page_alloc.c 237.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75
#include "internal.h"
76
#include "shuffle.h"
L
Linus Torvalds 已提交
77

78 79
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
80
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
81

82 83 84 85 86
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

87 88
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

89 90 91 92 93 94 95 96 97
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98
int _node_numa_mem_[MAX_NUMNODES];
99 100
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106
DEFINE_MUTEX(pcpu_drain_mutex);
107
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
114
/*
115
 * Array of node states.
L
Linus Torvalds 已提交
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

206 207 208 209 210
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
211 212 213 214
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
215
 */
216 217 218 219

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
220
{
221
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 223 224 225
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
226 227
}

228
void pm_restrict_gfp_mask(void)
229
{
230
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 232
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
233
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234
}
235 236 237

bool pm_suspended_storage(void)
{
238
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 240 241
		return false;
	return true;
}
242 243
#endif /* CONFIG_PM_SLEEP */

244
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245
unsigned int pageblock_order __read_mostly;
246 247
#endif

248
static void __free_pages_ok(struct page *page, unsigned int order);
249

L
Linus Torvalds 已提交
250 251 252 253 254 255
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
256
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
257 258 259
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
260
 */
261
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262
#ifdef CONFIG_ZONE_DMA
263
	[ZONE_DMA] = 256,
264
#endif
265
#ifdef CONFIG_ZONE_DMA32
266
	[ZONE_DMA32] = 256,
267
#endif
268
	[ZONE_NORMAL] = 32,
269
#ifdef CONFIG_HIGHMEM
270
	[ZONE_HIGHMEM] = 0,
271
#endif
272
	[ZONE_MOVABLE] = 0,
273
};
L
Linus Torvalds 已提交
274

275
static char * const zone_names[MAX_NR_ZONES] = {
276
#ifdef CONFIG_ZONE_DMA
277
	 "DMA",
278
#endif
279
#ifdef CONFIG_ZONE_DMA32
280
	 "DMA32",
281
#endif
282
	 "Normal",
283
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
284
	 "HighMem",
285
#endif
M
Mel Gorman 已提交
286
	 "Movable",
287 288 289
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
290 291
};

292
const char * const migratetype_names[MIGRATE_TYPES] = {
293 294 295 296 297 298 299 300 301 302 303 304
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

305 306 307 308 309 310
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
311 312 313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
314 315
};

L
Linus Torvalds 已提交
316
int min_free_kbytes = 1024;
317
int user_min_free_kbytes = -1;
318 319 320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
330
int watermark_boost_factor __read_mostly = 15000;
331
#endif
332
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
333

334 335 336
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
337

T
Tejun Heo 已提交
338
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 340
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341
static unsigned long required_kernelcore __initdata;
342
static unsigned long required_kernelcore_percent __initdata;
343
static unsigned long required_movablecore __initdata;
344
static unsigned long required_movablecore_percent __initdata;
345
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
347 348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352

M
Miklos Szeredi 已提交
353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
549

550
void set_pageblock_migratetype(struct page *page, int migratetype)
551
{
552 553
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
554 555
		migratetype = MIGRATE_UNMOVABLE;

556 557 558 559
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
560
#ifdef CONFIG_DEBUG_VM
561
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
562
{
563 564 565
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
566
	unsigned long sp, start_pfn;
567

568 569
	do {
		seq = zone_span_seqbegin(zone);
570 571
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
572
		if (!zone_spans_pfn(zone, pfn))
573 574 575
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

576
	if (ret)
577 578 579
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
580

581
	return ret;
582 583 584 585
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
586
	if (!pfn_valid_within(page_to_pfn(page)))
587
		return 0;
L
Linus Torvalds 已提交
588
	if (zone != page_zone(page))
589 590 591 592 593 594 595
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
596
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 598
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
599
		return 1;
600 601 602
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
603 604
	return 0;
}
N
Nick Piggin 已提交
605
#else
606
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
607 608 609 610 611
{
	return 0;
}
#endif

612 613
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
614
{
615 616 617 618 619 620 621 622 623 624 625 626 627 628
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
629
			pr_alert(
630
			      "BUG: Bad page state: %lu messages suppressed\n",
631 632 633 634 635 636 637 638
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

639
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640
		current->comm, page_to_pfn(page));
641 642 643 644 645
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
646
	dump_page_owner(page);
647

648
	print_modules();
L
Linus Torvalds 已提交
649
	dump_stack();
650
out:
651
	/* Leave bad fields for debug, except PageBuddy could make trouble */
652
	page_mapcount_reset(page); /* remove PageBuddy */
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654 655 656 657 658
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
659
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
660
 *
661 662
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
663
 *
664 665
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
666
 *
667
 * The first tail page's ->compound_order holds the order of allocation.
668
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
669
 */
670

671
void free_compound_page(struct page *page)
672
{
673
	mem_cgroup_uncharge(page);
674
	__free_pages_ok(page, compound_order(page));
675 676
}

677
void prep_compound_page(struct page *page, unsigned int order)
678 679 680 681
{
	int i;
	int nr_pages = 1 << order;

682
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 684 685 686
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
687
		set_page_count(p, 0);
688
		p->mapping = TAIL_MAPPING;
689
		set_compound_head(p, page);
690
	}
691
	atomic_set(compound_mapcount_ptr(page), -1);
692 693
}

694 695
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
696 697 698 699 700 701

#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
#else
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
#endif
702
EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 704

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705

706 707
static int __init early_debug_pagealloc(char *buf)
{
708 709 710
	bool enable = false;

	if (kstrtobool(buf, &enable))
711
		return -EINVAL;
712 713 714 715 716

	if (enable)
		static_branch_enable(&_debug_pagealloc_enabled);

	return 0;
717 718 719
}
early_param("debug_pagealloc", early_debug_pagealloc);

720 721
static void init_debug_guardpage(void)
{
722 723 724
	if (!debug_pagealloc_enabled())
		return;

725 726 727
	if (!debug_guardpage_minorder())
		return;

728
	static_branch_enable(&_debug_guardpage_enabled);
729 730
}

731 732 733 734 735
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
736
		pr_err("Bad debug_guardpage_minorder value\n");
737 738 739
		return 0;
	}
	_debug_guardpage_minorder = res;
740
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 742
	return 0;
}
743
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744

745
static inline bool set_page_guard(struct zone *zone, struct page *page,
746
				unsigned int order, int migratetype)
747
{
748
	if (!debug_guardpage_enabled())
749 750 751 752
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
753

754
	__SetPageGuard(page);
755 756 757 758
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
759 760

	return true;
761 762
}

763 764
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
765
{
766 767 768
	if (!debug_guardpage_enabled())
		return;

769
	__ClearPageGuard(page);
770

771 772 773
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
774 775
}
#else
776 777
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
778 779
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
780 781
#endif

782
static inline void set_page_order(struct page *page, unsigned int order)
783
{
H
Hugh Dickins 已提交
784
	set_page_private(page, order);
785
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
786 787 788 789
}

/*
 * This function checks whether a page is free && is the buddy
790
 * we can coalesce a page and its buddy if
791
 * (a) the buddy is not in a hole (check before calling!) &&
792
 * (b) the buddy is in the buddy system &&
793 794
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
795
 *
796 797
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
798
 *
799
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
800
 */
801
static inline int page_is_buddy(struct page *page, struct page *buddy,
802
							unsigned int order)
L
Linus Torvalds 已提交
803
{
804
	if (page_is_guard(buddy) && page_order(buddy) == order) {
805 806 807
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

808 809
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

810 811 812
		return 1;
	}

813
	if (PageBuddy(buddy) && page_order(buddy) == order) {
814 815 816 817 818 819 820 821
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

822 823
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

824
		return 1;
825
	}
826
	return 0;
L
Linus Torvalds 已提交
827 828
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
893 894
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
895
 * So when we are allocating or freeing one, we can derive the state of the
896 897
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
898
 * If a block is freed, and its buddy is also free, then this
899
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
900
 *
901
 * -- nyc
L
Linus Torvalds 已提交
902 903
 */

N
Nick Piggin 已提交
904
static inline void __free_one_page(struct page *page,
905
		unsigned long pfn,
906 907
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
908
{
909 910
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
911
	struct page *buddy;
912
	unsigned int max_order;
913
	struct capture_control *capc = task_capc(zone);
914 915

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
916

917
	VM_BUG_ON(!zone_is_initialized(zone));
918
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
919

920
	VM_BUG_ON(migratetype == -1);
921
	if (likely(!is_migrate_isolate(migratetype)))
922
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
923

924
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
926

927
continue_merging:
928
	while (order < max_order - 1) {
929 930 931 932 933
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
934 935
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
936 937 938

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
939
		if (!page_is_buddy(page, buddy, order))
940
			goto done_merging;
941 942 943 944
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
945
		if (page_is_guard(buddy))
946
			clear_page_guard(zone, buddy, order, migratetype);
947 948
		else
			del_page_from_free_area(buddy, &zone->free_area[order]);
949 950 951
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
952 953
		order++;
	}
954 955 956 957 958 959 960 961 962 963 964 965
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

966 967
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
968 969 970 971 972 973 974 975 976 977 978 979
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
980
	set_page_order(page, order);
981 982 983 984 985 986 987 988 989

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
990 991
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
			&& !is_shuffle_order(order)) {
992
		struct page *higher_page, *higher_buddy;
993 994 995 996
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 998
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 1000 1001
			add_to_free_area_tail(page, &zone->free_area[order],
					      migratetype);
			return;
1002 1003 1004
		}
	}

1005 1006 1007 1008 1009 1010
	if (is_shuffle_order(order))
		add_to_free_area_random(page, &zone->free_area[order],
				migratetype);
	else
		add_to_free_area(page, &zone->free_area[order], migratetype);

L
Linus Torvalds 已提交
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1035
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1036
{
1037 1038 1039 1040 1041
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1042

1043
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 1045 1046
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1047
	if (unlikely(page_ref_count(page) != 0))
1048
		bad_reason = "nonzero _refcount";
1049 1050 1051 1052
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1053 1054 1055 1056
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1057
	bad_page(page, bad_reason, bad_flags);
1058 1059 1060 1061
}

static inline int free_pages_check(struct page *page)
{
1062
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 1064 1065 1066
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1067
	return 1;
L
Linus Torvalds 已提交
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1086
		/* the first tail page: ->mapping may be compound_mapcount() */
1087 1088 1089 1090 1091 1092 1093 1094
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1095
		 * deferred_list.next -- ignore value.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1120 1121 1122 1123 1124 1125 1126 1127
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
}

1128 1129
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1130
{
1131
	int bad = 0;
1132 1133 1134

	VM_BUG_ON_PAGE(PageTail(page), page);

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146

1147 1148
		if (compound)
			ClearPageDoubleMap(page);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1159
	if (PageMappingFlags(page))
1160
		page->mapping = NULL;
1161
	if (memcg_kmem_enabled() && PageKmemcg(page))
1162
		__memcg_kmem_uncharge(page, order);
1163 1164 1165 1166
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1167

1168 1169 1170
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1171 1172 1173

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1174
					   PAGE_SIZE << order);
1175
		debug_check_no_obj_freed(page_address(page),
1176
					   PAGE_SIZE << order);
1177
	}
1178 1179 1180
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1181
	kernel_poison_pages(page, 1 << order, 0);
1182 1183 1184 1185 1186 1187 1188
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1189 1190 1191
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 0);

1192
	kasan_free_nondeferred_pages(page, order);
1193 1194 1195 1196

	return true;
}

1197
#ifdef CONFIG_DEBUG_VM
1198 1199 1200 1201 1202 1203
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1204 1205 1206 1207
{
	return free_pages_prepare(page, 0, true);
}

1208
static bool bulkfree_pcp_prepare(struct page *page)
1209
{
1210 1211 1212 1213
	if (debug_pagealloc_enabled())
		return free_pages_check(page);
	else
		return false;
1214 1215
}
#else
1216 1217 1218 1219 1220 1221
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1222 1223
static bool free_pcp_prepare(struct page *page)
{
1224 1225 1226 1227
	if (debug_pagealloc_enabled())
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1228 1229
}

1230 1231 1232 1233 1234 1235
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1236 1237 1238 1239 1240 1241 1242 1243 1244
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1245
/*
1246
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1247
 * Assumes all pages on list are in same zone, and of same order.
1248
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1249 1250 1251 1252 1253 1254 1255
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1256 1257
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1258
{
1259
	int migratetype = 0;
1260
	int batch_free = 0;
1261
	int prefetch_nr = 0;
1262
	bool isolated_pageblocks;
1263 1264
	struct page *page, *tmp;
	LIST_HEAD(head);
1265

1266
	while (count) {
1267 1268 1269
		struct list_head *list;

		/*
1270 1271 1272 1273 1274
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1275 1276
		 */
		do {
1277
			batch_free++;
1278 1279 1280 1281
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1282

1283 1284
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1285
			batch_free = count;
1286

1287
		do {
1288
			page = list_last_entry(list, struct page, lru);
1289
			/* must delete to avoid corrupting pcp list */
1290
			list_del(&page->lru);
1291
			pcp->count--;
1292

1293 1294 1295
			if (bulkfree_pcp_prepare(page))
				continue;

