm_suspended_storage(void)
{
240
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
241 242 243
		return false;
	return true;
}
244 245
#endif /* CONFIG_PM_SLEEP */

246
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
247
unsigned int pageblock_order __read_mostly;
248 249
#endif

250
static void __free_pages_ok(struct page *page, unsigned int order);
251

L
Linus Torvalds 已提交
252 253 254 255 256 257
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
258
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
259 260 261
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
262
 */
263
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
264
#ifdef CONFIG_ZONE_DMA
265
	[ZONE_DMA] = 256,
266
#endif
267
#ifdef CONFIG_ZONE_DMA32
268
	[ZONE_DMA32] = 256,
269
#endif
270
	[ZONE_NORMAL] = 32,
271
#ifdef CONFIG_HIGHMEM
272
	[ZONE_HIGHMEM] = 0,
273
#endif
274
	[ZONE_MOVABLE] = 0,
275
};
L
Linus Torvalds 已提交
276

277
static char * const zone_names[MAX_NR_ZONES] = {
278
#ifdef CONFIG_ZONE_DMA
279
	 "DMA",
280
#endif
281
#ifdef CONFIG_ZONE_DMA32
282
	 "DMA32",
283
#endif
284
	 "Normal",
285
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
286
	 "HighMem",
287
#endif
M
Mel Gorman 已提交
288
	 "Movable",
289 290 291
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
292 293
};

294
const char * const migratetype_names[MIGRATE_TYPES] = {
295 296 297 298 299 300 301 302 303 304 305 306
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

307 308 309
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
310
#ifdef CONFIG_HUGETLB_PAGE
311
	[HUGETLB_PAGE_DTOR] = free_huge_page,
312
#endif
313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
314
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
315
#endif
316 317
};

L
Linus Torvalds 已提交
318
int min_free_kbytes = 1024;
319
int user_min_free_kbytes = -1;
320 321 322 323 324 325 326 327 328 329 330 331
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
332
int watermark_boost_factor __read_mostly = 15000;
333
#endif
334
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
335

336 337 338
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
339

340 341
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
342
static unsigned long required_kernelcore __initdata;
343
static unsigned long required_kernelcore_percent __initdata;
344
static unsigned long required_movablecore __initdata;
345
static unsigned long required_movablecore_percent __initdata;
346
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
347
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
352

M
Miklos Szeredi 已提交
353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
466
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 468 469 470 471 472 473 474 475 476
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
477 478
static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page *page,
479 480 481 482 483 484 485 486 487 488 489 490 491
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
492
	return (word >> bitidx) & mask;
493 494 495 496 497
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long mask)
{
498
	return __get_pfnblock_flags_mask(page, pfn, mask);
499 500 501 502
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
503
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
522
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
523 524 525 526 527 528 529 530

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

531 532
	mask <<= bitidx;
	flags <<= bitidx;
533 534 535 536 537 538 539 540 541

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
542

543
void set_pageblock_migratetype(struct page *page, int migratetype)
544
{
545 546
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
547 548
		migratetype = MIGRATE_UNMOVABLE;

549
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
550
				page_to_pfn(page), MIGRATETYPE_MASK);
551 552
}

N
Nick Piggin 已提交
553
#ifdef CONFIG_DEBUG_VM
554
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
555
{
556 557 558
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
559
	unsigned long sp, start_pfn;
560

561 562
	do {
		seq = zone_span_seqbegin(zone);
563 564
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
565
		if (!zone_spans_pfn(zone, pfn))
566 567 568
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

569
	if (ret)
570 571 572
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
573

574
	return ret;
575 576 577 578
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
579
	if (!pfn_valid_within(page_to_pfn(page)))
580
		return 0;
L
Linus Torvalds 已提交
581
	if (zone != page_zone(page))
582 583 584 585 586 587 588
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
589
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
590 591
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
592
		return 1;
593 594 595
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
596 597
	return 0;
}
N
Nick Piggin 已提交
598
#else
599
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
600 601 602 603 604
{
	return 0;
}
#endif

605
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
606
{
607 608 609 610 611 612 613 614 615 616 617 618 619 620
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
621
			pr_alert(
622
			      "BUG: Bad page state: %lu messages suppressed\n",
623 624 625 626 627 628 629 630
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

631
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
632
		current->comm, page_to_pfn(page));
633
	__dump_page(page, reason);
634
	dump_page_owner(page);
635

636
	print_modules();
L
Linus Torvalds 已提交
637
	dump_stack();
638
out:
639
	/* Leave bad fields for debug, except PageBuddy could make trouble */
640
	page_mapcount_reset(page); /* remove PageBuddy */
641
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
642 643 644 645 646
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
647
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
648
 *
649 650
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
651
 *
652 653
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
654
 *
655
 * The first tail page's ->compound_order holds the order of allocation.
656
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
657
 */
658

659
void free_compound_page(struct page *page)
660
{
661
	mem_cgroup_uncharge(page);
662
	__free_pages_ok(page, compound_order(page));
663 664
}

665
void prep_compound_page(struct page *page, unsigned int order)
666 667 668 669 670 671 672
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
673
		set_page_count(p, 0);
674
		p->mapping = TAIL_MAPPING;
675
		set_compound_head(p, page);
676
	}
677 678 679

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
680
	atomic_set(compound_mapcount_ptr(page), -1);
681 682
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
683 684
}

685 686
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
687

688 689 690
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
691
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
692
EXPORT_SYMBOL(_debug_pagealloc_enabled);
693 694

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
695

696 697
static int __init early_debug_pagealloc(char *buf)
{
698
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
699 700 701
}
early_param("debug_pagealloc", early_debug_pagealloc);

702
void init_debug_pagealloc(void)
703
{
704 705 706
	if (!debug_pagealloc_enabled())
		return;

707 708
	static_branch_enable(&_debug_pagealloc_enabled);

709 710 711
	if (!debug_guardpage_minorder())
		return;

712
	static_branch_enable(&_debug_guardpage_enabled);
713 714
}

715 716 717 718 719
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
720
		pr_err("Bad debug_guardpage_minorder value\n");
721 722 723
		return 0;
	}
	_debug_guardpage_minorder = res;
724
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
725 726
	return 0;
}
727
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
728

729
static inline bool set_page_guard(struct zone *zone, struct page *page,
730
				unsigned int order, int migratetype)
731
{
732
	if (!debug_guardpage_enabled())
733 734 735 736
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
737

738
	__SetPageGuard(page);
739 740 741 742
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
743 744

	return true;
745 746
}

747 748
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
749
{
750 751 752
	if (!debug_guardpage_enabled())
		return;

753
	__ClearPageGuard(page);
754

755 756 757
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
758 759
}
#else
760 761
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
762 763
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
764 765
#endif

766
static inline void set_page_order(struct page *page, unsigned int order)
767
{
H
Hugh Dickins 已提交
768
	set_page_private(page, order);
769
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
770 771 772 773
}

/*
 * This function checks whether a page is free && is the buddy
774
 * we can coalesce a page and its buddy if
775
 * (a) the buddy is not in a hole (check before calling!) &&
776
 * (b) the buddy is in the buddy system &&
777 778
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
779
 *
780 781
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
782
 *
783
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
784
 */
785
static inline bool page_is_buddy(struct page *page, struct page *buddy,
786
							unsigned int order)
L
Linus Torvalds 已提交
787
{
788 789
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
790

791 792
	if (page_order(buddy) != order)
		return false;
793

794 795 796 797 798 799
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
800

801
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802

803
	return true;
L
Linus Torvalds 已提交
804 805
}

806 807 808 809 810
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

811
	return unlikely(capc) &&
812 813
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
814
		capc->cc->zone == zone ? capc : NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
888 889 890 891
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

892 893 894 895 896 897
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
941 942
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
943
 * So when we are allocating or freeing one, we can derive the state of the
944 945
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
946
 * If a block is freed, and its buddy is also free, then this
947
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
948
 *
949
 * -- nyc
L
Linus Torvalds 已提交
950 951
 */

N
Nick Piggin 已提交
952
static inline void __free_one_page(struct page *page,
953
		unsigned long pfn,
954
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
955
		int migratetype, bool report)
L
Linus Torvalds 已提交
956
{
957
	struct capture_control *capc = task_capc(zone);
958
	unsigned long buddy_pfn;
959
	unsigned long combined_pfn;
960
	unsigned int max_order;
961 962
	struct page *buddy;
	bool to_tail;
963 964

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
965

966
	VM_BUG_ON(!zone_is_initialized(zone));
967
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
968

969
	VM_BUG_ON(migratetype == -1);
970
	if (likely(!is_migrate_isolate(migratetype)))
971
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
972

973
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
974
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
975

976
continue_merging:
977
	while (order < max_order - 1) {
978 979 980 981 982
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
983 984
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
985 986 987

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
988
		if (!page_is_buddy(page, buddy, order))
989
			goto done_merging;
990 991 992 993
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
994
		if (page_is_guard(buddy))
995
			clear_page_guard(zone, buddy, order, migratetype);
996
		else
997
			del_page_from_free_list(buddy, zone, order);
998 999 1000
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1001 1002
		order++;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1015 1016
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
1029
	set_page_order(page, order);
1030

1031
	if (is_shuffle_order(order))
1032
		to_tail = shuffle_pick_tail();
1033
	else
1034
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1035

1036
	if (to_tail)
1037
		add_to_free_list_tail(page, zone, order, migratetype);
1038
	else
1039
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1040 1041 1042 1043

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1068
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1069
{
1070
	const char *bad_reason = NULL;
1071

1072
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1073 1074 1075
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1076
	if (unlikely(page_ref_count(page) != 0))
1077
		bad_reason = "nonzero _refcount";
1078 1079 1080 1081 1082
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083
	}
1084 1085 1086 1087
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1088 1089 1090 1091 1092 1093 1094
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095 1096
}

1097
static inline int check_free_page(struct page *page)
1098
{
1099
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100 1101 1102
		return 0;

	/* Something has gone sideways, find it */
1103
	check_free_page_bad(page);
1104
	return 1;
L
Linus Torvalds 已提交
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1123
		/* the first tail page: ->mapping may be compound_mapcount() */
1124
		if (unlikely(compound_mapcount(page))) {
1125
			bad_page(page, "nonzero compound_mapcount");
1126 1127 1128 1129 1130 1131
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1132
		 * deferred_list.next -- ignore value.
1133 1134 1135 1136
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1137
			bad_page(page, "corrupted mapping in tail page");
1138 1139 1140 1141 1142
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1143
		bad_page(page, "PageTail not set");
1144 1145 1146
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1147
		bad_page(page, "compound_head not consistent");
1148 1149 1150 1151 1152 1153 1154 1155 1156
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1157 1158 1159 1160
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1161 1162
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1163 1164
	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
1165
	kasan_enable_current();
1166 1167
}

1168 1169
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1170
{
1171
	int bad = 0;
1172 1173 1174

	VM_BUG_ON_PAGE(PageTail(page), page);

1175 1176
	trace_mm_page_free(page, order);

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (unlikely(PageHWPoison(page)) && !order) {
		/*
		 * Do not let hwpoison pages hit pcplists/buddy
		 * Untie memcg state and reset page's owner
		 */
		if (memcg_kmem_enabled() && PageKmemcg(page))
			__memcg_kmem_uncharge_page(page, order);
		reset_page_owner(page, order);
		return false;
	}

1188 1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1197

1198 1199
		if (compound)
			ClearPageDoubleMap(page);
1200 1201 1202
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1203
			if (unlikely(check_free_page(page + i))) {
1204 1205 1206 1207 1208 1209
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1210
	if (PageMappingFlags(page))
1211
		page->mapping = NULL;
1212
	if (memcg_kmem_enabled() && PageKmemcg(page))
1213
		__memcg_kmem_uncharge_page(page, order);
1214
	if (check_free)
1215
		bad += check_free_page(page);
1216 1217
	if (bad)
		return false;
1218

1219 1220 1221
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1222 1223 1224

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1225
					   PAGE_SIZE << order);
1226
		debug_check_no_obj_freed(page_address(page),
1227
					   PAGE_SIZE << order);
1228
	}
1229 1230 1231
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1232
	kernel_poison_pages(page, 1 << order, 0);
1233 1234 1235 1236 1237 1238 1239
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1240
	if (debug_pagealloc_enabled_static())
1241 1242
		kernel_map_pages(page, 1 << order, 0);

1243
	kasan_free_nondeferred_pages(page, order);
1244 1245 1246 1247

	return true;
}

1248
#ifdef CONFIG_DEBUG_VM
1249 1250 1251 1252 1253 1254
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1255 1256 1257 1258
{
	return free_pages_prepare(page, 0, true);
}

1259
static bool bulkfree_pcp_prepare(struct page *page)
1260
{
1261
	if (debug_pagealloc_enabled_static())
1262
		return check_free_page(page);
1263 1264
	else
		return false;
1265 1266
}
#else
1267 1268 1269 1270 1271 1272
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1273 1274
static bool free_pcp_prepare(struct page *page)
{
1275
	if (debug_pagealloc_enabled_static())
1276 1277 1278
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1279 1280
}

1281 1282
static bool bulkfree_pcp_prepare(struct page *page)
{
1283
	return check_free_page(page);
1284 1285 1286
}
#endif /* CONFIG_DEBUG_VM */

1287 1288 1289 1290 1291 1292 1293 1294 1295
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1296
/*
1297
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1298
 * Assumes all pages on list are in same zone, and of same order.
1299
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1300 1301 1302 1303 1304 1305 1306
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1307 1308
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1309
{
1310
	int migratetype = 0;
1311
	int batch_free = 0;
1312
	int prefetch_nr = 0;
1313
	bool isolated_pageblocks;
1314 1315
	struct page *page, *tmp;
	LIST_HEAD(head);
1316

1317 1318 1319 1320 1321
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1322
	while (count) {
1323 1324 1325
		struct list_head *list;

		/*
1326 1327 1328 1329 1330
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1331 1332
		 */
		do {
1333
			batch_free++;
1334 1335 1336 1337
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1338

1339 1340
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1341
			batch_free = count;
1342

