page_alloc.c 220.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <linux/backing-dev.h>
50
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include <linux/page-isolation.h>
52
#include <linux/page_ext.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157 158 159 160 161
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166 167
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175 176
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208
#ifdef CONFIG_ZONE_DMA
209
	[ZONE_DMA] = 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	[ZONE_DMA32] = 256,
213
#endif
214
	[ZONE_NORMAL] = 32,
215
#ifdef CONFIG_HIGHMEM
216
	[ZONE_HIGHMEM] = 0,
217
#endif
218
	[ZONE_MOVABLE] = 0,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274 275
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279 280
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308 309 310 311 312 313 314 315
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
316
	/* Always populate low zones for address-constrained allocations */
317 318 319
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
320
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
442

443
void set_pageblock_migratetype(struct page *page, int migratetype)
444
{
445 446
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
447 448
		migratetype = MIGRATE_UNMOVABLE;

449 450 451 452
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
453
#ifdef CONFIG_DEBUG_VM
454
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
455
{
456 457 458
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
459
	unsigned long sp, start_pfn;
460

461 462
	do {
		seq = zone_span_seqbegin(zone);
463 464
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
465
		if (!zone_spans_pfn(zone, pfn))
466 467 468
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

469
	if (ret)
470 471 472
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
473

474
	return ret;
475 476 477 478
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
479
	if (!pfn_valid_within(page_to_pfn(page)))
480
		return 0;
L
Linus Torvalds 已提交
481
	if (zone != page_zone(page))
482 483 484 485 486 487 488
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
489
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
490 491
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
492
		return 1;
493 494 495
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
496 497
	return 0;
}
N
Nick Piggin 已提交
498
#else
499
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
500 501 502 503 504
{
	return 0;
}
#endif

505 506
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
507
{
508 509 510 511 512 513 514 515 516 517 518 519 520 521
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
522
			pr_alert(
523
			      "BUG: Bad page state: %lu messages suppressed\n",
524 525 526 527 528 529 530 531
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

532
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
533
		current->comm, page_to_pfn(page));
534 535 536 537 538
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
539
	dump_page_owner(page);
540

541
	print_modules();
L
Linus Torvalds 已提交
542
	dump_stack();
543
out:
544
	/* Leave bad fields for debug, except PageBuddy could make trouble */
545
	page_mapcount_reset(page); /* remove PageBuddy */
546
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
547 548 549 550 551
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
552
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
553
 *
554 555
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
556
 *
557 558
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
559
 *
560
 * The first tail page's ->compound_order holds the order of allocation.
561
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
562
 */
563

564
void free_compound_page(struct page *page)
565
{
566
	__free_pages_ok(page, compound_order(page));
567 568
}

569
void prep_compound_page(struct page *page, unsigned int order)
570 571 572 573
{
	int i;
	int nr_pages = 1 << order;

574
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 576 577 578
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
579
		set_page_count(p, 0);
580
		p->mapping = TAIL_MAPPING;
581
		set_compound_head(p, page);
582
	}
583
	atomic_set(compound_mapcount_ptr(page), -1);
584 585
}

586 587
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
588 589
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590
EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 592
bool _debug_guardpage_enabled __read_mostly;

593 594 595 596
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
597
	return kstrtobool(buf, &_debug_pagealloc_enabled);
598 599 600
}
early_param("debug_pagealloc", early_debug_pagealloc);

601 602
static bool need_debug_guardpage(void)
{
603 604 605 606
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

607 608 609
	if (!debug_guardpage_minorder())
		return false;

610 611 612 613 614
	return true;
}

static void init_debug_guardpage(void)
{
615 616 617
	if (!debug_pagealloc_enabled())
		return;

618 619 620
	if (!debug_guardpage_minorder())
		return;

621 622 623 624 625 626 627
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
628 629 630 631 632 633

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
634
		pr_err("Bad debug_guardpage_minorder value\n");
635 636 637
		return 0;
	}
	_debug_guardpage_minorder = res;
638
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
639 640
	return 0;
}
641
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
642

643
static inline bool set_page_guard(struct zone *zone, struct page *page,
644
				unsigned int order, int migratetype)
645
{
646 647 648
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
649 650 651 652
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
653 654

	page_ext = lookup_page_ext(page);
655
	if (unlikely(!page_ext))
656
		return false;
657

658 659
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

660 661 662 663
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
664 665

	return true;
666 667
}

668 669
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
670
{
671 672 673 674 675 676
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
677 678 679
	if (unlikely(!page_ext))
		return;

680 681
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

682 683 684
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
685 686
}
#else
687
struct page_ext_operations debug_guardpage_ops;
688 689
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
690 691
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
692 693
#endif

694
static inline void set_page_order(struct page *page, unsigned int order)
695
{
H
Hugh Dickins 已提交
696
	set_page_private(page, order);
697
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
698 699 700 701
}

static inline void rmv_page_order(struct page *page)
{
702
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
703
	set_page_private(page, 0);
L
Linus Torvalds 已提交
704 705 706 707 708
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
709
 * (a) the buddy is not in a hole (check before calling!) &&
710
 * (b) the buddy is in the buddy system &&
711 712
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
713
 *
714 715 716 717
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
718
 *
719
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
720
 */
721
static inline int page_is_buddy(struct page *page, struct page *buddy,
722
							unsigned int order)
L
Linus Torvalds 已提交
723
{
724
	if (page_is_guard(buddy) && page_order(buddy) == order) {
725 726 727
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

728 729
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

730 731 732
		return 1;
	}

733
	if (PageBuddy(buddy) && page_order(buddy) == order) {
734 735 736 737 738 739 740 741
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

742 743
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

744
		return 1;
745
	}
746
	return 0;
L
Linus Torvalds 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
762 763 764
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
765
 * So when we are allocating or freeing one, we can derive the state of the
766 767
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
768
 * If a block is freed, and its buddy is also free, then this
769
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
770
 *
771
 * -- nyc
L
Linus Torvalds 已提交
772 773
 */

N
Nick Piggin 已提交
774
static inline void __free_one_page(struct page *page,
775
		unsigned long pfn,
776 777
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
778
{
779 780
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
781
	struct page *buddy;
782 783 784
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
785

786
	VM_BUG_ON(!zone_is_initialized(zone));
787
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
788

789
	VM_BUG_ON(migratetype == -1);
790
	if (likely(!is_migrate_isolate(migratetype)))
791
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
792

793
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
794
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
795

796
continue_merging:
797
	while (order < max_order - 1) {
798 799
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
800 801 802

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
803
		if (!page_is_buddy(page, buddy, order))
804
			goto done_merging;
805 806 807 808 809
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
810
			clear_page_guard(zone, buddy, order, migratetype);
811 812 813 814 815
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
816 817 818
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
819 820
		order++;
	}
821 822 823 824 825 826 827 828 829 830 831 832
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

833 834
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
835 836 837 838 839 840 841 842 843 844 845 846
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
847
	set_page_order(page, order);
848 849 850 851 852 853 854 855 856

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
857
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
858
		struct page *higher_page, *higher_buddy;
859 860 861 862
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
863 864
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
865 866 867 868 869 870 871 872
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
873 874 875
	zone->free_area[order].nr_free++;
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

898
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
899
{
900 901 902 903 904
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
905

906
	if (unlikely(atomic_read(&page->_mapcount) != -1))
907 908 909
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
910
	if (unlikely(page_ref_count(page) != 0))
911
		bad_reason = "nonzero _refcount";
912 913 914 915
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
916 917 918 919
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
920
	bad_page(page, bad_reason, bad_flags);
921 922 923 924
}

static inline int free_pages_check(struct page *page)
{
925
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
926 927 928 929
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
930
	return 1;
L
Linus Torvalds 已提交
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

983 984
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
985
{
986
	int bad = 0;
987 988 989

	VM_BUG_ON_PAGE(PageTail(page), page);

990 991 992 993 994 995 996 997 998 999 1000
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001

1002 1003
		if (compound)
			ClearPageDoubleMap(page);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1014
	if (PageMappingFlags(page))
1015
		page->mapping = NULL;
1016
	if (memcg_kmem_enabled() && PageKmemcg(page))
1017
		memcg_kmem_uncharge(page, order);
1018 1019 1020 1021
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1022

1023 1024 1025
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1026 1027 1028

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1029
					   PAGE_SIZE << order);
1030
		debug_check_no_obj_freed(page_address(page),
1031
					   PAGE_SIZE << order);
1032
	}
1033 1034 1035
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1036
	kasan_free_pages(page, order);
1037 1038 1039 1040

	return true;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1057 1058 1059 1060 1061 1062
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1063 1064 1065 1066 1067 1068 1069 1070 1071
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1072
/*
1073
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1074
 * Assumes all pages on list are in same zone, and of same order.
1075
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080 1081 1082
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1083 1084
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1085
{
1086
	int migratetype = 0;
1087
	int batch_free = 0;
1088
	int prefetch_nr = 0;
1089
	bool isolated_pageblocks;
1090 1091
	struct page *page, *tmp;
	LIST_HEAD(head);
1092

1093
	while (count) {
1094 1095 1096
		struct list_head *list;

		/*
1097 1098 1099 1100 1101
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1102 1103
		 */
		do {
1104
			batch_free++;
1105 1106 1107 1108
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1109

1110 1111
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1112
			batch_free = count;
1113

1114
		do {
1115
			page = list_last_entry(list, struct page, lru);
1116
			/* must delete to avoid corrupting pcp list */
1117
			list_del(&page->lru);
1118
			pcp->count--;
1119

1120 1121 1122
			if (bulkfree_pcp_prepare(page))
				continue;

1123
			list_add_tail(&page->lru, &head);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1136
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1137
	}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1157
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1158 1159
}

1160 1161
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1162
				unsigned int order,
1163
				int migratetype)
L
Linus Torvalds 已提交
1164
{
1165
	spin_lock(&zone->lock);
1166 1167 1168 1169
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1170
	__free_one_page(page, pfn, zone, order, migratetype);
1171
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1172 1173
}

1174
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175
				unsigned long zone, int nid)
1176
{
1177
	mm_zero_struct_page(page);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1191
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192
static void __meminit init_reserved_page(unsigned long pfn)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1209
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210 1211 1212 1213 1214 1215 1216
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1217 1218 1219 1220 1221 1222
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1223
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224 1225 1226 1227
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1228 1229 1230 1231 1232
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1233 1234 1235 1236

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1237 1238 1239
			SetPageReserved(page);
		}
	}
1240 1241
}

1242 1243
static void __free_pages_ok(struct page *page, unsigned int order)
{
1244
	unsigned long flags;
M
Minchan Kim 已提交
1245
	int migratetype;
1246
	unsigned long pfn = page_to_pfn(page);
1247

1248
	if (!free_pages_prepare(page, order, true))
1249 1250
		return;

1251
	migratetype = get_pfnblock_migratetype(page, pfn);
1252 1253
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1254
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1256 1257
}

1258
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259
{
1260
	unsigned int nr_pages = 1 << order;
1261
	struct page *p = page;
1262
	unsigned int loop;
1263

1264 1265 1266
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1267 1268
		__ClearPageReserved(p);
		set_page_count(p, 0);
1269
	}
1270 1271
	__ClearPageReserved(p);
	set_page_count(p, 0);
1272

1273
	page_zone(page)->managed_pages += nr_pages;
1274 1275
	set_page_refcounted(page);
	__free_pages(page, order);
1276 1277
}

1278 1279
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280

1281 1282 1283 1284
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1285
	static DEFINE_SPINLOCK(early_pfn_lock);
1286 1287
	int nid;