1296
			list_add_tail(&page->lru, &head);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1309
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1310
	}
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1330
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1331 1332
}

1333 1334
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1335
				unsigned int order,
1336
				int migratetype)
L
Linus Torvalds 已提交
1337
{
1338
	spin_lock(&zone->lock);
1339 1340 1341 1342
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1343
	__free_one_page(page, pfn, zone, order, migratetype);
1344
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1345 1346
}

1347
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348
				unsigned long zone, int nid)
1349
{
1350
	mm_zero_struct_page(page);
1351 1352 1353 1354
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1355
	page_kasan_tag_reset(page);
1356 1357 1358 1359 1360 1361 1362 1363 1364

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1365
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366
static void __meminit init_reserved_page(unsigned long pfn)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1383
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384 1385 1386 1387 1388 1389 1390
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1391 1392 1393 1394 1395 1396
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1397
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398 1399 1400 1401
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1402 1403 1404 1405 1406
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1407 1408 1409 1410

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1411 1412 1413 1414 1415 1416
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1417 1418
		}
	}
1419 1420
}

1421 1422
static void __free_pages_ok(struct page *page, unsigned int order)
{
1423
	unsigned long flags;
M
Minchan Kim 已提交
1424
	int migratetype;
1425
	unsigned long pfn = page_to_pfn(page);
1426

1427
	if (!free_pages_prepare(page, order, true))
1428 1429
		return;

1430
	migratetype = get_pfnblock_migratetype(page, pfn);
1431 1432
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1433
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1434
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1435 1436
}

1437
void __free_pages_core(struct page *page, unsigned int order)
1438
{
1439
	unsigned int nr_pages = 1 << order;
1440
	struct page *p = page;
1441
	unsigned int loop;
1442

1443 1444 1445
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1446 1447
		__ClearPageReserved(p);
		set_page_count(p, 0);
1448
	}
1449 1450
	__ClearPageReserved(p);
	set_page_count(p, 0);
1451

1452
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 1454
	set_page_refcounted(page);
	__free_pages(page, order);
1455 1456
}

1457 1458
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459

1460 1461 1462 1463
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1464
	static DEFINE_SPINLOCK(early_pfn_lock);
1465 1466
	int nid;

1467
	spin_lock(&early_pfn_lock);
1468
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469
	if (nid < 0)
1470
		nid = first_online_node;
1471 1472 1473
	spin_unlock(&early_pfn_lock);

	return nid;
1474 1475 1476 1477
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 1479
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480 1481 1482
{
	int nid;

1483
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1497
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 1499 1500 1501
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1502
	__free_pages_core(page, order);
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1534 1535 1536
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1576
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 1578
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1579
{
1580 1581
	struct page *page;
	unsigned long i;
1582

1583
	if (!nr_pages)
1584 1585
		return;

1586 1587
	page = pfn_to_page(pfn);

1588
	/* Free a large naturally-aligned chunk if possible */
1589 1590
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1591
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592
		__free_pages_core(page, pageblock_order);
1593 1594 1595
		return;
	}

1596 1597 1598
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599
		__free_pages_core(page, 0);
1600
	}
1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610 1611
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1612

1613
/*
1614 1615 1616 1617 1618 1619 1620 1621
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1622
 */
1623
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624
{
1625 1626 1627 1628 1629 1630
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1631

1632 1633 1634 1635
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1636
static void __init deferred_free_pages(unsigned long pfn,
1637 1638 1639 1640
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1641

1642
	for (; pfn < end_pfn; pfn++) {
1643
		if (!deferred_pfn_valid(pfn)) {
1644 1645 1646 1647 1648
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1649
			touch_nmi_watchdog();
1650 1651 1652 1653 1654 1655
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1656 1657
}

1658 1659 1660 1661 1662
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1663
static unsigned long  __init deferred_init_pages(struct zone *zone,
1664 1665
						 unsigned long pfn,
						 unsigned long end_pfn)
1666 1667
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668
	int nid = zone_to_nid(zone);
1669
	unsigned long nr_pages = 0;
1670
	int zid = zone_idx(zone);
1671 1672
	struct page *page = NULL;

1673
	for (; pfn < end_pfn; pfn++) {
1674
		if (!deferred_pfn_valid(pfn)) {
1675
			page = NULL;
1676
			continue;
1677
		} else if (!page || !(pfn & nr_pgmask)) {
1678
			page = pfn_to_page(pfn);
1679
			touch_nmi_watchdog();
1680 1681
		} else {
			page++;
1682
		}
1683
		__init_single_page(page, pfn, zid, nid);
1684
		nr_pages++;
1685
	}
1686
	return (nr_pages);
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1773
/* Initialise remaining memory on a node */
1774
static int __init deferred_init_memmap(void *data)
1775
{
1776
	pg_data_t *pgdat = data;
1777 1778 1779
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1780 1781
	unsigned long start = jiffies;
	struct zone *zone;
1782
	int zid;
1783
	u64 i;
1784

1785 1786 1787 1788 1789 1790
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1791
	if (first_init_pfn == ULONG_MAX) {
1792
		pgdat_resize_unlock(pgdat, &flags);
1793
		pgdat_init_report_one_done();
1794 1795 1796
		return 0;
	}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1808 1809 1810 1811 1812

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1813

1814
	/*
1815 1816 1817
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1818
	 */
1819 1820 1821
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1822
	pgdat_resize_unlock(pgdat, &flags);
1823 1824 1825 1826

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1827 1828
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1829 1830

	pgdat_init_report_one_done();
1831 1832
	return 0;
}
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853
	pg_data_t *pgdat = zone->zone_pgdat;
1854
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 1856
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1885 1886 1887 1888
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1889
		pgdat_resize_unlock(pgdat, &flags);
1890 1891
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1892 1893
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904

1905 1906 1907
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1908

1909
		/* If our quota has been met we can stop here */
1910 1911 1912 1913
		if (nr_pages >= nr_pages_needed)
			break;
	}

1914
	pgdat->first_deferred_pfn = spfn;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1932
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933 1934 1935

void __init page_alloc_init_late(void)
{
1936
	struct zone *zone;
1937
	int nid;
1938 1939

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940

1941 1942
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 1944 1945 1946 1947
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1948
	wait_for_completion(&pgdat_init_all_done_comp);
1949

1950 1951 1952 1953 1954 1955
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1956 1957
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1958
#endif
1959

P
Pavel Tatashin 已提交
1960 1961
	/* Discard memblock private memory */
	memblock_discard();
1962

1963 1964 1965
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

1966 1967
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1968 1969 1970 1971

#ifdef CONFIG_DEBUG_PAGEALLOC
	init_debug_guardpage();
#endif
1972 1973
}

1974
#ifdef CONFIG_CMA
1975
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1976 1977 1978 1979 1980 1981 1982 1983
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1984
	} while (++p, --i);
1985 1986

	set_pageblock_migratetype(page, MIGRATE_CMA);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2001
	adjust_managed_page_count(page, pageblock_nr_pages);
2002 2003
}
#endif
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2017
 * -- nyc
L
Linus Torvalds 已提交
2018
 */
N
Nick Piggin 已提交
2019
static inline void expand(struct zone *zone, struct page *page,
2020 2021
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
2029
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2030

2031 2032 2033 2034 2035 2036 2037
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2038
			continue;
2039

2040
		add_to_free_area(&page[size], area, migratetype);
L
Linus Torvalds 已提交
2041 2042 2043 2044
		set_page_order(&page[size], high);
	}
}

2045
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2046
{
2047 2048
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2049

2050
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2051 2052 2053
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2054
	if (unlikely(page_ref_count(page) != 0))
2055
		bad_reason = "nonzero _refcount";
2056 2057 2058
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2059 2060 2061
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2062
	}
2063 2064 2065 2066
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2067 2068 2069 2070
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2085 2086
}

2087
static inline bool free_pages_prezeroed(void)
2088
{
2089 2090
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2091 2092
}

2093
#ifdef CONFIG_DEBUG_VM
2094 2095 2096 2097 2098 2099
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2100
{
2101 2102 2103 2104
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2105 2106
}

2107
static inline bool check_new_pcp(struct page *page)
2108 2109 2110 2111
{
	return check_new_page(page);
}
#else
2112 2113 2114 2115 2116 2117
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2118 2119 2120
{
	return check_new_page(page);
}
2121
static inline bool check_new_pcp(struct page *page)
2122
{
2123 2124 2125 2126
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2143 2144 2145 2146 2147 2148 2149
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2150 2151
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 1);
2152
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2153
	kernel_poison_pages(page, 1 << order, 1);
2154 2155 2156
	set_page_owner(page, order, gfp_flags);
}

2157
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2158
							unsigned int alloc_flags)
2159
{
2160
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2161

2162 2163
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2164 2165 2166 2167

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2168
	/*
2169
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2170 2171 2172 2173
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2174 2175 2176 2177
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2178 2179
}

2180 2181 2182 2183
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2184
static __always_inline
2185
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2186 2187 2188
						int migratetype)
{
	unsigned int current_order;
2189
	struct free_area *area;
2190 2191 2192 2193 2194
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2195
		page = get_page_from_free_area(area, migratetype);
2196 2197
		if (!page)
			continue;
2198
		del_page_from_free_area(page, area);
2199
		expand(zone, page, order, current_order, area, migratetype);
2200
		set_pcppage_migratetype(page, migratetype);
2201 2202 2203 2204 2205 2206 2207
		return page;
	}

	return NULL;
}


2208 2209 2210 2211
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2212
static int fallbacks[MIGRATE_TYPES][4] = {
2213 2214
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2215
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2216
#ifdef CONFIG_CMA
2217
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2218
#endif
2219
#ifdef CONFIG_MEMORY_ISOLATION
2220
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2221
#endif
2222 2223
};

2224
#ifdef CONFIG_CMA
2225
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 2227 2228 2229 2230 2231 2232 2233 2234
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2235 2236
/*
 * Move the free pages in a range to the free lists of the requested type.
2237
 * Note that start_page and end_pages are not aligned on a pageblock
2238 2239
 * boundary. If alignment is required, use move_freepages_block()
 */
2240
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2241
			  struct page *start_page, struct page *end_page,
2242
			  int migratetype, int *num_movable)
2243 2244
{
	struct page *page;
2245
	unsigned int order;
2246
	int pages_moved = 0;
2247 2248 2249 2250 2251 2252 2253 2254

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2264 2265 2266 2267
			page++;
			continue;
		}

2268 2269 2270 2271
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2272
		order = page_order(page);
2273
		move_to_free_area(page, &zone->free_area[order], migratetype);
2274
		page += 1 << order;
2275
		pages_moved += 1 << order;
2276 2277
	}

2278
	return pages_moved;
2279 2280
}

2281
int move_freepages_block(struct zone *zone, struct page *page,
2282
				int migratetype, int *num_movable)
2283 2284 2285 2286
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2287 2288 2289
	if (num_movable)
		*num_movable = 0;

2290
	start_pfn = page_to_pfn(page);
2291
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2292
	start_page = pfn_to_page(start_pfn);
2293 2294
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2295 2296

	/* Do not cross zone boundaries */
2297
	if (!zone_spans_pfn(zone, start_pfn))
2298
		start_page = page;
2299
	if (!zone_spans_pfn(zone, end_pfn))
2300 2301
		return 0;

2302 2303
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2317
/*
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2328
 */
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2350 2351 2352 2353 2354 2355 2356 2357 2358
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2371 2372 2373 2374 2375 2376
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2377 2378 2379
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2380 2381 2382 2383
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2384 2385
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2386
		unsigned int alloc_flags, int start_type, bool whole_block)
2387
{
2388
	unsigned int current_order = page_order(page);
2389
	struct free_area *area;
2390 2391 2392 2393
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2394

2395 2396 2397 2398
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2399
	if (is_migrate_highatomic(old_block_type))
2400 2401
		goto single_page;

2402 2403 2404
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2405
		goto single_page;
2406 2407
	}

2408 2409 2410 2411 2412 2413 2414
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2415
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2416

2417 2418 2419 2420
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2445
	/* moving whole block can fail due to zone boundary conditions */
2446
	if (!free_pages)
2447
		goto single_page;
2448

2449 2450 2451 2452 2453
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2454 2455
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2456 2457 2458 2459 2460

	return;

single_page:
	area = &zone->free_area[current_order];
2461
	move_to_free_area(page, area, start_type);
2462 2463
}

2464 2465 2466 2467 2468 2469 2470 2471
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2482
		if (fallback_mt == MIGRATE_TYPES)
2483 2484
			break;

2485
		if (free_area_empty(area, fallback_mt))
2486
			continue;
2487

2488 2489 2490
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2491 2492 2493 2494 2495
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2496
	}
2497 2498

	return -1;
2499 2500
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2515
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2527 2528
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2529 2530
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2531
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2543 2544 2545
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2546
 */
2547 2548
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2549 2550 2551 2552 2553 2554 2555
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2556
	bool ret;
2557 2558 2559

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2560 2561 2562 2563 2564 2565
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2566 2567 2568 2569 2570 2571
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2572
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2573
			if (!page)
2574 2575 2576
				continue;