1343
		do {
1344
			page = list_last_entry(list, struct page, lru);
1345
			/* must delete to avoid corrupting pcp list */
1346
			list_del(&page->lru);
1347
			pcp->count--;
1348

1349 1350 1351
			if (bulkfree_pcp_prepare(page))
				continue;

1352
			list_add_tail(&page->lru, &head);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1365
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1366
	}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1383
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1384 1385
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1386
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1387 1388
}

1389 1390
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1391
				unsigned int order,
1392
				int migratetype)
L
Linus Torvalds 已提交
1393
{
1394
	spin_lock(&zone->lock);
1395 1396 1397 1398
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1399
	__free_one_page(page, pfn, zone, order, migratetype, true);
1400
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1401 1402
}

1403
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1404
				unsigned long zone, int nid)
1405
{
1406
	mm_zero_struct_page(page);
1407 1408 1409 1410
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1411
	page_kasan_tag_reset(page);
1412 1413 1414 1415 1416 1417 1418 1419 1420

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1421
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422
static void __meminit init_reserved_page(unsigned long pfn)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1439
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1440 1441 1442 1443 1444 1445 1446
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1447 1448 1449 1450 1451 1452
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1453
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1454 1455 1456 1457
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1458 1459 1460 1461 1462
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1463 1464 1465 1466

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1467 1468 1469 1470 1471 1472
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1473 1474
		}
	}
1475 1476
}

1477 1478
static void __free_pages_ok(struct page *page, unsigned int order)
{
1479
	unsigned long flags;
M
Minchan Kim 已提交
1480
	int migratetype;
1481
	unsigned long pfn = page_to_pfn(page);
1482

1483
	if (!free_pages_prepare(page, order, true))
1484 1485
		return;

1486
	migratetype = get_pfnblock_migratetype(page, pfn);
1487 1488
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1489
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1490
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1491 1492
}

1493
void __free_pages_core(struct page *page, unsigned int order)
1494
{
1495
	unsigned int nr_pages = 1 << order;
1496
	struct page *p = page;
1497
	unsigned int loop;
1498

1499 1500 1501
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1502 1503
		__ClearPageReserved(p);
		set_page_count(p, 0);
1504
	}
1505 1506
	__ClearPageReserved(p);
	set_page_count(p, 0);
1507

1508
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1509 1510
	set_page_refcounted(page);
	__free_pages(page, order);
1511 1512
}

1513
#ifdef CONFIG_NEED_MULTIPLE_NODES
1514

1515 1516
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

1517 1518 1519 1520 1521 1522 1523
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
1524
{
1525
	unsigned long start_pfn, end_pfn;
1526 1527
	int nid;

1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1537 1538

	return nid;
1539
}
1540
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1541 1542 1543

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1544
	static DEFINE_SPINLOCK(early_pfn_lock);
1545 1546
	int nid;

1547
	spin_lock(&early_pfn_lock);
1548
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1549
	if (nid < 0)
1550
		nid = first_online_node;
1551
	spin_unlock(&early_pfn_lock);
1552

1553
	return nid;
1554
}
1555
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1556

1557
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1558 1559 1560 1561
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1562
	__free_pages_core(page, order);
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1594 1595 1596
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1625
		cond_resched();
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1637
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1638 1639
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1640
{
1641 1642
	struct page *page;
	unsigned long i;
1643

1644
	if (!nr_pages)
1645 1646
		return;

1647 1648
	page = pfn_to_page(pfn);

1649
	/* Free a large naturally-aligned chunk if possible */
1650 1651
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1652
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1653
		__free_pages_core(page, pageblock_order);
1654 1655 1656
		return;
	}

1657 1658 1659
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1660
		__free_pages_core(page, 0);
1661
	}
1662 1663
}

1664 1665 1666 1667 1668 1669 1670 1671 1672
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1673

1674
/*
1675 1676 1677 1678 1679 1680 1681 1682
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1683
 */
1684
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1685
{
1686 1687 1688 1689 1690 1691
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1692

1693 1694 1695 1696
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1697
static void __init deferred_free_pages(unsigned long pfn,
1698 1699 1700 1701
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1702

1703
	for (; pfn < end_pfn; pfn++) {
1704
		if (!deferred_pfn_valid(pfn)) {
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1716 1717
}

1718 1719 1720 1721 1722
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1723
static unsigned long  __init deferred_init_pages(struct zone *zone,
1724 1725
						 unsigned long pfn,
						 unsigned long end_pfn)
1726 1727
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1728
	int nid = zone_to_nid(zone);
1729
	unsigned long nr_pages = 0;
1730
	int zid = zone_idx(zone);
1731 1732
	struct page *page = NULL;

1733
	for (; pfn < end_pfn; pfn++) {
1734
		if (!deferred_pfn_valid(pfn)) {
1735
			page = NULL;
1736
			continue;
1737
		} else if (!page || !(pfn & nr_pgmask)) {
1738
			page = pfn_to_page(pfn);
1739 1740
		} else {
			page++;
1741
		}
1742
		__init_single_page(page, pfn, zid, nid);
1743
		nr_pages++;
1744
	}
1745
	return (nr_pages);
1746 1747
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

1852 1853 1854 1855 1856 1857 1858
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

1859
/* Initialise remaining memory on a node */
1860
static int __init deferred_init_memmap(void *data)
1861
{
1862
	pg_data_t *pgdat = data;
1863
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1864
	unsigned long spfn = 0, epfn = 0;
1865
	unsigned long first_init_pfn, flags;
1866 1867
	unsigned long start = jiffies;
	struct zone *zone;
1868
	int zid, max_threads;
1869
	u64 i;
1870

1871 1872 1873 1874 1875 1876
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1877
	if (first_init_pfn == ULONG_MAX) {
1878
		pgdat_resize_unlock(pgdat, &flags);
1879
		pgdat_init_report_one_done();
1880 1881 1882
		return 0;
	}

1883 1884 1885 1886 1887
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

1888 1889 1890 1891 1892 1893 1894
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

1895 1896 1897 1898 1899 1900
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1901 1902 1903 1904 1905

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1906

1907
	max_threads = deferred_page_init_max_threads(cpumask);
1908

1909
	while (spfn < epfn) {
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
1924
	}
1925
zone_empty:
1926 1927 1928
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1929 1930
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1931 1932

	pgdat_init_report_one_done();
1933 1934
	return 0;
}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1955
	pg_data_t *pgdat = zone->zone_pgdat;
1956
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1957 1958
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1976 1977 1978 1979
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1980
		pgdat_resize_unlock(pgdat, &flags);
1981 1982
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1983 1984
	}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1995
		touch_nmi_watchdog();
1996

1997 1998 1999
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
2000

2001
		/* If our quota has been met we can stop here */
2002 2003 2004 2005
		if (nr_pages >= nr_pages_needed)
			break;
	}

2006
	pgdat->first_deferred_pfn = spfn;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2024
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2025 2026 2027

void __init page_alloc_init_late(void)
{
2028
	struct zone *zone;
2029
	int nid;
2030 2031

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2032

2033 2034
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2035 2036 2037 2038 2039
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2040
	wait_for_completion(&pgdat_init_all_done_comp);
2041

2042 2043 2044 2045 2046 2047 2048 2049
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2050 2051 2052 2053 2054 2055
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2056 2057
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2058
#endif
2059

P
Pavel Tatashin 已提交
2060 2061
	/* Discard memblock private memory */
	memblock_discard();
2062

2063 2064 2065
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2066 2067
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2068 2069
}

2070
#ifdef CONFIG_CMA
2071
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2072 2073 2074 2075 2076 2077 2078 2079
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2080
	} while (++p, --i);
2081 2082

	set_pageblock_migratetype(page, MIGRATE_CMA);
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2097
	adjust_managed_page_count(page, pageblock_nr_pages);
2098 2099
}
#endif
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2113
 * -- nyc
L
Linus Torvalds 已提交
2114
 */
N
Nick Piggin 已提交
2115
static inline void expand(struct zone *zone, struct page *page,
2116
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2123
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2124

2125 2126 2127 2128 2129 2130 2131
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2132
			continue;
2133

2134
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2135 2136 2137 2138
		set_page_order(&page[size], high);
	}
}

2139
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2140
{
2141
	if (unlikely(page->flags & __PG_HWPOISON)) {
2142 2143 2144
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2145
	}
2146 2147 2148

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2162 2163
}

2164
static inline bool free_pages_prezeroed(void)
2165
{
2166 2167
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2168 2169
}

2170
#ifdef CONFIG_DEBUG_VM
2171 2172 2173 2174 2175 2176
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2177
{
2178
	if (debug_pagealloc_enabled_static())
2179 2180 2181
		return check_new_page(page);
	else
		return false;
2182 2183
}

2184
static inline bool check_new_pcp(struct page *page)
2185 2186 2187 2188
{
	return check_new_page(page);
}
#else
2189 2190 2191 2192 2193 2194
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2195 2196 2197
{
	return check_new_page(page);
}
2198
static inline bool check_new_pcp(struct page *page)
2199
{
2200
	if (debug_pagealloc_enabled_static())
2201 2202 2203
		return check_new_page(page);
	else
		return false;
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2220 2221 2222 2223 2224 2225 2226
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2227
	if (debug_pagealloc_enabled_static())
2228
		kernel_map_pages(page, 1 << order, 1);
2229
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2230
	kernel_poison_pages(page, 1 << order, 1);
2231 2232 2233
	set_page_owner(page, order, gfp_flags);
}

2234
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2235
							unsigned int alloc_flags)
2236
{
2237
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2238

2239 2240
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2241 2242 2243 2244

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2245
	/*
2246
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2247 2248 2249 2250
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2251 2252 2253 2254
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2255 2256
}

2257 2258 2259 2260
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2261
static __always_inline
2262
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2263 2264 2265
						int migratetype)
{
	unsigned int current_order;
2266
	struct free_area *area;
2267 2268 2269 2270 2271
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2272
		page = get_page_from_free_area(area, migratetype);
2273 2274
		if (!page)
			continue;
2275 2276
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2277
		set_pcppage_migratetype(page, migratetype);
2278 2279 2280 2281 2282 2283 2284
		return page;
	}

	return NULL;
}


2285 2286 2287 2288
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2289
static int fallbacks[MIGRATE_TYPES][3] = {
2290 2291
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2292
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2293
#ifdef CONFIG_CMA
2294
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2295
#endif
2296
#ifdef CONFIG_MEMORY_ISOLATION
2297
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2298
#endif
2299 2300
};

2301
#ifdef CONFIG_CMA
2302
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2303 2304 2305 2306 2307 2308 2309 2310 2311
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2312 2313
/*
 * Move the free pages in a range to the free lists of the requested type.
2314
 * Note that start_page and end_pages are not aligned on a pageblock
2315 2316
 * boundary. If alignment is required, use move_freepages_block()
 */
2317
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2318
			  struct page *start_page, struct page *end_page,
2319
			  int migratetype, int *num_movable)
2320 2321
{
	struct page *page;
2322
	unsigned int order;
2323
	int pages_moved = 0;
2324 2325 2326 2327 2328 2329 2330 2331

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2332 2333 2334 2335 2336 2337 2338 2339 2340
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2341 2342 2343 2344
			page++;
			continue;
		}

2345 2346 2347 2348
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2349
		order = page_order(page);
2350
		move_to_free_list(page, zone, order, migratetype);
2351
		page += 1 << order;
2352
		pages_moved += 1 << order;
2353 2354
	}

2355
	return pages_moved;
2356 2357
}

2358
int move_freepages_block(struct zone *zone, struct page *page,
2359
				int migratetype, int *num_movable)
2360 2361 2362 2363
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2364 2365 2366
	if (num_movable)
		*num_movable = 0;

2367
	start_pfn = page_to_pfn(page);
2368
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2369
	start_page = pfn_to_page(start_pfn);
2370 2371
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2372 2373

	/* Do not cross zone boundaries */
2374
	if (!zone_spans_pfn(zone, start_pfn))
2375
		start_page = page;
2376
	if (!zone_spans_pfn(zone, end_pfn))
2377 2378
		return 0;

2379 2380
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2394
/*
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2405
 */
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2427 2428 2429 2430 2431 2432
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2433 2434 2435 2436 2437 2438 2439 2440
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
		return;
2441 2442 2443

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2456 2457 2458 2459 2460 2461
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2462 2463 2464
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2465 2466 2467 2468
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2469 2470
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2471
		unsigned int alloc_flags, int start_type, bool whole_block)
2472
{
2473
	unsigned int current_order = page_order(page);
2474 2475 2476 2477
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2478

2479 2480 2481 2482
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2483
	if (is_migrate_highatomic(old_block_type))
2484 2485
		goto single_page;

2486 2487 2488
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2489
		goto single_page;
2490 2491
	}

2492 2493 2494 2495 2496 2497 2498
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2499
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2500

2501 2502 2503 2504
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2529
	/* moving whole block can fail due to zone boundary conditions */
2530
	if (!free_pages)
2531
		goto single_page;
2532

2533 2534 2535 2536 2537
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2538 2539
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2540 2541 2542 2543

	return;

single_page:
2544
	move_to_free_list(page, zone, current_order, start_type);
2545 2546
}

2547 2548 2549 2550 2551 2552 2553 2554
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2565
		if (fallback_mt == MIGRATE_TYPES)
2566 2567
			break;

2568
		if (free_area_empty(area, fallback_mt))
2569
			continue;
2570

2571 2572 2573
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2574 2575 2576 2577 2578
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2579
	}
2580 2581

	return -1;
2582 2583
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2598
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2610 2611
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2612 2613
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2614
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2626 2627 2628
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2629
 */
2630 2631
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2632 2633 2634 2635 2636 2637 2638
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2639
	bool ret;
2640

2641
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2642
								ac->nodemask) {
2643 2644 2645 2646 2647 2648
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2649 2650 2651 2652 2653 2654
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2655
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2656
			if (!page)
2657 2658 2659
				continue;

			/*
2660 2661 2662 2663 2664
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2665
			 */
2666
			if (is_migrate_highatomic_page(page)) {
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2689 2690
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2691 2692 2693 2694
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2695 2696 2697
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2698 2699

	return false;
2700 2701
}

2702 2703 2704 2705 2706
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2707 2708 2709 2710
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2711
 */
2712
static __always_inline bool
2713 2714
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2715
{
2716
	struct free_area *area;
2717
	int current_order;
2718
	int min_order = order;
2719
	struct page *page;
2720 2721
	int fallback_mt;
	bool can_steal;
2722