1288
	spin_lock(&early_pfn_lock);
1289
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290
	if (nid < 0)
1291
		nid = first_online_node;
1292 1293 1294
	spin_unlock(&early_pfn_lock);

	return nid;
1295 1296 1297 1298
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 1300 1301
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1323 1324 1325
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1326 1327 1328 1329 1330 1331
{
	return true;
}
#endif


1332
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333 1334 1335 1336
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1337
	return __free_pages_boot_core(page, order);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1369 1370 1371
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1411
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 1413
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1414
{
1415 1416
	struct page *page;
	unsigned long i;
1417

1418
	if (!nr_pages)
1419 1420
		return;

1421 1422
	page = pfn_to_page(pfn);

1423
	/* Free a large naturally-aligned chunk if possible */
1424 1425
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427
		__free_pages_boot_core(page, pageblock_order);
1428 1429 1430
		return;
	}

1431 1432 1433
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434
		__free_pages_boot_core(page, 0);
1435
	}
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1447

1448
/*
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1461
 */
1462 1463 1464
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1465
{
1466 1467 1468 1469 1470 1471 1472 1473
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1485

1486 1487 1488 1489 1490 1491 1492
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1493
			touch_nmi_watchdog();
1494 1495 1496 1497 1498 1499
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1510 1511 1512 1513 1514 1515
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1516 1517 1518
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1519
			continue;
1520
		} else if (!page || !(pfn & nr_pgmask)) {
1521
			page = pfn_to_page(pfn);
1522
			touch_nmi_watchdog();
1523 1524
		} else {
			page++;
1525
		}
1526
		__init_single_page(page, pfn, zid, nid);
1527
		nr_pages++;
1528
	}
1529
	return (nr_pages);
1530 1531
}

1532
/* Initialise remaining memory on a node */
1533
static int __init deferred_init_memmap(void *data)
1534
{
1535 1536
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1537 1538
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1539
	unsigned long spfn, epfn, first_init_pfn, flags;
1540 1541
	phys_addr_t spa, epa;
	int zid;
1542
	struct zone *zone;
1543
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544
	u64 i;
1545

1546 1547 1548 1549 1550 1551
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1552
	if (first_init_pfn == ULONG_MAX) {
1553
		pgdat_resize_unlock(pgdat, &flags);
1554
		pgdat_init_report_one_done();
1555 1556 1557
		return 0;
	}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1569
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1582 1583 1584
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585
		deferred_free_pages(nid, zid, spfn, epfn);
1586
	}
1587
	pgdat_resize_unlock(pgdat, &flags);
1588 1589 1590 1591

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1592
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593
					jiffies_to_msecs(jiffies - start));
1594 1595

	pgdat_init_report_one_done();
1596 1597
	return 0;
}
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1709
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710 1711 1712

void __init page_alloc_init_late(void)
{
1713 1714 1715
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716 1717
	int nid;

1718 1719
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720 1721 1722 1723 1724
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1725
	wait_for_completion(&pgdat_init_all_done_comp);
1726

1727 1728 1729 1730 1731 1732
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1733 1734
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1735
#endif
P
Pavel Tatashin 已提交
1736 1737 1738 1739
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1740 1741 1742

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1743 1744
}

1745
#ifdef CONFIG_CMA
1746 1747 1748 1749 1750 1751 1752 1753
static void __init adjust_present_page_count(struct page *page, long count)
{
	struct zone *zone = page_zone(page);

	/* We don't need to hold a lock since it is boot-up process */
	zone->present_pages += count;
}

1754
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1755 1756 1757
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
1758
	unsigned long pfn = page_to_pfn(page);
1759
	struct page *p = page;
1760 1761 1762 1763 1764 1765 1766 1767
	int nid = page_to_nid(page);

	/*
	 * ZONE_MOVABLE will steal present pages from other zones by
	 * changing page links so page_zone() is changed. Before that,
	 * we need to adjust previous zone's page count first.
	 */
	adjust_present_page_count(page, -pageblock_nr_pages);
1768 1769 1770 1771

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1772 1773 1774 1775 1776 1777

		/* Steal pages from other zones */
		set_page_links(p, ZONE_MOVABLE, nid, pfn);
	} while (++p, ++pfn, --i);

	adjust_present_page_count(page, pageblock_nr_pages);
1778 1779

	set_pageblock_migratetype(page, MIGRATE_CMA);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1794
	adjust_managed_page_count(page, pageblock_nr_pages);
1795 1796
}
#endif
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1810
 * -- nyc
L
Linus Torvalds 已提交
1811
 */
N
Nick Piggin 已提交
1812
static inline void expand(struct zone *zone, struct page *page,
1813 1814
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1822
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1823

1824 1825 1826 1827 1828 1829 1830
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1831
			continue;
1832

1833
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1839
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1840
{
1841 1842
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1843

1844
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1845 1846 1847
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1848
	if (unlikely(page_ref_count(page) != 0))
1849
		bad_reason = "nonzero _count";
1850 1851 1852
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1853 1854 1855
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1856
	}
1857 1858 1859 1860
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1861 1862 1863 1864
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1879 1880
}

1881
static inline bool free_pages_prezeroed(void)
1882 1883
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1884
		page_poisoning_enabled();
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1934
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1935
							unsigned int alloc_flags)
1936 1937
{
	int i;
1938

1939
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1940

1941
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1942 1943
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1944 1945 1946 1947

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1948
	/*
1949
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1950 1951 1952 1953
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1954 1955 1956 1957
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1958 1959
}

1960 1961 1962 1963
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1964
static __always_inline
1965
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1966 1967 1968
						int migratetype)
{
	unsigned int current_order;
1969
	struct free_area *area;
1970 1971 1972 1973 1974
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1975
		page = list_first_entry_or_null(&area->free_list[migratetype],
1976
							struct page, lru);
1977 1978
		if (!page)
			continue;
1979 1980 1981 1982
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1983
		set_pcppage_migratetype(page, migratetype);
1984 1985 1986 1987 1988 1989 1990
		return page;
	}

	return NULL;
}


1991 1992 1993 1994
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1995
static int fallbacks[MIGRATE_TYPES][4] = {
1996 1997 1998
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1999
#ifdef CONFIG_CMA
2000
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2001
#endif
2002
#ifdef CONFIG_MEMORY_ISOLATION
2003
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2004
#endif
2005 2006
};

2007
#ifdef CONFIG_CMA
2008
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2009 2010 2011 2012 2013 2014 2015 2016 2017
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2018 2019
/*
 * Move the free pages in a range to the free lists of the requested type.
2020
 * Note that start_page and end_pages are not aligned on a pageblock
2021 2022
 * boundary. If alignment is required, use move_freepages_block()
 */
2023
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2024
			  struct page *start_page, struct page *end_page,
2025
			  int migratetype, int *num_movable)
2026 2027
{
	struct page *page;
2028
	unsigned int order;
2029
	int pages_moved = 0;
2030 2031 2032 2033 2034 2035 2036

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2037
	 * grouping pages by mobility
2038
	 */
2039 2040 2041
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2042 2043
#endif

2044 2045 2046
	if (num_movable)
		*num_movable = 0;

2047 2048 2049 2050 2051 2052
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2053 2054 2055
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2056
		if (!PageBuddy(page)) {
2057 2058 2059 2060 2061 2062 2063 2064 2065
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2066 2067 2068 2069 2070
			page++;
			continue;
		}

		order = page_order(page);
2071 2072
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2073
		page += 1 << order;
2074
		pages_moved += 1 << order;
2075 2076
	}

2077
	return pages_moved;
2078 2079
}

2080
int move_freepages_block(struct zone *zone, struct page *page,
2081
				int migratetype, int *num_movable)
2082 2083 2084 2085 2086
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2087
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2088
	start_page = pfn_to_page(start_pfn);
2089 2090
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2091 2092

	/* Do not cross zone boundaries */
2093
	if (!zone_spans_pfn(zone, start_pfn))
2094
		start_page = page;
2095
	if (!zone_spans_pfn(zone, end_pfn))
2096 2097
		return 0;

2098 2099
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2100 2101
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2113
/*
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2124
 */
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2149 2150 2151 2152
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2153 2154
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2155
					int start_type, bool whole_block)
2156
{
2157
	unsigned int current_order = page_order(page);
2158
	struct free_area *area;
2159 2160 2161 2162
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2163

2164 2165 2166 2167
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2168
	if (is_migrate_highatomic(old_block_type))
2169 2170
		goto single_page;

2171 2172 2173
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2174
		goto single_page;
2175 2176
	}

2177 2178 2179 2180
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2205
	/* moving whole block can fail due to zone boundary conditions */
2206
	if (!free_pages)
2207
		goto single_page;
2208

2209 2210 2211 2212 2213
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2214 2215
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2216 2217 2218 2219 2220 2221

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2242
		if (fallback_mt == MIGRATE_TYPES)
2243 2244 2245 2246
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2247

2248 2249 2250
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2251 2252 2253 2254 2255
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2256
	}
2257 2258

	return -1;
2259 2260
}

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2287 2288
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2289 2290
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2291
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2303 2304 2305
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2306
 */
2307 2308
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2309 2310 2311 2312 2313 2314 2315
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2316
	bool ret;
2317 2318 2319

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2320 2321 2322 2323 2324 2325
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2326 2327 2328 2329 2330 2331
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2332 2333 2334 2335
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2336 2337 2338
				continue;

			/*
2339 2340 2341 2342 2343
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2344
			 */
2345
			if (is_migrate_highatomic_page(page)) {
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2368 2369
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2370 2371 2372 2373
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2374 2375 2376
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2377 2378

	return false;
2379 2380
}

2381 2382 2383 2384 2385
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2386 2387 2388 2389
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2390
 */
2391
static __always_inline bool
2392
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2393
{
2394
	struct free_area *area;
2395
	int current_order;
2396
	struct page *page;
2397 2398
	int fallback_mt;
	bool can_steal;
2399

2400 2401 2402 2403 2404
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2405
	for (current_order = MAX_ORDER - 1; current_order >= order;
2406
				--current_order) {
2407 2408
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2409
				start_migratetype, false, &can_steal);
2410 2411
		if (fallback_mt == -1)
			continue;
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2424

2425 2426
		goto do_steal;
	}
2427

2428
	return false;
2429

2430 2431 2432 2433 2434 2435 2436 2437
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2438 2439
	}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2457 2458
}

2459
/*
L
Linus Torvalds 已提交
2460 2461 2462
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2463 2464
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2465 2466 2467
{
	struct page *page;

2468
retry:
2469
	page = __rmqueue_smallest(zone, order, migratetype);
2470
	if (unlikely(!page)) {
2471 2472 2473
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2474 2475
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2476 2477
	}

2478
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2479
	return page;
L
Linus Torvalds 已提交
2480 2481
}

2482
/*
L
Linus Torvalds 已提交
2483 2484 2485 2486
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2487
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2488
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2489
			int migratetype)
L
Linus Torvalds 已提交
2490
{
2491
	int i, alloced = 0;
2492

2493
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2494
	for (i = 0; i < count; ++i) {
2495
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2496
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2497
			break;
2498

2499 2500 2501
		if (unlikely(check_pcp_refill(page)))
			continue;

2502
		/*
2503 2504 2505 2506 2507 2508 2509 2510
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2511
		 */
2512
		list_add_tail(&page->lru, list);
2513
		alloced++;
2514
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2515 2516
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2517
	}
2518 2519 2520 2521 2522 2523 2524

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2525
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2526
	spin_unlock(&zone->lock);
2527
	return alloced;
L
Linus Torvalds 已提交
2528 2529
}

2530
#ifdef CONFIG_NUMA
2531
/*
2532 2533 2534 2535
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2536 2537
 * Note that this function must be called with the thread pinned to
 * a single processor.
2538
 */
2539
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2540 2541
{
	unsigned long flags;
2542
	int to_drain, batch;
2543