			/*
2577 2578 2579 2580 2581
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2582
			 */
2583
			if (is_migrate_highatomic_page(page)) {
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2606 2607
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2608 2609 2610 2611
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2612 2613 2614
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2615 2616

	return false;
2617 2618
}

2619 2620 2621 2622 2623
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2624 2625 2626 2627
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2628
 */
2629
static __always_inline bool
2630 2631
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2632
{
2633
	struct free_area *area;
2634
	int current_order;
2635
	int min_order = order;
2636
	struct page *page;
2637 2638
	int fallback_mt;
	bool can_steal;
2639

2640 2641 2642 2643 2644 2645 2646 2647
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2648 2649 2650 2651 2652
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2653
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2654
				--current_order) {
2655 2656
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2657
				start_migratetype, false, &can_steal);
2658 2659
		if (fallback_mt == -1)
			continue;
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2672

2673 2674
		goto do_steal;
	}
2675

2676
	return false;
2677

2678 2679 2680 2681 2682 2683 2684 2685
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2686 2687
	}

2688 2689 2690 2691 2692 2693 2694
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2695
	page = get_page_from_free_area(area, fallback_mt);
2696

2697 2698
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2699 2700 2701 2702 2703 2704

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2705 2706
}

2707
/*
L
Linus Torvalds 已提交
2708 2709 2710
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2711
static __always_inline struct page *
2712 2713
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2714 2715 2716
{
	struct page *page;

2717
retry:
2718
	page = __rmqueue_smallest(zone, order, migratetype);
2719
	if (unlikely(!page)) {
2720 2721 2722
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2723 2724
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2725
			goto retry;
2726 2727
	}

2728
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2729
	return page;
L
Linus Torvalds 已提交
2730 2731
}

2732
/*
L
Linus Torvalds 已提交
2733 2734 2735 2736
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2737
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2738
			unsigned long count, struct list_head *list,
2739
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2740
{
2741
	int i, alloced = 0;
2742

2743
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2744
	for (i = 0; i < count; ++i) {
2745 2746
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2747
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2748
			break;
2749

2750 2751 2752
		if (unlikely(check_pcp_refill(page)))
			continue;

2753
		/*
2754 2755 2756 2757 2758 2759 2760 2761
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2762
		 */
2763
		list_add_tail(&page->lru, list);
2764
		alloced++;
2765
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2766 2767
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2768
	}
2769 2770 2771 2772 2773 2774 2775

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2776
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2777
	spin_unlock(&zone->lock);
2778
	return alloced;
L
Linus Torvalds 已提交
2779 2780
}

2781
#ifdef CONFIG_NUMA
2782
/*
2783 2784 2785 2786
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2787 2788
 * Note that this function must be called with the thread pinned to
 * a single processor.
2789
 */
2790
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2791 2792
{
	unsigned long flags;
2793
	int to_drain, batch;
2794

2795
	local_irq_save(flags);
2796
	batch = READ_ONCE(pcp->batch);
2797
	to_drain = min(pcp->count, batch);
2798
	if (to_drain > 0)
2799
		free_pcppages_bulk(zone, to_drain, pcp);
2800
	local_irq_restore(flags);
2801 2802 2803
}
#endif

2804
/*
2805
 * Drain pcplists of the indicated processor and zone.
2806 2807 2808 2809 2810
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2811
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2812
{
N
Nick Piggin 已提交
2813
	unsigned long flags;
2814 2815
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2816

2817 2818
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2819

2820
	pcp = &pset->pcp;
2821
	if (pcp->count)
2822 2823 2824
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2839 2840 2841
	}
}

2842 2843
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2844 2845 2846
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2847
 */
2848
void drain_local_pages(struct zone *zone)
2849
{
2850 2851 2852 2853 2854 2855
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2856 2857
}

2858 2859
static void drain_local_pages_wq(struct work_struct *work)
{
2860 2861 2862 2863
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2872
	drain_local_pages(drain->zone);
2873
	preempt_enable();
2874 2875
}

2876
/*
2877 2878
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2879 2880
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2881
 * Note that this can be extremely slow as the draining happens in a workqueue.
2882
 */
2883
void drain_all_pages(struct zone *zone)
2884
{
2885 2886 2887 2888 2889 2890 2891 2892
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2893 2894 2895 2896 2897 2898 2899
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2910

2911 2912 2913 2914 2915 2916 2917
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2918 2919
		struct per_cpu_pageset *pcp;
		struct zone *z;
2920
		bool has_pcps = false;
2921 2922

		if (zone) {
2923
			pcp = per_cpu_ptr(zone->pageset, cpu);
2924
			if (pcp->pcp.count)
2925
				has_pcps = true;
2926 2927 2928 2929 2930 2931 2932
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2933 2934
			}
		}
2935

2936 2937 2938 2939 2940
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2941

2942
	for_each_cpu(cpu, &cpus_with_pcps) {
2943 2944 2945 2946 2947
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2948
	}
2949
	for_each_cpu(cpu, &cpus_with_pcps)
2950
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2951 2952

	mutex_unlock(&pcpu_drain_mutex);
2953 2954
}

2955
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2956

2957 2958 2959 2960 2961
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2962 2963
void mark_free_pages(struct zone *zone)
{
2964
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2965
	unsigned long flags;
2966
	unsigned int order, t;
2967
	struct page *page;
L
Linus Torvalds 已提交
2968

2969
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2970 2971 2972
		return;

	spin_lock_irqsave(&zone->lock, flags);
2973

2974
	max_zone_pfn = zone_end_pfn(zone);
2975 2976
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2977
			page = pfn_to_page(pfn);
2978

2979 2980 2981 2982 2983
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2984 2985 2986
			if (page_zone(page) != zone)
				continue;

2987 2988
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2989
		}
L
Linus Torvalds 已提交
2990

2991
	for_each_migratetype_order(order, t) {
2992 2993
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2994
			unsigned long i;
L
Linus Torvalds 已提交
2995

2996
			pfn = page_to_pfn(page);
2997 2998 2999 3000 3001
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3002
				swsusp_set_page_free(pfn_to_page(pfn + i));
3003
			}
3004
		}
3005
	}
L
Linus Torvalds 已提交
3006 3007
	spin_unlock_irqrestore(&zone->lock, flags);
}
3008
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3009

3010
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3011
{
3012
	int migratetype;
L
Linus Torvalds 已提交
3013

3014
	if (!free_pcp_prepare(page))
3015
		return false;
3016

3017
	migratetype = get_pfnblock_migratetype(page, pfn);
3018
	set_pcppage_migratetype(page, migratetype);
3019 3020 3021
	return true;
}

3022
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3023 3024 3025 3026 3027 3028
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3029
	__count_vm_event(PGFREE);
3030

3031 3032 3033
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3034
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3035 3036 3037 3038
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3039
		if (unlikely(is_migrate_isolate(migratetype))) {
3040
			free_one_page(zone, page, pfn, 0, migratetype);
3041
			return;
3042 3043 3044 3045
		}
		migratetype = MIGRATE_MOVABLE;
	}

3046
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3047
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3048
	pcp->count++;
N
Nick Piggin 已提交
3049
	if (pcp->count >= pcp->high) {
3050
		unsigned long batch = READ_ONCE(pcp->batch);
3051
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3052
	}
3053
}
3054

3055 3056 3057
/*
 * Free a 0-order page
 */
3058
void free_unref_page(struct page *page)
3059 3060 3061 3062
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3063
	if (!free_unref_page_prepare(page, pfn))
3064 3065 3066
		return;

	local_irq_save(flags);
3067
	free_unref_page_commit(page, pfn);
3068
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3069 3070
}

3071 3072 3073
/*
 * Free a list of 0-order pages
 */
3074
void free_unref_page_list(struct list_head *list)
3075 3076
{
	struct page *page, *next;
3077
	unsigned long flags, pfn;
3078
	int batch_count = 0;
3079 3080 3081 3082

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3083
		if (!free_unref_page_prepare(page, pfn))
3084 3085 3086
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3087

3088
	local_irq_save(flags);
3089
	list_for_each_entry_safe(page, next, list, lru) {
3090 3091 3092
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3093 3094
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3105
	}
3106
	local_irq_restore(flags);
3107 3108
}

N
Nick Piggin 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3121 3122
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3123

3124
	for (i = 1; i < (1 << order); i++)
3125
		set_page_refcounted(page + i);
3126
	split_page_owner(page, order);
N
Nick Piggin 已提交
3127
}
K
K. Y. Srinivasan 已提交
3128
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3129

3130
int __isolate_free_page(struct page *page, unsigned int order)
3131
{
3132
	struct free_area *area = &page_zone(page)->free_area[order];
3133 3134
	unsigned long watermark;
	struct zone *zone;
3135
	int mt;
3136 3137 3138 3139

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3140
	mt = get_pageblock_migratetype(page);
3141

3142
	if (!is_migrate_isolate(mt)) {
3143 3144 3145 3146 3147 3148
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3149
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3150
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3151 3152
			return 0;

3153
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3154
	}
3155 3156

	/* Remove page from free list */
3157 3158

	del_page_from_free_area(page, area);
3159

3160 3161 3162 3163
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3164 3165
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3166 3167
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3168
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3169
			    && !is_migrate_highatomic(mt))
3170 3171 3172
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3173 3174
	}

3175

3176
	return 1UL << order;
3177 3178
}

3179 3180 3181 3182 3183
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3184
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3185 3186
{
#ifdef CONFIG_NUMA
3187
	enum numa_stat_item local_stat = NUMA_LOCAL;
3188

3189 3190 3191 3192
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3193
	if (zone_to_nid(z) != numa_node_id())
3194 3195
		local_stat = NUMA_OTHER;

3196
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3197
		__inc_numa_state(z, NUMA_HIT);
3198
	else {
3199 3200
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3201
	}
3202
	__inc_numa_state(z, local_stat);
3203 3204 3205
#endif
}

3206 3207
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3208
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3209
			struct per_cpu_pages *pcp,
3210 3211 3212 3213 3214 3215 3216 3217
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3218
					migratetype, alloc_flags);
3219 3220 3221 3222
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3223
		page = list_first_entry(list, struct page, lru);
3224 3225 3226 3227 3228 3229 3230 3231 3232
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3233 3234
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3235 3236 3237 3238
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3239
	unsigned long flags;
3240

3241
	local_irq_save(flags);
3242 3243
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3244
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3245
	if (page) {
3246
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3247 3248
		zone_statistics(preferred_zone, zone);
	}
3249
	local_irq_restore(flags);
3250 3251 3252
	return page;
}

L
Linus Torvalds 已提交
3253
/*
3254
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3255
 */
3256
static inline
3257
struct page *rmqueue(struct zone *preferred_zone,
3258
			struct zone *zone, unsigned int order,
3259 3260
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3261 3262
{
	unsigned long flags;
3263
	struct page *page;
L
Linus Torvalds 已提交
3264

3265
	if (likely(order == 0)) {
3266 3267
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3268 3269
		goto out;
	}
3270

3271 3272 3273 3274 3275 3276
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3277

3278 3279 3280 3281 3282 3283 3284
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3285
		if (!page)
3286
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3287 3288 3289 3290 3291 3292
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3293

3294
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3295
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3296
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3297

3298
out:
3299 3300 3301 3302 3303 3304
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3305
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3306
	return page;
N
Nick Piggin 已提交
3307 3308 3309 3310

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3311 3312
}

3313 3314
#ifdef CONFIG_FAIL_PAGE_ALLOC

3315
static struct {
3316 3317
	struct fault_attr attr;

3318
	bool ignore_gfp_highmem;
3319
	bool ignore_gfp_reclaim;
3320
	u32 min_order;
3321 3322
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3323
	.ignore_gfp_reclaim = true,
3324
	.ignore_gfp_highmem = true,
3325
	.min_order = 1,
3326 3327 3328 3329 3330 3331 3332 3333
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3334
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3335
{
3336
	if (order < fail_page_alloc.min_order)
3337
		return false;
3338
	if (gfp_mask & __GFP_NOFAIL)
3339
		return false;
3340
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3341
		return false;
3342 3343
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3344
		return false;
3345 3346 3347 3348 3349 3350 3351 3352

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3353
	umode_t mode = S_IFREG | 0600;
3354 3355
	struct dentry *dir;

3356 3357
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3358

3359 3360 3361 3362 3363
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3364

3365
	return 0;
3366 3367 3368 3369 3370 3371 3372 3373
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3374
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375
{
3376
	return false;
3377 3378 3379 3380
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3381 3382 3383 3384 3385 3386
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3387
/*
3388 3389 3390 3391
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3392
 */
3393 3394 3395
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3396
{
3397
	long min = mark;
L
Linus Torvalds 已提交
3398
	int o;
3399
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3400

3401
	/* free_pages may go negative - that's OK */
3402
	free_pages -= (1 << order) - 1;
3403

R
Rohit Seth 已提交
3404
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3405
		min -= min / 2;
3406 3407 3408 3409 3410 3411

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3412
	if (likely(!alloc_harder)) {
3413
		free_pages -= z->nr_reserved_highatomic;
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3427

3428 3429 3430 3431 3432 3433
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3434 3435 3436 3437 3438 3439
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3440
		return false;
L
Linus Torvalds 已提交
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3455
			if (!free_area_empty(area, mt))
3456 3457 3458 3459
				return true;
		}