2723 2724 2725 2726 2727 2728 2729 2730
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2731 2732 2733 2734 2735
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2736
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2737
				--current_order) {
2738 2739
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2740
				start_migratetype, false, &can_steal);
2741 2742
		if (fallback_mt == -1)
			continue;
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2755

2756 2757
		goto do_steal;
	}
2758

2759
	return false;
2760

2761 2762 2763 2764 2765 2766 2767 2768
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2769 2770
	}

2771 2772 2773 2774 2775 2776 2777
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2778
	page = get_page_from_free_area(area, fallback_mt);
2779

2780 2781
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2782 2783 2784 2785 2786 2787

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2788 2789
}

2790
/*
L
Linus Torvalds 已提交
2791 2792 2793
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2794
static __always_inline struct page *
2795 2796
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2797 2798 2799
{
	struct page *page;

2800 2801 2802 2803 2804 2805
#ifdef CONFIG_CMA
	/*
	 * Balance movable allocations between regular and CMA areas by
	 * allocating from CMA when over half of the zone's free memory
	 * is in the CMA area.
	 */
2806
	if (alloc_flags & ALLOC_CMA &&
2807 2808 2809 2810 2811 2812 2813
	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
		page = __rmqueue_cma_fallback(zone, order);
		if (page)
			return page;
	}
#endif
2814
retry:
2815
	page = __rmqueue_smallest(zone, order, migratetype);
2816
	if (unlikely(!page)) {
2817
		if (alloc_flags & ALLOC_CMA)
2818 2819
			page = __rmqueue_cma_fallback(zone, order);

2820 2821
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2822
			goto retry;
2823 2824
	}

2825
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2826
	return page;
L
Linus Torvalds 已提交
2827 2828
}

2829
/*
L
Linus Torvalds 已提交
2830 2831 2832 2833
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2834
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2835
			unsigned long count, struct list_head *list,
2836
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2837
{
2838
	int i, alloced = 0;
2839

2840
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2841
	for (i = 0; i < count; ++i) {
2842 2843
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2844
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2845
			break;
2846

2847 2848 2849
		if (unlikely(check_pcp_refill(page)))
			continue;

2850
		/*
2851 2852 2853 2854 2855 2856 2857 2858
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2859
		 */
2860
		list_add_tail(&page->lru, list);
2861
		alloced++;
2862
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2863 2864
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2865
	}
2866 2867 2868 2869 2870 2871 2872

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2873
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2874
	spin_unlock(&zone->lock);
2875
	return alloced;
L
Linus Torvalds 已提交
2876 2877
}

2878
#ifdef CONFIG_NUMA
2879
/*
2880 2881 2882 2883
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2884 2885
 * Note that this function must be called with the thread pinned to
 * a single processor.
2886
 */
2887
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2888 2889
{
	unsigned long flags;
2890
	int to_drain, batch;
2891

2892
	local_irq_save(flags);
2893
	batch = READ_ONCE(pcp->batch);
2894
	to_drain = min(pcp->count, batch);
2895
	if (to_drain > 0)
2896
		free_pcppages_bulk(zone, to_drain, pcp);
2897
	local_irq_restore(flags);
2898 2899 2900
}
#endif

2901
/*
2902
 * Drain pcplists of the indicated processor and zone.
2903 2904 2905 2906 2907
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2908
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2909
{
N
Nick Piggin 已提交
2910
	unsigned long flags;
2911 2912
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2913

2914 2915
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2916

2917
	pcp = &pset->pcp;
2918
	if (pcp->count)
2919 2920 2921
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2936 2937 2938
	}
}

2939 2940
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2941 2942 2943
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2944
 */
2945
void drain_local_pages(struct zone *zone)
2946
{
2947 2948 2949 2950 2951 2952
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2953 2954
}

2955 2956
static void drain_local_pages_wq(struct work_struct *work)
{
2957 2958 2959 2960
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2961 2962 2963 2964 2965 2966 2967 2968
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2969
	drain_local_pages(drain->zone);
2970
	preempt_enable();
2971 2972
}

2973
/*
2974 2975
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2976 2977
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2978
 * Note that this can be extremely slow as the draining happens in a workqueue.
2979
 */
2980
void drain_all_pages(struct zone *zone)
2981
{
2982 2983 2984 2985 2986 2987 2988 2989
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2990 2991 2992 2993 2994 2995 2996
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
3007

3008 3009 3010 3011 3012 3013 3014
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3015 3016
		struct per_cpu_pageset *pcp;
		struct zone *z;
3017
		bool has_pcps = false;
3018 3019

		if (zone) {
3020
			pcp = per_cpu_ptr(zone->pageset, cpu);
3021
			if (pcp->pcp.count)
3022
				has_pcps = true;
3023 3024 3025 3026 3027 3028 3029
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
3030 3031
			}
		}
3032

3033 3034 3035 3036 3037
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3038

3039
	for_each_cpu(cpu, &cpus_with_pcps) {
3040 3041 3042 3043 3044
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3045
	}
3046
	for_each_cpu(cpu, &cpus_with_pcps)
3047
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3048 3049

	mutex_unlock(&pcpu_drain_mutex);
3050 3051
}

3052
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3053

3054 3055 3056 3057 3058
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3059 3060
void mark_free_pages(struct zone *zone)
{
3061
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3062
	unsigned long flags;
3063
	unsigned int order, t;
3064
	struct page *page;
L
Linus Torvalds 已提交
3065

3066
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3067 3068 3069
		return;

	spin_lock_irqsave(&zone->lock, flags);
3070

3071
	max_zone_pfn = zone_end_pfn(zone);
3072 3073
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3074
			page = pfn_to_page(pfn);
3075

3076 3077 3078 3079 3080
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3081 3082 3083
			if (page_zone(page) != zone)
				continue;

3084 3085
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3086
		}
L
Linus Torvalds 已提交
3087

3088
	for_each_migratetype_order(order, t) {
3089 3090
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3091
			unsigned long i;
L
Linus Torvalds 已提交
3092

3093
			pfn = page_to_pfn(page);
3094 3095 3096 3097 3098
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3099
				swsusp_set_page_free(pfn_to_page(pfn + i));
3100
			}
3101
		}
3102
	}
L
Linus Torvalds 已提交
3103 3104
	spin_unlock_irqrestore(&zone->lock, flags);
}
3105
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3106

3107
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3108
{
3109
	int migratetype;
L
Linus Torvalds 已提交
3110

3111
	if (!free_pcp_prepare(page))
3112
		return false;
3113

3114
	migratetype = get_pfnblock_migratetype(page, pfn);
3115
	set_pcppage_migratetype(page, migratetype);
3116 3117 3118
	return true;
}

3119
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3120 3121 3122 3123 3124 3125
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3126
	__count_vm_event(PGFREE);
3127

3128 3129 3130
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3131
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3132 3133 3134 3135
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3136
		if (unlikely(is_migrate_isolate(migratetype))) {
3137
			free_one_page(zone, page, pfn, 0, migratetype);
3138
			return;
3139 3140 3141 3142
		}
		migratetype = MIGRATE_MOVABLE;
	}

3143
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3144
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3145
	pcp->count++;
N
Nick Piggin 已提交
3146
	if (pcp->count >= pcp->high) {
3147
		unsigned long batch = READ_ONCE(pcp->batch);
3148
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3149
	}
3150
}
3151

3152 3153 3154
/*
 * Free a 0-order page
 */
3155
void free_unref_page(struct page *page)
3156 3157 3158 3159
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3160
	if (!free_unref_page_prepare(page, pfn))
3161 3162 3163
		return;

	local_irq_save(flags);
3164
	free_unref_page_commit(page, pfn);
3165
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3166 3167
}

3168 3169 3170
/*
 * Free a list of 0-order pages
 */
3171
void free_unref_page_list(struct list_head *list)
3172 3173
{
	struct page *page, *next;
3174
	unsigned long flags, pfn;
3175
	int batch_count = 0;
3176 3177 3178 3179

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3180
		if (!free_unref_page_prepare(page, pfn))
3181 3182 3183
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3184

3185
	local_irq_save(flags);
3186
	list_for_each_entry_safe(page, next, list, lru) {
3187 3188 3189
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3190 3191
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3202
	}
3203
	local_irq_restore(flags);
3204 3205
}

N
Nick Piggin 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3218 3219
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3220

3221
	for (i = 1; i < (1 << order); i++)
3222
		set_page_refcounted(page + i);
3223
	split_page_owner(page, 1 << order);
N
Nick Piggin 已提交
3224
}
K
K. Y. Srinivasan 已提交
3225
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3226

3227
int __isolate_free_page(struct page *page, unsigned int order)
3228 3229 3230
{
	unsigned long watermark;
	struct zone *zone;
3231
	int mt;
3232 3233 3234 3235

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3236
	mt = get_pageblock_migratetype(page);
3237

3238
	if (!is_migrate_isolate(mt)) {
3239 3240 3241 3242 3243 3244
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3245
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3246
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3247 3248
			return 0;

3249
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3250
	}
3251 3252

	/* Remove page from free list */
3253

3254
	del_page_from_free_list(page, zone, order);
3255

3256 3257 3258 3259
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3260 3261
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3262 3263
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3264
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3265
			    && !is_migrate_highatomic(mt))
3266 3267 3268
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3269 3270
	}

3271

3272
	return 1UL << order;
3273 3274
}

3275 3276 3277 3278
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3279
 * @mt: The page's pageblock's migratetype
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3292
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3293 3294
}

3295 3296 3297 3298 3299
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3300
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3301 3302
{
#ifdef CONFIG_NUMA
3303
	enum numa_stat_item local_stat = NUMA_LOCAL;
3304

3305 3306 3307 3308
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3309
	if (zone_to_nid(z) != numa_node_id())
3310 3311
		local_stat = NUMA_OTHER;

3312
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3313
		__inc_numa_state(z, NUMA_HIT);
3314
	else {
3315 3316
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3317
	}
3318
	__inc_numa_state(z, local_stat);
3319 3320 3321
#endif
}

3322 3323
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3324
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3325
			struct per_cpu_pages *pcp,
3326 3327 3328 3329 3330 3331 3332 3333
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3334
					migratetype, alloc_flags);
3335 3336 3337 3338
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3339
		page = list_first_entry(list, struct page, lru);
3340 3341 3342 3343 3344 3345 3346 3347 3348
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3349 3350
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3351 3352 3353 3354
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3355
	unsigned long flags;
3356

3357
	local_irq_save(flags);
3358 3359
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3360
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3361
	if (page) {
3362
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3363 3364
		zone_statistics(preferred_zone, zone);
	}
3365
	local_irq_restore(flags);
3366 3367 3368
	return page;
}

L
Linus Torvalds 已提交
3369
/*
3370
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3371
 */
3372
static inline
3373
struct page *rmqueue(struct zone *preferred_zone,
3374
			struct zone *zone, unsigned int order,
3375 3376
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3377 3378
{
	unsigned long flags;
3379
	struct page *page;
L
Linus Torvalds 已提交
3380

3381
	if (likely(order == 0)) {
3382 3383 3384 3385 3386 3387 3388
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3389
					migratetype, alloc_flags);
3390 3391
			goto out;
		}
3392
	}
3393

3394 3395 3396 3397 3398 3399
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3400

3401 3402
	do {
		page = NULL;
3403 3404 3405 3406 3407 3408 3409
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3410 3411 3412 3413
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3414
		if (!page)
3415
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3416 3417 3418 3419 3420 3421
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3422

3423
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3424
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3425
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3426

3427
out:
3428 3429 3430 3431 3432 3433
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3434
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3435
	return page;
N
Nick Piggin 已提交
3436 3437 3438 3439

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3440 3441
}

3442 3443
#ifdef CONFIG_FAIL_PAGE_ALLOC

3444
static struct {
3445 3446
	struct fault_attr attr;

3447
	bool ignore_gfp_highmem;
3448
	bool ignore_gfp_reclaim;
3449
	u32 min_order;
3450 3451
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3452
	.ignore_gfp_reclaim = true,
3453
	.ignore_gfp_highmem = true,
3454
	.min_order = 1,
3455 3456 3457 3458 3459 3460 3461 3462
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3463
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3464
{
3465
	if (order < fail_page_alloc.min_order)
3466
		return false;
3467
	if (gfp_mask & __GFP_NOFAIL)
3468
		return false;
3469
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3470
		return false;
3471 3472
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3473
		return false;
3474 3475 3476 3477 3478 3479 3480 3481

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3482
	umode_t mode = S_IFREG | 0600;
3483 3484
	struct dentry *dir;

3485 3486
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3487

3488 3489 3490 3491 3492
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3493

3494
	return 0;
3495 3496 3497 3498 3499 3500 3501 3502
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3503
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3504
{
3505
	return false;
3506 3507 3508 3509
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3510 3511 3512 3513 3514 3515
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3539
/*
3540 3541 3542 3543
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3544
 */
3545
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3546
			 int highest_zoneidx, unsigned int alloc_flags,
3547
			 long free_pages)
L
Linus Torvalds 已提交
3548
{
3549
	long min = mark;
L
Linus Torvalds 已提交
3550
	int o;
3551
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3552

3553
	/* free_pages may go negative - that's OK */
3554
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3555

R
Rohit Seth 已提交
3556
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3557
		min -= min / 2;
3558

3559
	if (unlikely(alloc_harder)) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3572 3573 3574 3575 3576
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3577
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3578
		return false;
L
Linus Torvalds 已提交
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3593
			if (!free_area_empty(area, mt))
3594 3595 3596 3597
				return true;
		}

#ifdef CONFIG_CMA
3598
		if ((alloc_flags & ALLOC_CMA) &&
3599
		    !free_area_empty(area, MIGRATE_CMA)) {
3600
			return true;
3601
		}
3602
#endif
3603
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3604
			return true;
L
Linus Torvalds 已提交
3605
	}
3606
	return false;
3607 3608
}

3609
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3610
		      int highest_zoneidx, unsigned int alloc_flags)
3611
{
3612
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3613 3614 3615
					zone_page_state(z, NR_FREE_PAGES));
}

3616
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3617
				unsigned long mark, int highest_zoneidx,
3618
				unsigned int alloc_flags, gfp_t gfp_mask)
3619
{
3620
	long free_pages;
3621

3622
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3623 3624 3625

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3626
	 * need to be calculated.
3627
	 */
3628 3629 3630 3631 3632 3633 3634 3635
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3654 3655
}

3656
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3657
			unsigned long mark, int highest_zoneidx)
3658 3659 3660 3661 3662 3663
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3664
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3665
								free_pages);
L
Linus Torvalds 已提交
3666 3667
}

3668
#ifdef CONFIG_NUMA
3669 3670
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3671
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3672
				node_reclaim_distance;
3673
}
3674
#else	/* CONFIG_NUMA */
3675 3676 3677 3678
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3679 3680
#endif	/* CONFIG_NUMA */

3681 3682 3683 3684 3685 3686 3687 3688 3689
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3690
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3691
{
3692
	unsigned int alloc_flags;
3693

3694 3695 3696 3697 3698
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3699 3700

#ifdef CONFIG_ZONE_DMA32
3701 3702 3703
	if (!zone)
		return alloc_flags;

3704
	if (zone_idx(zone) != ZONE_NORMAL)
3705
		return alloc_flags;
3706 3707 3708 3709 3710 3711 3712 3713

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3714
		return alloc_flags;
3715

3716
	alloc_flags |= ALLOC_NOFRAGMENT;
3717 3718
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3719 3720
}

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
					unsigned int alloc_flags)
{
#ifdef CONFIG_CMA
	unsigned int pflags = current->flags;

	if (!(pflags & PF_MEMALLOC_NOCMA) &&
			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;

#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
3735
/*
3736
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3737 3738 3739
 * a page.
 */
static struct page *
3740 3741
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3742
{
3743
	struct zoneref *z;
3744
	struct zone *zone;
3745
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3746
	bool no_fallback;
3747

3748
retry:
R
Rohit Seth 已提交
3749
	/*
3750
	 * Scan zonelist, looking for a zone with enough free.
3751
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3752
	 */
3753 3754
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3755 3756
	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
					ac->nodemask) {
3757
		struct page *page;
3758 3759
		unsigned long mark;

3760 3761
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3762
			!__cpuset_zone_allowed(zone, gfp_mask))
3763
				continue;
3764 3765
		/*
		 * When allocating a page cache page for writing, we
3766 3767
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3768
		 * proportional share of globally allowed dirty pages.
3769
		 * The dirty limits take into account the node's
3770 3771 3772 3773 3774
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3775
		 * exceed the per-node dirty limit in the slowpath
3776
		 * (spread_dirty_pages unset) before going into reclaim,
3777
		 * which is important when on a NUMA setup the allowed
3778
		 * nodes are together not big enough to reach the
3779
		 * global limit.  The proper fix for these situations
3780
		 * will require awareness of nodes in the
3781 3782
		 * dirty-throttling and the flusher threads.
		 */
3783 3784 3785 3786 3787 3788 3789 3790 3791
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3809
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3810
		if (!zone_watermark_fast(zone, order, mark,
3811 3812
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
3813 3814
			int ret;

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3825 3826 3827 3828 3829
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3830
			if (node_reclaim_mode == 0 ||
3831
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3832 3833
				continue;

3834
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3835
			switch (ret) {
3836
			case NODE_RECLAIM_NOSCAN:
3837
				/* did not scan */
3838
				continue;
3839
			case NODE_RECLAIM_FULL:
3840
				/* scanned but unreclaimable */
3841
				continue;
3842 3843
			default:
				/* did we reclaim enough */
3844
				if (zone_watermark_ok(zone, order, mark,
3845
					ac->highest_zoneidx, alloc_flags))
3846 3847 3848
					goto try_this_zone;

				continue;
3849
			}
R
Rohit Seth 已提交
3850 3851
		}

3852
try_this_zone:
3853
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3854
				gfp_mask, alloc_flags, ac->migratetype);
3855
		if (page) {
3856
			prep_new_page(page, order, gfp_mask, alloc_flags);
3857 3858 3859 3860 3861 3862 3863 3864

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3865
			return page;
3866 3867 3868 3869 3870 3871 3872 3873
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3874
		}
3875
	}
3876

3877 3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3886
	return NULL;
M
Martin Hicks 已提交
3887 3888
}

3889
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3890 3891 3892 3893 3894 3895 3896 3897 3898
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3899
		if (tsk_is_oom_victim(current) ||
3900 3901
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3902
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3903 3904
		filter &= ~SHOW_MEM_FILTER_NODES;

3905
	show_mem(filter, nodemask);
3906 3907
}

3908
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3909 3910 3911
{
	struct va_format vaf;
	va_list args;
3912
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3913

3914
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3915 3916
		return;

3917 3918 3919
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3920
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3921 3922
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3923
	va_end(args);
J
Joe Perches 已提交
3924

3925
	cpuset_print_current_mems_allowed();
3926
	pr_cont("\n");
3927
	dump_stack();
3928
	warn_alloc_show_mem(gfp_mask, nodemask);
3929 3930
}

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3951 3952
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3953
	const struct alloc_context *ac, unsigned long *did_some_progress)
3954
{
3955 3956 3957
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3958
		.memcg = NULL,
3959 3960 3961
		.gfp_mask = gfp_mask,
		.order = order,
	};
3962 3963
	struct page *page;

3964 3965 3966
	*did_some_progress = 0;

	/*
3967 3968
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3969
	 */
3970
	if (!mutex_trylock(&oom_lock)) {
3971
		*did_some_progress = 1;
3972
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3973 3974
		return NULL;
	}
3975

3976 3977 3978
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3979 3980 3981
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3982
	 */
3983 3984 3985
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3986
	if (page)
3987 3988
		goto out;

3989 3990 3991 3992 3993 3994
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3995 3996 3997 3998 3999
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
4000 4001
	 *
	 * The OOM killer may not free memory on a specific node.
4002
	 */
4003
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4004
		goto out;
4005
	/* The OOM killer does not needlessly kill tasks for lowmem */
4006
	if (ac->highest_zoneidx < ZONE_NORMAL)
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4020
	/* Exhausted what can be done so it's blame time */
4021
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4022
		*did_some_progress = 1;
4023

4024 4025 4026 4027 4028 4029
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4030 4031
					ALLOC_NO_WATERMARKS, ac);
	}
4032
out:
4033
	mutex_unlock(&oom_lock);
4034 4035 4036
	return page;
}

4037 4038 4039 4040 4041 4042
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4043 4044 4045 4046
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4047
		unsigned int alloc_flags, const struct alloc_context *ac,
4048
		enum compact_priority prio, enum compact_result *compact_result)
4049
{
4050
	struct page *page = NULL;
4051
	unsigned long pflags;
4052
	unsigned int noreclaim_flag;
4053 4054

	if (!order)
4055 4056
		return NULL;

4057
	psi_memstall_enter(&pflags);
4058
	noreclaim_flag = memalloc_noreclaim_save();
4059

4060
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4061
								prio, &page);
4062

4063
	memalloc_noreclaim_restore(noreclaim_flag);
4064
	psi_memstall_leave(&pflags);
4065

4066 4067 4068 4069 4070
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4071

4072 4073 4074 4075 4076 4077 4078
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4079

4080 4081
	if (page) {
		struct zone *zone = page_zone(page);
4082

4083 4084 4085 4086 4087
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4088

4089 4090 4091 4092 4093
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4094

4095
	cond_resched();
4096 4097 4098

	return NULL;
}
4099

4100 4101 4102 4103
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4104
		     int *compaction_retries)
4105 4106
{
	int max_retries = MAX_COMPACT_RETRIES;
4107
	int min_priority;
4108 4109 4110
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4111 4112 4113 4114

	if (!order)
		return false;

4115 4116 4117
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4118 4119 4120 4121 4122
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4123 4124
	if (compaction_failed(compact_result))
		goto check_priority;
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4135 4136 4137
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4138 4139
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4140
	 */
4141
	if (compaction_withdrawn(compact_result)) {
4142
		goto check_priority;
4143
	}
4144 4145

	/*
4146
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4147 4148 4149 4150 4151 4152 4153 4154
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4155 4156 4157 4158
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4159

4160 4161 4162 4163 4164
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4165 4166
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4167

4168
	if (*compact_priority > min_priority) {
4169 4170
		(*compact_priority)--;
		*compaction_retries = 0;
4171
		ret = true;
4172
	}
4173 4174 4175
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4176
}
4177 4178 4179
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4180
		unsigned int alloc_flags, const struct alloc_context *ac,
4181
		enum compact_priority prio, enum compact_result *compact_result)
4182
{
4183
	*compact_result = COMPACT_SKIPPED;
4184 4185
	return NULL;
}
4186 4187

static inline bool
4188 4189
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4190
		     enum compact_priority *compact_priority,
4191
		     int *compaction_retries)
4192
{
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4205 4206
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4207
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4208
					ac->highest_zoneidx, alloc_flags))
4209 4210
			return true;
	}
4211 4212
	return false;
}
4213
#endif /* CONFIG_COMPACTION */
4214

4215
#ifdef CONFIG_LOCKDEP
4216
static struct lockdep_map __fs_reclaim_map =
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4228
	if (current->flags & PF_MEMALLOC)
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4251 4252 4253
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4254
		__fs_reclaim_acquire();
4255 4256 4257 4258 4259 4260
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4261
		__fs_reclaim_release();
4262 4263 4264 4265
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4266
/* Perform direct synchronous page reclaim */
4267
static unsigned long
4268 4269
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4270
{
4271
	unsigned int noreclaim_flag;
4272
	unsigned long pflags, progress;
4273 4274 4275 4276 4277

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4278
	psi_memstall_enter(&pflags);
4279
	fs_reclaim_acquire(gfp_mask);
4280
	noreclaim_flag = memalloc_noreclaim_save();
4281

4282 4283
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4284

4285
	memalloc_noreclaim_restore(noreclaim_flag);
4286
	fs_reclaim_release(gfp_mask);
4287
	psi_memstall_leave(&pflags);
4288 4289 4290

	cond_resched();

4291 4292 4293 4294 4295 4296
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4297
		unsigned int alloc_flags, const struct alloc_context *ac,
4298
		unsigned long *did_some_progress)
4299 4300 4301 4302
{
	struct page *page = NULL;
	bool drained = false;

4303
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4304 4305
	if (unlikely(!(*did_some_progress)))
		return NULL;
4306

4307
retry:
4308
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4309 4310 4311

	/*
	 * If an allocation failed after direct reclaim, it could be because
4312
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4313
	 * Shrink them and try again
4314 4315
	 */
	if (!page && !drained) {
4316
		unreserve_highatomic_pageblock(ac, false);
4317
		drain_all_pages(NULL);
4318 4319 4320 4321
		drained = true;
		goto retry;
	}

4322 4323 4324
	return page;
}

4325 4326
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4327 4328 4329
{
	struct zoneref *z;
	struct zone *zone;
4330
	pg_data_t *last_pgdat = NULL;
4331
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4332

4333
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4334
					ac->nodemask) {
4335
		if (last_pgdat != zone->zone_pgdat)
4336
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4337 4338
		last_pgdat = zone->zone_pgdat;
	}
4339 4340
}

4341
static inline unsigned int
4342 4343
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4344
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4345

4346 4347 4348 4349 4350
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4351
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4352
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4353

4354 4355 4356 4357
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4358
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4359
	 */
4360 4361
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4362

4363
	if (gfp_mask & __GFP_ATOMIC) {
4364
		/*
4365 4366
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4367
		 */
4368
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4369
			alloc_flags |= ALLOC_HARDER;
4370
		/*
4371
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4372
		 * comment for __cpuset_node_allowed().
4373
		 */
4374
		alloc_flags &= ~ALLOC_CPUSET;
4375
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4376 4377
		alloc_flags |= ALLOC_HARDER;

4378 4379
	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);

4380 4381 4382
	return alloc_flags;
}

4383
static bool oom_reserves_allowed(struct task_struct *tsk)
4384
{
4385 4386 4387 4388 4389 4390 4391 4392
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4393 4394
		return false;

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4406
	if (gfp_mask & __GFP_MEMALLOC)
4407
		return ALLOC_NO_WATERMARKS;
4408
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4409 4410 4411 4412 4413 4414 4415
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4416

4417 4418 4419 4420 4421 4422
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4423 4424
}

M
Michal Hocko 已提交
4425 4426 4427
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4428 4429 4430 4431
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4432 4433 4434 4435 4436 4437
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4438
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4439 4440 4441
{
	struct zone *zone;
	struct zoneref *z;
4442
	bool ret = false;
M
Michal Hocko 已提交
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4454 4455 4456 4457
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4458 4459
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4460
		return unreserve_highatomic_pageblock(ac, true);
4461
	}
M
Michal Hocko 已提交
4462

4463 4464 4465 4466 4467
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4468
	 */
4469 4470
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4471
		unsigned long available;
4472
		unsigned long reclaimable;
4473 4474
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4475

4476 4477
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4478 4479

		/*
4480 4481
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4482
		 */
4483
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4484
				ac->highest_zoneidx, alloc_flags, available);
4485 4486 4487
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4488 4489 4490 4491 4492 4493 4494
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4495
				unsigned long write_pending;
4496

4497 4498
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4499

4500
				if (2 * write_pending > reclaimable) {
4501 4502 4503 4504
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4505

4506 4507
			ret = true;
			goto out;
M
Michal Hocko 已提交
4508 4509 4510
		}
	}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4559 4560
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4561
						struct alloc_context *ac)
4562
{
4563
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4564
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4565
	struct page *page = NULL;
4566
	unsigned int alloc_flags;
4567
	unsigned long did_some_progress;
4568
	enum compact_priority compact_priority;
4569
	enum compact_result compact_result;
4570 4571 4572
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4573
	int reserve_flags;
L
Linus Torvalds 已提交
4574

4575 4576 4577 4578 4579 4580 4581 4582
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4583 4584 4585 4586 4587
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4588 4589 4590 4591 4592 4593 4594 4595

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4596 4597 4598 4599 4600 4601 4602
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4603
					ac->highest_zoneidx, ac->nodemask);
4604 4605 4606
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4607
	if (alloc_flags & ALLOC_KSWAPD)
4608
		wake_all_kswapds(order, gfp_mask, ac);
4609 4610 4611 4612 4613 4614 4615 4616 4617

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4618 4619
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4620 4621 4622 4623 4624 4625
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4626
	 */
4627 4628 4629 4630
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4631 4632
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4633
						INIT_COMPACT_PRIORITY,
4634 4635 4636 4637
						&compact_result);
		if (page)
			goto got_pg;

4638 4639 4640 4641 4642
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4643 4644 4645 4646
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4647 4648
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4663 4664

			/*
4665 4666
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4667
			 * using async compaction.
4668
			 */
4669
			compact_priority = INIT_COMPACT_PRIORITY;
4670 4671
		}
	}
4672

4673
retry:
4674
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4675
	if (alloc_flags & ALLOC_KSWAPD)
4676
		wake_all_kswapds(order, gfp_mask, ac);
4677

4678 4679
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
4680
		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4681

4682
	/*
4683 4684 4685
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4686
	 */
4687
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4688
		ac->nodemask = NULL;
4689
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4690
					ac->highest_zoneidx, ac->nodemask);
4691 4692
	}

4693
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4694
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4695 4696
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4697

4698
	/* Caller is not willing to reclaim, we can't balance anything */
4699
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4700 4701
		goto nopage;

4702 4703
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4704 4705
		goto nopage;

4706 4707 4708 4709 4710 4711 4712
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4713
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4714
					compact_priority, &compact_result);
4715 4716
	if (page)
		goto got_pg;
4717

4718 4719
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4720
		goto nopage;
4721

M
Michal Hocko 已提交
4722 4723
	/*
	 * Do not retry costly high order allocations unless they are
4724
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4725
	 */
4726
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4727
		goto nopage;
M
Michal Hocko 已提交
4728 4729

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4730
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4731 4732
		goto retry;

4733 4734 4735 4736 4737 4738 4739
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4740
			should_compact_retry(ac, order, alloc_flags,
4741
				compact_result, &compact_priority,
4742
				&compaction_retries))
4743 4744
		goto retry;

4745 4746 4747

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4748 4749
		goto retry_cpuset;

4750 4751 4752 4753 4754
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4755
	/* Avoid allocations with no watermarks from looping endlessly */
4756
	if (tsk_is_oom_victim(current) &&
4757
	    (alloc_flags & ALLOC_OOM ||
4758
	     (gfp_mask & __GFP_NOMEMALLOC)))
4759 4760
		goto nopage;

4761
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4762 4763
	if (did_some_progress) {
		no_progress_loops = 0;
4764
		goto retry;
M
Michal Hocko 已提交
4765
	}
4766

L
Linus Torvalds 已提交
4767
nopage:
4768 4769
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4770 4771
		goto retry_cpuset;

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4809 4810 4811 4812
		cond_resched();
		goto retry;
	}
fail:
4813
	warn_alloc(gfp_mask, ac->nodemask,
4814
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4815
got_pg:
4816
	return page;
L
Linus Torvalds 已提交
4817
}
4818

4819
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4820
		int preferred_nid, nodemask_t *nodemask,
4821 4822
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4823
{
4824
	ac->highest_zoneidx = gfp_zone(gfp_mask);
4825
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4826
	ac->nodemask = nodemask;
4827
	ac->migratetype = gfp_migratetype(gfp_mask);
4828

4829
	if (cpusets_enabled()) {
4830
		*alloc_mask |= __GFP_HARDWALL;
4831 4832 4833 4834 4835
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
4836
			ac->nodemask = &cpuset_current_mems_allowed;
4837 4838
		else
			*alloc_flags |= ALLOC_CPUSET;
4839 4840
	}

4841 4842
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4843

4844
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4845 4846

	if (should_fail_alloc_page(gfp_mask, order))
4847
		return false;
4848

4849
	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4850

4851
	/* Dirty zone balancing only done in the fast path */
4852
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4853

4854 4855 4856 4857 4858
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4859
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4860
					ac->highest_zoneidx, ac->nodemask);
4861 4862

	return true;
4863 4864 4865 4866 4867 4868
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4869 4870
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4871 4872 4873
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4874
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4875 4876
	struct alloc_context ac = { };

4877 4878 4879 4880 4881 4882 4883 4884 4885
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4886
	gfp_mask &= gfp_allowed_mask;
4887
	alloc_mask = gfp_mask;
4888
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4889 4890
		return NULL;

4891 4892 4893 4894
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4895
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4896

4897
	/* First allocation attempt */
4898
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4899 4900
	if (likely(page))
		goto out;
4901

4902
	/*
4903 4904 4905 4906
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4907
	 */
4908
	alloc_mask = current_gfp_context(gfp_mask);
4909
	ac.spread_dirty_pages = false;
4910

4911 4912 4913 4914
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4915
	ac.nodemask = nodemask;
4916

4917
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4918

4919
out:
4920
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4921
	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4922 4923
		__free_pages(page, order);
		page = NULL;
4924 4925
	}

4926 4927
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4928
	return page;
L
Linus Torvalds 已提交
4929
}
4930
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4931 4932

/*
4933 4934 4935
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4936
 */
H
Harvey Harrison 已提交
4937
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4938
{
4939 4940
	struct page *page;

4941
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4942 4943 4944 4945 4946 4947
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4948
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4949
{
4950
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4951 4952 4953
}
EXPORT_SYMBOL(get_zeroed_page);

4954
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4955
{
4956 4957 4958 4959
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4960 4961
}

4962 4963 4964 4965
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
4966 4967 4968
	else if (!PageHead(page))
		while (order-- > 0)
			free_the_page(page + (1 << order), order);
4969
}
L
Linus Torvalds 已提交
4970 4971
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4972
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4973 4974
{
	if (addr != 0) {
N
Nick Piggin 已提交
4975
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4993 4994
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5014
void __page_frag_cache_drain(struct page *page, unsigned int count)
5015 5016 5017
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5018 5019
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5020
}
5021
EXPORT_SYMBOL(__page_frag_cache_drain);
5022

5023 5024
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
5025 5026 5027 5028 5029 5030 5031
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5032
		page = __page_frag_cache_refill(nc, gfp_mask);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5043
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5044 5045

		/* reset page count bias and offset to start of new frag */
5046
		nc->pfmemalloc = page_is_pfmemalloc(page);
5047
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5048 5049 5050 5051 5052 5053 5054
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5055
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5056 5057 5058 5059 5060 5061 5062
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5063
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5064 5065

		/* reset page count bias and offset to start of new frag */
5066
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5067 5068 5069 5070 5071 5072 5073 5074
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
5075
EXPORT_SYMBOL(page_frag_alloc);
5076 5077 5078 5079

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5080
void page_frag_free(void *addr)
5081 5082 5083
{
	struct page *page = virt_to_head_page(addr);

5084 5085
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5086
}
5087
EXPORT_SYMBOL(page_frag_free);
5088

5089 5090
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5105 5106 5107
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5108
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5109 5110 5111 5112 5113 5114 5115 5116
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5117 5118
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5119 5120 5121 5122 5123 5124
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5125 5126 5127
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5128
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5129
	return make_alloc_exact(addr, order, size);
5130 5131 5132
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5133 5134 5135
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5136
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5137
 * @size: the number of bytes to allocate
5138
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5139 5140 5141
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5142 5143
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5144
 */
5145
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5146
{
5147
	unsigned int order = get_order(size);
5148 5149 5150 5151 5152 5153
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5154 5155 5156 5157 5158
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5178 5179 5180 5181
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5182
 * nr_free_zone_pages() counts the number of pages which are beyond the
5183 5184
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5185 5186
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5187 5188
 *
 * Return: number of pages beyond high watermark.
5189
 */
5190
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5191
{
5192
	struct zoneref *z;
5193 5194
	struct zone *zone;

5195
	/* Just pick one node, since fallback list is circular */
5196
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5197

5198
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5199

5200
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5201
		unsigned long size = zone_managed_pages(zone);
5202
		unsigned long high = high_wmark_pages(zone);
5203 5204
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5205 5206 5207 5208 5209
	}

	return sum;
}

5210 5211 5212 5213 5214
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5215 5216 5217
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5218
 */
5219
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5220
{
A
Al Viro 已提交
5221
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5222
}
5223
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5224

5225
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5226
{
5227
	if (IS_ENABLED(CONFIG_NUMA))
5228
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5229 5230
}

5231 5232 5233 5234 5235 5236
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5237
	unsigned long reclaimable;
5238 5239 5240 5241
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5242
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5243 5244

	for_each_zone(zone)
5245
		wmark_low += low_wmark_pages(zone);
5246 5247 5248 5249 5250

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5251
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5263 5264 5265
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5266
	 */
5267 5268
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5269
	available += reclaimable - min(reclaimable / 2, wmark_low);
5270

5271 5272 5273 5274 5275 5276
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5277 5278
void si_meminfo(struct sysinfo *val)
{
5279
	val->totalram = totalram_pages();
5280
	val->sharedram = global_node_page_state(NR_SHMEM);
5281
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5282
	val->bufferram = nr_blockdev_pages();
5283
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5293 5294
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5295 5296
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5297 5298
	pg_data_t *pgdat = NODE_DATA(nid);

5299
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5300
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5301
	val->totalram = managed_pages;
5302
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5303
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5304
#ifdef CONFIG_HIGHMEM
5305 5306 5307 5308
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5309
			managed_highpages += zone_managed_pages(zone);
5310 5311 5312 5313 5314
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5315
#else
5316 5317
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5318
#endif
L
Linus Torvalds 已提交
5319 5320 5321 5322
	val->mem_unit = PAGE_SIZE;
}
#endif

5323
/*
5324 5325
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5326
 */
5327
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5328 5329
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5330
		return false;
5331

5332 5333 5334 5335 5336 5337 5338 5339 5340
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5341 5342
}

L
Linus Torvalds 已提交
5343 5344
#define K(x) ((x) << (PAGE_SHIFT-10))

5345 5346 5347 5348 5349
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5350 5351
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5352 5353 5354
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5355
#ifdef CONFIG_MEMORY_ISOLATION
5356
		[MIGRATE_ISOLATE]	= 'I',
5357
#endif
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5369
	printk(KERN_CONT "(%s) ", tmp);
5370 5371
}

L
Linus Torvalds 已提交
5372 5373 5374 5375
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5376 5377 5378 5379
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5380
 */
5381
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5382
{
5383
	unsigned long free_pcp = 0;
5384
	int cpu;
L
Linus Torvalds 已提交
5385
	struct zone *zone;
M
Mel Gorman 已提交
5386
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5387

5388
	for_each_populated_zone(zone) {
5389
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5390
			continue;
5391

5392 5393
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5394 5395
	}

K
KOSAKI Motohiro 已提交
5396 5397
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5398
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5399
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5400
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5401
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5402 5403 5404 5405 5406 5407 5408
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5409 5410
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5411 5412
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5413
		global_node_page_state(NR_FILE_MAPPED),
5414
		global_node_page_state(NR_SHMEM),
5415 5416 5417
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5418
		free_pcp,
5419
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5420

M
Mel Gorman 已提交
5421
	for_each_online_pgdat(pgdat) {
5422
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5423 5424
			continue;

M
Mel Gorman 已提交
5425 5426 5427 5428 5429 5430 5431 5432
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5433
			" mapped:%lukB"
5434 5435 5436 5437 5438 5439 5440 5441 5442
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5443 5444 5445 5446
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
M
Mel Gorman 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5457
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5458 5459
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5460
			K(node_page_state(pgdat, NR_SHMEM)),
5461 5462 5463 5464 5465 5466 5467
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5468 5469 5470 5471
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5472 5473
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5474 5475
	}

5476
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5477 5478
		int i;

5479
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5480
			continue;
5481 5482 5483 5484 5485

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5486
		show_node(zone);
5487 5488
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5489 5490 5491 5492
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5493
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5494 5495 5496 5497 5498
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5499
			" writepending:%lukB"
L
Linus Torvalds 已提交
5500
			" present:%lukB"
5501
			" managed:%lukB"
5502 5503 5504
			" mlocked:%lukB"
			" pagetables:%lukB"
			" bounce:%lukB"
5505 5506
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5507
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5508 5509
			"\n",
			zone->name,
5510
			K(zone_page_state(zone, NR_FREE_PAGES)),
5511 5512 5513
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5514
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5515 5516 5517 5518 5519
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5520
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5521
			K(zone->present_pages),
5522
			K(zone_managed_pages(zone)),
5523 5524 5525
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5526 5527
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5528
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5529 5530
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5531 5532
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5533 5534
	}

5535
	for_each_populated_zone(zone) {
5536 5537
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5538
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5539

5540
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5541
			continue;
L
Linus Torvalds 已提交
5542
		show_node(zone);
5543
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5544 5545 5546

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5547 5548 5549 5550
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5551
			total += nr[order] << order;
5552 5553 5554

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5555
				if (!free_area_empty(area, type))
5556 5557
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5558 5559
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5560
		for (order = 0; order < MAX_ORDER; order++) {
5561 5562
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5563 5564 5565
			if (nr[order])
				show_migration_types(types[order]);
		}
5566
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5567 5568
	}

5569 5570
	hugetlb_show_meminfo();

5571
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5572

L
Linus Torvalds 已提交
5573 5574 5575
	show_swap_cache_info();
}

5576 5577 5578 5579 5580 5581
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5582 5583
/*
 * Builds allocation fallback zone lists.
5584 5585
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5586
 */
5587
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5588
{
5589
	struct zone *zone;
5590
	enum zone_type zone_type = MAX_NR_ZONES;
5591
	int nr_zones = 0;
5592 5593

	do {
5594
		zone_type--;
5595
		zone = pgdat->node_zones + zone_type;
5596
		if (managed_zone(zone)) {
5597
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5598
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5599
		}
5600
	} while (zone_type);
5601

5602
	return nr_zones;
L
Linus Torvalds 已提交
5603 5604 5605
}

#ifdef CONFIG_NUMA
5606 5607 5608

static int __parse_numa_zonelist_order(char *s)
{
5609 5610 5611 5612 5613 5614 5615 5616
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5617 5618 5619 5620 5621
		return -EINVAL;
	}
	return 0;
}

5622 5623
char numa_zonelist_order[] = "Node";

5624 5625 5626
/*
 * sysctl handler for numa_zonelist_order
 */
5627
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5628
		void *buffer, size_t *length, loff_t *ppos)
5629
{
5630 5631 5632
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
5633 5634 5635
}


5636
#define MAX_NODE_LOAD (nr_online_nodes)
5637 5638
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5639
/**
5640
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5651 5652
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5653
 */
5654
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5655
{
5656
	int n, val;
L
Linus Torvalds 已提交
5657
	int min_val = INT_MAX;
D
David Rientjes 已提交
5658
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
5659

5660 5661 5662 5663 5664
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5665

5666
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5675 5676 5677
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5678
		/* Give preference to headless and unused nodes */
5679
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5698 5699 5700 5701 5702 5703

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5704 5705
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5706
{
5707 5708 5709 5710 5711 5712 5713 5714 5715
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5716

5717 5718 5719 5720 5721
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5722 5723
}

5724 5725 5726 5727 5728
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5729 5730
	struct zoneref *zonerefs;
	int nr_zones;
5731

5732 5733 5734 5735 5736
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5737 5738
}

5739 5740 5741 5742 5743 5744 5745 5746 5747
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5748 5749
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
5750
	nodemask_t used_mask = NODE_MASK_NONE;
5751
	int local_node, prev_node;
L
Linus Torvalds 已提交
5752 5753 5754

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5755
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5756
	prev_node = local_node;
5757 5758

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5765 5766
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5767 5768
			node_load[node] = load;

5769
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5770 5771 5772
		prev_node = node;
		load--;
	}
5773

5774
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5775
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5776 5777
}

5778 5779 5780 5781 5782 5783 5784 5785 5786
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5787
	struct zoneref *z;
5788

5789
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5790
				   gfp_zone(GFP_KERNEL),
5791
				   NULL);
5792
	return zone_to_nid(z->zone);
5793 5794
}
#endif
5795

5796 5797
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5798 5799
#else	/* CONFIG_NUMA */

5800
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5801
{
5802
	int node, local_node;
5803 5804
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5805 5806 5807

	local_node = pgdat->node_id;

5808 5809 5810
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5811

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5823 5824
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5825
	}
5826 5827 5828
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5829 5830
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5831 5832
	}

5833 5834
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5835 5836 5837 5838
}

#endif	/* CONFIG_NUMA */

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5856
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5857

5858
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5859
{
5860
	int nid;
5861
	int __maybe_unused cpu;
5862
	pg_data_t *self = data;
5863 5864 5865
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5866

5867 5868 5869
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5870

5871 5872 5873 5874
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5875 5876
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5877 5878 5879
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5880

5881 5882
			build_zonelists(pgdat);
		}
5883

5884 5885 5886 5887 5888 5889 5890 5891 5892
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5893
		for_each_online_cpu(cpu)
5894
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5895
#endif
5896
	}
5897 5898

	spin_unlock(&lock);
5899 5900
}

5901 5902 5903
static noinline void __init
build_all_zonelists_init(void)
{
5904 5905
	int cpu;

5906
	__build_all_zonelists(NULL);
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5924 5925 5926 5927
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5928 5929
/*
 * unless system_state == SYSTEM_BOOTING.
5930
 *
5931
 * __ref due to call of __init annotated helper build_all_zonelists_init
5932
 * [protected by SYSTEM_BOOTING].
5933
 */
5934
void __ref build_all_zonelists(pg_data_t *pgdat)
5935
{
D
David Hildenbrand 已提交
5936 5937
	unsigned long vm_total_pages;

5938
	if (system_state == SYSTEM_BOOTING) {
5939
		build_all_zonelists_init();
5940
	} else {
5941
		__build_all_zonelists(pgdat);
5942 5943
		/* cpuset refresh routine should be here */
	}
5944 5945
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5946 5947 5948 5949 5950 5951 5952
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5953
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5954 5955 5956 5957
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5958
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5959 5960 5961
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5962
#ifdef CONFIG_NUMA
5963
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5964
#endif
L
Linus Torvalds 已提交
5965 5966
}

5967 5968 5969 5970 5971 5972 5973 5974
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5975
			for_each_mem_region(r) {
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
5989 5990
/*
 * Initially all pages are reserved - free ones are freed
5991
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5992 5993
 * done. Non-atomic initialization, single-pass.
 */
5994
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5995
		unsigned long start_pfn, enum meminit_context context,
5996
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5997
{
5998
	unsigned long pfn, end_pfn = start_pfn + size;
5999
	struct page *page;
L
Linus Torvalds 已提交
6000

6001 6002 6003
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

6004
#ifdef CONFIG_ZONE_DEVICE
6005 6006
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6007 6008 6009 6010
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6011
	 */
6012 6013 6014 6015 6016 6017 6018 6019 6020
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6021

6022
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6023
		/*
6024 6025
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6026
		 */
6027
		if (context == MEMINIT_EARLY) {
6028 6029 6030 6031
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
6032
		}
6033

6034 6035
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6036
		if (context == MEMINIT_HOTPLUG)
6037
			__SetPageReserved(page);
6038

6039 6040 6041 6042 6043
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
6044
		 * kernel allocations are made.
6045
		 */
6046
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6047
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6048
			cond_resched();
6049
		}
6050
		pfn++;
L
Linus Torvalds 已提交
6051 6052 6053
	}
}

6054 6055 6056
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6057
				   unsigned long nr_pages,
6058 6059
				   struct dev_pagemap *pgmap)
{
6060
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6061
	struct pglist_data *pgdat = zone->zone_pgdat;
6062
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6063 6064 6065 6066
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6067
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6068 6069 6070 6071 6072 6073 6074
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6075
	if (altmap) {
6076
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6077
		nr_pages = end_pfn - start_pfn;
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6095 6096 6097
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6098 6099
		 */
		page->pgmap = pgmap;
6100
		page->zone_device_data = NULL;
6101 6102 6103 6104 6105 6106 6107 6108

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
6109
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6110
		 * because this is done early in section_activate()
6111
		 */
6112
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6113 6114 6115 6116 6117
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6118
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6119
		nr_pages, jiffies_to_msecs(jiffies - start));
6120 6121 6122
}

#endif
6123
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6124
{
6125
	unsigned int order, t;
6126 6127
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6128 6129 6130 6131
		zone->free_area[order].nr_free = 0;
	}
}

6132
void __meminit __weak memmap_init(unsigned long size, int nid,
6133 6134
				  unsigned long zone,
				  unsigned long range_start_pfn)
6135
{
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
	unsigned long start_pfn, end_pfn;
	unsigned long range_end_pfn = range_start_pfn + size;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);

		if (end_pfn > start_pfn) {
			size = end_pfn - start_pfn;
			memmap_init_zone(size, nid, zone, start_pfn,
6147
					 MEMINIT_EARLY, NULL);
6148 6149
		}
	}
6150
}
L
Linus Torvalds 已提交
6151

6152
static int zone_batchsize(struct zone *zone)
6153
{
6154
#ifdef CONFIG_MMU
6155 6156 6157 6158
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6159
	 * size of the zone.
6160
	 */
6161
	batch = zone_managed_pages(zone) / 1024;
6162 6163 6164
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6165 6166 6167 6168 6169
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6170 6171 6172
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6173
	 *
6174 6175 6176 6177
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6178
	 */
6179
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6180

6181
	return batch;
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6199 6200
}

6201 6202 6203 6204 6205 6206 6207
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6208
 * those fields changing asynchronously (acording to the above rule).
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6228
/* a companion to pageset_set_high() */
6229 6230
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6231
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6232 6233
}

6234
static void pageset_init(struct per_cpu_pageset *p)
6235 6236
{
	struct per_cpu_pages *pcp;
6237
	int migratetype;
6238

6239 6240
	memset(p, 0, sizeof(*p));

6241
	pcp = &p->pcp;
6242 6243
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6244 6245
}

6246 6247 6248 6249 6250 6251
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6252
/*
6253
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6254 6255
 * to the value high for the pageset p.
 */
6256
static void pageset_set_high(struct per_cpu_pageset *p,
6257 6258
				unsigned long high)
{
6259 6260 6261
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6262

6263
	pageset_update(&p->pcp, high, batch);
6264 6265
}

6266 6267
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6268 6269
{
	if (percpu_pagelist_fraction)
6270
		pageset_set_high(pcp,
6271
			(zone_managed_pages(zone) /
6272 6273 6274 6275 6276
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6277 6278 6279 6280 6281 6282 6283 6284
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6285
void __meminit setup_zone_pageset(struct zone *zone)
6286 6287 6288
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6289 6290
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6291 6292
}

6293
/*
6294 6295
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6296
 */
6297
void __init setup_per_cpu_pageset(void)
6298
{
6299
	struct pglist_data *pgdat;
6300
	struct zone *zone;
6301
	int __maybe_unused cpu;
6302

6303 6304
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6305

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
		memset(pcp->vm_numa_stat_diff, 0,
		       sizeof(pcp->vm_numa_stat_diff));
	}
#endif

6320 6321 6322
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6323 6324
}

6325
static __meminit void zone_pcp_init(struct zone *zone)
6326
{
6327 6328 6329 6330 6331 6332
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6333

6334
	if (populated_zone(zone))
6335 6336 6337
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6338 6339
}

6340
void __meminit init_currently_empty_zone(struct zone *zone,
6341
					unsigned long zone_start_pfn,
6342
					unsigned long size)
6343 6344
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6345
	int zone_idx = zone_idx(zone) + 1;
6346

6347 6348
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6349 6350 6351

	zone->zone_start_pfn = zone_start_pfn;

6352 6353 6354 6355 6356 6357
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6358
	zone_init_free_lists(zone);
6359
	zone->initialized = 1;
6360 6361
}

6362 6363
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6364 6365 6366
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6367 6368
 *
 * It returns the start and end page frame of a node based on information
6369
 * provided by memblock_set_node(). If called for a node
6370
 * with no available memory, a warning is printed and the start and end
6371
 * PFNs will be 0.
6372
 */
6373
void __init get_pfn_range_for_nid(unsigned int nid,
6374 6375
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6376
	unsigned long this_start_pfn, this_end_pfn;
6377
	int i;
6378

6379 6380 6381
	*start_pfn = -1UL;
	*end_pfn = 0;

6382 6383 6384
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6385 6386
	}

6387
	if (*start_pfn == -1UL)
6388 6389 6390
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6391 6392 6393 6394 6395
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6396
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6414
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6415 6416 6417 6418 6419 6420 6421
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6422
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6437 6438 6439 6440 6441 6442
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6443 6444 6445 6446 6447 6448
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6449 6450 6451 6452
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6453
static unsigned long __init zone_spanned_pages_in_node(int nid,
6454
					unsigned long zone_type,
6455 6456
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6457
					unsigned long *zone_start_pfn,
6458
					unsigned long *zone_end_pfn)
6459
{
6460 6461
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6462
	/* When hotadd a new node from cpu_up(), the node should be empty */
6463 6464 6465
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6466
	/* Get the start and end of the zone */
6467 6468
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6469 6470
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6471
				zone_start_pfn, zone_end_pfn);
6472 6473

	/* Check that this node has pages within the zone's required range */
6474
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6475 6476 6477
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6478 6479
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6480 6481

	/* Return the spanned pages */
6482
	return *zone_end_pfn - *zone_start_pfn;
6483 6484 6485 6486
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6487
 * then all holes in the requested range will be accounted for.
6488
 */
6489
unsigned long __init __absent_pages_in_range(int nid,
6490 6491 6492
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6493 6494 6495
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6496

6497 6498 6499 6500
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6501
	}
6502
	return nr_absent;
6503 6504 6505 6506 6507 6508 6509
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6510
 * Return: the number of pages frames in memory holes within a range.
6511 6512 6513 6514 6515 6516 6517 6518
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6519
static unsigned long __init zone_absent_pages_in_node(int nid,
6520
					unsigned long zone_type,
6521
					unsigned long node_start_pfn,
6522
					unsigned long node_end_pfn)
6523
{
6524 6525
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6526
	unsigned long zone_start_pfn, zone_end_pfn;
6527
	unsigned long nr_absent;
6528

6529
	/* When hotadd a new node from cpu_up(), the node should be empty */
6530 6531 6532
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6533 6534
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6535

M
Mel Gorman 已提交
6536 6537 6538
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6539 6540 6541 6542 6543 6544 6545
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6546 6547 6548 6549
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

6550
		for_each_mem_region(r) {
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6563 6564 6565 6566
		}
	}

	return nr_absent;
6567
}
6568

6569
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6570
						unsigned long node_start_pfn,
6571
						unsigned long node_end_pfn)
6572
{
6573
	unsigned long realtotalpages = 0, totalpages = 0;
6574 6575
	enum zone_type i;

6576 6577
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6578
		unsigned long zone_start_pfn, zone_end_pfn;
6579
		unsigned long spanned, absent;
6580
		unsigned long size, real_size;
6581

6582 6583 6584 6585 6586 6587 6588 6589
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
6590 6591 6592 6593

		size = spanned;
		real_size = size - absent;

6594 6595 6596 6597
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6598 6599 6600 6601 6602 6603 6604 6605
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6606 6607 6608 6609 6610
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6611 6612 6613
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6614 6615
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6616 6617 6618
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6619
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6620 6621 6622
{
	unsigned long usemapsize;

6623
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6624 6625
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6626 6627 6628 6629 6630 6631
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6632
static void __ref setup_usemap(struct pglist_data *pgdat,
6633 6634 6635
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6636
{
6637
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6638
	zone->pageblock_flags = NULL;
6639
	if (usemapsize) {
6640
		zone->pageblock_flags =
6641 6642
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6643 6644 6645 6646
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6647 6648
}
#else
6649 6650
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6651 6652
#endif /* CONFIG_SPARSEMEM */

6653
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6654

6655
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6656
void __init set_pageblock_order(void)
6657
{
6658 6659
	unsigned int order;

6660 6661 6662 6663
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6664 6665 6666 6667 6668
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6669 6670
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6671 6672
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6673 6674 6675 6676 6677
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6678 6679
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6680 6681 6682
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6683
 */
6684
void __init set_pageblock_order(void)
6685 6686
{
}
6687 6688 6689

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6690
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6691
						unsigned long present_pages)
6692 6693 6694 6695 6696 6697 6698 6699
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6700
	 * populated regions may not be naturally aligned on page boundary.
6701 6702 6703 6704 6705 6706 6707 6708 6709
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6710 6711 6712
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6713 6714 6715 6716 6717
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6732
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6733
{
6734
	pgdat_resize_init(pgdat);
6735 6736 6737 6738

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6739
	init_waitqueue_head(&pgdat->kswapd_wait);
6740
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6741

6742
	pgdat_page_ext_init(pgdat);
6743
	spin_lock_init(&pgdat->lru_lock);
6744
	lruvec_init(&pgdat->__lruvec);
6745 6746 6747 6748 6749
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6750
	atomic_long_set(&zone->managed_pages, remaining_pages);
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6791

6792
	pgdat_init_internals(pgdat);
6793 6794
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6795 6796
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6797
		unsigned long size, freesize, memmap_pages;
6798
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6799

6800
		size = zone->spanned_pages;
6801
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6802

6803
		/*
6804
		 * Adjust freesize so that it accounts for how much memory
6805 6806 6807
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6808
		memmap_pages = calc_memmap_size(size, freesize);
6809 6810 6811 6812 6813 6814 6815 6816
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6817
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6818 6819
					zone_names[j], memmap_pages, freesize);
		}
6820

6821
		/* Account for reserved pages */
6822 6823
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6824
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6825
					zone_names[0], dma_reserve);
6826 6827
		}

6828
		if (!is_highmem_idx(j))
6829
			nr_kernel_pages += freesize;
6830 6831 6832
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6833
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6834

6835 6836 6837 6838 6839
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6840
		zone_init_internals(zone, j, nid, freesize);
6841

6842
		if (!size)
L
Linus Torvalds 已提交
6843 6844
			continue;

6845
		set_pageblock_order();
6846 6847
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6848
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6849 6850 6851
	}
}

6852
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6853
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6854
{
6855
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6856 6857
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6858 6859 6860 6861
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6862 6863
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6864 6865
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6866
		unsigned long size, end;
A
Andy Whitcroft 已提交
6867 6868
		struct page *map;

6869 6870 6871 6872 6873
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6874
		end = pgdat_end_pfn(pgdat);
6875 6876
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6877 6878
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6879 6880 6881
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6882
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6883
	}
6884 6885 6886
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6887
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6888 6889 6890
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6891
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6892
		mem_map = NODE_DATA(0)->node_mem_map;
6893
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6894
			mem_map -= offset;
6895
	}
L
Linus Torvalds 已提交
6896 6897
#endif
}
6898 6899 6900
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6901

6902 6903 6904 6905 6906 6907 6908 6909 6910
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6911
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
6912
{
6913
	pg_data_t *pgdat = NODE_DATA(nid);
6914 6915
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6916

6917
	/* pg_data_t should be reset to zero when it's allocated */
6918
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6919

6920
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6921

L
Linus Torvalds 已提交
6922
	pgdat->node_id = nid;
6923
	pgdat->node_start_pfn = start_pfn;
6924
	pgdat->per_cpu_nodestats = NULL;
6925

6926
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6927 6928
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6929
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
6930 6931

	alloc_node_mem_map(pgdat);
6932
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6933

6934
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6935 6936
}

6937
void __init free_area_init_memoryless_node(int nid)
6938
{
6939
	free_area_init_node(nid);
6940 6941
}

M
Mike Rapoport 已提交
6942
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6943
/*
6944 6945
 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
 * PageReserved(). Return the number of struct pages that were initialized.
6946
 */
6947
static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
6958 6959 6960 6961 6962 6963 6964
		/*
		 * Use a fake node/zone (0) for now. Some of these pages
		 * (in memblock.reserved but not in memblock.memory) will
		 * get re-initialized via reserve_bootmem_region() later.
		 */
		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
		__SetPageReserved(pfn_to_page(pfn));
6965 6966 6967 6968 6969 6970
		pgcnt++;
	}

	return pgcnt;
}

6971 6972 6973 6974 6975
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
6976
 * flags). We must explicitly initialize those struct pages.
6977 6978 6979 6980
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
6981 6982
 * layout is manually configured via memmap=, or when the highest physical
 * address (max_pfn) does not end on a section boundary.
6983
 */
6984
static void __init init_unavailable_mem(void)
6985 6986 6987
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6988
	phys_addr_t next = 0;
6989 6990

	/*
6991
	 * Loop through unavailable ranges not covered by memblock.memory.
6992 6993
	 */
	pgcnt = 0;
6994
	for_each_mem_range(i, &start, &end) {
6995
		if (next < start)
6996 6997
			pgcnt += init_unavailable_range(PFN_DOWN(next),
							PFN_UP(start));
6998 6999
		next = end;
	}
7000 7001 7002 7003 7004 7005 7006 7007

	/*
	 * Early sections always have a fully populated memmap for the whole
	 * section - see pfn_valid(). If the last section has holes at the
	 * end and that section is marked "online", the memmap will be
	 * considered initialized. Make sure that memmap has a well defined
	 * state.
	 */
7008 7009
	pgcnt += init_unavailable_range(PFN_DOWN(next),
					round_up(max_pfn, PAGES_PER_SECTION));
7010

7011 7012 7013 7014 7015
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
7016
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7017
}
7018 7019 7020 7021
#else
static inline void __init init_unavailable_mem(void)
{
}
M
Mike Rapoport 已提交
7022
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7023

M
Miklos Szeredi 已提交
7024 7025 7026 7027
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7028
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7029
{
7030
	unsigned int highest;
M
Miklos Szeredi 已提交
7031

7032
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7033 7034 7035 7036
	nr_node_ids = highest + 1;
}
#endif

7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7053
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7054 7055 7056 7057 7058
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7059
	unsigned long start, end, mask;
7060
	int last_nid = NUMA_NO_NODE;
7061
	int i, nid;
7062

7063
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7087 7088 7089
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7090
 * Return: the minimum PFN based on information provided via
7091
 * memblock_set_node().
7092 7093 7094
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7095
	return PHYS_PFN(memblock_start_of_DRAM());
7096 7097
}

7098 7099 7100
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7101
 * Populate N_MEMORY for calculating usable_nodes.
7102
 */
A
Adrian Bunk 已提交
7103
static unsigned long __init early_calculate_totalpages(void)
7104 7105
{
	unsigned long totalpages = 0;
7106 7107 7108 7109 7110
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7111

7112 7113
		totalpages += pages;
		if (pages)
7114
			node_set_state(nid, N_MEMORY);
7115
	}
7116
	return totalpages;
7117 7118
}

M
Mel Gorman 已提交
7119 7120 7121 7122 7123 7124
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7125
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7126 7127 7128 7129
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7130
	/* save the state before borrow the nodemask */
7131
	nodemask_t saved_node_state = node_states[N_MEMORY];
7132
	unsigned long totalpages = early_calculate_totalpages();
7133
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7134
	struct memblock_region *r;
7135 7136 7137 7138 7139 7140 7141 7142 7143

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7144
		for_each_mem_region(r) {
E
Emil Medve 已提交
7145
			if (!memblock_is_hotpluggable(r))
7146 7147
				continue;

7148
			nid = memblock_get_region_node(r);
7149

E
Emil Medve 已提交
7150
			usable_startpfn = PFN_DOWN(r->base);
7151 7152 7153 7154 7155 7156 7157
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7158

7159 7160 7161 7162 7163 7164
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

7165
		for_each_mem_region(r) {
7166 7167 7168
			if (memblock_is_mirror(r))
				continue;

7169
			nid = memblock_get_region_node(r);
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7184
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7185 7186 7187 7188

		goto out2;
	}

7189
	/*
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7217
		required_movablecore = min(totalpages, required_movablecore);
7218 7219 7220 7221 7222
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7223 7224 7225 7226 7227
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7228
		goto out;
M
Mel Gorman 已提交
7229 7230 7231 7232 7233 7234 7235

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7236
	for_each_node_state(nid, N_MEMORY) {
7237 7238
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7255
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7256 7257
			unsigned long size_pages;

7258
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7301
			 * satisfied
M
Mel Gorman 已提交
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7315
	 * satisfied
M
Mel Gorman 已提交
7316 7317 7318 7319 7320
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7321
out2:
M
Mel Gorman 已提交
7322 7323 7324 7325
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7326

7327
out:
7328
	/* restore the node_state */
7329
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7330 7331
}

7332 7333
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7334 7335 7336
{
	enum zone_type zone_type;

7337
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7338
		struct zone *zone = &pgdat->node_zones[zone_type];
7339
		if (populated_zone(zone)) {
7340 7341 7342
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7343
				node_set_state(nid, N_NORMAL_MEMORY);
7344 7345
			break;
		}
7346 7347 7348
	}
}

7349 7350 7351 7352 7353 7354 7355 7356 7357
/*
 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7358
/**
7359
 * free_area_init - Initialise all pg_data_t and zone data
7360
 * @max_zone_pfn: an array of max PFNs for each zone
7361 7362
 *
 * This will call free_area_init_node() for each active node in the system.
7363
 * Using the page ranges provided by memblock_set_node(), the size of each
7364 7365 7366 7367 7368 7369 7370
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7371
void __init free_area_init(unsigned long *max_zone_pfn)
7372
{
7373
	unsigned long start_pfn, end_pfn;
7374 7375
	int i, nid, zone;
	bool descending;
7376

7377 7378 7379 7380 7381
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7382 7383

	start_pfn = find_min_pfn_with_active_regions();
7384
	descending = arch_has_descending_max_zone_pfns();
7385 7386

	for (i = 0; i < MAX_NR_ZONES; i++) {
7387 7388 7389 7390 7391 7392
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7393
			continue;
7394

7395 7396 7397
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7398 7399

		start_pfn = end_pfn;
7400
	}
M
Mel Gorman 已提交
7401 7402 7403

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7404
	find_zone_movable_pfns_for_nodes();
7405 7406

	/* Print out the zone ranges */
7407
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7408 7409 7410
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7411
		pr_info("  %-8s ", zone_names[i]);
7412 7413
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7414
			pr_cont("empty\n");
7415
		else
7416 7417 7418 7419
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7420
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7421 7422 7423
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7424
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7425 7426
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7427 7428
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7429
	}
7430

7431 7432 7433 7434 7435
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7436
	pr_info("Early memory node ranges\n");
7437
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7438 7439 7440
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7441 7442
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7443 7444

	/* Initialise every node */
7445
	mminit_verify_pageflags_layout();
7446
	setup_nr_node_ids();
7447
	init_unavailable_mem();
7448 7449
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7450
		free_area_init_node(nid);
7451 7452 7453

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7454 7455
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7456 7457
	}
}
M
Mel Gorman 已提交
7458

7459 7460
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7461 7462
{
	unsigned long long coremem;
7463 7464
	char *endptr;

M
Mel Gorman 已提交
7465 7466 7467
	if (!p)
		return -EINVAL;

7468 7469 7470 7471 7472
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7473

7474 7475 7476 7477 7478
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7479

7480 7481 7482
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7483 7484
	return 0;
}
M
Mel Gorman 已提交
7485

7486 7487 7488 7489 7490 7491
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7492 7493 7494 7495 7496 7497
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7498 7499
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7500 7501 7502 7503 7504 7505 7506 7507
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7508 7509
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7510 7511
}

M
Mel Gorman 已提交
7512
early_param("kernelcore", cmdline_parse_kernelcore);
7513
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7514

7515 7516
void adjust_managed_page_count(struct page *page, long count)
{
7517
	atomic_long_add(count, &page_zone(page)->managed_pages);
7518
	totalram_pages_add(count);
7519 7520
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7521
		totalhigh_pages_add(count);
7522
#endif
7523
}
7524
EXPORT_SYMBOL(adjust_managed_page_count);
7525

7526
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7527
{
7528 7529
	void *pos;
	unsigned long pages = 0;
7530

7531 7532 7533
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7545
		if ((unsigned int)poison <= 0xFF)
7546 7547 7548
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7549 7550 7551
	}

	if (pages && s)
7552 7553
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7554 7555 7556 7557

	return pages;
}

7558 7559 7560 7561
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7562
	totalram_pages_inc();
7563
	atomic_long_inc(&page_zone(page)->managed_pages);
7564
	totalhigh_pages_inc();
7565 7566 7567
}
#endif

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7590 7591 7592 7593
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7604
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7605
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7606
		", %luK highmem"
7607
#endif
J
Joe Perches 已提交
7608 7609 7610 7611 7612
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7613
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7614
		totalcma_pages << (PAGE_SHIFT - 10),
7615
#ifdef	CONFIG_HIGHMEM
7616
		totalhigh_pages() << (PAGE_SHIFT - 10),
7617
#endif
J
Joe Perches 已提交
7618
		str ? ", " : "", str ? str : "");
7619 7620
}

7621
/**
7622 7623
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7624
 *
7625
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7626 7627
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7628 7629 7630
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7631 7632 7633 7634 7635 7636
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7637
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7638 7639
{

7640 7641
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7642

7643 7644 7645 7646 7647 7648 7649
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7650

7651 7652 7653 7654 7655 7656 7657 7658 7659
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7660 7661
}

7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7675 7676
void __init page_alloc_init(void)
{
7677 7678
	int ret;

7679 7680 7681 7682 7683
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7684 7685 7686 7687
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7688 7689
}

7690
/*
7691
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7692 7693 7694 7695 7696 7697
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7698
	enum zone_type i, j;
7699 7700

	for_each_online_pgdat(pgdat) {
7701 7702 7703

		pgdat->totalreserve_pages = 0;

7704 7705
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7706
			long max = 0;
7707
			unsigned long managed_pages = zone_managed_pages(zone);
7708 7709 7710 7711 7712 7713 7714

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7715 7716
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7717

7718 7719
			if (max > managed_pages)
				max = managed_pages;
7720

7721
			pgdat->totalreserve_pages += max;
7722

7723 7724 7725 7726 7727 7728
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7729 7730
/*
 * setup_per_zone_lowmem_reserve - called whenever
7731
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7732 7733 7734 7735 7736 7737
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7738
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7739

7740
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7741 7742
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7743
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7744 7745 7746

			zone->lowmem_reserve[j] = 0;

7747 7748
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7749 7750
				struct zone *lower_zone;

7751
				idx--;
L
Linus Torvalds 已提交
7752
				lower_zone = pgdat->node_zones + idx;
7753

7754 7755
				if (!sysctl_lowmem_reserve_ratio[idx] ||
				    !zone_managed_pages(lower_zone)) {
7756
					lower_zone->lowmem_reserve[j] = 0;
7757
					continue;
7758 7759 7760 7761
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7762
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7763 7764 7765
			}
		}
	}
7766 7767 7768

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7769 7770
}

7771
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7772 7773 7774 7775 7776 7777 7778 7779 7780
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7781
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7782 7783 7784
	}

	for_each_zone(zone) {
7785 7786
		u64 tmp;

7787
		spin_lock_irqsave(&zone->lock, flags);
7788
		tmp = (u64)pages_min * zone_managed_pages(zone);
7789
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7790 7791
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7792 7793 7794 7795
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7796
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7797
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7798
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7799
			 */
7800
			unsigned long min_pages;
L
Linus Torvalds 已提交
7801

7802
			min_pages = zone_managed_pages(zone) / 1024;
7803
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7804
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7805
		} else {
N
Nick Piggin 已提交
7806 7807
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7808 7809
			 * proportionate to the zone's size.
			 */
7810
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7811 7812
		}

7813 7814 7815 7816 7817 7818
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7819
			    mult_frac(zone_managed_pages(zone),
7820 7821
				      watermark_scale_factor, 10000));

7822
		zone->watermark_boost = 0;
7823 7824
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7825

7826
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7827
	}
7828 7829 7830

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7831 7832
}

7833 7834 7835 7836 7837 7838 7839 7840 7841
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7842 7843 7844
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7845
	__setup_per_zone_wmarks();
7846
	spin_unlock(&lock);
7847 7848
}

L
Linus Torvalds 已提交
7849 7850 7851 7852
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
7853
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
7854 7855
 * bandwidth does not increase linearly with machine size.  We use
 *
7856
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7873
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7874 7875
{
	unsigned long lowmem_kbytes;
7876
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7877 7878

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7879 7880 7881 7882 7883 7884
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
7885 7886
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
7887 7888 7889 7890
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7891
	setup_per_zone_wmarks();
7892
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7893
	setup_per_zone_lowmem_reserve();
7894 7895 7896 7897 7898 7899

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

7900 7901
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
7902 7903
	return 0;
}
7904
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7905 7906

/*
7907
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7908 7909 7910
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7911
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7912
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7913
{
7914 7915 7916 7917 7918 7919
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7920 7921
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7922
		setup_per_zone_wmarks();
7923
	}
L
Linus Torvalds 已提交
7924 7925 7926
	return 0;
}

7927
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7928
		void *buffer, size_t *length, loff_t *ppos)
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7942
#ifdef CONFIG_NUMA
7943
static void setup_min_unmapped_ratio(void)
7944
{
7945
	pg_data_t *pgdat;
7946 7947
	struct zone *zone;

7948
	for_each_online_pgdat(pgdat)
7949
		pgdat->min_unmapped_pages = 0;
7950

7951
	for_each_zone(zone)
7952 7953
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7954
}
7955

7956 7957

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7958
		void *buffer, size_t *length, loff_t *ppos)
7959 7960 7961
{
	int rc;

7962
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7963 7964 7965
	if (rc)
		return rc;

7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7976 7977 7978
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7979
	for_each_zone(zone)
7980 7981
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7982 7983 7984
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7985
		void *buffer, size_t *length, loff_t *ppos)
7986 7987 7988 7989 7990 7991 7992 7993 7994
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7995 7996
	return 0;
}
7997 7998
#endif

L
Linus Torvalds 已提交
7999 8000 8001 8002 8003 8004
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8005
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8006 8007
 * if in function of the boot time zone sizes.
 */
8008
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8009
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8010
{
8011 8012
	int i;

8013
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8014 8015 8016 8017 8018 8019

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8020 8021 8022 8023
	setup_per_zone_lowmem_reserve();
	return 0;
}

8024 8025 8026 8027 8028 8029 8030 8031 8032
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8033 8034
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8035 8036
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8037
 */
8038
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8039
		void *buffer, size_t *length, loff_t *ppos)
8040 8041
{
	struct zone *zone;
8042
	int old_percpu_pagelist_fraction;
8043 8044
	int ret;

8045 8046 8047
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8048
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8063

8064 8065
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8066
out:
8067
	mutex_unlock(&pcp_batch_high_lock);
8068
	return ret;
8069 8070
}

8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8110 8111
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8112
{
8113
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8114 8115
	unsigned long log2qty, size;
	void *table = NULL;
8116
	gfp_t gfp_flags;
8117
	bool virt;
L
Linus Torvalds 已提交
8118 8119 8120 8121

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8122
		numentries = nr_kernel_pages;
8123
		numentries -= arch_reserved_kernel_pages();
8124 8125 8126 8127

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8128

P
Pavel Tatashin 已提交
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8139 8140 8141 8142 8143
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8144 8145

		/* Make sure we've got at least a 0-order allocation.. */
8146 8147 8148 8149 8150 8151 8152 8153
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8154
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8155
	}
8156
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8157 8158 8159 8160 8161 8162

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8163
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8164

8165 8166
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8167 8168 8169
	if (numentries > max)
		numentries = max;

8170
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8171

8172
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8173
	do {
8174
		virt = false;
L
Linus Torvalds 已提交
8175
		size = bucketsize << log2qty;
8176 8177
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8178
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8179
			else
8180 8181
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8182
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8183
			table = __vmalloc(size, gfp_flags);
8184
			virt = true;
8185
		} else {
8186 8187
			/*
			 * If bucketsize is not a power-of-two, we may free
8188 8189
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8190
			 */
8191 8192
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8193 8194 8195 8196 8197 8198
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8199 8200 8201
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8202 8203 8204 8205 8206 8207 8208 8209

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8210

K
KAMEZAWA Hiroyuki 已提交
8211
/*
8212 8213
 * This function checks whether pageblock includes unmovable pages or not.
 *
8214
 * PageLRU check without isolation or lru_lock could race so that
8215 8216 8217
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8218 8219
 *
 * Returns a page without holding a reference. If the caller wants to
8220
 * dereference that page (e.g., dumping), it has to make sure that it
8221 8222
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8223
 */
8224 8225
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8226
{
8227 8228
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8229
	unsigned long offset = pfn % pageblock_nr_pages;
8230

8231 8232 8233 8234 8235 8236 8237
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8238
			return NULL;
8239

8240
		return page;
8241
	}
8242

8243
	for (; iter < pageblock_nr_pages - offset; iter++) {
8244
		if (!pfn_valid_within(pfn + iter))
8245
			continue;
8246

8247
		page = pfn_to_page(pfn + iter);
8248

8249 8250 8251 8252 8253 8254
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8255
		if (PageReserved(page))
8256
			return page;
8257

8258 8259 8260 8261 8262 8263 8264 8265
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8266 8267
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8268
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8269
		 * We need not scan over tail pages because we don't
8270 8271
		 * handle each tail page individually in migration.
		 */
8272
		if (PageHuge(page) || PageTransCompound(page)) {
8273 8274
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8275

8276 8277 8278 8279
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8280
				return page;
8281
			}
8282

8283
			skip_pages = compound_nr(head) - (page - head);
8284
			iter += skip_pages - 1;
8285 8286 8287
			continue;
		}

8288 8289 8290 8291
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8292
		 * because their page->_refcount is zero at all time.
8293
		 */
8294
		if (!page_ref_count(page)) {
8295 8296 8297 8298
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8299

8300 8301 8302 8303
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8304
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8305 8306
			continue;

8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8320
		if (__PageMovable(page) || PageLRU(page))
8321 8322
			continue;

8323
		/*
8324 8325 8326
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8327
		 */
8328
		return page;
8329
	}
8330
	return NULL;
8331 8332
}

8333
#ifdef CONFIG_CONTIG_ALLOC
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8347 8348
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8349 8350
{
	/* This function is based on compact_zone() from compaction.c. */
8351
	unsigned int nr_reclaimed;
8352 8353 8354
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8355 8356 8357 8358
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8359

8360
	migrate_prep();
8361

8362
	while (pfn < end || !list_empty(&cc->migratepages)) {
8363 8364 8365 8366 8367
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8368 8369
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8370
			pfn = isolate_migratepages_range(cc, pfn, end);
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8381 8382 8383
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8384

8385 8386
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8387
	}
8388 8389 8390 8391 8392
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8393 8394 8395 8396 8397 8398
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8399 8400 8401 8402
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8403
 * @gfp_mask:	GFP mask to use during compaction
8404 8405
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8406
 * aligned.  The PFN range must belong to a single zone.
8407
 *
8408 8409 8410
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8411
 *
8412
 * Return: zero on success or negative error code.  On success all
8413 8414 8415
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8416
int alloc_contig_range(unsigned long start, unsigned long end,
8417
		       unsigned migratetype, gfp_t gfp_mask)
8418 8419
{
	unsigned long outer_start, outer_end;
8420 8421
	unsigned int order;
	int ret = 0;
8422

8423 8424 8425 8426
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8427
		.mode = MIGRATE_SYNC,
8428
		.ignore_skip_hint = true,
8429
		.no_set_skip_hint = true,
8430
		.gfp_mask = current_gfp_context(gfp_mask),
8431
		.alloc_contig = true,
8432 8433 8434
	};
	INIT_LIST_HEAD(&cc.migratepages);

8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8460
				       pfn_max_align_up(end), migratetype, 0);
8461
	if (ret)
8462
		return ret;
8463

8464 8465
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8466 8467 8468 8469 8470 8471 8472
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8473
	 */
8474
	ret = __alloc_contig_migrate_range(&cc, start, end);
8475
	if (ret && ret != -EBUSY)
8476
		goto done;
8477
	ret =0;
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8502 8503
			outer_start = start;
			break;
8504 8505 8506 8507
		}
		outer_start &= ~0UL << order;
	}

8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8521
	/* Make sure the range is really isolated. */
8522
	if (test_pages_isolated(outer_start, end, 0)) {
8523
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8524
			__func__, outer_start, end);
8525 8526 8527 8528
		ret = -EBUSY;
		goto done;
	}

8529
	/* Grab isolated pages from freelists. */
8530
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8544
				pfn_max_align_up(end), migratetype);
8545 8546
	return ret;
}
8547
EXPORT_SYMBOL(alloc_contig_range);
8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8649
#endif /* CONFIG_CONTIG_ALLOC */
8650

8651
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8652
{
8653 8654 8655 8656 8657 8658 8659 8660 8661
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8662
}
8663
EXPORT_SYMBOL(free_contig_range);
8664

8665 8666 8667 8668
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8669 8670
void __meminit zone_pcp_update(struct zone *zone)
{
8671
	mutex_lock(&pcp_batch_high_lock);
8672
	__zone_pcp_update(zone);
8673
	mutex_unlock(&pcp_batch_high_lock);
8674 8675
}

8676 8677 8678
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8679 8680
	int cpu;
	struct per_cpu_pageset *pset;
8681 8682 8683 8684

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8685 8686 8687 8688
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8689 8690 8691 8692 8693 8694
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8695
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8696
/*
8697 8698
 * All pages in the range must be in a single zone, must not contain holes,
 * must span full sections, and must be isolated before calling this function.
K
KAMEZAWA Hiroyuki 已提交
8699
 */
8700
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
K
KAMEZAWA Hiroyuki 已提交
8701
{
8702
	unsigned long pfn = start_pfn;
K
KAMEZAWA Hiroyuki 已提交
8703 8704
	struct page *page;
	struct zone *zone;
8705
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8706
	unsigned long flags;
8707

8708
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8709 8710 8711 8712
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	while (pfn < end_pfn) {
		page = pfn_to_page(pfn);
8713 8714 8715 8716 8717 8718 8719 8720
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			continue;
		}
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			continue;
		}
8731

K
KAMEZAWA Hiroyuki 已提交
8732 8733 8734
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8735
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8736 8737 8738 8739 8740
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8741 8742 8743 8744 8745 8746

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8747
	unsigned int order;
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8760 8761

#ifdef CONFIG_MEMORY_FAILURE
8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
/*
 * Break down a higher-order page in sub-pages, and keep our target out of
 * buddy allocator.
 */
static void break_down_buddy_pages(struct zone *zone, struct page *page,
				   struct page *target, int low, int high,
				   int migratetype)
{
	unsigned long size = 1 << high;
	struct page *current_buddy, *next_page;

	while (high > low) {
		high--;
		size >>= 1;

		if (target >= &page[size]) {
			next_page = page + size;
			current_buddy = page;
		} else {
			next_page = page;
			current_buddy = page + size;
		}

		if (set_page_guard(zone, current_buddy, high, migratetype))
			continue;

		if (current_buddy != target) {
			add_to_free_list(current_buddy, zone, high, migratetype);
			set_page_order(current_buddy, high);
			page = next_page;
		}
	}
}

/*
 * Take a page that will be marked as poisoned off the buddy allocator.
 */
bool take_page_off_buddy(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool ret = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));
		int buddy_order = page_order(page_head);

		if (PageBuddy(page_head) && buddy_order >= order) {
			unsigned long pfn_head = page_to_pfn(page_head);
			int migratetype = get_pfnblock_migratetype(page_head,
								   pfn_head);

			del_page_from_free_list(page_head, zone, buddy_order);
			break_down_buddy_pages(zone, page_head, page, 0,
						buddy_order, migratetype);
			ret = true;
			break;
		}
		if (page_count(page_head) > 0)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);
	return ret;
}
8829
#endif