2544
	local_irq_save(flags);
2545
	batch = READ_ONCE(pcp->batch);
2546
	to_drain = min(pcp->count, batch);
2547
	if (to_drain > 0)
2548
		free_pcppages_bulk(zone, to_drain, pcp);
2549
	local_irq_restore(flags);
2550 2551 2552
}
#endif

2553
/*
2554
 * Drain pcplists of the indicated processor and zone.
2555 2556 2557 2558 2559
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2560
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2561
{
N
Nick Piggin 已提交
2562
	unsigned long flags;
2563 2564
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2565

2566 2567
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2568

2569
	pcp = &pset->pcp;
2570
	if (pcp->count)
2571 2572 2573
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2574

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2588 2589 2590
	}
}

2591 2592
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2593 2594 2595
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2596
 */
2597
void drain_local_pages(struct zone *zone)
2598
{
2599 2600 2601 2602 2603 2604
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2605 2606
}

2607 2608
static void drain_local_pages_wq(struct work_struct *work)
{
2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2617
	drain_local_pages(NULL);
2618
	preempt_enable();
2619 2620
}

2621
/*
2622 2623
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2624 2625
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2626
 * Note that this can be extremely slow as the draining happens in a workqueue.
2627
 */
2628
void drain_all_pages(struct zone *zone)
2629
{
2630 2631 2632 2633 2634 2635 2636 2637
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2638 2639 2640 2641 2642 2643 2644
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2655

2656 2657 2658 2659 2660 2661 2662
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2663 2664
		struct per_cpu_pageset *pcp;
		struct zone *z;
2665
		bool has_pcps = false;
2666 2667

		if (zone) {
2668
			pcp = per_cpu_ptr(zone->pageset, cpu);
2669
			if (pcp->pcp.count)
2670
				has_pcps = true;
2671 2672 2673 2674 2675 2676 2677
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2678 2679
			}
		}
2680

2681 2682 2683 2684 2685
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2686

2687 2688 2689
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2690
		queue_work_on(cpu, mm_percpu_wq, work);
2691
	}
2692 2693 2694 2695
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2696 2697
}

2698
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2699

2700 2701 2702 2703 2704
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2705 2706
void mark_free_pages(struct zone *zone)
{
2707
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2708
	unsigned long flags;
2709
	unsigned int order, t;
2710
	struct page *page;
L
Linus Torvalds 已提交
2711

2712
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2713 2714 2715
		return;

	spin_lock_irqsave(&zone->lock, flags);
2716

2717
	max_zone_pfn = zone_end_pfn(zone);
2718 2719
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2720
			page = pfn_to_page(pfn);
2721

2722 2723 2724 2725 2726
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2727 2728 2729
			if (page_zone(page) != zone)
				continue;

2730 2731
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2732
		}
L
Linus Torvalds 已提交
2733

2734
	for_each_migratetype_order(order, t) {
2735 2736
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2737
			unsigned long i;
L
Linus Torvalds 已提交
2738

2739
			pfn = page_to_pfn(page);
2740 2741 2742 2743 2744
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2745
				swsusp_set_page_free(pfn_to_page(pfn + i));
2746
			}
2747
		}
2748
	}
L
Linus Torvalds 已提交
2749 2750
	spin_unlock_irqrestore(&zone->lock, flags);
}
2751
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2752

2753
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2754
{
2755
	int migratetype;
L
Linus Torvalds 已提交
2756

2757
	if (!free_pcp_prepare(page))
2758
		return false;
2759

2760
	migratetype = get_pfnblock_migratetype(page, pfn);
2761
	set_pcppage_migratetype(page, migratetype);
2762 2763 2764
	return true;
}

2765
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2766 2767 2768 2769 2770 2771
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2772
	__count_vm_event(PGFREE);
2773

2774 2775 2776
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2777
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2778 2779 2780 2781
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2782
		if (unlikely(is_migrate_isolate(migratetype))) {
2783
			free_one_page(zone, page, pfn, 0, migratetype);
2784
			return;
2785 2786 2787 2788
		}
		migratetype = MIGRATE_MOVABLE;
	}

2789
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2790
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2791
	pcp->count++;
N
Nick Piggin 已提交
2792
	if (pcp->count >= pcp->high) {
2793
		unsigned long batch = READ_ONCE(pcp->batch);
2794
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2795
	}
2796
}
2797

2798 2799 2800
/*
 * Free a 0-order page
 */
2801
void free_unref_page(struct page *page)
2802 2803 2804 2805
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2806
	if (!free_unref_page_prepare(page, pfn))
2807 2808 2809
		return;

	local_irq_save(flags);
2810
	free_unref_page_commit(page, pfn);
2811
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2812 2813
}

2814 2815 2816
/*
 * Free a list of 0-order pages
 */
2817
void free_unref_page_list(struct list_head *list)
2818 2819
{
	struct page *page, *next;
2820
	unsigned long flags, pfn;
2821
	int batch_count = 0;
2822 2823 2824 2825

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2826
		if (!free_unref_page_prepare(page, pfn))
2827 2828 2829
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2830

2831
	local_irq_save(flags);
2832
	list_for_each_entry_safe(page, next, list, lru) {
2833 2834 2835
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2836 2837
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2848
	}
2849
	local_irq_restore(flags);
2850 2851
}

N
Nick Piggin 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2864 2865
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2866

2867
	for (i = 1; i < (1 << order); i++)
2868
		set_page_refcounted(page + i);
2869
	split_page_owner(page, order);
N
Nick Piggin 已提交
2870
}
K
K. Y. Srinivasan 已提交
2871
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2872

2873
int __isolate_free_page(struct page *page, unsigned int order)
2874 2875 2876
{
	unsigned long watermark;
	struct zone *zone;
2877
	int mt;
2878 2879 2880 2881

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2882
	mt = get_pageblock_migratetype(page);
2883

2884
	if (!is_migrate_isolate(mt)) {
2885 2886 2887 2888 2889 2890 2891
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
J
Joonsoo Kim 已提交
2892
		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2893 2894
			return 0;

2895
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2896
	}
2897 2898 2899 2900 2901

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2902

2903 2904 2905 2906
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2907 2908
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2909 2910
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2911
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2912
			    && !is_migrate_highatomic(mt))
2913 2914 2915
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2916 2917
	}

2918

2919
	return 1UL << order;
2920 2921
}

2922 2923 2924 2925 2926
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2927
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2928 2929
{
#ifdef CONFIG_NUMA
2930
	enum numa_stat_item local_stat = NUMA_LOCAL;
2931

2932 2933 2934 2935
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2936
	if (z->node != numa_node_id())
2937 2938
		local_stat = NUMA_OTHER;

2939
	if (z->node == preferred_zone->node)
2940
		__inc_numa_state(z, NUMA_HIT);
2941
	else {
2942 2943
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2944
	}
2945
	__inc_numa_state(z, local_stat);
2946 2947 2948
#endif
}

2949 2950
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2951
			struct per_cpu_pages *pcp,
2952 2953 2954 2955 2956 2957 2958 2959
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2960
					migratetype);
2961 2962 2963 2964
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2965
		page = list_first_entry(list, struct page, lru);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2981
	unsigned long flags;
2982

2983
	local_irq_save(flags);
2984 2985
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2986
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2987 2988 2989 2990
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2991
	local_irq_restore(flags);
2992 2993 2994
	return page;
}

L
Linus Torvalds 已提交
2995
/*
2996
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2997
 */
2998
static inline
2999
struct page *rmqueue(struct zone *preferred_zone,
3000
			struct zone *zone, unsigned int order,
3001 3002
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3003 3004
{
	unsigned long flags;
3005
	struct page *page;
L
Linus Torvalds 已提交
3006

3007
	if (likely(order == 0)) {
3008 3009 3010 3011
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
3012

3013 3014 3015 3016 3017 3018
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3019

3020 3021 3022 3023 3024 3025 3026
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3027
		if (!page)
3028 3029 3030 3031 3032 3033 3034
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3035

3036
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3037
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3038
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3039

3040 3041
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3042
	return page;
N
Nick Piggin 已提交
3043 3044 3045 3046

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3047 3048
}

3049 3050
#ifdef CONFIG_FAIL_PAGE_ALLOC

3051
static struct {
3052 3053
	struct fault_attr attr;

3054
	bool ignore_gfp_highmem;
3055
	bool ignore_gfp_reclaim;
3056
	u32 min_order;
3057 3058
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3059
	.ignore_gfp_reclaim = true,
3060
	.ignore_gfp_highmem = true,
3061
	.min_order = 1,
3062 3063 3064 3065 3066 3067 3068 3069
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3070
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3071
{
3072
	if (order < fail_page_alloc.min_order)
3073
		return false;
3074
	if (gfp_mask & __GFP_NOFAIL)
3075
		return false;
3076
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3077
		return false;
3078 3079
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3080
		return false;
3081 3082 3083 3084 3085 3086 3087 3088

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
3089
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3090 3091
	struct dentry *dir;

3092 3093 3094 3095
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3096

3097
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3098
				&fail_page_alloc.ignore_gfp_reclaim))
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3109
	debugfs_remove_recursive(dir);
3110

3111
	return -ENOMEM;
3112 3113 3114 3115 3116 3117 3118 3119
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3120
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3121
{
3122
	return false;
3123 3124 3125 3126
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3127
/*
3128 3129 3130 3131
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3132
 */
3133 3134 3135
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3136
{
3137
	long min = mark;
L
Linus Torvalds 已提交
3138
	int o;
3139
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3140

3141
	/* free_pages may go negative - that's OK */
3142
	free_pages -= (1 << order) - 1;
3143

R
Rohit Seth 已提交
3144
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3145
		min -= min / 2;
3146 3147 3148 3149 3150 3151

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3152
	if (likely(!alloc_harder)) {
3153
		free_pages -= z->nr_reserved_highatomic;
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3167

3168 3169 3170 3171 3172 3173
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3174
		return false;
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
J
Joonsoo Kim 已提交
3194
		if (!list_empty(&area->free_list[MIGRATE_CMA]))
3195 3196
			return true;
#endif
3197 3198 3199
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3200
	}
3201
	return false;
3202 3203
}

3204
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3205
		      int classzone_idx, unsigned int alloc_flags)
3206 3207 3208 3209 3210
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
J
Joonsoo Kim 已提交
3223
	if (!order && free_pages > mark + z->lowmem_reserve[classzone_idx])
3224 3225 3226 3227 3228 3229
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3230
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3231
			unsigned long mark, int classzone_idx)
3232 3233 3234 3235 3236 3237
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3238
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3239
								free_pages);
L
Linus Torvalds 已提交
3240 3241
}

3242
#ifdef CONFIG_NUMA
3243 3244
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3245
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3246
				RECLAIM_DISTANCE;
3247
}
3248
#else	/* CONFIG_NUMA */
3249 3250 3251 3252
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3253 3254
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3255
/*
3256
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3257 3258 3259
 * a page.
 */
static struct page *
3260 3261
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3262
{
3263
	struct zoneref *z = ac->preferred_zoneref;
3264
	struct zone *zone;
3265 3266
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3267
	/*
3268
	 * Scan zonelist, looking for a zone with enough free.
3269
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3270
	 */
3271
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3272
								ac->nodemask) {
3273
		struct page *page;
3274 3275
		unsigned long mark;