#ifdef CONFIG_CMA
3460
		if ((alloc_flags & ALLOC_CMA) &&
3461
		    !free_area_empty(area, MIGRATE_CMA)) {
3462
			return true;
3463
		}
3464
#endif
3465 3466 3467
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3468
	}
3469
	return false;
3470 3471
}

3472
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3473
		      int classzone_idx, unsigned int alloc_flags)
3474 3475 3476 3477 3478
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3479 3480 3481 3482
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3483 3484 3485 3486 3487 3488 3489
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3490 3491 3492 3493 3494 3495 3496 3497

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3498
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3499 3500 3501 3502 3503 3504
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3505
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3506
			unsigned long mark, int classzone_idx)
3507 3508 3509 3510 3511 3512
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3513
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3514
								free_pages);
L
Linus Torvalds 已提交
3515 3516
}

3517
#ifdef CONFIG_NUMA
3518 3519
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3520
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3521
				node_reclaim_distance;
3522
}
3523
#else	/* CONFIG_NUMA */
3524 3525 3526 3527
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3528 3529
#endif	/* CONFIG_NUMA */

3530 3531 3532 3533 3534 3535 3536 3537 3538
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3539
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3540
{
3541 3542 3543 3544 3545 3546
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3547 3548 3549
	if (!zone)
		return alloc_flags;

3550
	if (zone_idx(zone) != ZONE_NORMAL)
3551
		return alloc_flags;
3552 3553 3554 3555 3556 3557 3558 3559

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3560
		return alloc_flags;
3561

3562
	alloc_flags |= ALLOC_NOFRAGMENT;
3563 3564
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3565 3566
}

R
Rohit Seth 已提交
3567
/*
3568
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3569 3570 3571
 * a page.
 */
static struct page *
3572 3573
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3574
{
3575
	struct zoneref *z;
3576
	struct zone *zone;
3577
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3578
	bool no_fallback;
3579

3580
retry:
R
Rohit Seth 已提交
3581
	/*
3582
	 * Scan zonelist, looking for a zone with enough free.
3583
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3584
	 */
3585 3586
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3587
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3588
								ac->nodemask) {
3589
		struct page *page;
3590 3591
		unsigned long mark;

3592 3593
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3594
			!__cpuset_zone_allowed(zone, gfp_mask))
3595
				continue;
3596 3597
		/*
		 * When allocating a page cache page for writing, we
3598 3599
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3600
		 * proportional share of globally allowed dirty pages.
3601
		 * The dirty limits take into account the node's
3602 3603 3604 3605 3606
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3607
		 * exceed the per-node dirty limit in the slowpath
3608
		 * (spread_dirty_pages unset) before going into reclaim,
3609
		 * which is important when on a NUMA setup the allowed
3610
		 * nodes are together not big enough to reach the
3611
		 * global limit.  The proper fix for these situations
3612
		 * will require awareness of nodes in the
3613 3614
		 * dirty-throttling and the flusher threads.
		 */
3615 3616 3617 3618 3619 3620 3621 3622 3623
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3624

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3641
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3642
		if (!zone_watermark_fast(zone, order, mark,
3643
				       ac_classzone_idx(ac), alloc_flags)) {
3644 3645
			int ret;

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3656 3657 3658 3659 3660
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3661
			if (node_reclaim_mode == 0 ||
3662
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3663 3664
				continue;

3665
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3666
			switch (ret) {
3667
			case NODE_RECLAIM_NOSCAN:
3668
				/* did not scan */
3669
				continue;
3670
			case NODE_RECLAIM_FULL:
3671
				/* scanned but unreclaimable */
3672
				continue;
3673 3674
			default:
				/* did we reclaim enough */
3675
				if (zone_watermark_ok(zone, order, mark,
3676
						ac_classzone_idx(ac), alloc_flags))
3677 3678 3679
					goto try_this_zone;

				continue;
3680
			}
R
Rohit Seth 已提交
3681 3682
		}

3683
try_this_zone:
3684
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3685
				gfp_mask, alloc_flags, ac->migratetype);
3686
		if (page) {
3687
			prep_new_page(page, order, gfp_mask, alloc_flags);
3688 3689 3690 3691 3692 3693 3694 3695

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3696
			return page;
3697 3698 3699 3700 3701 3702 3703 3704
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3705
		}
3706
	}
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3717
	return NULL;
M
Martin Hicks 已提交
3718 3719
}

3720
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3721 3722
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3723
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3724

3725
	if (!__ratelimit(&show_mem_rs))
3726 3727 3728 3729 3730 3731 3732 3733
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3734
		if (tsk_is_oom_victim(current) ||
3735 3736
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3737
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3738 3739
		filter &= ~SHOW_MEM_FILTER_NODES;

3740
	show_mem(filter, nodemask);
3741 3742
}

3743
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3744 3745 3746 3747 3748 3749
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3750
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3751 3752
		return;

3753 3754 3755
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3756
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3757 3758
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3759
	va_end(args);
J
Joe Perches 已提交
3760

3761
	cpuset_print_current_mems_allowed();
3762
	pr_cont("\n");
3763
	dump_stack();
3764
	warn_alloc_show_mem(gfp_mask, nodemask);
3765 3766
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3787 3788
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3789
	const struct alloc_context *ac, unsigned long *did_some_progress)
3790
{
3791 3792 3793
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3794
		.memcg = NULL,
3795 3796 3797
		.gfp_mask = gfp_mask,
		.order = order,
	};
3798 3799
	struct page *page;

3800 3801 3802
	*did_some_progress = 0;

	/*
3803 3804
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3805
	 */
3806
	if (!mutex_trylock(&oom_lock)) {
3807
		*did_some_progress = 1;
3808
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3809 3810
		return NULL;
	}
3811

3812 3813 3814
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3815 3816 3817
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3818
	 */
3819 3820 3821
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3822
	if (page)
3823 3824
		goto out;

3825 3826 3827 3828 3829 3830
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3831 3832 3833 3834 3835 3836 3837 3838
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3857

3858
	/* Exhausted what can be done so it's blame time */
3859
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3860
		*did_some_progress = 1;
3861

3862 3863 3864 3865 3866 3867
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3868 3869
					ALLOC_NO_WATERMARKS, ac);
	}
3870
out:
3871
	mutex_unlock(&oom_lock);
3872 3873 3874
	return page;
}

3875 3876 3877 3878 3879 3880
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3881 3882 3883 3884
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3885
		unsigned int alloc_flags, const struct alloc_context *ac,
3886
		enum compact_priority prio, enum compact_result *compact_result)
3887
{
3888
	struct page *page = NULL;
3889
	unsigned long pflags;
3890
	unsigned int noreclaim_flag;
3891 3892

	if (!order)
3893 3894
		return NULL;

3895
	psi_memstall_enter(&pflags);
3896
	noreclaim_flag = memalloc_noreclaim_save();
3897

3898
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3899
								prio, &page);
3900

3901
	memalloc_noreclaim_restore(noreclaim_flag);
3902
	psi_memstall_leave(&pflags);
3903

3904 3905 3906 3907 3908
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3909

3910 3911 3912 3913 3914 3915 3916
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3917

3918 3919
	if (page) {
		struct zone *zone = page_zone(page);
3920

3921 3922 3923 3924 3925
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3926

3927 3928 3929 3930 3931
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3932

3933
	cond_resched();
3934 3935 3936

	return NULL;
}
3937

3938 3939 3940 3941
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3942
		     int *compaction_retries)
3943 3944
{
	int max_retries = MAX_COMPACT_RETRIES;
3945
	int min_priority;
3946 3947 3948
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3949 3950 3951 3952

	if (!order)
		return false;

3953 3954 3955
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3956 3957 3958 3959 3960
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3961 3962
	if (compaction_failed(compact_result))
		goto check_priority;
3963

3964 3965 3966 3967 3968 3969 3970 3971 3972
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

3973 3974 3975
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
3976 3977
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
3978
	 */
3979
	if (compaction_withdrawn(compact_result)) {
3980
		goto check_priority;
3981
	}
3982 3983

	/*
3984
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3985 3986 3987 3988 3989 3990 3991 3992
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3993 3994 3995 3996
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3997

3998 3999 4000 4001 4002
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4003 4004
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4005

4006
	if (*compact_priority > min_priority) {
4007 4008
		(*compact_priority)--;
		*compaction_retries = 0;
4009
		ret = true;
4010
	}
4011 4012 4013
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4014
}
4015 4016 4017
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4018
		unsigned int alloc_flags, const struct alloc_context *ac,
4019
		enum compact_priority prio, enum compact_result *compact_result)
4020
{
4021
	*compact_result = COMPACT_SKIPPED;
4022 4023
	return NULL;
}
4024 4025

static inline bool
4026 4027
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4028
		     enum compact_priority *compact_priority,
4029
		     int *compaction_retries)
4030
{
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4049 4050
	return false;
}
4051
#endif /* CONFIG_COMPACTION */
4052

4053
#ifdef CONFIG_LOCKDEP
4054
static struct lockdep_map __fs_reclaim_map =
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4066
	if (current->flags & PF_MEMALLOC)
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4089 4090 4091
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4092
		__fs_reclaim_acquire();
4093 4094 4095 4096 4097 4098
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4099
		__fs_reclaim_release();
4100 4101 4102 4103
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4104 4105
/* Perform direct synchronous page reclaim */
static int
4106 4107
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4108
{
4109
	int progress;
4110
	unsigned int noreclaim_flag;
4111
	unsigned long pflags;
4112 4113 4114 4115 4116

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4117
	psi_memstall_enter(&pflags);
4118
	fs_reclaim_acquire(gfp_mask);
4119
	noreclaim_flag = memalloc_noreclaim_save();
4120

4121 4122
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4123

4124
	memalloc_noreclaim_restore(noreclaim_flag);
4125
	fs_reclaim_release(gfp_mask);
4126
	psi_memstall_leave(&pflags);
4127 4128 4129

	cond_resched();

4130 4131 4132 4133 4134 4135
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4136
		unsigned int alloc_flags, const struct alloc_context *ac,
4137
		unsigned long *did_some_progress)
4138 4139 4140 4141
{
	struct page *page = NULL;
	bool drained = false;

4142
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4143 4144
	if (unlikely(!(*did_some_progress)))
		return NULL;
4145

4146
retry:
4147
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4148 4149 4150

	/*
	 * If an allocation failed after direct reclaim, it could be because
4151 4152
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4153 4154
	 */
	if (!page && !drained) {
4155
		unreserve_highatomic_pageblock(ac, false);
4156
		drain_all_pages(NULL);
4157 4158 4159 4160
		drained = true;
		goto retry;
	}

4161 4162 4163
	return page;
}

4164 4165
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4166 4167 4168
{
	struct zoneref *z;
	struct zone *zone;
4169
	pg_data_t *last_pgdat = NULL;
4170
	enum zone_type high_zoneidx = ac->high_zoneidx;
4171

4172 4173
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4174
		if (last_pgdat != zone->zone_pgdat)
4175
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4176 4177
		last_pgdat = zone->zone_pgdat;
	}
4178 4179
}

4180
static inline unsigned int
4181 4182
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4183
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4184

4185
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4186
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4187

4188 4189 4190 4191
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4192
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4193
	 */
4194
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4195

4196
	if (gfp_mask & __GFP_ATOMIC) {
4197
		/*
4198 4199
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4200
		 */
4201
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4202
			alloc_flags |= ALLOC_HARDER;
4203
		/*
4204
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4205
		 * comment for __cpuset_node_allowed().
4206
		 */
4207
		alloc_flags &= ~ALLOC_CPUSET;
4208
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4209 4210
		alloc_flags |= ALLOC_HARDER;

4211 4212 4213
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4214 4215 4216 4217
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4218 4219 4220
	return alloc_flags;
}

4221
static bool oom_reserves_allowed(struct task_struct *tsk)
4222
{
4223 4224 4225 4226 4227 4228 4229 4230
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4231 4232
		return false;

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4244
	if (gfp_mask & __GFP_MEMALLOC)
4245
		return ALLOC_NO_WATERMARKS;
4246
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4247 4248 4249 4250 4251 4252 4253
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4254

4255 4256 4257 4258 4259 4260
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4261 4262
}

M
Michal Hocko 已提交
4263 4264 4265
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4266 4267 4268 4269
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4270 4271 4272 4273 4274 4275
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4276
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4277 4278 4279
{
	struct zone *zone;
	struct zoneref *z;
4280
	bool ret = false;
M
Michal Hocko 已提交
4281

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4292 4293 4294 4295
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4296 4297
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4298
		return unreserve_highatomic_pageblock(ac, true);
4299
	}
M
Michal Hocko 已提交
4300

4301 4302 4303 4304 4305
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4306 4307 4308 4309
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4310
		unsigned long reclaimable;
4311 4312
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4313

4314 4315
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4316 4317

		/*
4318 4319
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4320
		 */
4321 4322 4323 4324 4325
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4326 4327 4328 4329 4330 4331 4332
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4333
				unsigned long write_pending;
4334

4335 4336
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4337

4338
				if (2 * write_pending > reclaimable) {
4339 4340 4341 4342
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4343

4344 4345
			ret = true;
			goto out;
M
Michal Hocko 已提交
4346 4347 4348
		}
	}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4362 4363
}

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4397 4398
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4399
						struct alloc_context *ac)
4400
{
4401
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4402
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4403
	struct page *page = NULL;
4404
	unsigned int alloc_flags;
4405
	unsigned long did_some_progress;
4406
	enum compact_priority compact_priority;
4407
	enum compact_result compact_result;
4408 4409 4410
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4411
	int reserve_flags;
L
Linus Torvalds 已提交
4412

4413 4414 4415 4416 4417 4418 4419 4420
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4421 4422 4423 4424 4425
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4426 4427 4428 4429 4430 4431 4432 4433

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4445
	if (alloc_flags & ALLOC_KSWAPD)
4446
		wake_all_kswapds(order, gfp_mask, ac);
4447 4448 4449 4450 4451 4452 4453 4454 4455

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4456 4457
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4458 4459 4460 4461 4462 4463
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4464
	 */
4465 4466 4467 4468
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4469 4470
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4471
						INIT_COMPACT_PRIORITY,
4472 4473 4474 4475
						&compact_result);
		if (page)
			goto got_pg;

4476 4477
		 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
		     !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4478 4479 4480 4481
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4482 4483
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
		}

4500 4501 4502 4503
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4504
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4517 4518
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4519
			 * using async compaction.
4520
			 */
4521
			compact_priority = INIT_COMPACT_PRIORITY;
4522 4523
		}
	}
4524

4525
retry:
4526
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4527
	if (alloc_flags & ALLOC_KSWAPD)
4528
		wake_all_kswapds(order, gfp_mask, ac);
4529

4530 4531 4532
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4533

4534
	/*
4535 4536 4537
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4538
	 */
4539
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4540
		ac->nodemask = NULL;
4541 4542 4543 4544
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4545
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4546
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4547 4548
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4549

4550
	/* Caller is not willing to reclaim, we can't balance anything */
4551
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4552 4553
		goto nopage;

4554 4555
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4556 4557
		goto nopage;

4558 4559 4560 4561 4562 4563 4564
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4565
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4566
					compact_priority, &compact_result);
4567 4568
	if (page)
		goto got_pg;
4569

4570 4571
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4572
		goto nopage;
4573

M
Michal Hocko 已提交
4574 4575
	/*
	 * Do not retry costly high order allocations unless they are
4576
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4577
	 */
4578
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4579
		goto nopage;
M
Michal Hocko 已提交
4580 4581

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4582
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4583 4584
		goto retry;

4585 4586 4587 4588 4589 4590 4591
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4592
			should_compact_retry(ac, order, alloc_flags,
4593
				compact_result, &compact_priority,
4594
				&compaction_retries))
4595 4596
		goto retry;

4597 4598 4599

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4600 4601
		goto retry_cpuset;

4602 4603 4604 4605 4606
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4607
	/* Avoid allocations with no watermarks from looping endlessly */
4608 4609
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4610
	     (gfp_mask & __GFP_NOMEMALLOC)))
4611 4612
		goto nopage;

4613
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4614 4615
	if (did_some_progress) {
		no_progress_loops = 0;
4616
		goto retry;
M
Michal Hocko 已提交
4617
	}
4618

L
Linus Torvalds 已提交
4619
nopage:
4620 4621
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4622 4623
		goto retry_cpuset;

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4661 4662 4663 4664
		cond_resched();
		goto retry;
	}
fail:
4665
	warn_alloc(gfp_mask, ac->nodemask,
4666
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4667
got_pg:
4668
	return page;
L
Linus Torvalds 已提交
4669
}
4670

4671
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4672
		int preferred_nid, nodemask_t *nodemask,
4673 4674
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4675
{
4676
	ac->high_zoneidx = gfp_zone(gfp_mask);
4677
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4678 4679
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4680

4681
	if (cpusets_enabled()) {
4682 4683 4684
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4685 4686
		else
			*alloc_flags |= ALLOC_CPUSET;
4687 4688
	}

4689 4690
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4691

4692
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4693 4694

	if (should_fail_alloc_page(gfp_mask, order))
4695
		return false;
4696

4697 4698 4699
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4700 4701
	return true;
}
4702

4703
/* Determine whether to spread dirty pages and what the first usable zone */
4704
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4705
{
4706
	/* Dirty zone balancing only done in the fast path */
4707
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4708

4709 4710 4711 4712 4713
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4714 4715 4716 4717 4718 4719 4720 4721
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4722 4723
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4724 4725 4726
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4727
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4728 4729
	struct alloc_context ac = { };

4730 4731 4732 4733 4734 4735 4736 4737 4738
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4739
	gfp_mask &= gfp_allowed_mask;
4740
	alloc_mask = gfp_mask;
4741
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4742 4743
		return NULL;

4744
	finalise_ac(gfp_mask, &ac);
4745

4746 4747 4748 4749
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4750
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4751

4752
	/* First allocation attempt */
4753
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4754 4755
	if (likely(page))
		goto out;
4756

4757
	/*
4758 4759 4760 4761
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4762
	 */
4763
	alloc_mask = current_gfp_context(gfp_mask);
4764
	ac.spread_dirty_pages = false;
4765

4766 4767 4768 4769
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4770
	if (unlikely(ac.nodemask != nodemask))
4771
		ac.nodemask = nodemask;
4772

4773
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4774

4775
out:
4776
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4777
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4778 4779
		__free_pages(page, order);
		page = NULL;
4780 4781
	}

4782 4783
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4784
	return page;
L
Linus Torvalds 已提交
4785
}
4786
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4787 4788

/*
4789 4790 4791
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4792
 */
H
Harvey Harrison 已提交
4793
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4794
{
4795 4796
	struct page *page;

4797
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4798 4799 4800 4801 4802 4803
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4804
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4805
{
4806
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4807 4808 4809
}
EXPORT_SYMBOL(get_zeroed_page);

4810
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4811
{
4812 4813 4814 4815
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4816 4817
}

4818 4819 4820 4821 4822
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4823 4824
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4825
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4826 4827
{
	if (addr != 0) {
N
Nick Piggin 已提交
4828
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4846 4847
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4867
void __page_frag_cache_drain(struct page *page, unsigned int count)
4868 4869 4870
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4871 4872
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4873
}
4874
EXPORT_SYMBOL(__page_frag_cache_drain);
4875

4876 4877
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4878 4879 4880 4881 4882 4883 4884
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4885
		page = __page_frag_cache_refill(nc, gfp_mask);
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4896
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4897 4898

		/* reset page count bias and offset to start of new frag */
4899
		nc->pfmemalloc = page_is_pfmemalloc(page);
4900
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4901 4902 4903 4904 4905 4906 4907
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4908
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4909 4910 4911 4912 4913 4914 4915
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4916
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4917 4918

		/* reset page count bias and offset to start of new frag */
4919
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4920 4921 4922 4923 4924 4925 4926 4927
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4928
EXPORT_SYMBOL(page_frag_alloc);
4929 4930 4931 4932

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4933
void page_frag_free(void *addr)
4934 4935 4936
{
	struct page *page = virt_to_head_page(addr);

4937 4938
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4939
}
4940
EXPORT_SYMBOL(page_frag_free);
4941

4942 4943
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4958 4959 4960
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4961
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4962 4963 4964 4965 4966 4967 4968 4969
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4970 4971
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4972 4973 4974 4975 4976 4977
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4978 4979 4980
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4981
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4982
	return make_alloc_exact(addr, order, size);
4983 4984 4985
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4986 4987 4988
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4989
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4990
 * @size: the number of bytes to allocate
4991
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
4992 4993 4994
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4995 4996
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4997
 */
4998
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4999
{
5000
	unsigned int order = get_order(size);
5001 5002 5003 5004 5005 5006
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5007 5008 5009 5010 5011
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5031 5032 5033 5034
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5035
 * nr_free_zone_pages() counts the number of pages which are beyond the
5036 5037
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5038 5039
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5040 5041
 *
 * Return: number of pages beyond high watermark.
5042
 */
5043
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5044
{
5045
	struct zoneref *z;
5046 5047
	struct zone *zone;

5048
	/* Just pick one node, since fallback list is circular */
5049
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5050

5051
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5052

5053
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5054
		unsigned long size = zone_managed_pages(zone);
5055
		unsigned long high = high_wmark_pages(zone);
5056 5057
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062
	}

	return sum;
}

5063 5064 5065 5066 5067
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5068 5069 5070
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5071
 */
5072
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5073
{
A
Al Viro 已提交
5074
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5075
}
5076
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5077

5078 5079 5080 5081 5082
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5083 5084
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
5085
 */
5086
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5087
{
M
Mel Gorman 已提交
5088
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5089
}
5090 5091

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5092
{
5093
	if (IS_ENABLED(CONFIG_NUMA))
5094
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5095 5096
}

5097 5098 5099 5100 5101 5102
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5103
	unsigned long reclaimable;
5104 5105 5106 5107
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5108
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5109 5110

	for_each_zone(zone)
5111
		wmark_low += low_wmark_pages(zone);
5112 5113 5114 5115 5116

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5117
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5129 5130 5131
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5132
	 */
5133 5134 5135
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5136

5137 5138 5139 5140 5141 5142
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5143 5144
void si_meminfo(struct sysinfo *val)
{
5145
	val->totalram = totalram_pages();
5146
	val->sharedram = global_node_page_state(NR_SHMEM);
5147
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5148
	val->bufferram = nr_blockdev_pages();
5149
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5159 5160
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5161 5162
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5163 5164
	pg_data_t *pgdat = NODE_DATA(nid);

5165
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5166
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5167
	val->totalram = managed_pages;
5168
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5169
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5170
#ifdef CONFIG_HIGHMEM
5171 5172 5173 5174
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5175
			managed_highpages += zone_managed_pages(zone);
5176 5177 5178 5179 5180
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5181
#else
5182 5183
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5184
#endif
L
Linus Torvalds 已提交
5185 5186 5187 5188
	val->mem_unit = PAGE_SIZE;
}
#endif

5189
/*
5190 5191
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5192
 */
5193
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5194 5195
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5196
		return false;
5197

5198 5199 5200 5201 5202 5203 5204 5205 5206
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5207 5208
}

L
Linus Torvalds 已提交
5209 5210
#define K(x) ((x) << (PAGE_SHIFT-10))

5211 5212 5213 5214 5215
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5216 5217
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5218 5219 5220
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5221
#ifdef CONFIG_MEMORY_ISOLATION
5222
		[MIGRATE_ISOLATE]	= 'I',
5223
#endif
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5235
	printk(KERN_CONT "(%s) ", tmp);
5236 5237
}

L
Linus Torvalds 已提交
5238 5239 5240 5241
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5242 5243 5244 5245
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5246
 */
5247
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5248
{
5249
	unsigned long free_pcp = 0;
5250
	int cpu;
L
Linus Torvalds 已提交
5251
	struct zone *zone;
M
Mel Gorman 已提交
5252
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5253

5254
	for_each_populated_zone(zone) {
5255
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5256
			continue;
5257

5258 5259
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5260 5261
	}

K
KOSAKI Motohiro 已提交
5262 5263
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5264 5265
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5266
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5267
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5268 5269 5270 5271 5272 5273 5274
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5275 5276 5277
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5278 5279
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5280
		global_node_page_state(NR_FILE_MAPPED),
5281
		global_node_page_state(NR_SHMEM),
5282 5283 5284
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5285
		free_pcp,
5286
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5287

M
Mel Gorman 已提交
5288
	for_each_online_pgdat(pgdat) {
5289
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5290 5291
			continue;

M
Mel Gorman 已提交
5292 5293 5294 5295 5296 5297 5298 5299
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5300
			" mapped:%lukB"
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5321
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5322 5323
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5324
			K(node_page_state(pgdat, NR_SHMEM)),
5325 5326 5327 5328 5329 5330 5331 5332
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5333 5334
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5335 5336
	}

5337
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5338 5339
		int i;

5340
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5341
			continue;
5342 5343 5344 5345 5346

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5347
		show_node(zone);
5348 5349
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5350 5351 5352 5353
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5354 5355 5356 5357 5358
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5359
			" writepending:%lukB"
L
Linus Torvalds 已提交
5360
			" present:%lukB"
5361
			" managed:%lukB"
5362
			" mlocked:%lukB"
5363
			" kernel_stack:%lukB"
5364 5365
			" pagetables:%lukB"
			" bounce:%lukB"
5366 5367
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5368
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5369 5370
			"\n",
			zone->name,
5371
			K(zone_page_state(zone, NR_FREE_PAGES)),
5372 5373 5374
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5375 5376 5377 5378 5379
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5380
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5381
			K(zone->present_pages),
5382
			K(zone_managed_pages(zone)),
5383
			K(zone_page_state(zone, NR_MLOCK)),
5384
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5385 5386
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5387 5388
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5389
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5390 5391
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5392 5393
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5394 5395
	}

5396
	for_each_populated_zone(zone) {
5397 5398
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5399
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5400

5401
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5402
			continue;
L
Linus Torvalds 已提交
5403
		show_node(zone);
5404
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5405 5406 5407