3276 3277
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3278
			!__cpuset_zone_allowed(zone, gfp_mask))
3279
				continue;
3280 3281
		/*
		 * When allocating a page cache page for writing, we
3282 3283
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3284
		 * proportional share of globally allowed dirty pages.
3285
		 * The dirty limits take into account the node's
3286 3287 3288 3289 3290
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3291
		 * exceed the per-node dirty limit in the slowpath
3292
		 * (spread_dirty_pages unset) before going into reclaim,
3293
		 * which is important when on a NUMA setup the allowed
3294
		 * nodes are together not big enough to reach the
3295
		 * global limit.  The proper fix for these situations
3296
		 * will require awareness of nodes in the
3297 3298
		 * dirty-throttling and the flusher threads.
		 */
3299 3300 3301 3302 3303 3304 3305 3306 3307
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3308

3309
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3310
		if (!zone_watermark_fast(zone, order, mark,
3311
				       ac_classzone_idx(ac), alloc_flags)) {
3312 3313
			int ret;

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3324 3325 3326 3327 3328
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3329
			if (node_reclaim_mode == 0 ||
3330
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3331 3332
				continue;

3333
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3334
			switch (ret) {
3335
			case NODE_RECLAIM_NOSCAN:
3336
				/* did not scan */
3337
				continue;
3338
			case NODE_RECLAIM_FULL:
3339
				/* scanned but unreclaimable */
3340
				continue;
3341 3342
			default:
				/* did we reclaim enough */
3343
				if (zone_watermark_ok(zone, order, mark,
3344
						ac_classzone_idx(ac), alloc_flags))
3345 3346 3347
					goto try_this_zone;

				continue;
3348
			}
R
Rohit Seth 已提交
3349 3350
		}

3351
try_this_zone:
3352
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3353
				gfp_mask, alloc_flags, ac->migratetype);
3354
		if (page) {
3355
			prep_new_page(page, order, gfp_mask, alloc_flags);
3356 3357 3358 3359 3360 3361 3362 3363

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3364
			return page;
3365 3366 3367 3368 3369 3370 3371 3372
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3373
		}
3374
	}
3375

3376
	return NULL;
M
Martin Hicks 已提交
3377 3378
}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3393
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3394 3395
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3396
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3397

3398
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3399 3400 3401 3402 3403 3404 3405 3406
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3407
		if (tsk_is_oom_victim(current) ||
3408 3409
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3410
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3411 3412
		filter &= ~SHOW_MEM_FILTER_NODES;

3413
	show_mem(filter, nodemask);
3414 3415
}

3416
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3417 3418 3419 3420 3421 3422
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3423
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3424 3425
		return;

3426 3427 3428
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3429 3430 3431
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3432
	va_end(args);
J
Joe Perches 已提交
3433

3434
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3435

3436
	dump_stack();
3437
	warn_alloc_show_mem(gfp_mask, nodemask);
3438 3439
}

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3460 3461
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3462
	const struct alloc_context *ac, unsigned long *did_some_progress)
3463
{
3464 3465 3466
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3467
		.memcg = NULL,
3468 3469 3470
		.gfp_mask = gfp_mask,
		.order = order,
	};
3471 3472
	struct page *page;

3473 3474 3475
	*did_some_progress = 0;

	/*
3476 3477
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3478
	 */
3479
	if (!mutex_trylock(&oom_lock)) {
3480
		*did_some_progress = 1;
3481
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3482 3483
		return NULL;
	}
3484

3485 3486 3487
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3488 3489 3490
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3491
	 */
3492 3493 3494
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3495
	if (page)
3496 3497
		goto out;

3498 3499 3500 3501 3502 3503
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3504 3505 3506 3507 3508 3509 3510 3511
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3530

3531
	/* Exhausted what can be done so it's blame time */
3532
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3533
		*did_some_progress = 1;
3534

3535 3536 3537 3538 3539 3540
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3541 3542
					ALLOC_NO_WATERMARKS, ac);
	}
3543
out:
3544
	mutex_unlock(&oom_lock);
3545 3546 3547
	return page;
}

3548 3549 3550 3551 3552 3553
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3554 3555 3556 3557
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3558
		unsigned int alloc_flags, const struct alloc_context *ac,
3559
		enum compact_priority prio, enum compact_result *compact_result)
3560
{
3561
	struct page *page;
3562
	unsigned int noreclaim_flag;
3563 3564

	if (!order)
3565 3566
		return NULL;

3567
	noreclaim_flag = memalloc_noreclaim_save();
3568
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3569
									prio);
3570
	memalloc_noreclaim_restore(noreclaim_flag);
3571

3572
	if (*compact_result <= COMPACT_INACTIVE)
3573
		return NULL;
3574

3575 3576 3577 3578 3579
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3580

3581
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3582

3583 3584
	if (page) {
		struct zone *zone = page_zone(page);
3585

3586 3587 3588 3589 3590
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3591

3592 3593 3594 3595 3596
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3597

3598
	cond_resched();
3599 3600 3601

	return NULL;
}
3602

3603 3604 3605 3606
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3607
		     int *compaction_retries)
3608 3609
{
	int max_retries = MAX_COMPACT_RETRIES;
3610
	int min_priority;
3611 3612 3613
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3614 3615 3616 3617

	if (!order)
		return false;

3618 3619 3620
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3621 3622 3623 3624 3625
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3626 3627
	if (compaction_failed(compact_result))
		goto check_priority;
3628 3629 3630 3631 3632 3633 3634

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3635 3636 3637 3638
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3639 3640

	/*
3641
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3642 3643 3644 3645 3646 3647 3648 3649
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3650 3651 3652 3653
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3654

3655 3656 3657 3658 3659
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3660 3661
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3662

3663
	if (*compact_priority > min_priority) {
3664 3665
		(*compact_priority)--;
		*compaction_retries = 0;
3666
		ret = true;
3667
	}
3668 3669 3670
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3671
}
3672 3673 3674
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3675
		unsigned int alloc_flags, const struct alloc_context *ac,
3676
		enum compact_priority prio, enum compact_result *compact_result)
3677
{
3678
	*compact_result = COMPACT_SKIPPED;
3679 3680
	return NULL;
}
3681 3682

static inline bool
3683 3684
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3685
		     enum compact_priority *compact_priority,
3686
		     int *compaction_retries)
3687
{
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3706 3707
	return false;
}
3708
#endif /* CONFIG_COMPACTION */
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3723
	if (current->flags & PF_MEMALLOC)
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3751 3752
/* Perform direct synchronous page reclaim */
static int
3753 3754
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3755 3756
{
	struct reclaim_state reclaim_state;
3757
	int progress;
3758
	unsigned int noreclaim_flag;
3759 3760 3761 3762 3763

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3764
	noreclaim_flag = memalloc_noreclaim_save();
3765
	fs_reclaim_acquire(gfp_mask);
3766
	reclaim_state.reclaimed_slab = 0;
3767
	current->reclaim_state = &reclaim_state;
3768

3769 3770
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3771

3772
	current->reclaim_state = NULL;
3773
	fs_reclaim_release(gfp_mask);
3774
	memalloc_noreclaim_restore(noreclaim_flag);
3775 3776 3777

	cond_resched();

3778 3779 3780 3781 3782 3783
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784
		unsigned int alloc_flags, const struct alloc_context *ac,
3785
		unsigned long *did_some_progress)
3786 3787 3788 3789
{
	struct page *page = NULL;
	bool drained = false;

3790
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 3792
	if (unlikely(!(*did_some_progress)))
		return NULL;
3793

3794
retry:
3795
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796 3797 3798

	/*
	 * If an allocation failed after direct reclaim, it could be because
3799 3800
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3801 3802
	 */
	if (!page && !drained) {
3803
		unreserve_highatomic_pageblock(ac, false);
3804
		drain_all_pages(NULL);
3805 3806 3807 3808
		drained = true;
		goto retry;
	}

3809 3810 3811
	return page;
}

3812 3813
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3814 3815 3816
{
	struct zoneref *z;
	struct zone *zone;
3817
	pg_data_t *last_pgdat = NULL;
3818
	enum zone_type high_zoneidx = ac->high_zoneidx;
3819

3820 3821
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3822
		if (last_pgdat != zone->zone_pgdat)
3823
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 3825
		last_pgdat = zone->zone_pgdat;
	}
3826 3827
}

3828
static inline unsigned int
3829 3830
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3831
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3832

3833
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835

3836 3837 3838 3839
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3840
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841
	 */
3842
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3843

3844
	if (gfp_mask & __GFP_ATOMIC) {
3845
		/*
3846 3847
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3848
		 */
3849
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3850
			alloc_flags |= ALLOC_HARDER;
3851
		/*
3852
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853
		 * comment for __cpuset_node_allowed().
3854
		 */
3855
		alloc_flags &= ~ALLOC_CPUSET;
3856
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3857 3858 3859 3860 3861
		alloc_flags |= ALLOC_HARDER;

	return alloc_flags;
}

3862
static bool oom_reserves_allowed(struct task_struct *tsk)
3863
{
3864 3865 3866 3867 3868 3869 3870 3871
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3872 3873
		return false;

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3885
	if (gfp_mask & __GFP_MEMALLOC)
3886
		return ALLOC_NO_WATERMARKS;
3887
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3888 3889 3890 3891 3892 3893 3894
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3895

3896 3897 3898 3899 3900 3901
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3902 3903
}

M
Michal Hocko 已提交
3904 3905 3906
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3907 3908 3909 3910
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3911 3912 3913 3914 3915 3916
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3917
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3918 3919 3920 3921
{
	struct zone *zone;
	struct zoneref *z;

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3932 3933 3934 3935
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3936 3937
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3938
		return unreserve_highatomic_pageblock(ac, true);
3939
	}
M
Michal Hocko 已提交
3940

3941 3942 3943 3944 3945
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3946 3947 3948 3949
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3950
		unsigned long reclaimable;
3951 3952
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3953

3954 3955
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3956 3957

		/*
3958 3959
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3960
		 */
3961 3962 3963 3964 3965
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3966 3967 3968 3969 3970 3971 3972
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3973
				unsigned long write_pending;
3974

3975 3976
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3977

3978
				if (2 * write_pending > reclaimable) {
3979 3980 3981 3982
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3983

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3998 3999 4000 4001 4002 4003 4004
			return true;
		}
	}

	return false;
}

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4038 4039
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4040
						struct alloc_context *ac)
4041
{
4042
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4043
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4044
	struct page *page = NULL;
4045
	unsigned int alloc_flags;
4046
	unsigned long did_some_progress;
4047
	enum compact_priority compact_priority;
4048
	enum compact_result compact_result;
4049 4050 4051
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4052
	int reserve_flags;
L
Linus Torvalds 已提交
4053

4054 4055 4056 4057 4058 4059
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4060 4061
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4062
		return NULL;
4063
	}
L
Linus Torvalds 已提交
4064

4065 4066 4067 4068 4069 4070 4071 4072
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4073 4074 4075 4076 4077
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4078 4079 4080 4081 4082 4083 4084 4085

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4097
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4098
		wake_all_kswapds(order, gfp_mask, ac);
4099 4100 4101 4102 4103 4104 4105 4106 4107

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4108 4109
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4110 4111 4112 4113 4114 4115
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4116
	 */
4117 4118 4119 4120
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4121 4122
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4123
						INIT_COMPACT_PRIORITY,
4124 4125 4126 4127
						&compact_result);
		if (page)
			goto got_pg;

4128 4129 4130 4131
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4132
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4145 4146
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4147
			 * using async compaction.
4148
			 */
4149
			compact_priority = INIT_COMPACT_PRIORITY;
4150 4151
		}
	}
4152

4153
retry:
4154
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4155
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4156
		wake_all_kswapds(order, gfp_mask, ac);
4157

4158 4159 4160
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4161

4162 4163 4164 4165 4166
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4167
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4168 4169 4170 4171 4172
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4173
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4174
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4175 4176
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4177

4178
	/* Caller is not willing to reclaim, we can't balance anything */
4179
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4180 4181
		goto nopage;

4182 4183
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4184 4185
		goto nopage;

4186 4187 4188 4189 4190 4191 4192
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4193
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4194
					compact_priority, &compact_result);
4195 4196
	if (page)
		goto got_pg;
4197

4198 4199
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4200
		goto nopage;
4201

M
Michal Hocko 已提交
4202 4203
	/*
	 * Do not retry costly high order allocations unless they are
4204
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4205
	 */
4206
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4207
		goto nopage;
M
Michal Hocko 已提交
4208 4209

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4210
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4211 4212
		goto retry;

4213 4214 4215 4216 4217 4218 4219
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4220
			should_compact_retry(ac, order, alloc_flags,
4221
				compact_result, &compact_priority,
4222
				&compaction_retries))
4223 4224
		goto retry;

4225 4226 4227

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4228 4229
		goto retry_cpuset;

4230 4231 4232 4233 4234
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4235
	/* Avoid allocations with no watermarks from looping endlessly */
4236 4237
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4238
	     (gfp_mask & __GFP_NOMEMALLOC)))
4239 4240
		goto nopage;

4241
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4242 4243
	if (did_some_progress) {
		no_progress_loops = 0;
4244
		goto retry;
M
Michal Hocko 已提交
4245
	}
4246

L
Linus Torvalds 已提交
4247
nopage:
4248 4249
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4250 4251
		goto retry_cpuset;

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4289 4290 4291 4292
		cond_resched();
		goto retry;
	}
fail:
4293
	warn_alloc(gfp_mask, ac->nodemask,
4294
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4295
got_pg:
4296
	return page;
L
Linus Torvalds 已提交
4297
}
4298

4299
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4300
		int preferred_nid, nodemask_t *nodemask,
4301 4302
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4303
{
4304
	ac->high_zoneidx = gfp_zone(gfp_mask);
4305
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4306 4307
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4308

4309
	if (cpusets_enabled()) {
4310 4311 4312
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4313 4314
		else
			*alloc_flags |= ALLOC_CPUSET;
4315 4316
	}

4317 4318
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4319

4320
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4321 4322

	if (should_fail_alloc_page(gfp_mask, order))
4323
		return false;
4324

4325 4326
	return true;
}
4327

4328 4329 4330 4331
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4332
	/* Dirty zone balancing only done in the fast path */
4333
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334

4335 4336 4337 4338 4339
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4340 4341 4342 4343 4344 4345 4346 4347
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4348 4349
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4350 4351 4352
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354 4355 4356
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4357
	alloc_mask = gfp_mask;
4358
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359 4360 4361
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4362

4363
	/* First allocation attempt */
4364
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365 4366
	if (likely(page))
		goto out;
4367

4368
	/*
4369 4370 4371 4372
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4373
	 */
4374
	alloc_mask = current_gfp_context(gfp_mask);
4375
	ac.spread_dirty_pages = false;
4376

4377 4378 4379 4380
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4381
	if (unlikely(ac.nodemask != nodemask))
4382
		ac.nodemask = nodemask;
4383

4384
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385

4386
out:
4387 4388 4389 4390
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4391 4392
	}

4393 4394
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4395
	return page;
L
Linus Torvalds 已提交
4396
}
4397
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4398 4399 4400 4401

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4402
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4403
{
4404 4405 4406
	struct page *page;

	/*
4407
	 * __get_free_pages() returns a virtual address, which cannot represent
4408 4409 4410 4411
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4419
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4420
{
4421
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4422 4423 4424
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4425
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4426
{
N
Nick Piggin 已提交
4427
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4428
		if (order == 0)
4429
			free_unref_page(page);
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435 4436
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4437
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4438 4439
{
	if (addr != 0) {
N
Nick Piggin 已提交
4440
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4458 4459
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4479
void __page_frag_cache_drain(struct page *page, unsigned int count)
4480 4481 4482 4483
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4484 4485
		unsigned int order = compound_order(page);

4486
		if (order == 0)
4487
			free_unref_page(page);
4488 4489 4490 4491
		else
			__free_pages_ok(page, order);
	}
}
4492
EXPORT_SYMBOL(__page_frag_cache_drain);
4493

4494 4495
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4496 4497 4498 4499 4500 4501 4502
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4503
		page = __page_frag_cache_refill(nc, gfp_mask);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4514
		page_ref_add(page, size - 1);
4515 4516

		/* reset page count bias and offset to start of new frag */
4517
		nc->pfmemalloc = page_is_pfmemalloc(page);
4518 4519 4520 4521 4522 4523 4524 4525
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4526
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527 4528 4529 4530 4531 4532 4533
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4534
		set_page_count(page, size);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4546
EXPORT_SYMBOL(page_frag_alloc);
4547 4548 4549 4550

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4551
void page_frag_free(void *addr)
4552 4553 4554 4555 4556 4557
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4558
EXPORT_SYMBOL(page_frag_free);
4559

4560 4561
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4595
	return make_alloc_exact(addr, order, size);
4596 4597 4598
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4599 4600 4601
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4602
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4603 4604 4605 4606 4607 4608
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4609
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4610
{
4611
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4612 4613 4614 4615 4616 4617
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4637 4638 4639 4640 4641 4642 4643
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4644 4645
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4646
 */
4647
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4648
{
4649
	struct zoneref *z;
4650 4651
	struct zone *zone;

4652
	/* Just pick one node, since fallback list is circular */
4653
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4654

4655
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4656

4657
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658
		unsigned long size = zone->managed_pages;
4659
		unsigned long high = high_wmark_pages(zone);
4660 4661
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666
	}

	return sum;
}

4667 4668 4669 4670 4671
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4672
 */
4673
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4674
{
A
Al Viro 已提交
4675
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4676
}
4677
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4678

4679 4680 4681 4682 4683
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4684
 */
4685
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4686
{
M
Mel Gorman 已提交
4687
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4688
}
4689 4690

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4691
{
4692
	if (IS_ENABLED(CONFIG_NUMA))
4693
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4694 4695
}

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707 4708 4709 4710 4711 4712 4713 4714

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4715
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4730 4731 4732
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4733

4734 4735 4736 4737 4738 4739 4740
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4741 4742 4743 4744 4745 4746
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4747 4748 4749
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4750
	val->sharedram = global_node_page_state(NR_SHMEM);
4751
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4763 4764
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4765 4766
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4767 4768
	pg_data_t *pgdat = NODE_DATA(nid);

4769 4770 4771
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4772
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774
#ifdef CONFIG_HIGHMEM
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4785
#else
4786 4787
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4788
#endif
L
Linus Torvalds 已提交
4789 4790 4791 4792
	val->mem_unit = PAGE_SIZE;
}
#endif

4793
/*
4794 4795
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796
 */
4797
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798 4799
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4800
		return false;
4801

4802 4803 4804 4805 4806 4807 4808 4809 4810
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4811 4812
}

L
Linus Torvalds 已提交
4813 4814
#define K(x) ((x) << (PAGE_SHIFT-10))

4815 4816 4817 4818 4819
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4820 4821
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4822 4823 4824
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4825
#ifdef CONFIG_MEMORY_ISOLATION
4826
		[MIGRATE_ISOLATE]	= 'I',
4827
#endif
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4839
	printk(KERN_CONT "(%s) ", tmp);
4840 4841
}

L
Linus Torvalds 已提交
4842 4843 4844 4845
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4846 4847 4848 4849
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4850
 */
4851
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4852
{
4853
	unsigned long free_pcp = 0;
4854
	int cpu;
L
Linus Torvalds 已提交
4855
	struct zone *zone;
M
Mel Gorman 已提交
4856
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4857

4858
	for_each_populated_zone(zone) {
4859
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860
			continue;
4861

4862 4863
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4864 4865
	}

K
KOSAKI Motohiro 已提交
4866 4867
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868 4869
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4872 4873 4874 4875 4876 4877 4878
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4879 4880 4881
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4882 4883
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884
		global_node_page_state(NR_FILE_MAPPED),
4885
		global_node_page_state(NR_SHMEM),
4886 4887 4888
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4889
		free_pcp,
4890
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4891

M
Mel Gorman 已提交
4892
	for_each_online_pgdat(pgdat) {
4893
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894 4895
			continue;

M
Mel Gorman 已提交
4896 4897 4898 4899 4900 4901 4902 4903
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4904
			" mapped:%lukB"
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926 4927
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4928
			K(node_page_state(pgdat, NR_SHMEM)),
4929 4930 4931 4932 4933 4934 4935 4936
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937 4938
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4939 4940
	}

4941
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4942 4943
		int i;

4944
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945
			continue;
4946 4947 4948 4949 4950

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4951
		show_node(zone);
4952 4953
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4954 4955 4956 4957
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4958 4959 4960 4961 4962
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4963
			" writepending:%lukB"
L
Linus Torvalds 已提交
4964
			" present:%lukB"
4965
			" managed:%lukB"
4966
			" mlocked:%lukB"
4967
			" kernel_stack:%lukB"
4968 4969
			" pagetables:%lukB"
			" bounce:%lukB"
4970 4971
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4972
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4973 4974
			"\n",
			zone->name,
4975
			K(zone_page_state(zone, NR_FREE_PAGES)),
4976 4977 4978
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4979 4980 4981 4982 4983
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4985
			K(zone->present_pages),
4986
			K(zone->managed_pages),
4987
			K(zone_page_state(zone, NR_MLOCK)),
4988
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989 4990
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4991 4992
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4993
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4994 4995
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4996 4997
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4998 4999
	}

5000
	for_each_populated_zone(zone) {
5001 5002
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5003
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5004

5005
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006
			continue;
L
Linus Torvalds 已提交
5007
		show_node(zone);
5008
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5009 5010 5011

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5012 5013 5014 5015
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5016
			total += nr[order] << order;
5017 5018 5019 5020 5021 5022

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5023 5024
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5025
		for (order = 0; order < MAX_ORDER; order++) {
5026 5027
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5028 5029 5030
			if (nr[order])
				show_migration_types(types[order]);
		}
5031
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5032 5033
	}

5034 5035
	hugetlb_show_meminfo();

5036
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037

L
Linus Torvalds 已提交
5038 5039 5040
	show_swap_cache_info();
}

5041 5042 5043 5044 5045 5046
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5047 5048
/*
 * Builds allocation fallback zone lists.
5049 5050
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5051
 */
5052
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5053
{
5054
	struct zone *zone;
5055
	enum zone_type zone_type = MAX_NR_ZONES;
5056
	int nr_zones = 0;
5057 5058

	do {
5059
		zone_type--;
5060
		zone = pgdat->node_zones + zone_type;
5061
		if (managed_zone(zone)) {
5062
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5064
		}
5065
	} while (zone_type);
5066

5067
	return nr_zones;
L
Linus Torvalds 已提交
5068 5069 5070
}

#ifdef CONFIG_NUMA
5071 5072 5073

static int __parse_numa_zonelist_order(char *s)
{
5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082 5083 5084 5085 5086 5087 5088
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5089 5090 5091
	if (!s)
		return 0;

5092
	return __parse_numa_zonelist_order(s);
5093 5094 5095
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5096 5097
char numa_zonelist_order[] = "Node";

5098 5099 5100
/*
 * sysctl handler for numa_zonelist_order
 */
5101
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102
		void __user *buffer, size_t *length,
5103 5104
		loff_t *ppos)
{
5105
	char *str;
5106 5107
	int ret;

5108 5109 5110 5111 5112
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5113

5114 5115
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5116
	return ret;
5117 5118 5119
}


5120
#define MAX_NODE_LOAD (nr_online_nodes)
5121 5122
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5123
/**
5124
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5137
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5138
{
5139
	int n, val;
L
Linus Torvalds 已提交
5140
	int min_val = INT_MAX;
D
David Rientjes 已提交
5141
	int best_node = NUMA_NO_NODE;
5142
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5143

5144 5145 5146 5147 5148
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5149

5150
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155 5156 5157 5158

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5159 5160 5161
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5162
		/* Give preference to headless and unused nodes */
5163 5164
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5183 5184 5185 5186 5187 5188

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5189 5190
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5191
{
5192 5193 5194 5195 5196 5197 5198 5199 5200
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5201

5202 5203 5204 5205 5206
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5207 5208
}

5209 5210 5211 5212 5213
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5214 5215
	struct zoneref *zonerefs;
	int nr_zones;
5216

5217 5218 5219 5220 5221
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5222 5223
}

5224 5225 5226 5227 5228 5229 5230 5231 5232
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5233 5234
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5235
	nodemask_t used_mask;
5236
	int local_node, prev_node;
L
Linus Torvalds 已提交
5237 5238 5239

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5240
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5241 5242
	prev_node = local_node;
	nodes_clear(used_mask);
5243 5244

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5251 5252
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5253 5254
			node_load[node] = load;

5255
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5256 5257 5258
		prev_node = node;
		load--;
	}
5259

5260
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5262 5263
}

5264 5265 5266 5267 5268 5269 5270 5271 5272
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5273
	struct zoneref *z;
5274

5275
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276
				   gfp_zone(GFP_KERNEL),
5277 5278
				   NULL);
	return z->zone->node;
5279 5280
}
#endif
5281

5282 5283
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5284 5285
#else	/* CONFIG_NUMA */

5286
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5287
{
5288
	int node, local_node;
5289 5290
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5291 5292 5293

	local_node = pgdat->node_id;

5294 5295 5296
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5297

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5309 5310
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5311
	}
5312 5313 5314
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5315 5316
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5317 5318
	}

5319 5320
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5321 5322 5323 5324
}

#endif	/* CONFIG_NUMA */

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343

5344
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5345
{
5346
	int nid;
5347
	int __maybe_unused cpu;
5348
	pg_data_t *self = data;
5349 5350 5351
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5352

5353 5354 5355
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5356

5357 5358 5359 5360
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5361 5362
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5363 5364 5365
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5366

5367 5368
			build_zonelists(pgdat);
		}
5369

5370 5371 5372 5373 5374 5375 5376 5377 5378
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5379
		for_each_online_cpu(cpu)
5380
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381
#endif
5382
	}
5383 5384

	spin_unlock(&lock);
5385 5386
}

5387 5388 5389
static noinline void __init
build_all_zonelists_init(void)
{
5390 5391
	int cpu;

5392
	__build_all_zonelists(NULL);
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5410 5411 5412 5413
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5414 5415
/*
 * unless system_state == SYSTEM_BOOTING.
5416
 *
5417
 * __ref due to call of __init annotated helper build_all_zonelists_init
5418
 * [protected by SYSTEM_BOOTING].
5419
 */
5420
void __ref build_all_zonelists(pg_data_t *pgdat)
5421 5422
{
	if (system_state == SYSTEM_BOOTING) {
5423
		build_all_zonelists_init();
5424
	} else {
5425
		__build_all_zonelists(pgdat);
5426 5427
		/* cpuset refresh routine should be here */
	}
5428
	vm_total_pages = nr_free_pagecache_pages();
5429 5430 5431 5432 5433 5434 5435
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5436
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437 5438 5439 5440
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5441
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5442 5443 5444
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5445
#ifdef CONFIG_NUMA
5446
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447
#endif
L
Linus Torvalds 已提交
5448 5449 5450 5451 5452 5453 5454
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5455
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456 5457
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5458
{
A
Andy Whitcroft 已提交
5459
	unsigned long end_pfn = start_pfn + size;
5460
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5461
	unsigned long pfn;
5462
	unsigned long nr_initialised = 0;
5463
	struct page *page;
5464 5465 5466
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5467

5468 5469 5470
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5471 5472 5473 5474 5475 5476 5477
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5478
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5479
		/*
5480 5481
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5482
		 */
5483 5484 5485
		if (context != MEMMAP_EARLY)
			goto not_early;

5486
		if (!early_pfn_valid(pfn))
5487 5488 5489 5490 5491
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5492 5493

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5511
			}
D
Dave Hansen 已提交
5512
		}
5513
#endif
5514

5515
not_early:
5516 5517 5518 5519 5520
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5521 5522 5523 5524 5525
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5526
		 * kernel allocations are made.
5527 5528 5529 5530 5531
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5532 5533 5534
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5535 5536 5537
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538
			cond_resched();
5539
		}
L
Linus Torvalds 已提交
5540 5541 5542
	}
}

5543
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5544
{
5545
	unsigned int order, t;
5546 5547
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552 5553
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5554
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5555 5556
#endif

5557
static int zone_batchsize(struct zone *zone)
5558
{
5559
#ifdef CONFIG_MMU
5560 5561 5562 5563
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5564
	 * size of the zone.  But no more than 1/2 of a meg.
5565 5566 5567
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5568
	batch = zone->managed_pages / 1024;
5569 5570
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5571 5572 5573 5574 5575
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5576 5577 5578
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5579
	 *
5580 5581 5582 5583
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5584
	 */
5585
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586

5587
	return batch;
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5605 5606
}

5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5634
/* a companion to pageset_set_high() */
5635 5636
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5637
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638 5639
}

5640
static void pageset_init(struct per_cpu_pageset *p)
5641 5642
{
	struct per_cpu_pages *pcp;
5643
	int migratetype;
5644

5645 5646
	memset(p, 0, sizeof(*p));

5647
	pcp = &p->pcp;
5648
	pcp->count = 0;
5649 5650
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651 5652
}

5653 5654 5655 5656 5657 5658
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5659
/*
5660
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 5662
 * to the value high for the pageset p.
 */
5663
static void pageset_set_high(struct per_cpu_pageset *p,
5664 5665
				unsigned long high)
{
5666 5667 5668
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5669

5670
	pageset_update(&p->pcp, high, batch);
5671 5672
}

5673 5674
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5675 5676
{
	if (percpu_pagelist_fraction)
5677
		pageset_set_high(pcp,
5678 5679 5680 5681 5682 5683
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5684 5685 5686 5687 5688 5689 5690 5691
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5692
void __meminit setup_zone_pageset(struct zone *zone)
5693 5694 5695
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696 5697
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5698 5699
}

5700
/*
5701 5702
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5703
 */
5704
void __init setup_per_cpu_pageset(void)
5705
{
5706
	struct pglist_data *pgdat;
5707
	struct zone *zone;
5708

5709 5710
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5711 5712 5713 5714

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5715 5716
}

5717
static __meminit void zone_pcp_init(struct zone *zone)
5718
{
5719 5720 5721 5722 5723 5724
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5725

5726
	if (populated_zone(zone))
5727 5728 5729
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5730 5731
}

5732
void __meminit init_currently_empty_zone(struct zone *zone,
5733
					unsigned long zone_start_pfn,
5734
					unsigned long size)
5735 5736
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5737

5738 5739 5740 5741
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5742 5743 5744 5745 5746 5747
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5748
	zone_init_free_lists(zone);
5749
	zone->initialized = 1;
5750 5751
}

T
Tejun Heo 已提交
5752
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754

5755 5756 5757
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5758 5759
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5760
{
5761
	unsigned long start_pfn, end_pfn;
5762
	int nid;
5763

5764 5765
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5766

5767 5768
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5769 5770 5771
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5772 5773 5774
	}

	return nid;
5775 5776 5777 5778
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5779
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782
 *
5783 5784 5785
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5786
 */
5787
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788
{
5789 5790
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5791

5792 5793 5794
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5795

5796
		if (start_pfn < end_pfn)
5797 5798 5799
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5800 5801 5802
	}
}

5803 5804
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806
 *
5807 5808
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5809 5810 5811
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5812 5813
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5814

5815 5816
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5817 5818 5819 5820
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 5822 5823
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 5825
 *
 * It returns the start and end page frame of a node based on information
5826
 * provided by memblock_set_node(). If called for a node
5827
 * with no available memory, a warning is printed and the start and end
5828
 * PFNs will be 0.
5829
 */
5830
void __meminit get_pfn_range_for_nid(unsigned int nid,
5831 5832
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5833
	unsigned long this_start_pfn, this_end_pfn;
5834
	int i;
5835

5836 5837 5838
	*start_pfn = -1UL;
	*end_pfn = 0;

5839 5840 5841
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5842 5843
	}

5844
	if (*start_pfn == -1UL)
5845 5846 5847
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5848 5849 5850 5851 5852
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5853
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5871
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5872 5873 5874 5875 5876 5877 5878
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5879
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5894 5895 5896 5897 5898 5899
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5900 5901 5902 5903 5904 5905
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5906 5907 5908 5909
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5910
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911
					unsigned long zone_type,
5912 5913
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5914 5915
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5916 5917
					unsigned long *ignored)
{
5918
	/* When hotadd a new node from cpu_up(), the node should be empty */
5919 5920 5921
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5922
	/* Get the start and end of the zone */
5923 5924
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5925 5926
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5927
				zone_start_pfn, zone_end_pfn);
5928 5929

	/* Check that this node has pages within the zone's required range */
5930
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931 5932 5933
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5934 5935
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936 5937

	/* Return the spanned pages */
5938
	return *zone_end_pfn - *zone_start_pfn;
5939 5940 5941 5942
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943
 * then all holes in the requested range will be accounted for.
5944
 */
5945
unsigned long __meminit __absent_pages_in_range(int nid,
5946 5947 5948
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5949 5950 5951
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5952

5953 5954 5955 5956
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5957
	}
5958
	return nr_absent;
5959 5960 5961 5962 5963 5964 5965
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5966
 * It returns the number of pages frames in memory holes within a range.
5967 5968 5969 5970 5971 5972 5973 5974
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5975
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976
					unsigned long zone_type,
5977 5978
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5979 5980
					unsigned long *ignored)
{
5981 5982
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983
	unsigned long zone_start_pfn, zone_end_pfn;
5984
	unsigned long nr_absent;
5985

5986
	/* When hotadd a new node from cpu_up(), the node should be empty */
5987 5988 5989
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5990 5991
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992

M
Mel Gorman 已提交
5993 5994 5995
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5996 5997 5998 5999 6000 6001 6002
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6020 6021 6022 6023
		}
	}

	return nr_absent;
6024
}
6025

T
Tejun Heo 已提交
6026
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6027
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028
					unsigned long zone_type,
6029 6030
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6031 6032
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6033 6034
					unsigned long *zones_size)
{
6035 6036 6037 6038 6039 6040 6041 6042
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6043 6044 6045
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6046
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047
						unsigned long zone_type,
6048 6049
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6050 6051 6052 6053 6054 6055 6056
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6057

T
Tejun Heo 已提交
6058
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059

6060
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061 6062 6063 6064
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6065
{
6066
	unsigned long realtotalpages = 0, totalpages = 0;
6067 6068
	enum zone_type i;

6069 6070
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6071
		unsigned long zone_start_pfn, zone_end_pfn;
6072
		unsigned long size, real_size;
6073

6074 6075 6076
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6077 6078
						  &zone_start_pfn,
						  &zone_end_pfn,
6079 6080
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081 6082
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6083 6084 6085 6086
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6087 6088 6089 6090 6091 6092 6093 6094
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6095 6096 6097 6098 6099
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6100 6101 6102
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 6104
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 6106 6107
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6108
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109 6110 6111
{
	unsigned long usemapsize;

6112
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113 6114
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6115 6116 6117 6118 6119 6120 6121
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
6122 6123 6124
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6125
{
6126
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127
	zone->pageblock_flags = NULL;
6128
	if (usemapsize)
6129 6130 6131
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6132 6133
}
#else
6134 6135
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136 6137
#endif /* CONFIG_SPARSEMEM */

6138
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139

6140
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141
void __paginginit set_pageblock_order(void)
6142
{
6143 6144
	unsigned int order;

6145 6146 6147 6148
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6149 6150 6151 6152 6153
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6154 6155
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6156 6157
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6158 6159 6160 6161 6162
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6163 6164
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 6166 6167
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6168
 */
6169
void __paginginit set_pageblock_order(void)
6170 6171
{
}
6172 6173 6174

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6185
	 * populated regions may not be naturally aligned on page boundary.
6186 6187 6188 6189 6190 6191 6192 6193 6194
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6195 6196 6197 6198 6199
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6200 6201
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6202
 */
6203
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6204
{
6205
	enum zone_type j;
6206
	int nid = pgdat->node_id;
6207
	unsigned long node_end_pfn = 0;
L
Linus Torvalds 已提交
6208

6209
	pgdat_resize_init(pgdat);
6210 6211 6212 6213
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6214 6215 6216 6217 6218
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6219
#endif
L
Linus Torvalds 已提交
6220
	init_waitqueue_head(&pgdat->kswapd_wait);
6221
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6222 6223 6224
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6225
	pgdat_page_ext_init(pgdat);
6226
	spin_lock_init(&pgdat->lru_lock);
6227
	lruvec_init(node_lruvec(pgdat));
6228

6229 6230
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6231 6232
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6233
		unsigned long size, realsize, freesize, memmap_pages;
6234
		unsigned long zone_start_pfn = zone->zone_start_pfn;
6235
		unsigned long movable_size = 0;
L
Linus Torvalds 已提交
6236

6237 6238
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
6239 6240 6241
		if (zone_end_pfn(zone) > node_end_pfn)
			node_end_pfn = zone_end_pfn(zone);

L
Linus Torvalds 已提交
6242

6243
		/*
6244
		 * Adjust freesize so that it accounts for how much memory
6245 6246 6247
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6248
		memmap_pages = calc_memmap_size(size, realsize);
6249 6250 6251 6252 6253 6254 6255 6256
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6257
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6258 6259
					zone_names[j], memmap_pages, freesize);
		}
6260

6261
		/* Account for reserved pages */
6262 6263
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6264
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6265
					zone_names[0], dma_reserve);
6266 6267
		}

6268
		if (!is_highmem_idx(j))
6269
			nr_kernel_pages += freesize;
6270 6271 6272
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6273
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6274

6275 6276 6277 6278 6279 6280
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6281
#ifdef CONFIG_NUMA
6282
		zone->node = nid;
6283
#endif
L
Linus Torvalds 已提交
6284
		zone->name = zone_names[j];
6285
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6286
		spin_lock_init(&zone->lock);
6287
		zone_seqlock_init(zone);
6288
		zone_pcp_init(zone);
6289

6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
		/*
		 * The size of the CMA area is unknown now so we need to
		 * prepare the memory for the usemap at maximum.
		 */
		if (IS_ENABLED(CONFIG_CMA) && j == ZONE_MOVABLE &&
			pgdat->node_spanned_pages) {
			movable_size = node_end_pfn - pgdat->node_start_pfn;
		}

		if (!size && !movable_size)
L
Linus Torvalds 已提交
6300 6301
			continue;

6302
		set_pageblock_order();
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
		if (movable_size) {
			zone->zone_start_pfn = pgdat->node_start_pfn;
			zone->spanned_pages = movable_size;
			setup_usemap(pgdat, zone,
				pgdat->node_start_pfn, movable_size);
			init_currently_empty_zone(zone,
				pgdat->node_start_pfn, movable_size);
		} else {
			setup_usemap(pgdat, zone, zone_start_pfn, size);
			init_currently_empty_zone(zone, zone_start_pfn, size);
		}
6314
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6315 6316 6317
	}
}

6318
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6319
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6320
{
6321
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6322 6323
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6324 6325 6326 6327
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6328 6329
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6330 6331
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6332
		unsigned long size, end;
A
Andy Whitcroft 已提交
6333 6334
		struct page *map;

6335 6336 6337 6338 6339
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6340
		end = pgdat_end_pfn(pgdat);
6341 6342
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6343
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6344
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6345
	}
6346 6347 6348
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6349
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6350 6351 6352
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6353
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6354
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6355
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6356
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6357
			mem_map -= offset;
T
Tejun Heo 已提交
6358
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6359
	}
L
Linus Torvalds 已提交
6360 6361
#endif
}
6362 6363 6364
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6365

6366 6367
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6368
{
6369
	pg_data_t *pgdat = NODE_DATA(nid);
6370 6371
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6372

6373
	/* pg_data_t should be reset to zero when it's allocated */
6374
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6375

L
Linus Torvalds 已提交
6376 6377
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6378
	pgdat->per_cpu_nodestats = NULL;
6379 6380
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6381
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6382 6383
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6384 6385
#else
	start_pfn = node_start_pfn;
6386 6387 6388
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6389 6390 6391

	alloc_node_mem_map(pgdat);

6392 6393 6394 6395 6396 6397 6398 6399 6400
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
					 pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
#endif
6401
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6402 6403
}

6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6425 6426
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
				continue;
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6444
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6445 6446 6447 6448 6449

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6450
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6451
{
6452
	unsigned int highest;
M
Miklos Szeredi 已提交
6453

6454
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6455 6456 6457 6458
	nr_node_ids = highest + 1;
}
#endif

6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6481
	unsigned long start, end, mask;
6482
	int last_nid = -1;
6483
	int i, nid;
6484

6485
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6509
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6510
static unsigned long __init find_min_pfn_for_node(int nid)
6511
{
6512
	unsigned long min_pfn = ULONG_MAX;
6513 6514
	unsigned long start_pfn;
	int i;
6515

6516 6517
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6518

6519
	if (min_pfn == ULONG_MAX) {
6520
		pr_warn("Could not find start_pfn for node %d\n", nid);
6521 6522 6523 6524
		return 0;
	}

	return min_pfn;
6525 6526 6527 6528 6529 6530
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6531
 * memblock_set_node().
6532 6533 6534 6535 6536 6537
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6538 6539 6540
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6541
 * Populate N_MEMORY for calculating usable_nodes.
6542
 */
A
Adrian Bunk 已提交
6543
static unsigned long __init early_calculate_totalpages(void)
6544 6545
{
	unsigned long totalpages = 0;
6546 6547 6548 6549 6550
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6551

6552 6553
		totalpages += pages;
		if (pages)
6554
			node_set_state(nid, N_MEMORY);
6555
	}
6556
	return totalpages;
6557 6558
}

M
Mel Gorman 已提交
6559 6560 6561 6562 6563 6564
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6565
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6566 6567 6568 6569
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6570
	/* save the state before borrow the nodemask */
6571
	nodemask_t saved_node_state = node_states[N_MEMORY];
6572
	unsigned long totalpages = early_calculate_totalpages();
6573
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6574
	struct memblock_region *r;
6575 6576 6577 6578 6579 6580 6581 6582 6583

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6584 6585
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6586 6587
				continue;

E
Emil Medve 已提交
6588
			nid = r->nid;
6589

E
Emil Medve 已提交
6590
			usable_startpfn = PFN_DOWN(r->base);
6591 6592 6593 6594 6595 6596 6597
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6598

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6629
	/*
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6657
		required_movablecore = min(totalpages, required_movablecore);
6658 6659 6660 6661 6662
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6663 6664 6665 6666 6667
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6668
		goto out;
M
Mel Gorman 已提交
6669 6670 6671 6672 6673 6674 6675

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6676
	for_each_node_state(nid, N_MEMORY) {
6677 6678
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6695
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6696 6697
			unsigned long size_pages;

6698
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6741
			 * satisfied
M
Mel Gorman 已提交
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6755
	 * satisfied
M
Mel Gorman 已提交
6756 6757 6758 6759 6760
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6761
out2:
M
Mel Gorman 已提交
6762 6763 6764 6765
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6766

6767
out:
6768
	/* restore the node_state */
6769
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6770 6771
}

6772 6773
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6774 6775 6776
{
	enum zone_type zone_type;

6777 6778 6779 6780
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6781
		struct zone *zone = &pgdat->node_zones[zone_type];
6782
		if (populated_zone(zone)) {
6783 6784 6785 6786
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6787 6788
			break;
		}
6789 6790 6791
	}
}

6792 6793
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6794
 * @max_zone_pfn: an array of max PFNs for each zone
6795 6796
 *
 * This will call free_area_init_node() for each active node in the system.
6797
 * Using the page ranges provided by memblock_set_node(), the size of each
6798 6799 6800 6801 6802 6803 6804 6805 6806
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6807 6808
	unsigned long start_pfn, end_pfn;
	int i, nid;
6809

6810 6811 6812 6813 6814
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6815 6816 6817 6818

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6819 6820
		if (i == ZONE_MOVABLE)
			continue;
6821 6822 6823 6824 6825 6826

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6827
	}
M
Mel Gorman 已提交
6828 6829 6830

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6831
	find_zone_movable_pfns_for_nodes();
6832 6833

	/* Print out the zone ranges */
6834
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6835 6836 6837
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6838
		pr_info("  %-8s ", zone_names[i]);
6839 6840
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6841
			pr_cont("empty\n");
6842
		else
6843 6844 6845 6846
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6847
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6848 6849 6850
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6851
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6852 6853
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6854 6855
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6856
	}
6857

6858
	/* Print out the early node map */
6859
	pr_info("Early memory node ranges\n");
6860
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6861 6862 6863
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6864 6865

	/* Initialise every node */
6866
	mminit_verify_pageflags_layout();
6867
	setup_nr_node_ids();
6868 6869
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6870
		free_area_init_node(nid, NULL,
6871
				find_min_pfn_for_node(nid), NULL);
6872 6873 6874

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6875 6876
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6877
	}
6878
	zero_resv_unavail();
6879
}
M
Mel Gorman 已提交
6880

6881 6882
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6883 6884
{
	unsigned long long coremem;
6885 6886
	char *endptr;

M
Mel Gorman 已提交
6887 6888 6889
	if (!p)
		return -EINVAL;

6890 6891 6892 6893 6894
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
6895

6896 6897 6898 6899 6900
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
6901

6902 6903 6904
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
6905 6906
	return 0;
}
M
Mel Gorman 已提交
6907

6908 6909 6910 6911 6912 6913
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6914 6915 6916 6917 6918 6919
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6920 6921
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
6922 6923 6924 6925 6926 6927 6928 6929
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
6930 6931
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
6932 6933
}

M
Mel Gorman 已提交
6934
early_param("kernelcore", cmdline_parse_kernelcore);
6935
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6936

T
Tejun Heo 已提交
6937
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6938

6939 6940 6941 6942 6943
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6944 6945 6946 6947
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6948 6949
	spin_unlock(&managed_page_count_lock);
}
6950
EXPORT_SYMBOL(adjust_managed_page_count);
6951

6952
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6953
{
6954 6955
	void *pos;
	unsigned long pages = 0;
6956

6957 6958 6959
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6960
		if ((unsigned int)poison <= 0xFF)
6961 6962
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6963 6964 6965
	}

	if (pages && s)
6966 6967
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6968 6969 6970

	return pages;
}
6971
EXPORT_SYMBOL(free_reserved_area);
6972

6973 6974 6975 6976 6977
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6978
	page_zone(page)->managed_pages++;
6979 6980 6981 6982
	totalhigh_pages++;
}
#endif

6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7005 7006 7007 7008
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7019
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7020
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7021
		", %luK highmem"
7022
#endif
J
Joe Perches 已提交
7023 7024 7025 7026 7027 7028 7029
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7030
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7031
		totalhigh_pages << (PAGE_SHIFT - 10),
7032
#endif
J
Joe Perches 已提交
7033
		str ? ", " : "", str ? str : "");
7034 7035
}

7036
/**
7037 7038
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7039
 *
7040
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7041 7042
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7043 7044 7045
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7046 7047 7048 7049 7050 7051
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7052 7053
void __init free_area_init(unsigned long *zones_size)
{
7054
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7055
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7056
	zero_resv_unavail();
L
Linus Torvalds 已提交
7057 7058
}

7059
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7060 7061
{

7062 7063
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7064

7065 7066 7067 7068 7069 7070 7071
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7072

7073 7074 7075 7076 7077 7078 7079 7080 7081
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7082 7083 7084 7085
}

void __init page_alloc_init(void)
{
7086 7087 7088 7089 7090 7091
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7092 7093
}

7094
/*
7095
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7096 7097 7098 7099 7100 7101
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7102
	enum zone_type i, j;
7103 7104

	for_each_online_pgdat(pgdat) {
7105 7106 7107

		pgdat->totalreserve_pages = 0;

7108 7109
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7110
			long max = 0;
7111 7112 7113 7114 7115 7116 7117

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7118 7119
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7120

7121 7122
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7123

7124
			pgdat->totalreserve_pages += max;
7125

7126 7127 7128 7129 7130 7131
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7132 7133
/*
 * setup_per_zone_lowmem_reserve - called whenever
7134
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7135 7136 7137 7138 7139 7140
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7141
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7142

7143
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7144 7145
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7146
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7147 7148 7149

			zone->lowmem_reserve[j] = 0;

7150 7151
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7152 7153
				struct zone *lower_zone;

7154
				idx--;
L
Linus Torvalds 已提交
7155
				lower_zone = pgdat->node_zones + idx;
7156 7157 7158 7159 7160 7161 7162 7163

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7164
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7165 7166 7167
			}
		}
	}
7168 7169 7170

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7171 7172
}

7173
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7183
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7184 7185 7186
	}

	for_each_zone(zone) {
7187 7188
		u64 tmp;

7189
		spin_lock_irqsave(&zone->lock, flags);
7190
		tmp = (u64)pages_min * zone->managed_pages;
7191
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7192 7193
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7194 7195 7196 7197
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7198
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7199
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7200
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7201
			 */
7202
			unsigned long min_pages;
L
Linus Torvalds 已提交
7203

7204
			min_pages = zone->managed_pages / 1024;
7205
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7206
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7207
		} else {
N
Nick Piggin 已提交
7208 7209
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7210 7211
			 * proportionate to the zone's size.
			 */
7212
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7213 7214
		}

7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7226

7227
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7228
	}
7229 7230 7231

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7232 7233
}

7234 7235 7236 7237 7238 7239 7240 7241 7242
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7243 7244 7245
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7246
	__setup_per_zone_wmarks();
7247
	spin_unlock(&lock);
7248 7249
}

L
Linus Torvalds 已提交
7250 7251 7252 7253 7254 7255 7256
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7257
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7274
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7275 7276
{
	unsigned long lowmem_kbytes;
7277
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7278 7279

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7292
	setup_per_zone_wmarks();
7293
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7294
	setup_per_zone_lowmem_reserve();
7295 7296 7297 7298 7299 7300

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7301 7302
	return 0;
}
7303
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7304 7305

/*
7306
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7307 7308 7309
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7310
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7311
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7312
{
7313 7314 7315 7316 7317 7318
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7319 7320
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7321
		setup_per_zone_wmarks();
7322
	}
L
Linus Torvalds 已提交
7323 7324 7325
	return 0;
}

7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7341
#ifdef CONFIG_NUMA
7342
static void setup_min_unmapped_ratio(void)
7343
{
7344
	pg_data_t *pgdat;
7345 7346
	struct zone *zone;

7347
	for_each_online_pgdat(pgdat)
7348
		pgdat->min_unmapped_pages = 0;
7349

7350
	for_each_zone(zone)
7351
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7352 7353
				sysctl_min_unmapped_ratio) / 100;
}
7354

7355 7356

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7357
	void __user *buffer, size_t *length, loff_t *ppos)
7358 7359 7360
{
	int rc;

7361
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7362 7363 7364
	if (rc)
		return rc;

7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7375 7376 7377
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7378
	for_each_zone(zone)
7379
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7380
				sysctl_min_slab_ratio) / 100;
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7394 7395
	return 0;
}
7396 7397
#endif

L
Linus Torvalds 已提交
7398 7399 7400 7401 7402 7403
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7404
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7405 7406
 * if in function of the boot time zone sizes.
 */
7407
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7408
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7409
{
7410
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7411 7412 7413 7414
	setup_per_zone_lowmem_reserve();
	return 0;
}

7415 7416
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7417 7418
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7419
 */
7420
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7421
	void __user *buffer, size_t *length, loff_t *ppos)
7422 7423
{
	struct zone *zone;
7424
	int old_percpu_pagelist_fraction;
7425 7426
	int ret;

7427 7428 7429
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7430
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7445

7446
	for_each_populated_zone(zone) {
7447 7448
		unsigned int cpu;

7449
		for_each_possible_cpu(cpu)
7450 7451
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7452
	}
7453
out:
7454
	mutex_unlock(&pcp_batch_high_lock);
7455
	return ret;
7456 7457
}

7458
#ifdef CONFIG_NUMA
7459
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7510 7511
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7512
{
7513
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7514 7515
	unsigned long log2qty, size;
	void *table = NULL;
7516
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7517 7518 7519 7520

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7521
		numentries = nr_kernel_pages;
7522
		numentries -= arch_reserved_kernel_pages();
7523 7524 7525 7526

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7527

P
Pavel Tatashin 已提交
7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7538 7539 7540 7541 7542
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7543 7544

		/* Make sure we've got at least a 0-order allocation.. */
7545 7546 7547 7548 7549 7550 7551 7552
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7553
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7554
	}
7555
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7556 7557 7558 7559 7560 7561

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7562
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7563

7564 7565
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7566 7567 7568
	if (numentries > max)
		numentries = max;

7569
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7570

7571
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7572 7573
	do {
		size = bucketsize << log2qty;
7574 7575 7576 7577 7578 7579
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7580
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7581
		} else {
7582 7583
			/*
			 * If bucketsize is not a power-of-two, we may free
7584 7585
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7586
			 */
7587
			if (get_order(size) < MAX_ORDER) {
7588 7589
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7590
			}
L
Linus Torvalds 已提交
7591 7592 7593 7594 7595 7596
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7597 7598
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7599 7600 7601 7602 7603 7604 7605 7606

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7607

K
KAMEZAWA Hiroyuki 已提交
7608
/*
7609 7610 7611
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7612
 * PageLRU check without isolation or lru_lock could race so that
7613 7614 7615
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7616
 */
7617
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7618
			 int migratetype,
7619
			 bool skip_hwpoisoned_pages)
7620 7621
{
	unsigned long pfn, iter, found;
7622

7623 7624
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7625
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7626 7627
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7628
		return false;
7629

7630 7631 7632 7633 7634 7635 7636 7637 7638
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7639 7640 7641 7642
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7643
		if (!pfn_valid_within(check))
7644
			continue;
7645

7646
		page = pfn_to_page(check);
7647

7648 7649 7650
		if (PageReserved(page))
			return true;

7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7661 7662 7663 7664
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7665
		 * because their page->_refcount is zero at all time.
7666
		 */
7667
		if (!page_ref_count(page)) {
7668 7669 7670 7671
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7672

7673 7674 7675 7676 7677 7678 7679
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7680 7681 7682
		if (__PageMovable(page))
			continue;

7683 7684 7685
		if (!PageLRU(page))
			found++;
		/*
7686 7687 7688
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7699
			return true;
7700
	}
7701
	return false;
7702 7703 7704 7705
}

bool is_pageblock_removable_nolock(struct page *page)
{
7706 7707
	struct zone *zone;
	unsigned long pfn;
7708 7709 7710 7711 7712

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7713 7714
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7715
	 */
7716 7717 7718 7719 7720
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7721
	if (!zone_spans_pfn(zone, pfn))
7722 7723
		return false;

7724
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7725
}
K
KAMEZAWA Hiroyuki 已提交
7726

7727
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7742 7743
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7744 7745
{
	/* This function is based on compact_zone() from compaction.c. */
7746
	unsigned long nr_reclaimed;
7747 7748 7749 7750
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7751
	migrate_prep();
7752

7753
	while (pfn < end || !list_empty(&cc->migratepages)) {
7754 7755 7756 7757 7758
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7759 7760
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7761
			pfn = isolate_migratepages_range(cc, pfn, end);
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7772 7773 7774
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7775

7776
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7777
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7778
	}
7779 7780 7781 7782 7783
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7784 7785 7786 7787 7788 7789
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7790 7791 7792 7793
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7794
 * @gfp_mask:	GFP mask to use during compaction
7795 7796
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7797
 * aligned.  The PFN range must belong to a single zone.
7798
 *
7799 7800 7801
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7802 7803 7804 7805 7806
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7807
int alloc_contig_range(unsigned long start, unsigned long end,
7808
		       unsigned migratetype, gfp_t gfp_mask)
7809 7810
{
	unsigned long outer_start, outer_end;
7811 7812
	unsigned int order;
	int ret = 0;
7813

7814 7815 7816 7817
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7818
		.mode = MIGRATE_SYNC,
7819
		.ignore_skip_hint = true,
7820
		.no_set_skip_hint = true,
7821
		.gfp_mask = current_gfp_context(gfp_mask),
7822 7823 7824
	};
	INIT_LIST_HEAD(&cc.migratepages);

7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7850 7851
				       pfn_max_align_up(end), migratetype,
				       false);
7852
	if (ret)
7853
		return ret;
7854

7855 7856
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7857 7858 7859 7860 7861 7862 7863
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7864
	 */
7865
	ret = __alloc_contig_migrate_range(&cc, start, end);
7866
	if (ret && ret != -EBUSY)
7867
		goto done;
7868
	ret =0;
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7888
	drain_all_pages(cc.zone);
7889 7890 7891 7892 7893

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7894 7895
			outer_start = start;
			break;
7896 7897 7898 7899
		}
		outer_start &= ~0UL << order;
	}

7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7913
	/* Make sure the range is really isolated. */
7914
	if (test_pages_isolated(outer_start, end, false)) {
7915
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7916
			__func__, outer_start, end);
7917 7918 7919 7920
		ret = -EBUSY;
		goto done;
	}

7921
	/* Grab isolated pages from freelists. */
7922
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7936
				pfn_max_align_up(end), migratetype);
7937 7938 7939 7940 7941
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7942 7943 7944 7945 7946 7947 7948 7949 7950
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7951 7952 7953
}
#endif

7954
#if defined CONFIG_MEMORY_HOTPLUG || defined CONFIG_CMA
7955 7956 7957 7958
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7959 7960
void __meminit zone_pcp_update(struct zone *zone)
{
7961
	unsigned cpu;
7962
	mutex_lock(&pcp_batch_high_lock);
7963
	for_each_possible_cpu(cpu)
7964 7965
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7966
	mutex_unlock(&pcp_batch_high_lock);
7967 7968 7969
}
#endif

7970 7971 7972
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7973 7974
	int cpu;
	struct per_cpu_pageset *pset;
7975 7976 7977 7978

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7979 7980 7981 7982
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7983 7984 7985 7986 7987 7988
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7989
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7990
/*
7991 7992
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7993 7994 7995 7996 7997 7998
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7999
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8000 8001 8002 8003 8004 8005 8006 8007
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8008
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8028 8029 8030 8031
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8032 8033
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8045 8046 8047 8048 8049 8050

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8051
	unsigned int order;
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}