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5408 5409 5410 5411
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5412
			total += nr[order] << order;
5413 5414 5415

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5416
				if (!free_area_empty(area, type))
5417 5418
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5419 5420
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5421
		for (order = 0; order < MAX_ORDER; order++) {
5422 5423
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5424 5425 5426
			if (nr[order])
				show_migration_types(types[order]);
		}
5427
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5428 5429
	}

5430 5431
	hugetlb_show_meminfo();

5432
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5433

L
Linus Torvalds 已提交
5434 5435 5436
	show_swap_cache_info();
}

5437 5438 5439 5440 5441 5442
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5443 5444
/*
 * Builds allocation fallback zone lists.
5445 5446
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5447
 */
5448
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5449
{
5450
	struct zone *zone;
5451
	enum zone_type zone_type = MAX_NR_ZONES;
5452
	int nr_zones = 0;
5453 5454

	do {
5455
		zone_type--;
5456
		zone = pgdat->node_zones + zone_type;
5457
		if (managed_zone(zone)) {
5458
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5459
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5460
		}
5461
	} while (zone_type);
5462

5463
	return nr_zones;
L
Linus Torvalds 已提交
5464 5465 5466
}

#ifdef CONFIG_NUMA
5467 5468 5469

static int __parse_numa_zonelist_order(char *s)
{
5470 5471 5472 5473 5474 5475 5476 5477
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5478 5479 5480 5481 5482 5483 5484
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5485 5486 5487
	if (!s)
		return 0;

5488
	return __parse_numa_zonelist_order(s);
5489 5490 5491
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5492 5493
char numa_zonelist_order[] = "Node";

5494 5495 5496
/*
 * sysctl handler for numa_zonelist_order
 */
5497
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5498
		void __user *buffer, size_t *length,
5499 5500
		loff_t *ppos)
{
5501
	char *str;
5502 5503
	int ret;

5504 5505 5506 5507 5508
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5509

5510 5511
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5512
	return ret;
5513 5514 5515
}


5516
#define MAX_NODE_LOAD (nr_online_nodes)
5517 5518
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5519
/**
5520
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5531 5532
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5533
 */
5534
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5535
{
5536
	int n, val;
L
Linus Torvalds 已提交
5537
	int min_val = INT_MAX;
D
David Rientjes 已提交
5538
	int best_node = NUMA_NO_NODE;
5539
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5540

5541 5542 5543 5544 5545
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5546

5547
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552 5553 5554 5555

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5556 5557 5558
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5559
		/* Give preference to headless and unused nodes */
5560 5561
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5580 5581 5582 5583 5584 5585

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5586 5587
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5588
{
5589 5590 5591 5592 5593 5594 5595 5596 5597
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5598

5599 5600 5601 5602 5603
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5604 5605
}

5606 5607 5608 5609 5610
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5611 5612
	struct zoneref *zonerefs;
	int nr_zones;
5613

5614 5615 5616 5617 5618
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5619 5620
}

5621 5622 5623 5624 5625 5626 5627 5628 5629
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5630 5631
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5632
	nodemask_t used_mask;
5633
	int local_node, prev_node;
L
Linus Torvalds 已提交
5634 5635 5636

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5637
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5638 5639
	prev_node = local_node;
	nodes_clear(used_mask);
5640 5641

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5642 5643 5644 5645 5646 5647
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5648 5649
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5650 5651
			node_load[node] = load;

5652
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5653 5654 5655
		prev_node = node;
		load--;
	}
5656

5657
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5658
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5659 5660
}

5661 5662 5663 5664 5665 5666 5667 5668 5669
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5670
	struct zoneref *z;
5671

5672
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5673
				   gfp_zone(GFP_KERNEL),
5674
				   NULL);
5675
	return zone_to_nid(z->zone);
5676 5677
}
#endif
5678

5679 5680
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5681 5682
#else	/* CONFIG_NUMA */

5683
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5684
{
5685
	int node, local_node;
5686 5687
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5688 5689 5690

	local_node = pgdat->node_id;

5691 5692 5693
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5694

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5706 5707
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5708
	}
5709 5710 5711
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5712 5713
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5714 5715
	}

5716 5717
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5718 5719 5720 5721
}

#endif	/* CONFIG_NUMA */

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5739
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5740

5741
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5742
{
5743
	int nid;
5744
	int __maybe_unused cpu;
5745
	pg_data_t *self = data;
5746 5747 5748
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5749

5750 5751 5752
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5753

5754 5755 5756 5757
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5758 5759
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5760 5761 5762
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5763

5764 5765
			build_zonelists(pgdat);
		}
5766

5767 5768 5769 5770 5771 5772 5773 5774 5775
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5776
		for_each_online_cpu(cpu)
5777
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5778
#endif
5779
	}
5780 5781

	spin_unlock(&lock);
5782 5783
}

5784 5785 5786
static noinline void __init
build_all_zonelists_init(void)
{
5787 5788
	int cpu;

5789
	__build_all_zonelists(NULL);
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5807 5808 5809 5810
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5811 5812
/*
 * unless system_state == SYSTEM_BOOTING.
5813
 *
5814
 * __ref due to call of __init annotated helper build_all_zonelists_init
5815
 * [protected by SYSTEM_BOOTING].
5816
 */
5817
void __ref build_all_zonelists(pg_data_t *pgdat)
5818 5819
{
	if (system_state == SYSTEM_BOOTING) {
5820
		build_all_zonelists_init();
5821
	} else {
5822
		__build_all_zonelists(pgdat);
5823 5824
		/* cpuset refresh routine should be here */
	}
5825
	vm_total_pages = nr_free_pagecache_pages();
5826 5827 5828 5829 5830 5831 5832
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5833
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5834 5835 5836 5837
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5838
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5839 5840 5841
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5842
#ifdef CONFIG_NUMA
5843
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5844
#endif
L
Linus Torvalds 已提交
5845 5846
}

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5871 5872
/*
 * Initially all pages are reserved - free ones are freed
5873
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5874 5875
 * done. Non-atomic initialization, single-pass.
 */
5876
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5877 5878
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5879
{
5880
	unsigned long pfn, end_pfn = start_pfn + size;
5881
	struct page *page;
L
Linus Torvalds 已提交
5882

5883 5884 5885
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5886
#ifdef CONFIG_ZONE_DEVICE
5887 5888
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5889 5890 5891 5892
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5893
	 */
5894 5895 5896 5897 5898 5899 5900 5901 5902
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5903

5904
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5905
		/*
5906 5907
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5908
		 */
5909 5910
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5911
				continue;
5912 5913 5914 5915 5916 5917
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5918
		}
5919

5920 5921 5922
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5923
			__SetPageReserved(page);
5924

5925 5926 5927 5928 5929
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5930
		 * kernel allocations are made.
5931 5932 5933 5934 5935 5936 5937 5938
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5939
			cond_resched();
5940
		}
L
Linus Torvalds 已提交
5941 5942 5943
	}
}

5944 5945 5946 5947 5948 5949 5950 5951
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
5952
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5953 5954 5955 5956
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
5957
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5958 5959 5960 5961 5962 5963 5964
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
5965
	if (altmap) {
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
5985 5986 5987
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
5988 5989
		 */
		page->pgmap = pgmap;
5990
		page->zone_device_data = NULL;
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6005
		 * because this is done early in section_activate()
6006 6007 6008 6009 6010 6011 6012
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6013
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6014 6015 6016 6017
		size, jiffies_to_msecs(jiffies - start));
}

#endif
6018
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6019
{
6020
	unsigned int order, t;
6021 6022
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6023 6024 6025 6026
		zone->free_area[order].nr_free = 0;
	}
}

6027 6028 6029 6030 6031
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
6032

6033
static int zone_batchsize(struct zone *zone)
6034
{
6035
#ifdef CONFIG_MMU
6036 6037 6038 6039
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6040
	 * size of the zone.
6041
	 */
6042
	batch = zone_managed_pages(zone) / 1024;
6043 6044 6045
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6046 6047 6048 6049 6050
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6051 6052 6053
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6054
	 *
6055 6056 6057 6058
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6059
	 */
6060
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6061

6062
	return batch;
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6080 6081
}

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6109
/* a companion to pageset_set_high() */
6110 6111
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6112
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6113 6114
}

6115
static void pageset_init(struct per_cpu_pageset *p)
6116 6117
{
	struct per_cpu_pages *pcp;
6118
	int migratetype;
6119

6120 6121
	memset(p, 0, sizeof(*p));

6122
	pcp = &p->pcp;
6123 6124
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6125 6126
}

6127 6128 6129 6130 6131 6132
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6133
/*
6134
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6135 6136
 * to the value high for the pageset p.
 */
6137
static void pageset_set_high(struct per_cpu_pageset *p,
6138 6139
				unsigned long high)
{
6140 6141 6142
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6143

6144
	pageset_update(&p->pcp, high, batch);
6145 6146
}

6147 6148
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6149 6150
{
	if (percpu_pagelist_fraction)
6151
		pageset_set_high(pcp,
6152
			(zone_managed_pages(zone) /
6153 6154 6155 6156 6157
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6158 6159 6160 6161 6162 6163 6164 6165
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6166
void __meminit setup_zone_pageset(struct zone *zone)
6167 6168 6169
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6170 6171
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6172 6173
}

6174
/*
6175 6176
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6177
 */
6178
void __init setup_per_cpu_pageset(void)
6179
{
6180
	struct pglist_data *pgdat;
6181
	struct zone *zone;
6182

6183 6184
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6185 6186 6187 6188

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6189 6190
}

6191
static __meminit void zone_pcp_init(struct zone *zone)
6192
{
6193 6194 6195 6196 6197 6198
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6199

6200
	if (populated_zone(zone))
6201 6202 6203
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6204 6205
}

6206
void __meminit init_currently_empty_zone(struct zone *zone,
6207
					unsigned long zone_start_pfn,
6208
					unsigned long size)
6209 6210
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6211
	int zone_idx = zone_idx(zone) + 1;
6212

6213 6214
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6215 6216 6217

	zone->zone_start_pfn = zone_start_pfn;

6218 6219 6220 6221 6222 6223
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6224
	zone_init_free_lists(zone);
6225
	zone->initialized = 1;
6226 6227
}

T
Tejun Heo 已提交
6228
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6229
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6230

6231 6232 6233
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6234 6235
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6236
{
6237
	unsigned long start_pfn, end_pfn;
6238
	int nid;
6239

6240 6241
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6242

6243
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6244
	if (nid != NUMA_NO_NODE) {
6245 6246 6247
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6248 6249 6250
	}

	return nid;
6251 6252 6253 6254
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6255
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6256
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6257
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6258
 *
6259 6260 6261
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6262
 */
6263
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6264
{
6265 6266
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6267

6268 6269 6270
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6271

6272
		if (start_pfn < end_pfn)
6273 6274 6275
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6276 6277 6278
	}
}

6279 6280
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6281
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6282
 *
6283 6284
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6285 6286 6287
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6288 6289
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6290

6291 6292
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6293 6294 6295 6296
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6297 6298 6299
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6300 6301
 *
 * It returns the start and end page frame of a node based on information
6302
 * provided by memblock_set_node(). If called for a node
6303
 * with no available memory, a warning is printed and the start and end
6304
 * PFNs will be 0.
6305
 */
6306
void __init get_pfn_range_for_nid(unsigned int nid,
6307 6308
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6309
	unsigned long this_start_pfn, this_end_pfn;
6310
	int i;
6311

6312 6313 6314
	*start_pfn = -1UL;
	*end_pfn = 0;

6315 6316 6317
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6318 6319
	}

6320
	if (*start_pfn == -1UL)
6321 6322 6323
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6324 6325 6326 6327 6328
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6329
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6347
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6348 6349 6350 6351 6352 6353 6354
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6355
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6370 6371 6372 6373 6374 6375
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6376 6377 6378 6379 6380 6381
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6382 6383 6384 6385
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6386
static unsigned long __init zone_spanned_pages_in_node(int nid,
6387
					unsigned long zone_type,
6388 6389
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6390 6391
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6392 6393
					unsigned long *ignored)
{
6394 6395
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6396
	/* When hotadd a new node from cpu_up(), the node should be empty */
6397 6398 6399
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6400
	/* Get the start and end of the zone */
6401 6402
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6403 6404
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6405
				zone_start_pfn, zone_end_pfn);
6406 6407

	/* Check that this node has pages within the zone's required range */
6408
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6409 6410 6411
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6412 6413
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6414 6415

	/* Return the spanned pages */
6416
	return *zone_end_pfn - *zone_start_pfn;
6417 6418 6419 6420
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6421
 * then all holes in the requested range will be accounted for.
6422
 */
6423
unsigned long __init __absent_pages_in_range(int nid,
6424 6425 6426
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6427 6428 6429
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6430

6431 6432 6433 6434
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6435
	}
6436
	return nr_absent;
6437 6438 6439 6440 6441 6442 6443
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6444
 * Return: the number of pages frames in memory holes within a range.
6445 6446 6447 6448 6449 6450 6451 6452
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6453
static unsigned long __init zone_absent_pages_in_node(int nid,
6454
					unsigned long zone_type,
6455 6456
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6457 6458
					unsigned long *ignored)
{
6459 6460
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6461
	unsigned long zone_start_pfn, zone_end_pfn;
6462
	unsigned long nr_absent;
6463

6464
	/* When hotadd a new node from cpu_up(), the node should be empty */
6465 6466 6467
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6468 6469
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6470

M
Mel Gorman 已提交
6471 6472 6473
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6474 6475 6476 6477 6478 6479 6480
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6498 6499 6500 6501
		}
	}

	return nr_absent;
6502
}
6503

T
Tejun Heo 已提交
6504
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6505
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6506
					unsigned long zone_type,
6507 6508
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6509 6510
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6511 6512
					unsigned long *zones_size)
{
6513 6514 6515 6516 6517 6518 6519 6520
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6521 6522 6523
	return zones_size[zone_type];
}

6524
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6525
						unsigned long zone_type,
6526 6527
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6528 6529 6530 6531 6532 6533 6534
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6535

T
Tejun Heo 已提交
6536
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6537

6538
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6539 6540 6541 6542
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6543
{
6544
	unsigned long realtotalpages = 0, totalpages = 0;
6545 6546
	enum zone_type i;

6547 6548
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6549
		unsigned long zone_start_pfn, zone_end_pfn;
6550
		unsigned long size, real_size;
6551

6552 6553 6554
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6555 6556
						  &zone_start_pfn,
						  &zone_end_pfn,
6557 6558
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6559 6560
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6561 6562 6563 6564
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6565 6566 6567 6568 6569 6570 6571 6572
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6573 6574 6575 6576 6577
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6578 6579 6580
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6581 6582
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6583 6584 6585
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6586
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6587 6588 6589
{
	unsigned long usemapsize;

6590
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6591 6592
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6593 6594 6595 6596 6597 6598
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6599
static void __ref setup_usemap(struct pglist_data *pgdat,
6600 6601 6602
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6603
{
6604
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6605
	zone->pageblock_flags = NULL;
6606
	if (usemapsize) {
6607
		zone->pageblock_flags =
6608 6609
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6610 6611 6612 6613
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6614 6615
}
#else
6616 6617
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6618 6619
#endif /* CONFIG_SPARSEMEM */

6620
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6621

6622
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6623
void __init set_pageblock_order(void)
6624
{
6625 6626
	unsigned int order;

6627 6628 6629 6630
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6631 6632 6633 6634 6635
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6636 6637
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6638 6639
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6640 6641 6642 6643 6644
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6645 6646
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6647 6648 6649
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6650
 */
6651
void __init set_pageblock_order(void)
6652 6653
{
}
6654 6655 6656

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6657
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6658
						unsigned long present_pages)
6659 6660 6661 6662 6663 6664 6665 6666
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6667
	 * populated regions may not be naturally aligned on page boundary.
6668 6669 6670 6671 6672 6673 6674 6675 6676
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6677 6678 6679
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6680 6681 6682 6683 6684
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6699
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6700
{
6701
	pgdat_resize_init(pgdat);
6702 6703 6704 6705

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6706
	init_waitqueue_head(&pgdat->kswapd_wait);
6707
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6708

6709
	pgdat_page_ext_init(pgdat);
6710
	spin_lock_init(&pgdat->lru_lock);
6711
	lruvec_init(node_lruvec(pgdat));
6712 6713 6714 6715 6716
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6717
	atomic_long_set(&zone->managed_pages, remaining_pages);
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6758

6759
	pgdat_init_internals(pgdat);
6760 6761
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6762 6763
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6764
		unsigned long size, freesize, memmap_pages;
6765
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6766

6767
		size = zone->spanned_pages;
6768
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6769

6770
		/*
6771
		 * Adjust freesize so that it accounts for how much memory
6772 6773 6774
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6775
		memmap_pages = calc_memmap_size(size, freesize);
6776 6777 6778 6779 6780 6781 6782 6783
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6784
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6785 6786
					zone_names[j], memmap_pages, freesize);
		}
6787

6788
		/* Account for reserved pages */
6789 6790
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6791
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6792
					zone_names[0], dma_reserve);
6793 6794
		}

6795
		if (!is_highmem_idx(j))
6796
			nr_kernel_pages += freesize;
6797 6798 6799
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6800
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6801

6802 6803 6804 6805 6806
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6807
		zone_init_internals(zone, j, nid, freesize);
6808

6809
		if (!size)
L
Linus Torvalds 已提交
6810 6811
			continue;

6812
		set_pageblock_order();
6813 6814
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6815
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6816 6817 6818
	}
}

6819
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6820
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6821
{
6822
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6823 6824
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6825 6826 6827 6828
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6829 6830
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6831 6832
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6833
		unsigned long size, end;
A
Andy Whitcroft 已提交
6834 6835
		struct page *map;

6836 6837 6838 6839 6840
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6841
		end = pgdat_end_pfn(pgdat);
6842 6843
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6844 6845
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6846 6847 6848
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6849
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6850
	}
6851 6852 6853
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6854
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6855 6856 6857
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6858
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6859
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6860
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6861
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6862
			mem_map -= offset;
T
Tejun Heo 已提交
6863
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6864
	}
L
Linus Torvalds 已提交
6865 6866
#endif
}
6867 6868 6869
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6870

6871 6872 6873 6874 6875 6876 6877 6878 6879
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6880
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6881 6882
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6883
{
6884
	pg_data_t *pgdat = NODE_DATA(nid);
6885 6886
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6887

6888
	/* pg_data_t should be reset to zero when it's allocated */
6889
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6890

L
Linus Torvalds 已提交
6891 6892
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6893
	pgdat->per_cpu_nodestats = NULL;
6894 6895
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6896
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6897 6898
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6899 6900
#else
	start_pfn = node_start_pfn;
6901 6902 6903
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6904 6905

	alloc_node_mem_map(pgdat);
6906
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6907

6908
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6909 6910
}

M
Mike Rapoport 已提交
6911
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6934 6935 6936 6937 6938 6939
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6940 6941 6942 6943 6944
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6945
 */
6946
void __init zero_resv_unavail(void)
6947 6948 6949
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6950
	phys_addr_t next = 0;
6951 6952

	/*
6953
	 * Loop through unavailable ranges not covered by memblock.memory.
6954 6955
	 */
	pgcnt = 0;
6956 6957
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6958 6959
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6960 6961
		next = end;
	}
6962
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6963

6964 6965 6966 6967 6968
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6969
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6970
}
M
Mike Rapoport 已提交
6971
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6972

T
Tejun Heo 已提交
6973
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6974 6975 6976 6977 6978

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6979
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6980
{
6981
	unsigned int highest;
M
Miklos Szeredi 已提交
6982

6983
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6984 6985 6986 6987
	nr_node_ids = highest + 1;
}
#endif

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7004
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7005 7006 7007 7008 7009
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7010
	unsigned long start, end, mask;
7011
	int last_nid = NUMA_NO_NODE;
7012
	int i, nid;
7013

7014
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7038
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
7039
static unsigned long __init find_min_pfn_for_node(int nid)
7040
{
7041
	unsigned long min_pfn = ULONG_MAX;
7042 7043
	unsigned long start_pfn;
	int i;
7044

7045 7046
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
7047

7048
	if (min_pfn == ULONG_MAX) {
7049
		pr_warn("Could not find start_pfn for node %d\n", nid);
7050 7051 7052 7053
		return 0;
	}

	return min_pfn;
7054 7055 7056 7057 7058
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7059
 * Return: the minimum PFN based on information provided via
7060
 * memblock_set_node().
7061 7062 7063 7064 7065 7066
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7067 7068 7069
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7070
 * Populate N_MEMORY for calculating usable_nodes.
7071
 */
A
Adrian Bunk 已提交
7072
static unsigned long __init early_calculate_totalpages(void)
7073 7074
{
	unsigned long totalpages = 0;
7075 7076 7077 7078 7079
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7080

7081 7082
		totalpages += pages;
		if (pages)
7083
			node_set_state(nid, N_MEMORY);
7084
	}
7085
	return totalpages;
7086 7087
}

M
Mel Gorman 已提交
7088 7089 7090 7091 7092 7093
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7094
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7095 7096 7097 7098
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7099
	/* save the state before borrow the nodemask */
7100
	nodemask_t saved_node_state = node_states[N_MEMORY];
7101
	unsigned long totalpages = early_calculate_totalpages();
7102
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7103
	struct memblock_region *r;
7104 7105 7106 7107 7108 7109 7110 7111 7112

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7113 7114
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7115 7116
				continue;

E
Emil Medve 已提交
7117
			nid = r->nid;
7118

E
Emil Medve 已提交
7119
			usable_startpfn = PFN_DOWN(r->base);
7120 7121 7122 7123 7124 7125 7126
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7127

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7158
	/*
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7186
		required_movablecore = min(totalpages, required_movablecore);
7187 7188 7189 7190 7191
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7192 7193 7194 7195 7196
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7197
		goto out;
M
Mel Gorman 已提交
7198 7199 7200 7201 7202 7203 7204

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7205
	for_each_node_state(nid, N_MEMORY) {
7206 7207
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7224
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7225 7226
			unsigned long size_pages;

7227
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7270
			 * satisfied
M
Mel Gorman 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7284
	 * satisfied
M
Mel Gorman 已提交
7285 7286 7287 7288 7289
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7290
out2:
M
Mel Gorman 已提交
7291 7292 7293 7294
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7295

7296
out:
7297
	/* restore the node_state */
7298
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7299 7300
}

7301 7302
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7303 7304 7305
{
	enum zone_type zone_type;

7306
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7307
		struct zone *zone = &pgdat->node_zones[zone_type];
7308
		if (populated_zone(zone)) {
7309 7310 7311
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7312
				node_set_state(nid, N_NORMAL_MEMORY);
7313 7314
			break;
		}
7315 7316 7317
	}
}

7318 7319
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7320
 * @max_zone_pfn: an array of max PFNs for each zone
7321 7322
 *
 * This will call free_area_init_node() for each active node in the system.
7323
 * Using the page ranges provided by memblock_set_node(), the size of each
7324 7325 7326 7327 7328 7329 7330 7331 7332
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7333 7334
	unsigned long start_pfn, end_pfn;
	int i, nid;
7335

7336 7337 7338 7339 7340
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7341 7342 7343 7344

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7345 7346
		if (i == ZONE_MOVABLE)
			continue;
7347 7348 7349 7350 7351 7352

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7353
	}
M
Mel Gorman 已提交
7354 7355 7356

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7357
	find_zone_movable_pfns_for_nodes();
7358 7359

	/* Print out the zone ranges */
7360
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7361 7362 7363
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7364
		pr_info("  %-8s ", zone_names[i]);
7365 7366
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7367
			pr_cont("empty\n");
7368
		else
7369 7370 7371 7372
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7373
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7374 7375 7376
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7377
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7378 7379
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7380 7381
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7382
	}
7383

7384 7385 7386 7387 7388
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7389
	pr_info("Early memory node ranges\n");
7390
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7391 7392 7393
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7394 7395
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7396 7397

	/* Initialise every node */
7398
	mminit_verify_pageflags_layout();
7399
	setup_nr_node_ids();
7400
	zero_resv_unavail();
7401 7402
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7403
		free_area_init_node(nid, NULL,
7404
				find_min_pfn_for_node(nid), NULL);
7405 7406 7407

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7408 7409
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7410 7411
	}
}
M
Mel Gorman 已提交
7412

7413 7414
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7415 7416
{
	unsigned long long coremem;
7417 7418
	char *endptr;

M
Mel Gorman 已提交
7419 7420 7421
	if (!p)
		return -EINVAL;

7422 7423 7424 7425 7426
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7427

7428 7429 7430 7431 7432
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7433

7434 7435 7436
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7437 7438
	return 0;
}
M
Mel Gorman 已提交
7439

7440 7441 7442 7443 7444 7445
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7446 7447 7448 7449 7450 7451
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7452 7453
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7454 7455 7456 7457 7458 7459 7460 7461
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7462 7463
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7464 7465
}

M
Mel Gorman 已提交
7466
early_param("kernelcore", cmdline_parse_kernelcore);
7467
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7468

T
Tejun Heo 已提交
7469
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7470

7471 7472
void adjust_managed_page_count(struct page *page, long count)
{
7473
	atomic_long_add(count, &page_zone(page)->managed_pages);
7474
	totalram_pages_add(count);
7475 7476
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7477
		totalhigh_pages_add(count);
7478
#endif
7479
}
7480
EXPORT_SYMBOL(adjust_managed_page_count);
7481

7482
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7483
{
7484 7485
	void *pos;
	unsigned long pages = 0;
7486

7487 7488 7489
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7501
		if ((unsigned int)poison <= 0xFF)
7502 7503 7504
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7505 7506 7507
	}

	if (pages && s)
7508 7509
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7510 7511 7512 7513

	return pages;
}

7514 7515 7516 7517
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7518
	totalram_pages_inc();
7519
	atomic_long_inc(&page_zone(page)->managed_pages);
7520
	totalhigh_pages_inc();
7521 7522 7523
}
#endif

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7546 7547 7548 7549
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7560
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7561
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7562
		", %luK highmem"
7563
#endif
J
Joe Perches 已提交
7564 7565 7566 7567 7568
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7569
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7570
		totalcma_pages << (PAGE_SHIFT - 10),
7571
#ifdef	CONFIG_HIGHMEM
7572
		totalhigh_pages() << (PAGE_SHIFT - 10),
7573
#endif
J
Joe Perches 已提交
7574
		str ? ", " : "", str ? str : "");
7575 7576
}

7577
/**
7578 7579
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7580
 *
7581
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7582 7583
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7584 7585 7586
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7587 7588 7589 7590 7591 7592
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7593 7594
void __init free_area_init(unsigned long *zones_size)
{
7595
	zero_resv_unavail();
7596
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7597 7598 7599
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7600
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7601 7602
{

7603 7604
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7605

7606 7607 7608 7609 7610 7611 7612
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7613

7614 7615 7616 7617 7618 7619 7620 7621 7622
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7623 7624
}

7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7638 7639
void __init page_alloc_init(void)
{
7640 7641
	int ret;

7642 7643 7644 7645 7646
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7647 7648 7649 7650
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7651 7652
}

7653
/*
7654
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7655 7656 7657 7658 7659 7660
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7661
	enum zone_type i, j;
7662 7663

	for_each_online_pgdat(pgdat) {
7664 7665 7666

		pgdat->totalreserve_pages = 0;

7667 7668
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7669
			long max = 0;
7670
			unsigned long managed_pages = zone_managed_pages(zone);
7671 7672 7673 7674 7675 7676 7677

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7678 7679
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7680

7681 7682
			if (max > managed_pages)
				max = managed_pages;
7683

7684
			pgdat->totalreserve_pages += max;
7685

7686 7687 7688 7689 7690 7691
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7692 7693
/*
 * setup_per_zone_lowmem_reserve - called whenever
7694
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7695 7696 7697 7698 7699 7700
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7701
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7702

7703
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7704 7705
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7706
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7707 7708 7709

			zone->lowmem_reserve[j] = 0;

7710 7711
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7712 7713
				struct zone *lower_zone;

7714
				idx--;
L
Linus Torvalds 已提交
7715
				lower_zone = pgdat->node_zones + idx;
7716 7717 7718 7719 7720 7721 7722 7723

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7724
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7725 7726 7727
			}
		}
	}
7728 7729 7730

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7731 7732
}

7733
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7734 7735 7736 7737 7738 7739 7740 7741 7742
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7743
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7744 7745 7746
	}

	for_each_zone(zone) {
7747 7748
		u64 tmp;

7749
		spin_lock_irqsave(&zone->lock, flags);
7750
		tmp = (u64)pages_min * zone_managed_pages(zone);
7751
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7752 7753
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7754 7755 7756 7757
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7758
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7759
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7760
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7761
			 */
7762
			unsigned long min_pages;
L
Linus Torvalds 已提交
7763

7764
			min_pages = zone_managed_pages(zone) / 1024;
7765
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7766
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7767
		} else {
N
Nick Piggin 已提交
7768 7769
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7770 7771
			 * proportionate to the zone's size.
			 */
7772
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7773 7774
		}

7775 7776 7777 7778 7779 7780
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7781
			    mult_frac(zone_managed_pages(zone),
7782 7783
				      watermark_scale_factor, 10000));

7784 7785
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7786
		zone->watermark_boost = 0;
7787

7788
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7789
	}
7790 7791 7792

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7793 7794
}

7795 7796 7797 7798 7799 7800 7801 7802 7803
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7804 7805 7806
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7807
	__setup_per_zone_wmarks();
7808
	spin_unlock(&lock);
7809 7810
}

L
Linus Torvalds 已提交
7811 7812 7813 7814 7815 7816 7817
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7818
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7835
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7836 7837
{
	unsigned long lowmem_kbytes;
7838
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7839 7840

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7853
	setup_per_zone_wmarks();
7854
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7855
	setup_per_zone_lowmem_reserve();
7856 7857 7858 7859 7860 7861

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7862 7863
	return 0;
}
7864
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7865 7866

/*
7867
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7868 7869 7870
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7871
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7872
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7873
{
7874 7875 7876 7877 7878 7879
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7880 7881
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7882
		setup_per_zone_wmarks();
7883
	}
L
Linus Torvalds 已提交
7884 7885 7886
	return 0;
}

7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7914
#ifdef CONFIG_NUMA
7915
static void setup_min_unmapped_ratio(void)
7916
{
7917
	pg_data_t *pgdat;
7918 7919
	struct zone *zone;

7920
	for_each_online_pgdat(pgdat)
7921
		pgdat->min_unmapped_pages = 0;
7922

7923
	for_each_zone(zone)
7924 7925
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7926
}
7927

7928 7929

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7930
	void __user *buffer, size_t *length, loff_t *ppos)
7931 7932 7933
{
	int rc;

7934
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7935 7936 7937
	if (rc)
		return rc;

7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7948 7949 7950
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7951
	for_each_zone(zone)
7952 7953
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7967 7968
	return 0;
}
7969 7970
#endif

L
Linus Torvalds 已提交
7971 7972 7973 7974 7975 7976
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7977
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7978 7979
 * if in function of the boot time zone sizes.
 */
7980
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7981
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7982
{
7983
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7984 7985 7986 7987
	setup_per_zone_lowmem_reserve();
	return 0;
}

7988 7989
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7990 7991
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7992
 */
7993
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7994
	void __user *buffer, size_t *length, loff_t *ppos)
7995 7996
{
	struct zone *zone;
7997
	int old_percpu_pagelist_fraction;
7998 7999
	int ret;

8000 8001 8002
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8003
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8018

8019
	for_each_populated_zone(zone) {
8020 8021
		unsigned int cpu;

8022
		for_each_possible_cpu(cpu)
8023 8024
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
8025
	}
8026
out:
8027
	mutex_unlock(&pcp_batch_high_lock);
8028
	return ret;
8029 8030
}

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8070 8071
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8072
{
8073
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8074 8075
	unsigned long log2qty, size;
	void *table = NULL;
8076
	gfp_t gfp_flags;
8077
	bool virt;
L
Linus Torvalds 已提交
8078 8079 8080 8081

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8082
		numentries = nr_kernel_pages;
8083
		numentries -= arch_reserved_kernel_pages();
8084 8085 8086 8087

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8088

P
Pavel Tatashin 已提交
8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8099 8100 8101 8102 8103
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8104 8105

		/* Make sure we've got at least a 0-order allocation.. */
8106 8107 8108 8109 8110 8111 8112 8113
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8114
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8115
	}
8116
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8117 8118 8119 8120 8121 8122

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8123
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8124

8125 8126
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8127 8128 8129
	if (numentries > max)
		numentries = max;

8130
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8131

8132
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8133
	do {
8134
		virt = false;
L
Linus Torvalds 已提交
8135
		size = bucketsize << log2qty;
8136 8137
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8138
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8139
			else
8140 8141
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8142
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8143
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8144
			virt = true;
8145
		} else {
8146 8147
			/*
			 * If bucketsize is not a power-of-two, we may free
8148 8149
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8150
			 */
8151 8152
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8153 8154 8155 8156 8157 8158
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8159 8160 8161
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8162 8163 8164 8165 8166 8167 8168 8169

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8170

K
KAMEZAWA Hiroyuki 已提交
8171
/*
8172 8173 8174
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8175
 * PageLRU check without isolation or lru_lock could race so that
8176 8177 8178
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8179
 */
8180
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8181
			 int migratetype, int flags)
8182
{
8183 8184 8185 8186
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8187

8188
	/*
8189 8190 8191 8192 8193
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8194 8195
	 */

8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8208

8209
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8210 8211
		unsigned long check = pfn + iter;

8212
		if (!pfn_valid_within(check))
8213
			continue;
8214

8215
		page = pfn_to_page(check);
8216

8217
		if (PageReserved(page))
8218
			goto unmovable;
8219

8220 8221 8222 8223 8224 8225 8226 8227
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8228 8229
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8230
		 * We need not scan over tail pages because we don't
8231 8232 8233
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8234 8235
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8236

8237
			if (!hugepage_migration_supported(page_hstate(head)))
8238 8239
				goto unmovable;

8240
			skip_pages = compound_nr(head) - (page - head);
8241
			iter += skip_pages - 1;
8242 8243 8244
			continue;
		}

8245 8246 8247 8248
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8249
		 * because their page->_refcount is zero at all time.
8250
		 */
8251
		if (!page_ref_count(page)) {
8252 8253 8254 8255
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8256

8257 8258 8259 8260
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8261
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8262 8263
			continue;

8264 8265 8266
		if (__PageMovable(page))
			continue;

8267 8268 8269
		if (!PageLRU(page))
			found++;
		/*
8270 8271 8272
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8283
			goto unmovable;
8284
	}
8285
	return false;
8286 8287
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8288
	if (flags & REPORT_FAILURE)
8289
		dump_page(pfn_to_page(pfn + iter), reason);
8290
	return true;
8291 8292
}

8293
#ifdef CONFIG_CONTIG_ALLOC
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8307 8308
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8309 8310
{
	/* This function is based on compact_zone() from compaction.c. */
8311
	unsigned long nr_reclaimed;
8312 8313 8314 8315
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8316
	migrate_prep();
8317

8318
	while (pfn < end || !list_empty(&cc->migratepages)) {
8319 8320 8321 8322 8323
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8324 8325
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8326
			pfn = isolate_migratepages_range(cc, pfn, end);
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8337 8338 8339
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8340

8341
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8342
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8343
	}
8344 8345 8346 8347 8348
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8349 8350 8351 8352 8353 8354
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8355 8356 8357 8358
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8359
 * @gfp_mask:	GFP mask to use during compaction
8360 8361
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8362
 * aligned.  The PFN range must belong to a single zone.
8363
 *
8364 8365 8366
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8367
 *
8368
 * Return: zero on success or negative error code.  On success all
8369 8370 8371
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8372
int alloc_contig_range(unsigned long start, unsigned long end,
8373
		       unsigned migratetype, gfp_t gfp_mask)
8374 8375
{
	unsigned long outer_start, outer_end;
8376 8377
	unsigned int order;
	int ret = 0;
8378

8379 8380 8381 8382
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8383
		.mode = MIGRATE_SYNC,
8384
		.ignore_skip_hint = true,
8385
		.no_set_skip_hint = true,
8386
		.gfp_mask = current_gfp_context(gfp_mask),
8387 8388 8389
	};
	INIT_LIST_HEAD(&cc.migratepages);

8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8415
				       pfn_max_align_up(end), migratetype, 0);
8416
	if (ret < 0)
8417
		return ret;
8418

8419 8420
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8421 8422 8423 8424 8425 8426 8427
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8428
	 */
8429
	ret = __alloc_contig_migrate_range(&cc, start, end);
8430
	if (ret && ret != -EBUSY)
8431
		goto done;
8432
	ret =0;
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8457 8458
			outer_start = start;
			break;
8459 8460 8461 8462
		}
		outer_start &= ~0UL << order;
	}

8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8476
	/* Make sure the range is really isolated. */
8477
	if (test_pages_isolated(outer_start, end, false)) {
8478
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8479
			__func__, outer_start, end);
8480 8481 8482 8483
		ret = -EBUSY;
		goto done;
	}

8484
	/* Grab isolated pages from freelists. */
8485
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8499
				pfn_max_align_up(end), migratetype);
8500 8501
	return ret;
}
8502
#endif /* CONFIG_CONTIG_ALLOC */
8503

8504
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8505
{
8506 8507 8508 8509 8510 8511 8512 8513 8514
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8515 8516
}

8517
#ifdef CONFIG_MEMORY_HOTPLUG
8518 8519 8520 8521
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8522 8523
void __meminit zone_pcp_update(struct zone *zone)
{
8524
	unsigned cpu;
8525
	mutex_lock(&pcp_batch_high_lock);
8526
	for_each_possible_cpu(cpu)
8527 8528
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8529
	mutex_unlock(&pcp_batch_high_lock);
8530 8531 8532
}
#endif

8533 8534 8535
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8536 8537
	int cpu;
	struct per_cpu_pageset *pset;
8538 8539 8540 8541

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8542 8543 8544 8545
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8546 8547 8548 8549 8550 8551
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8552
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8553
/*
8554 8555
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8556
 */
8557
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8558 8559 8560 8561
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8562
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8563 8564
	unsigned long pfn;
	unsigned long flags;
8565 8566
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8567 8568 8569 8570 8571
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8572 8573
		return offlined_pages;

8574
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8575 8576 8577 8578 8579 8580 8581 8582 8583
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8584 8585 8586 8587 8588 8589 8590
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
8591
			offlined_pages++;
8592 8593 8594
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8595 8596 8597
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8598
		offlined_pages += 1 << order;
K
KAMEZAWA Hiroyuki 已提交
8599
#ifdef CONFIG_DEBUG_VM
8600 8601
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8602
#endif
8603
		del_page_from_free_area(page, &zone->free_area[order]);
K
KAMEZAWA Hiroyuki 已提交
8604 8605 8606 8607 8608
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8609 8610

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8611 8612
}
#endif
8613 8614 8615 8616 8617 8618

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8619
	unsigned int order;
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif