page_alloc.c 243.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75
#include "internal.h"
76
#include "shuffle.h"
A
Alexander Duyck 已提交
77
#include "page_reporting.h"
L
Linus Torvalds 已提交
78

79 80
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
81
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
82

83 84 85 86 87
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

88 89
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106 107
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
114
/*
115
 * Array of node states.
L
Linus Torvalds 已提交
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

206 207 208 209 210
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
211 212 213 214
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
215
 */
216 217 218 219

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
220
{
221
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 223 224 225
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
226 227
}

228
void pm_restrict_gfp_mask(void)
229
{
230
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 232
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
233
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234
}
235 236 237

bool pm_suspended_storage(void)
{
238
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 240 241
		return false;
	return true;
}
242 243
#endif /* CONFIG_PM_SLEEP */

244
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245
unsigned int pageblock_order __read_mostly;
246 247
#endif

248
static void __free_pages_ok(struct page *page, unsigned int order);
249

L
Linus Torvalds 已提交
250 251 252 253 254 255
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
256
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
257 258 259
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
260
 */
261
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262
#ifdef CONFIG_ZONE_DMA
263
	[ZONE_DMA] = 256,
264
#endif
265
#ifdef CONFIG_ZONE_DMA32
266
	[ZONE_DMA32] = 256,
267
#endif
268
	[ZONE_NORMAL] = 32,
269
#ifdef CONFIG_HIGHMEM
270
	[ZONE_HIGHMEM] = 0,
271
#endif
272
	[ZONE_MOVABLE] = 0,
273
};
L
Linus Torvalds 已提交
274

275
static char * const zone_names[MAX_NR_ZONES] = {
276
#ifdef CONFIG_ZONE_DMA
277
	 "DMA",
278
#endif
279
#ifdef CONFIG_ZONE_DMA32
280
	 "DMA32",
281
#endif
282
	 "Normal",
283
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
284
	 "HighMem",
285
#endif
M
Mel Gorman 已提交
286
	 "Movable",
287 288 289
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
290 291
};

292
const char * const migratetype_names[MIGRATE_TYPES] = {
293 294 295 296 297 298 299 300 301 302 303 304
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

305 306 307 308 309 310
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
311 312 313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
314 315
};

L
Linus Torvalds 已提交
316
int min_free_kbytes = 1024;
317
int user_min_free_kbytes = -1;
318 319 320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
330
int watermark_boost_factor __read_mostly = 15000;
331
#endif
332
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
333

334 335 336
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
337

338 339
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
340
static unsigned long required_kernelcore __initdata;
341
static unsigned long required_kernelcore_percent __initdata;
342
static unsigned long required_movablecore __initdata;
343
static unsigned long required_movablecore_percent __initdata;
344
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
345
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
346 347 348 349

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
350

M
Miklos Szeredi 已提交
351
#if MAX_NUMNODES > 1
352
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
353
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
354
EXPORT_SYMBOL(nr_node_ids);
355
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
356 357
#endif

358 359
int page_group_by_mobility_disabled __read_mostly;

360
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

387
/* Returns true if the struct page for the pfn is uninitialised */
388
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389
{
390 391 392
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 394 395 396 397 398
		return true;

	return false;
}

/*
399
 * Returns true when the remaining initialisation should be deferred until
400 401
 * later in the boot cycle when it can be parallelised.
 */
402 403
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404
{
405 406 407 408 409 410 411 412 413 414 415
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

416
	/* Always populate low zones for address-constrained allocations */
417
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418
		return false;
419 420 421 422 423

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
424
	nr_initialised++;
425
	if ((nr_initialised > PAGES_PER_SECTION) &&
426 427 428
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
429
	}
430
	return false;
431 432
}
#else
433 434
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

435 436 437 438 439
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

440
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
441
{
442
	return false;
443 444 445
}
#endif

446 447 448 449 450
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
451
	return section_to_usemap(__pfn_to_section(pfn));
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
526
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
547

548
void set_pageblock_migratetype(struct page *page, int migratetype)
549
{
550 551
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
552 553
		migratetype = MIGRATE_UNMOVABLE;

554 555 556 557
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
558
#ifdef CONFIG_DEBUG_VM
559
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
560
{
561 562 563
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
564
	unsigned long sp, start_pfn;
565

566 567
	do {
		seq = zone_span_seqbegin(zone);
568 569
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
570
		if (!zone_spans_pfn(zone, pfn))
571 572 573
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

574
	if (ret)
575 576 577
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
578

579
	return ret;
580 581 582 583
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
584
	if (!pfn_valid_within(page_to_pfn(page)))
585
		return 0;
L
Linus Torvalds 已提交
586
	if (zone != page_zone(page))
587 588 589 590 591 592 593
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
594
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
595 596
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
597
		return 1;
598 599 600
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
601 602
	return 0;
}
N
Nick Piggin 已提交
603
#else
604
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
605 606 607 608 609
{
	return 0;
}
#endif

610 611
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
612
{
613 614 615 616 617 618 619 620 621 622 623 624 625 626
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
627
			pr_alert(
628
			      "BUG: Bad page state: %lu messages suppressed\n",
629 630 631 632 633 634 635 636
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

637
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638
		current->comm, page_to_pfn(page));
639 640 641 642 643
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
644
	dump_page_owner(page);
645

646
	print_modules();
L
Linus Torvalds 已提交
647
	dump_stack();
648
out:
649
	/* Leave bad fields for debug, except PageBuddy could make trouble */
650
	page_mapcount_reset(page); /* remove PageBuddy */
651
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
652 653 654 655 656
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
657
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
658
 *
659 660
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
661
 *
662 663
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
664
 *
665
 * The first tail page's ->compound_order holds the order of allocation.
666
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
667
 */
668

669
void free_compound_page(struct page *page)
670
{
671
	mem_cgroup_uncharge(page);
672
	__free_pages_ok(page, compound_order(page));
673 674
}

675
void prep_compound_page(struct page *page, unsigned int order)
676 677 678 679
{
	int i;
	int nr_pages = 1 << order;

680
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
681 682 683 684
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
685
		set_page_count(p, 0);
686
		p->mapping = TAIL_MAPPING;
687
		set_compound_head(p, page);
688
	}
689
	atomic_set(compound_mapcount_ptr(page), -1);
690 691
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
692 693
}

694 695
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
696

697 698 699
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
700
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701
EXPORT_SYMBOL(_debug_pagealloc_enabled);
702 703

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704

705 706
static int __init early_debug_pagealloc(char *buf)
{
707
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
708 709 710
}
early_param("debug_pagealloc", early_debug_pagealloc);

711
void init_debug_pagealloc(void)
712
{
713 714 715
	if (!debug_pagealloc_enabled())
		return;

716 717
	static_branch_enable(&_debug_pagealloc_enabled);

718 719 720
	if (!debug_guardpage_minorder())
		return;

721
	static_branch_enable(&_debug_guardpage_enabled);
722 723
}

724 725 726 727 728
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
729
		pr_err("Bad debug_guardpage_minorder value\n");
730 731 732
		return 0;
	}
	_debug_guardpage_minorder = res;
733
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 735
	return 0;
}
736
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737

738
static inline bool set_page_guard(struct zone *zone, struct page *page,
739
				unsigned int order, int migratetype)
740
{
741
	if (!debug_guardpage_enabled())
742 743 744 745
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
746

747
	__SetPageGuard(page);
748 749 750 751
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
752 753

	return true;
754 755
}

756 757
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
758
{
759 760 761
	if (!debug_guardpage_enabled())
		return;

762
	__ClearPageGuard(page);
763

764 765 766
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
767 768
}
#else
769 770
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
771 772
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
773 774
#endif

775
static inline void set_page_order(struct page *page, unsigned int order)
776
{
H
Hugh Dickins 已提交
777
	set_page_private(page, order);
778
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
779 780 781 782
}

/*
 * This function checks whether a page is free && is the buddy
783
 * we can coalesce a page and its buddy if
784
 * (a) the buddy is not in a hole (check before calling!) &&
785
 * (b) the buddy is in the buddy system &&
786 787
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
788
 *
789 790
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
791
 *
792
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
793
 */
794
static inline bool page_is_buddy(struct page *page, struct page *buddy,
795
							unsigned int order)
L
Linus Torvalds 已提交
796
{
797 798
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
799

800 801
	if (page_order(buddy) != order)
		return false;
802

803 804 805 806 807 808
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
809

810
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
811

812
	return true;
L
Linus Torvalds 已提交
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
898 899 900 901
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

902 903 904 905 906 907
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
951 952
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
953
 * So when we are allocating or freeing one, we can derive the state of the
954 955
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
956
 * If a block is freed, and its buddy is also free, then this
957
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
958
 *
959
 * -- nyc
L
Linus Torvalds 已提交
960 961
 */

N
Nick Piggin 已提交
962
static inline void __free_one_page(struct page *page,
963
		unsigned long pfn,
964
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
965
		int migratetype, bool report)
L
Linus Torvalds 已提交
966
{
967
	struct capture_control *capc = task_capc(zone);
968
	unsigned long uninitialized_var(buddy_pfn);
969
	unsigned long combined_pfn;
970
	unsigned int max_order;
971 972
	struct page *buddy;
	bool to_tail;
973 974

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
975

976
	VM_BUG_ON(!zone_is_initialized(zone));
977
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
978

979
	VM_BUG_ON(migratetype == -1);
980
	if (likely(!is_migrate_isolate(migratetype)))
981
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
982

983
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
984
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
985

986
continue_merging:
987
	while (order < max_order - 1) {
988 989 990 991 992
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
993 994
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
995 996 997

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
998
		if (!page_is_buddy(page, buddy, order))
999
			goto done_merging;
1000 1001 1002 1003
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1004
		if (page_is_guard(buddy))
1005
			clear_page_guard(zone, buddy, order, migratetype);
1006
		else
1007
			del_page_from_free_list(buddy, zone, order);
1008 1009 1010
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1011 1012
		order++;
	}
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1025 1026
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
1039
	set_page_order(page, order);
1040

1041
	if (is_shuffle_order(order))
1042
		to_tail = shuffle_pick_tail();
1043
	else
1044
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1045

1046
	if (to_tail)
1047
		add_to_free_list_tail(page, zone, order, migratetype);
1048
	else
1049
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1050 1051 1052 1053

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1078
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1079
{
1080 1081 1082 1083 1084
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1085

1086
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1087 1088 1089
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1090
	if (unlikely(page_ref_count(page) != 0))
1091
		bad_reason = "nonzero _refcount";
1092 1093 1094 1095
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1096 1097 1098 1099
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1100
	bad_page(page, bad_reason, bad_flags);
1101 1102 1103 1104
}

static inline int free_pages_check(struct page *page)
{
1105
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1106 1107 1108 1109
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1110
	return 1;
L
Linus Torvalds 已提交
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1129
		/* the first tail page: ->mapping may be compound_mapcount() */
1130 1131 1132 1133 1134 1135 1136 1137
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1138
		 * deferred_list.next -- ignore value.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1163 1164 1165 1166 1167 1168 1169 1170
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
}

1171 1172
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1173
{
1174
	int bad = 0;
1175 1176 1177

	VM_BUG_ON_PAGE(PageTail(page), page);

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1189

1190 1191
		if (compound)
			ClearPageDoubleMap(page);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1202
	if (PageMappingFlags(page))
1203
		page->mapping = NULL;
1204
	if (memcg_kmem_enabled() && PageKmemcg(page))
1205
		__memcg_kmem_uncharge_page(page, order);
1206 1207 1208 1209
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1210

1211 1212 1213
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1214 1215 1216

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1217
					   PAGE_SIZE << order);
1218
		debug_check_no_obj_freed(page_address(page),
1219
					   PAGE_SIZE << order);
1220
	}
1221 1222 1223
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1224
	kernel_poison_pages(page, 1 << order, 0);
1225 1226 1227 1228 1229 1230 1231
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1232
	if (debug_pagealloc_enabled_static())
1233 1234
		kernel_map_pages(page, 1 << order, 0);

1235
	kasan_free_nondeferred_pages(page, order);
1236 1237 1238 1239

	return true;
}

1240
#ifdef CONFIG_DEBUG_VM
1241 1242 1243 1244 1245 1246
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1247 1248 1249 1250
{
	return free_pages_prepare(page, 0, true);
}

1251
static bool bulkfree_pcp_prepare(struct page *page)
1252
{
1253
	if (debug_pagealloc_enabled_static())
1254 1255 1256
		return free_pages_check(page);
	else
		return false;
1257 1258
}
#else
1259 1260 1261 1262 1263 1264
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1265 1266
static bool free_pcp_prepare(struct page *page)
{
1267
	if (debug_pagealloc_enabled_static())
1268 1269 1270
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1271 1272
}

1273 1274 1275 1276 1277 1278
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1279 1280 1281 1282 1283 1284 1285 1286 1287
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1288
/*
1289
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1290
 * Assumes all pages on list are in same zone, and of same order.
1291
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1299 1300
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1301
{
1302
	int migratetype = 0;
1303
	int batch_free = 0;
1304
	int prefetch_nr = 0;
1305
	bool isolated_pageblocks;
1306 1307
	struct page *page, *tmp;
	LIST_HEAD(head);
1308

1309
	while (count) {
1310 1311 1312
		struct list_head *list;

		/*
1313 1314 1315 1316 1317
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1318 1319
		 */
		do {
1320
			batch_free++;
1321 1322 1323 1324
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1325

1326 1327
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1328
			batch_free = count;
1329

1330
		do {
1331
			page = list_last_entry(list, struct page, lru);
1332
			/* must delete to avoid corrupting pcp list */
1333
			list_del(&page->lru);
1334
			pcp->count--;
1335

1336 1337 1338
			if (bulkfree_pcp_prepare(page))
				continue;

1339
			list_add_tail(&page->lru, &head);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1352
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1353
	}
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1370
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1371 1372
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1373
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1374 1375
}

1376 1377
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1378
				unsigned int order,
1379
				int migratetype)
L
Linus Torvalds 已提交
1380
{
1381
	spin_lock(&zone->lock);
1382 1383 1384 1385
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1386
	__free_one_page(page, pfn, zone, order, migratetype, true);
1387
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1388 1389
}

1390
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1391
				unsigned long zone, int nid)
1392
{
1393
	mm_zero_struct_page(page);
1394 1395 1396 1397
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1398
	page_kasan_tag_reset(page);
1399 1400 1401 1402 1403 1404 1405 1406 1407

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1408
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409
static void __meminit init_reserved_page(unsigned long pfn)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1426
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1427 1428 1429 1430 1431 1432 1433
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1434 1435 1436 1437 1438 1439
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1440
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1441 1442 1443 1444
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1445 1446 1447 1448 1449
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1450 1451 1452 1453

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1454 1455 1456 1457 1458 1459
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1460 1461
		}
	}
1462 1463
}

1464 1465
static void __free_pages_ok(struct page *page, unsigned int order)
{
1466
	unsigned long flags;
M
Minchan Kim 已提交
1467
	int migratetype;
1468
	unsigned long pfn = page_to_pfn(page);
1469

1470
	if (!free_pages_prepare(page, order, true))
1471 1472
		return;

1473
	migratetype = get_pfnblock_migratetype(page, pfn);
1474 1475
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1476
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1477
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1478 1479
}

1480
void __free_pages_core(struct page *page, unsigned int order)
1481
{
1482
	unsigned int nr_pages = 1 << order;
1483
	struct page *p = page;
1484
	unsigned int loop;
1485

1486 1487 1488
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1489 1490
		__ClearPageReserved(p);
		set_page_count(p, 0);
1491
	}
1492 1493
	__ClearPageReserved(p);
	set_page_count(p, 0);
1494

1495
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1496 1497
	set_page_refcounted(page);
	__free_pages(page, order);
1498 1499
}

1500
#ifdef CONFIG_NEED_MULTIPLE_NODES
1501

1502 1503
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
{
	unsigned long start_pfn, end_pfn;
	int nid;

	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}

	return nid;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

1529 1530
int __meminit early_pfn_to_nid(unsigned long pfn)
{
1531
	static DEFINE_SPINLOCK(early_pfn_lock);
1532 1533
	int nid;

1534
	spin_lock(&early_pfn_lock);
1535
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1536
	if (nid < 0)
1537
		nid = first_online_node;
1538 1539 1540
	spin_unlock(&early_pfn_lock);

	return nid;
1541
}
1542
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1543

1544
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1545 1546 1547 1548
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1549
	__free_pages_core(page, order);
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1581 1582 1583
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1612
		cond_resched();
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1624
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1625 1626
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1627
{
1628 1629
	struct page *page;
	unsigned long i;
1630

1631
	if (!nr_pages)
1632 1633
		return;

1634 1635
	page = pfn_to_page(pfn);

1636
	/* Free a large naturally-aligned chunk if possible */
1637 1638
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1639
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1640
		__free_pages_core(page, pageblock_order);
1641 1642 1643
		return;
	}

1644 1645 1646
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1647
		__free_pages_core(page, 0);
1648
	}
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1660

1661
/*
1662 1663 1664 1665 1666 1667 1668 1669
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1670
 */
1671
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1672
{
1673 1674 1675 1676 1677 1678
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1679

1680 1681 1682 1683
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1684
static void __init deferred_free_pages(unsigned long pfn,
1685 1686 1687 1688
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1689

1690
	for (; pfn < end_pfn; pfn++) {
1691
		if (!deferred_pfn_valid(pfn)) {
1692 1693 1694 1695 1696
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1697
			touch_nmi_watchdog();
1698 1699 1700 1701 1702 1703
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1704 1705
}

1706 1707 1708 1709 1710
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1711
static unsigned long  __init deferred_init_pages(struct zone *zone,
1712 1713
						 unsigned long pfn,
						 unsigned long end_pfn)
1714 1715
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1716
	int nid = zone_to_nid(zone);
1717
	unsigned long nr_pages = 0;
1718
	int zid = zone_idx(zone);
1719 1720
	struct page *page = NULL;

1721
	for (; pfn < end_pfn; pfn++) {
1722
		if (!deferred_pfn_valid(pfn)) {
1723
			page = NULL;
1724
			continue;
1725
		} else if (!page || !(pfn & nr_pgmask)) {
1726
			page = pfn_to_page(pfn);
1727
			touch_nmi_watchdog();
1728 1729
		} else {
			page++;
1730
		}
1731
		__init_single_page(page, pfn, zid, nid);
1732
		nr_pages++;
1733
	}
1734
	return (nr_pages);
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1821
/* Initialise remaining memory on a node */
1822
static int __init deferred_init_memmap(void *data)
1823
{
1824
	pg_data_t *pgdat = data;
1825 1826 1827
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1828 1829
	unsigned long start = jiffies;
	struct zone *zone;
1830
	int zid;
1831
	u64 i;
1832

1833 1834 1835 1836 1837 1838
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1839
	if (first_init_pfn == ULONG_MAX) {
1840
		pgdat_resize_unlock(pgdat, &flags);
1841
		pgdat_init_report_one_done();
1842 1843 1844
		return 0;
	}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1856 1857 1858 1859 1860

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1861

1862
	/*
1863 1864 1865
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1866
	 */
1867 1868 1869
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1870
	pgdat_resize_unlock(pgdat, &flags);
1871 1872 1873 1874

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1875 1876
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1877 1878

	pgdat_init_report_one_done();
1879 1880
	return 0;
}
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1901
	pg_data_t *pgdat = zone->zone_pgdat;
1902
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1903 1904
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1933 1934 1935 1936
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1937
		pgdat_resize_unlock(pgdat, &flags);
1938 1939
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1940 1941
	}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1952

1953 1954 1955
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1956

1957
		/* If our quota has been met we can stop here */
1958 1959 1960 1961
		if (nr_pages >= nr_pages_needed)
			break;
	}

1962
	pgdat->first_deferred_pfn = spfn;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1980
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1981 1982 1983

void __init page_alloc_init_late(void)
{
1984
	struct zone *zone;
1985
	int nid;
1986 1987

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1988

1989 1990
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1991 1992 1993 1994 1995
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1996
	wait_for_completion(&pgdat_init_all_done_comp);
1997

1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2006 2007 2008 2009 2010 2011
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2012 2013
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2014
#endif
2015

P
Pavel Tatashin 已提交
2016 2017
	/* Discard memblock private memory */
	memblock_discard();
2018

2019 2020 2021
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2022 2023
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2024 2025
}

2026
#ifdef CONFIG_CMA
2027
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2028 2029 2030 2031 2032 2033 2034 2035
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2036
	} while (++p, --i);
2037 2038

	set_pageblock_migratetype(page, MIGRATE_CMA);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2053
	adjust_managed_page_count(page, pageblock_nr_pages);
2054 2055
}
#endif
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2069
 * -- nyc
L
Linus Torvalds 已提交
2070
 */
N
Nick Piggin 已提交
2071
static inline void expand(struct zone *zone, struct page *page,
2072
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2079
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2080

2081 2082 2083 2084 2085 2086 2087
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2088
			continue;
2089

2090
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2091 2092 2093 2094
		set_page_order(&page[size], high);
	}
}

2095
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2096
{
2097 2098
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2099

2100
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2101 2102 2103
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2104
	if (unlikely(page_ref_count(page) != 0))
2105
		bad_reason = "nonzero _refcount";
2106 2107 2108
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2109 2110 2111
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2112
	}
2113 2114 2115 2116
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2117 2118 2119 2120
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2135 2136
}

2137
static inline bool free_pages_prezeroed(void)
2138
{
2139 2140
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2141 2142
}

2143
#ifdef CONFIG_DEBUG_VM
2144 2145 2146 2147 2148 2149
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2150
{
2151
	if (debug_pagealloc_enabled_static())
2152 2153 2154
		return check_new_page(page);
	else
		return false;
2155 2156
}

2157
static inline bool check_new_pcp(struct page *page)
2158 2159 2160 2161
{
	return check_new_page(page);
}
#else
2162 2163 2164 2165 2166 2167
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2168 2169 2170
{
	return check_new_page(page);
}
2171
static inline bool check_new_pcp(struct page *page)
2172
{
2173
	if (debug_pagealloc_enabled_static())
2174 2175 2176
		return check_new_page(page);
	else
		return false;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2193 2194 2195 2196 2197 2198 2199
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2200
	if (debug_pagealloc_enabled_static())
2201
		kernel_map_pages(page, 1 << order, 1);
2202
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2203
	kernel_poison_pages(page, 1 << order, 1);
2204 2205 2206
	set_page_owner(page, order, gfp_flags);
}

2207
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2208
							unsigned int alloc_flags)
2209
{
2210
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2211

2212 2213
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2214 2215 2216 2217

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2218
	/*
2219
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2220 2221 2222 2223
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2224 2225 2226 2227
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2228 2229
}

2230 2231 2232 2233
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2234
static __always_inline
2235
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2236 2237 2238
						int migratetype)
{
	unsigned int current_order;
2239
	struct free_area *area;
2240 2241 2242 2243 2244
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2245
		page = get_page_from_free_area(area, migratetype);
2246 2247
		if (!page)
			continue;
2248 2249
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2250
		set_pcppage_migratetype(page, migratetype);
2251 2252 2253 2254 2255 2256 2257
		return page;
	}

	return NULL;
}


2258 2259 2260 2261
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2262
static int fallbacks[MIGRATE_TYPES][4] = {
2263 2264
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2265
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2266
#ifdef CONFIG_CMA
2267
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2268
#endif
2269
#ifdef CONFIG_MEMORY_ISOLATION
2270
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2271
#endif
2272 2273
};

2274
#ifdef CONFIG_CMA
2275
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2276 2277 2278 2279 2280 2281 2282 2283 2284
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2285 2286
/*
 * Move the free pages in a range to the free lists of the requested type.
2287
 * Note that start_page and end_pages are not aligned on a pageblock
2288 2289
 * boundary. If alignment is required, use move_freepages_block()
 */
2290
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2291
			  struct page *start_page, struct page *end_page,
2292
			  int migratetype, int *num_movable)
2293 2294
{
	struct page *page;
2295
	unsigned int order;
2296
	int pages_moved = 0;
2297 2298 2299 2300 2301 2302 2303 2304

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2305 2306 2307 2308 2309 2310 2311 2312 2313
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2314 2315 2316 2317
			page++;
			continue;
		}

2318 2319 2320 2321
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2322
		order = page_order(page);
2323
		move_to_free_list(page, zone, order, migratetype);
2324
		page += 1 << order;
2325
		pages_moved += 1 << order;
2326 2327
	}

2328
	return pages_moved;
2329 2330
}

2331
int move_freepages_block(struct zone *zone, struct page *page,
2332
				int migratetype, int *num_movable)
2333 2334 2335 2336
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2337 2338 2339
	if (num_movable)
		*num_movable = 0;

2340
	start_pfn = page_to_pfn(page);
2341
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2342
	start_page = pfn_to_page(start_pfn);
2343 2344
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2345 2346

	/* Do not cross zone boundaries */
2347
	if (!zone_spans_pfn(zone, start_pfn))
2348
		start_page = page;
2349
	if (!zone_spans_pfn(zone, end_pfn))
2350 2351
		return 0;

2352 2353
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2367
/*
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2378
 */
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2400 2401 2402 2403 2404 2405
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2406 2407 2408 2409 2410 2411 2412 2413
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
		return;
2414 2415 2416

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2429 2430 2431 2432 2433 2434
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2435 2436 2437
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2438 2439 2440 2441
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2442 2443
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2444
		unsigned int alloc_flags, int start_type, bool whole_block)
2445
{
2446
	unsigned int current_order = page_order(page);
2447 2448 2449 2450
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2451

2452 2453 2454 2455
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2456
	if (is_migrate_highatomic(old_block_type))
2457 2458
		goto single_page;

2459 2460 2461
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2462
		goto single_page;
2463 2464
	}

2465 2466 2467 2468 2469 2470 2471
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2472
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2473

2474 2475 2476 2477
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2502
	/* moving whole block can fail due to zone boundary conditions */
2503
	if (!free_pages)
2504
		goto single_page;
2505

2506 2507 2508 2509 2510
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2511 2512
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2513 2514 2515 2516

	return;

single_page:
2517
	move_to_free_list(page, zone, current_order, start_type);
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2538
		if (fallback_mt == MIGRATE_TYPES)
2539 2540
			break;

2541
		if (free_area_empty(area, fallback_mt))
2542
			continue;
2543

2544 2545 2546
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2547 2548 2549 2550 2551
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2552
	}
2553 2554

	return -1;
2555 2556
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2571
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2583 2584
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2585 2586
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2587
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2599 2600 2601
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2602
 */
2603 2604
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2605 2606 2607 2608 2609 2610 2611
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2612
	bool ret;
2613 2614 2615

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2616 2617 2618 2619 2620 2621
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2622 2623 2624 2625 2626 2627
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2628
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2629
			if (!page)
2630 2631 2632
				continue;

			/*
2633 2634 2635 2636 2637
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2638
			 */
2639
			if (is_migrate_highatomic_page(page)) {
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2662 2663
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2664 2665 2666 2667
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2668 2669 2670
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2671 2672

	return false;
2673 2674
}

2675 2676 2677 2678 2679
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2680 2681 2682 2683
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2684
 */
2685
static __always_inline bool
2686 2687
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2688
{
2689
	struct free_area *area;
2690
	int current_order;
2691
	int min_order = order;
2692
	struct page *page;
2693 2694
	int fallback_mt;
	bool can_steal;
2695

2696 2697 2698 2699 2700 2701 2702 2703
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2704 2705 2706 2707 2708
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2709
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2710
				--current_order) {
2711 2712
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2713
				start_migratetype, false, &can_steal);
2714 2715
		if (fallback_mt == -1)
			continue;
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2728

2729 2730
		goto do_steal;
	}
2731

2732
	return false;
2733

2734 2735 2736 2737 2738 2739 2740 2741
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2742 2743
	}

2744 2745 2746 2747 2748 2749 2750
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2751
	page = get_page_from_free_area(area, fallback_mt);
2752

2753 2754
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2755 2756 2757 2758 2759 2760

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2761 2762
}

2763
/*
L
Linus Torvalds 已提交
2764 2765 2766
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2767
static __always_inline struct page *
2768 2769
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2770 2771 2772
{
	struct page *page;

2773
retry:
2774
	page = __rmqueue_smallest(zone, order, migratetype);
2775
	if (unlikely(!page)) {
2776 2777 2778
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2779 2780
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2781
			goto retry;
2782 2783
	}

2784
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2785
	return page;
L
Linus Torvalds 已提交
2786 2787
}

2788
/*
L
Linus Torvalds 已提交
2789 2790 2791 2792
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2793
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2794
			unsigned long count, struct list_head *list,
2795
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2796
{
2797
	int i, alloced = 0;
2798

2799
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2800
	for (i = 0; i < count; ++i) {
2801 2802
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2803
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2804
			break;
2805

2806 2807 2808
		if (unlikely(check_pcp_refill(page)))
			continue;

2809
		/*
2810 2811 2812 2813 2814 2815 2816 2817
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2818
		 */
2819
		list_add_tail(&page->lru, list);
2820
		alloced++;
2821
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2822 2823
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2824
	}
2825 2826 2827 2828 2829 2830 2831

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2832
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2833
	spin_unlock(&zone->lock);
2834
	return alloced;
L
Linus Torvalds 已提交
2835 2836
}

2837
#ifdef CONFIG_NUMA
2838
/*
2839 2840 2841 2842
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2843 2844
 * Note that this function must be called with the thread pinned to
 * a single processor.
2845
 */
2846
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2847 2848
{
	unsigned long flags;
2849
	int to_drain, batch;
2850

2851
	local_irq_save(flags);
2852
	batch = READ_ONCE(pcp->batch);
2853
	to_drain = min(pcp->count, batch);
2854
	if (to_drain > 0)
2855
		free_pcppages_bulk(zone, to_drain, pcp);
2856
	local_irq_restore(flags);
2857 2858 2859
}
#endif

2860
/*
2861
 * Drain pcplists of the indicated processor and zone.
2862 2863 2864 2865 2866
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2867
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2868
{
N
Nick Piggin 已提交
2869
	unsigned long flags;
2870 2871
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2872

2873 2874
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2875

2876
	pcp = &pset->pcp;
2877
	if (pcp->count)
2878 2879 2880
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2895 2896 2897
	}
}

2898 2899
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2900 2901 2902
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2903
 */
2904
void drain_local_pages(struct zone *zone)
2905
{
2906 2907 2908 2909 2910 2911
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2912 2913
}

2914 2915
static void drain_local_pages_wq(struct work_struct *work)
{
2916 2917 2918 2919
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2920 2921 2922 2923 2924 2925 2926 2927
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2928
	drain_local_pages(drain->zone);
2929
	preempt_enable();
2930 2931
}

2932
/*
2933 2934
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2935 2936
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2937
 * Note that this can be extremely slow as the draining happens in a workqueue.
2938
 */
2939
void drain_all_pages(struct zone *zone)
2940
{
2941 2942 2943 2944 2945 2946 2947 2948
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2949 2950 2951 2952 2953 2954 2955
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2966

2967 2968 2969 2970 2971 2972 2973
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2974 2975
		struct per_cpu_pageset *pcp;
		struct zone *z;
2976
		bool has_pcps = false;
2977 2978

		if (zone) {
2979
			pcp = per_cpu_ptr(zone->pageset, cpu);
2980
			if (pcp->pcp.count)
2981
				has_pcps = true;
2982 2983 2984 2985 2986 2987 2988
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2989 2990
			}
		}
2991

2992 2993 2994 2995 2996
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2997

2998
	for_each_cpu(cpu, &cpus_with_pcps) {
2999 3000 3001 3002 3003
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3004
	}
3005
	for_each_cpu(cpu, &cpus_with_pcps)
3006
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3007 3008

	mutex_unlock(&pcpu_drain_mutex);
3009 3010
}

3011
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3012

3013 3014 3015 3016 3017
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3018 3019
void mark_free_pages(struct zone *zone)
{
3020
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3021
	unsigned long flags;
3022
	unsigned int order, t;
3023
	struct page *page;
L
Linus Torvalds 已提交
3024

3025
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3026 3027 3028
		return;

	spin_lock_irqsave(&zone->lock, flags);
3029

3030
	max_zone_pfn = zone_end_pfn(zone);
3031 3032
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3033
			page = pfn_to_page(pfn);
3034

3035 3036 3037 3038 3039
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3040 3041 3042
			if (page_zone(page) != zone)
				continue;

3043 3044
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3045
		}
L
Linus Torvalds 已提交
3046

3047
	for_each_migratetype_order(order, t) {
3048 3049
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3050
			unsigned long i;
L
Linus Torvalds 已提交
3051

3052
			pfn = page_to_pfn(page);
3053 3054 3055 3056 3057
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3058
				swsusp_set_page_free(pfn_to_page(pfn + i));
3059
			}
3060
		}
3061
	}
L
Linus Torvalds 已提交
3062 3063
	spin_unlock_irqrestore(&zone->lock, flags);
}
3064
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3065

3066
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3067
{
3068
	int migratetype;
L
Linus Torvalds 已提交
3069

3070
	if (!free_pcp_prepare(page))
3071
		return false;
3072

3073
	migratetype = get_pfnblock_migratetype(page, pfn);
3074
	set_pcppage_migratetype(page, migratetype);
3075 3076 3077
	return true;
}

3078
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3079 3080 3081 3082 3083 3084
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3085
	__count_vm_event(PGFREE);
3086

3087 3088 3089
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3090
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3091 3092 3093 3094
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3095
		if (unlikely(is_migrate_isolate(migratetype))) {
3096
			free_one_page(zone, page, pfn, 0, migratetype);
3097
			return;
3098 3099 3100 3101
		}
		migratetype = MIGRATE_MOVABLE;
	}

3102
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3103
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3104
	pcp->count++;
N
Nick Piggin 已提交
3105
	if (pcp->count >= pcp->high) {
3106
		unsigned long batch = READ_ONCE(pcp->batch);
3107
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3108
	}
3109
}
3110

3111 3112 3113
/*
 * Free a 0-order page
 */
3114
void free_unref_page(struct page *page)
3115 3116 3117 3118
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3119
	if (!free_unref_page_prepare(page, pfn))
3120 3121 3122
		return;

	local_irq_save(flags);
3123
	free_unref_page_commit(page, pfn);
3124
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3125 3126
}

3127 3128 3129
/*
 * Free a list of 0-order pages
 */
3130
void free_unref_page_list(struct list_head *list)
3131 3132
{
	struct page *page, *next;
3133
	unsigned long flags, pfn;
3134
	int batch_count = 0;
3135 3136 3137 3138

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3139
		if (!free_unref_page_prepare(page, pfn))
3140 3141 3142
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3143

3144
	local_irq_save(flags);
3145
	list_for_each_entry_safe(page, next, list, lru) {
3146 3147 3148
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3149 3150
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3161
	}
3162
	local_irq_restore(flags);
3163 3164
}

N
Nick Piggin 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3177 3178
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3179

3180
	for (i = 1; i < (1 << order); i++)
3181
		set_page_refcounted(page + i);
3182
	split_page_owner(page, order);
N
Nick Piggin 已提交
3183
}
K
K. Y. Srinivasan 已提交
3184
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3185

3186
int __isolate_free_page(struct page *page, unsigned int order)
3187 3188 3189
{
	unsigned long watermark;
	struct zone *zone;
3190
	int mt;
3191 3192 3193 3194

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3195
	mt = get_pageblock_migratetype(page);
3196

3197
	if (!is_migrate_isolate(mt)) {
3198 3199 3200 3201 3202 3203
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3204
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3205
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3206 3207
			return 0;

3208
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3209
	}
3210 3211

	/* Remove page from free list */
3212

3213
	del_page_from_free_list(page, zone, order);
3214

3215 3216 3217 3218
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3219 3220
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3221 3222
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3223
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3224
			    && !is_migrate_highatomic(mt))
3225 3226 3227
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3228 3229
	}

3230

3231
	return 1UL << order;
3232 3233
}

3234 3235 3236 3237
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3238
 * @mt: The page's pageblock's migratetype
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3251
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3252 3253
}

3254 3255 3256 3257 3258
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3259
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3260 3261
{
#ifdef CONFIG_NUMA
3262
	enum numa_stat_item local_stat = NUMA_LOCAL;
3263

3264 3265 3266 3267
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3268
	if (zone_to_nid(z) != numa_node_id())
3269 3270
		local_stat = NUMA_OTHER;

3271
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3272
		__inc_numa_state(z, NUMA_HIT);
3273
	else {
3274 3275
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3276
	}
3277
	__inc_numa_state(z, local_stat);
3278 3279 3280
#endif
}

3281 3282
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3283
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3284
			struct per_cpu_pages *pcp,
3285 3286 3287 3288 3289 3290 3291 3292
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3293
					migratetype, alloc_flags);
3294 3295 3296 3297
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3298
		page = list_first_entry(list, struct page, lru);
3299 3300 3301 3302 3303 3304 3305 3306 3307
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3308 3309
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3310 3311 3312 3313
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3314
	unsigned long flags;
3315

3316
	local_irq_save(flags);
3317 3318
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3319
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3320
	if (page) {
3321
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3322 3323
		zone_statistics(preferred_zone, zone);
	}
3324
	local_irq_restore(flags);
3325 3326 3327
	return page;
}

L
Linus Torvalds 已提交
3328
/*
3329
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3330
 */
3331
static inline
3332
struct page *rmqueue(struct zone *preferred_zone,
3333
			struct zone *zone, unsigned int order,
3334 3335
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3336 3337
{
	unsigned long flags;
3338
	struct page *page;
L
Linus Torvalds 已提交
3339

3340
	if (likely(order == 0)) {
3341 3342
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3343 3344
		goto out;
	}
3345

3346 3347 3348 3349 3350 3351
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3352

3353 3354 3355 3356 3357 3358 3359
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3360
		if (!page)
3361
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3362 3363 3364 3365 3366 3367
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3368

3369
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3370
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3371
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3372

3373
out:
3374 3375 3376 3377 3378 3379
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3380
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3381
	return page;
N
Nick Piggin 已提交
3382 3383 3384 3385

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3386 3387
}

3388 3389
#ifdef CONFIG_FAIL_PAGE_ALLOC

3390
static struct {
3391 3392
	struct fault_attr attr;

3393
	bool ignore_gfp_highmem;
3394
	bool ignore_gfp_reclaim;
3395
	u32 min_order;
3396 3397
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3398
	.ignore_gfp_reclaim = true,
3399
	.ignore_gfp_highmem = true,
3400
	.min_order = 1,
3401 3402 3403 3404 3405 3406 3407 3408
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3409
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3410
{
3411
	if (order < fail_page_alloc.min_order)
3412
		return false;
3413
	if (gfp_mask & __GFP_NOFAIL)
3414
		return false;
3415
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3416
		return false;
3417 3418
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3419
		return false;
3420 3421 3422 3423 3424 3425 3426 3427

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3428
	umode_t mode = S_IFREG | 0600;
3429 3430
	struct dentry *dir;

3431 3432
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3433

3434 3435 3436 3437 3438
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3439

3440
	return 0;
3441 3442 3443 3444 3445 3446 3447 3448
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3449
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3450
{
3451
	return false;
3452 3453 3454 3455
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3456 3457 3458 3459 3460 3461
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3462
/*
3463 3464 3465 3466
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3467
 */
3468 3469 3470
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3471
{
3472
	long min = mark;
L
Linus Torvalds 已提交
3473
	int o;
3474
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3475

3476
	/* free_pages may go negative - that's OK */
3477
	free_pages -= (1 << order) - 1;
3478

R
Rohit Seth 已提交
3479
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3480
		min -= min / 2;
3481 3482 3483 3484 3485 3486

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3487
	if (likely(!alloc_harder)) {
3488
		free_pages -= z->nr_reserved_highatomic;
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3502

3503 3504 3505 3506 3507 3508
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3509 3510 3511 3512 3513 3514
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3515
		return false;
L
Linus Torvalds 已提交
3516

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3530
			if (!free_area_empty(area, mt))
3531 3532 3533 3534
				return true;
		}

#ifdef CONFIG_CMA
3535
		if ((alloc_flags & ALLOC_CMA) &&
3536
		    !free_area_empty(area, MIGRATE_CMA)) {
3537
			return true;
3538
		}
3539
#endif
3540
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3541
			return true;
L
Linus Torvalds 已提交
3542
	}
3543
	return false;
3544 3545
}

3546
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3547
		      int classzone_idx, unsigned int alloc_flags)
3548 3549 3550 3551 3552
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3553 3554 3555 3556
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3557 3558 3559 3560 3561 3562 3563
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3564 3565 3566 3567 3568 3569 3570 3571

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3572
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3573 3574 3575 3576 3577 3578
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3579
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3580
			unsigned long mark, int classzone_idx)
3581 3582 3583 3584 3585 3586
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3587
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3588
								free_pages);
L
Linus Torvalds 已提交
3589 3590
}

3591
#ifdef CONFIG_NUMA
3592 3593
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3594
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3595
				node_reclaim_distance;
3596
}
3597
#else	/* CONFIG_NUMA */
3598 3599 3600 3601
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3602 3603
#endif	/* CONFIG_NUMA */

3604 3605 3606 3607 3608 3609 3610 3611 3612
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3613
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3614
{
3615
	unsigned int alloc_flags;
3616

3617 3618 3619 3620 3621
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3622 3623

#ifdef CONFIG_ZONE_DMA32
3624 3625 3626
	if (!zone)
		return alloc_flags;

3627
	if (zone_idx(zone) != ZONE_NORMAL)
3628
		return alloc_flags;
3629 3630 3631 3632 3633 3634 3635 3636

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3637
		return alloc_flags;
3638

3639
	alloc_flags |= ALLOC_NOFRAGMENT;
3640 3641
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3642 3643
}

R
Rohit Seth 已提交
3644
/*
3645
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3646 3647 3648
 * a page.
 */
static struct page *
3649 3650
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3651
{
3652
	struct zoneref *z;
3653
	struct zone *zone;
3654
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3655
	bool no_fallback;
3656

3657
retry:
R
Rohit Seth 已提交
3658
	/*
3659
	 * Scan zonelist, looking for a zone with enough free.
3660
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3661
	 */
3662 3663
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3664
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3665
								ac->nodemask) {
3666
		struct page *page;
3667 3668
		unsigned long mark;

3669 3670
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3671
			!__cpuset_zone_allowed(zone, gfp_mask))
3672
				continue;
3673 3674
		/*
		 * When allocating a page cache page for writing, we
3675 3676
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3677
		 * proportional share of globally allowed dirty pages.
3678
		 * The dirty limits take into account the node's
3679 3680 3681 3682 3683
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3684
		 * exceed the per-node dirty limit in the slowpath
3685
		 * (spread_dirty_pages unset) before going into reclaim,
3686
		 * which is important when on a NUMA setup the allowed
3687
		 * nodes are together not big enough to reach the
3688
		 * global limit.  The proper fix for these situations
3689
		 * will require awareness of nodes in the
3690 3691
		 * dirty-throttling and the flusher threads.
		 */
3692 3693 3694 3695 3696 3697 3698 3699 3700
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3701

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3718
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3719
		if (!zone_watermark_fast(zone, order, mark,
3720
				       ac_classzone_idx(ac), alloc_flags)) {
3721 3722
			int ret;

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3733 3734 3735 3736 3737
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3738
			if (node_reclaim_mode == 0 ||
3739
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3740 3741
				continue;

3742
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3743
			switch (ret) {
3744
			case NODE_RECLAIM_NOSCAN:
3745
				/* did not scan */
3746
				continue;
3747
			case NODE_RECLAIM_FULL:
3748
				/* scanned but unreclaimable */
3749
				continue;
3750 3751
			default:
				/* did we reclaim enough */
3752
				if (zone_watermark_ok(zone, order, mark,
3753
						ac_classzone_idx(ac), alloc_flags))
3754 3755 3756
					goto try_this_zone;

				continue;
3757
			}
R
Rohit Seth 已提交
3758 3759
		}

3760
try_this_zone:
3761
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3762
				gfp_mask, alloc_flags, ac->migratetype);
3763
		if (page) {
3764
			prep_new_page(page, order, gfp_mask, alloc_flags);
3765 3766 3767 3768 3769 3770 3771 3772

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3773
			return page;
3774 3775 3776 3777 3778 3779 3780 3781
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3782
		}
3783
	}
3784

3785 3786 3787 3788 3789 3790 3791 3792 3793
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3794
	return NULL;
M
Martin Hicks 已提交
3795 3796
}

3797
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3798 3799 3800 3801 3802 3803 3804 3805 3806
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3807
		if (tsk_is_oom_victim(current) ||
3808 3809
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3810
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3811 3812
		filter &= ~SHOW_MEM_FILTER_NODES;

3813
	show_mem(filter, nodemask);
3814 3815
}

3816
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3817 3818 3819
{
	struct va_format vaf;
	va_list args;
3820
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3821

3822
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3823 3824
		return;

3825 3826 3827
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3828
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3829 3830
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3831
	va_end(args);
J
Joe Perches 已提交
3832

3833
	cpuset_print_current_mems_allowed();
3834
	pr_cont("\n");
3835
	dump_stack();
3836
	warn_alloc_show_mem(gfp_mask, nodemask);
3837 3838
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3859 3860
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3861
	const struct alloc_context *ac, unsigned long *did_some_progress)
3862
{
3863 3864 3865
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3866
		.memcg = NULL,
3867 3868 3869
		.gfp_mask = gfp_mask,
		.order = order,
	};
3870 3871
	struct page *page;

3872 3873 3874
	*did_some_progress = 0;

	/*
3875 3876
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3877
	 */
3878
	if (!mutex_trylock(&oom_lock)) {
3879
		*did_some_progress = 1;
3880
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3881 3882
		return NULL;
	}
3883

3884 3885 3886
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3887 3888 3889
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3890
	 */
3891 3892 3893
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3894
	if (page)
3895 3896
		goto out;

3897 3898 3899 3900 3901 3902
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3903 3904 3905 3906 3907 3908 3909 3910
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3929

3930
	/* Exhausted what can be done so it's blame time */
3931
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3932
		*did_some_progress = 1;
3933

3934 3935 3936 3937 3938 3939
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3940 3941
					ALLOC_NO_WATERMARKS, ac);
	}
3942
out:
3943
	mutex_unlock(&oom_lock);
3944 3945 3946
	return page;
}

3947 3948 3949 3950 3951 3952
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3953 3954 3955 3956
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3957
		unsigned int alloc_flags, const struct alloc_context *ac,
3958
		enum compact_priority prio, enum compact_result *compact_result)
3959
{
3960
	struct page *page = NULL;
3961
	unsigned long pflags;
3962
	unsigned int noreclaim_flag;
3963 3964

	if (!order)
3965 3966
		return NULL;

3967
	psi_memstall_enter(&pflags);
3968
	noreclaim_flag = memalloc_noreclaim_save();
3969

3970
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3971
								prio, &page);
3972

3973
	memalloc_noreclaim_restore(noreclaim_flag);
3974
	psi_memstall_leave(&pflags);
3975

3976 3977 3978 3979 3980
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3981

3982 3983 3984 3985 3986 3987 3988
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3989

3990 3991
	if (page) {
		struct zone *zone = page_zone(page);
3992

3993 3994 3995 3996 3997
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3998

3999 4000 4001 4002 4003
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4004

4005
	cond_resched();
4006 4007 4008

	return NULL;
}
4009

4010 4011 4012 4013
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4014
		     int *compaction_retries)
4015 4016
{
	int max_retries = MAX_COMPACT_RETRIES;
4017
	int min_priority;
4018 4019 4020
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4021 4022 4023 4024

	if (!order)
		return false;

4025 4026 4027
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4028 4029 4030 4031 4032
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4033 4034
	if (compaction_failed(compact_result))
		goto check_priority;
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4045 4046 4047
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4048 4049
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4050
	 */
4051
	if (compaction_withdrawn(compact_result)) {
4052
		goto check_priority;
4053
	}
4054 4055

	/*
4056
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4057 4058 4059 4060 4061 4062 4063 4064
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4065 4066 4067 4068
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4069

4070 4071 4072 4073 4074
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4075 4076
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4077

4078
	if (*compact_priority > min_priority) {
4079 4080
		(*compact_priority)--;
		*compaction_retries = 0;
4081
		ret = true;
4082
	}
4083 4084 4085
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4086
}
4087 4088 4089
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4090
		unsigned int alloc_flags, const struct alloc_context *ac,
4091
		enum compact_priority prio, enum compact_result *compact_result)
4092
{
4093
	*compact_result = COMPACT_SKIPPED;
4094 4095
	return NULL;
}
4096 4097

static inline bool
4098 4099
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4100
		     enum compact_priority *compact_priority,
4101
		     int *compaction_retries)
4102
{
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4121 4122
	return false;
}
4123
#endif /* CONFIG_COMPACTION */
4124

4125
#ifdef CONFIG_LOCKDEP
4126
static struct lockdep_map __fs_reclaim_map =
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4138
	if (current->flags & PF_MEMALLOC)
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4161 4162 4163
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4164
		__fs_reclaim_acquire();
4165 4166 4167 4168 4169 4170
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4171
		__fs_reclaim_release();
4172 4173 4174 4175
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4176 4177
/* Perform direct synchronous page reclaim */
static int
4178 4179
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4180
{
4181
	int progress;
4182
	unsigned int noreclaim_flag;
4183
	unsigned long pflags;
4184 4185 4186 4187 4188

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4189
	psi_memstall_enter(&pflags);
4190
	fs_reclaim_acquire(gfp_mask);
4191
	noreclaim_flag = memalloc_noreclaim_save();
4192

4193 4194
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4195

4196
	memalloc_noreclaim_restore(noreclaim_flag);
4197
	fs_reclaim_release(gfp_mask);
4198
	psi_memstall_leave(&pflags);
4199 4200 4201

	cond_resched();

4202 4203 4204 4205 4206 4207
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4208
		unsigned int alloc_flags, const struct alloc_context *ac,
4209
		unsigned long *did_some_progress)
4210 4211 4212 4213
{
	struct page *page = NULL;
	bool drained = false;

4214
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4215 4216
	if (unlikely(!(*did_some_progress)))
		return NULL;
4217

4218
retry:
4219
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4220 4221 4222

	/*
	 * If an allocation failed after direct reclaim, it could be because
4223 4224
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4225 4226
	 */
	if (!page && !drained) {
4227
		unreserve_highatomic_pageblock(ac, false);
4228
		drain_all_pages(NULL);
4229 4230 4231 4232
		drained = true;
		goto retry;
	}

4233 4234 4235
	return page;
}

4236 4237
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4238 4239 4240
{
	struct zoneref *z;
	struct zone *zone;
4241
	pg_data_t *last_pgdat = NULL;
4242
	enum zone_type high_zoneidx = ac->high_zoneidx;
4243

4244 4245
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4246
		if (last_pgdat != zone->zone_pgdat)
4247
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4248 4249
		last_pgdat = zone->zone_pgdat;
	}
4250 4251
}

4252
static inline unsigned int
4253 4254
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4255
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4256

4257 4258 4259 4260 4261
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4262
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4263
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4264

4265 4266 4267 4268
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4269
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4270
	 */
4271 4272
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4273

4274
	if (gfp_mask & __GFP_ATOMIC) {
4275
		/*
4276 4277
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4278
		 */
4279
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4280
			alloc_flags |= ALLOC_HARDER;
4281
		/*
4282
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4283
		 * comment for __cpuset_node_allowed().
4284
		 */
4285
		alloc_flags &= ~ALLOC_CPUSET;
4286
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4287 4288
		alloc_flags |= ALLOC_HARDER;

4289 4290 4291 4292
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4293 4294 4295
	return alloc_flags;
}

4296
static bool oom_reserves_allowed(struct task_struct *tsk)
4297
{
4298 4299 4300 4301 4302 4303 4304 4305
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4306 4307
		return false;

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4319
	if (gfp_mask & __GFP_MEMALLOC)
4320
		return ALLOC_NO_WATERMARKS;
4321
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4322 4323 4324 4325 4326 4327 4328
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4329

4330 4331 4332 4333 4334 4335
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4336 4337
}

M
Michal Hocko 已提交
4338 4339 4340
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4341 4342 4343 4344
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4345 4346 4347 4348 4349 4350
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4351
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4352 4353 4354
{
	struct zone *zone;
	struct zoneref *z;
4355
	bool ret = false;
M
Michal Hocko 已提交
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4367 4368 4369 4370
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4371 4372
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4373
		return unreserve_highatomic_pageblock(ac, true);
4374
	}
M
Michal Hocko 已提交
4375

4376 4377 4378 4379 4380
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4381 4382 4383 4384
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4385
		unsigned long reclaimable;
4386 4387
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4388

4389 4390
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4391 4392

		/*
4393 4394
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4395
		 */
4396 4397 4398 4399 4400
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4401 4402 4403 4404 4405 4406 4407
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4408
				unsigned long write_pending;
4409

4410 4411
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4412

4413
				if (2 * write_pending > reclaimable) {
4414 4415 4416 4417
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4418

4419 4420
			ret = true;
			goto out;
M
Michal Hocko 已提交
4421 4422 4423
		}
	}

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4437 4438
}

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4472 4473
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4474
						struct alloc_context *ac)
4475
{
4476
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4477
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4478
	struct page *page = NULL;
4479
	unsigned int alloc_flags;
4480
	unsigned long did_some_progress;
4481
	enum compact_priority compact_priority;
4482
	enum compact_result compact_result;
4483 4484 4485
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4486
	int reserve_flags;
L
Linus Torvalds 已提交
4487

4488 4489 4490 4491 4492 4493 4494 4495
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4496 4497 4498 4499 4500
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4501 4502 4503 4504 4505 4506 4507 4508

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4520
	if (alloc_flags & ALLOC_KSWAPD)
4521
		wake_all_kswapds(order, gfp_mask, ac);
4522 4523 4524 4525 4526 4527 4528 4529 4530

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4531 4532
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4533 4534 4535 4536 4537 4538
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4539
	 */
4540 4541 4542 4543
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4544 4545
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4546
						INIT_COMPACT_PRIORITY,
4547 4548 4549 4550
						&compact_result);
		if (page)
			goto got_pg;

4551 4552 4553 4554 4555
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4556 4557 4558 4559
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4560 4561
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4576 4577

			/*
4578 4579
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4580
			 * using async compaction.
4581
			 */
4582
			compact_priority = INIT_COMPACT_PRIORITY;
4583 4584
		}
	}
4585

4586
retry:
4587
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4588
	if (alloc_flags & ALLOC_KSWAPD)
4589
		wake_all_kswapds(order, gfp_mask, ac);
4590

4591 4592 4593
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4594

4595
	/*
4596 4597 4598
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4599
	 */
4600
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4601
		ac->nodemask = NULL;
4602 4603 4604 4605
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4606
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4607
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4608 4609
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4610

4611
	/* Caller is not willing to reclaim, we can't balance anything */
4612
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4613 4614
		goto nopage;

4615 4616
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4617 4618
		goto nopage;

4619 4620 4621 4622 4623 4624 4625
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4626
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4627
					compact_priority, &compact_result);
4628 4629
	if (page)
		goto got_pg;
4630

4631 4632
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4633
		goto nopage;
4634

M
Michal Hocko 已提交
4635 4636
	/*
	 * Do not retry costly high order allocations unless they are
4637
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4638
	 */
4639
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4640
		goto nopage;
M
Michal Hocko 已提交
4641 4642

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4643
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4644 4645
		goto retry;

4646 4647 4648 4649 4650 4651 4652
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4653
			should_compact_retry(ac, order, alloc_flags,
4654
				compact_result, &compact_priority,
4655
				&compaction_retries))
4656 4657
		goto retry;

4658 4659 4660

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4661 4662
		goto retry_cpuset;

4663 4664 4665 4666 4667
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4668
	/* Avoid allocations with no watermarks from looping endlessly */
4669 4670
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4671
	     (gfp_mask & __GFP_NOMEMALLOC)))
4672 4673
		goto nopage;

4674
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4675 4676
	if (did_some_progress) {
		no_progress_loops = 0;
4677
		goto retry;
M
Michal Hocko 已提交
4678
	}
4679

L
Linus Torvalds 已提交
4680
nopage:
4681 4682
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4683 4684
		goto retry_cpuset;

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4722 4723 4724 4725
		cond_resched();
		goto retry;
	}
fail:
4726
	warn_alloc(gfp_mask, ac->nodemask,
4727
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4728
got_pg:
4729
	return page;
L
Linus Torvalds 已提交
4730
}
4731

4732
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4733
		int preferred_nid, nodemask_t *nodemask,
4734 4735
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4736
{
4737
	ac->high_zoneidx = gfp_zone(gfp_mask);
4738
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4739 4740
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4741

4742
	if (cpusets_enabled()) {
4743 4744 4745
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4746 4747
		else
			*alloc_flags |= ALLOC_CPUSET;
4748 4749
	}

4750 4751
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4752

4753
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4754 4755

	if (should_fail_alloc_page(gfp_mask, order))
4756
		return false;
4757

4758 4759 4760
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4761 4762
	return true;
}
4763

4764
/* Determine whether to spread dirty pages and what the first usable zone */
4765
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4766
{
4767
	/* Dirty zone balancing only done in the fast path */
4768
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4769

4770 4771 4772 4773 4774
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4775 4776 4777 4778 4779 4780 4781 4782
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4783 4784
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4785 4786 4787
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4788
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4789 4790
	struct alloc_context ac = { };

4791 4792 4793 4794 4795 4796 4797 4798 4799
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4800
	gfp_mask &= gfp_allowed_mask;
4801
	alloc_mask = gfp_mask;
4802
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4803 4804
		return NULL;

4805
	finalise_ac(gfp_mask, &ac);
4806

4807 4808 4809 4810
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4811
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4812

4813
	/* First allocation attempt */
4814
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4815 4816
	if (likely(page))
		goto out;
4817

4818
	/*
4819 4820 4821 4822
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4823
	 */
4824
	alloc_mask = current_gfp_context(gfp_mask);
4825
	ac.spread_dirty_pages = false;
4826

4827 4828 4829 4830
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4831
	ac.nodemask = nodemask;
4832

4833
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4834

4835
out:
4836
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4837
	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4838 4839
		__free_pages(page, order);
		page = NULL;
4840 4841
	}

4842 4843
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4844
	return page;
L
Linus Torvalds 已提交
4845
}
4846
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4847 4848

/*
4849 4850 4851
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4852
 */
H
Harvey Harrison 已提交
4853
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4854
{
4855 4856
	struct page *page;

4857
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4864
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4865
{
4866
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4867 4868 4869
}
EXPORT_SYMBOL(get_zeroed_page);

4870
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4871
{
4872 4873 4874 4875
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4876 4877
}

4878 4879 4880 4881 4882
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4883 4884
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4885
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4886 4887
{
	if (addr != 0) {
N
Nick Piggin 已提交
4888
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4906 4907
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4927
void __page_frag_cache_drain(struct page *page, unsigned int count)
4928 4929 4930
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4931 4932
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4933
}
4934
EXPORT_SYMBOL(__page_frag_cache_drain);
4935

4936 4937
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4938 4939 4940 4941 4942 4943 4944
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4945
		page = __page_frag_cache_refill(nc, gfp_mask);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4956
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4957 4958

		/* reset page count bias and offset to start of new frag */
4959
		nc->pfmemalloc = page_is_pfmemalloc(page);
4960
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4961 4962 4963 4964 4965 4966 4967
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4968
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4969 4970 4971 4972 4973 4974 4975
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4976
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4977 4978

		/* reset page count bias and offset to start of new frag */
4979
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4980 4981 4982 4983 4984 4985 4986 4987
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4988
EXPORT_SYMBOL(page_frag_alloc);
4989 4990 4991 4992

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4993
void page_frag_free(void *addr)
4994 4995 4996
{
	struct page *page = virt_to_head_page(addr);

4997 4998
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4999
}
5000
EXPORT_SYMBOL(page_frag_free);
5001

5002 5003
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5018 5019 5020
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5021
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5022 5023 5024 5025 5026 5027 5028 5029
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5030 5031
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5032 5033 5034 5035 5036 5037
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5038 5039 5040
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5041
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5042
	return make_alloc_exact(addr, order, size);
5043 5044 5045
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5046 5047 5048
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5049
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5050
 * @size: the number of bytes to allocate
5051
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5052 5053 5054
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5055 5056
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5057
 */
5058
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5059
{
5060
	unsigned int order = get_order(size);
5061 5062 5063 5064 5065 5066
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5067 5068 5069 5070 5071
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5091 5092 5093 5094
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5095
 * nr_free_zone_pages() counts the number of pages which are beyond the
5096 5097
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5098 5099
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5100 5101
 *
 * Return: number of pages beyond high watermark.
5102
 */
5103
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5104
{
5105
	struct zoneref *z;
5106 5107
	struct zone *zone;

5108
	/* Just pick one node, since fallback list is circular */
5109
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5110

5111
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5112

5113
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5114
		unsigned long size = zone_managed_pages(zone);
5115
		unsigned long high = high_wmark_pages(zone);
5116 5117
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5118 5119 5120 5121 5122
	}

	return sum;
}

5123 5124 5125 5126 5127
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5128 5129 5130
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5131
 */
5132
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5133
{
A
Al Viro 已提交
5134
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5135
}
5136
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5137

5138 5139 5140 5141 5142
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5143 5144
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
5145
 */
5146
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5147
{
M
Mel Gorman 已提交
5148
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5149
}
5150 5151

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5152
{
5153
	if (IS_ENABLED(CONFIG_NUMA))
5154
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5155 5156
}

5157 5158 5159 5160 5161 5162
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5163
	unsigned long reclaimable;
5164 5165 5166 5167
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5168
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5169 5170

	for_each_zone(zone)
5171
		wmark_low += low_wmark_pages(zone);
5172 5173 5174 5175 5176

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5177
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5189 5190 5191
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5192
	 */
5193 5194 5195
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5196

5197 5198 5199 5200 5201 5202
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5203 5204
void si_meminfo(struct sysinfo *val)
{
5205
	val->totalram = totalram_pages();
5206
	val->sharedram = global_node_page_state(NR_SHMEM);
5207
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5208
	val->bufferram = nr_blockdev_pages();
5209
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5219 5220
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5221 5222
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5223 5224
	pg_data_t *pgdat = NODE_DATA(nid);

5225
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5226
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5227
	val->totalram = managed_pages;
5228
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5229
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5230
#ifdef CONFIG_HIGHMEM
5231 5232 5233 5234
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5235
			managed_highpages += zone_managed_pages(zone);
5236 5237 5238 5239 5240
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5241
#else
5242 5243
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5244
#endif
L
Linus Torvalds 已提交
5245 5246 5247 5248
	val->mem_unit = PAGE_SIZE;
}
#endif

5249
/*
5250 5251
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5252
 */
5253
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5254 5255
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5256
		return false;
5257

5258 5259 5260 5261 5262 5263 5264 5265 5266
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5267 5268
}

L
Linus Torvalds 已提交
5269 5270
#define K(x) ((x) << (PAGE_SHIFT-10))

5271 5272 5273 5274 5275
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5276 5277
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5278 5279 5280
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5281
#ifdef CONFIG_MEMORY_ISOLATION
5282
		[MIGRATE_ISOLATE]	= 'I',
5283
#endif
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5295
	printk(KERN_CONT "(%s) ", tmp);
5296 5297
}

L
Linus Torvalds 已提交
5298 5299 5300 5301
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5302 5303 5304 5305
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5306
 */
5307
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5308
{
5309
	unsigned long free_pcp = 0;
5310
	int cpu;
L
Linus Torvalds 已提交
5311
	struct zone *zone;
M
Mel Gorman 已提交
5312
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5313

5314
	for_each_populated_zone(zone) {
5315
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5316
			continue;
5317

5318 5319
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5320 5321
	}

K
KOSAKI Motohiro 已提交
5322 5323
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5324
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5325
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5326
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5327
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5328 5329 5330 5331 5332 5333 5334
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5335 5336
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5337 5338
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5339
		global_node_page_state(NR_FILE_MAPPED),
5340
		global_node_page_state(NR_SHMEM),
5341 5342 5343
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5344
		free_pcp,
5345
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5346

M
Mel Gorman 已提交
5347
	for_each_online_pgdat(pgdat) {
5348
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5349 5350
			continue;

M
Mel Gorman 已提交
5351 5352 5353 5354 5355 5356 5357 5358
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5359
			" mapped:%lukB"
5360 5361 5362 5363 5364 5365 5366 5367 5368
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
M
Mel Gorman 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5379
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5380 5381
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5382
			K(node_page_state(pgdat, NR_SHMEM)),
5383 5384 5385 5386 5387 5388 5389
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5390 5391
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5392 5393
	}

5394
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5395 5396
		int i;

5397
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5398
			continue;
5399 5400 5401 5402 5403

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5404
		show_node(zone);
5405 5406
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5407 5408 5409 5410
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5411
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5412 5413 5414 5415 5416
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5417
			" writepending:%lukB"
L
Linus Torvalds 已提交
5418
			" present:%lukB"
5419
			" managed:%lukB"
5420
			" mlocked:%lukB"
5421
			" kernel_stack:%lukB"
5422 5423 5424
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
5425 5426
			" pagetables:%lukB"
			" bounce:%lukB"
5427 5428
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5429
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5430 5431
			"\n",
			zone->name,
5432
			K(zone_page_state(zone, NR_FREE_PAGES)),
5433 5434 5435
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5436
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5437 5438 5439 5440 5441
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5442
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5443
			K(zone->present_pages),
5444
			K(zone_managed_pages(zone)),
5445
			K(zone_page_state(zone, NR_MLOCK)),
5446
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5447 5448 5449
#ifdef CONFIG_SHADOW_CALL_STACK
			zone_page_state(zone, NR_KERNEL_SCS_KB),
#endif
5450 5451
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5452 5453
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5454
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5455 5456
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5457 5458
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5459 5460
	}

5461
	for_each_populated_zone(zone) {
5462 5463
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5464
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5465

5466
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5467
			continue;
L
Linus Torvalds 已提交
5468
		show_node(zone);
5469
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5470 5471 5472

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5473 5474 5475 5476
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5477
			total += nr[order] << order;
5478 5479 5480

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5481
				if (!free_area_empty(area, type))
5482 5483
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5484 5485
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5486
		for (order = 0; order < MAX_ORDER; order++) {
5487 5488
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5489 5490 5491
			if (nr[order])
				show_migration_types(types[order]);
		}
5492
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5493 5494
	}

5495 5496
	hugetlb_show_meminfo();

5497
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5498

L
Linus Torvalds 已提交
5499 5500 5501
	show_swap_cache_info();
}

5502 5503 5504 5505 5506 5507
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5508 5509
/*
 * Builds allocation fallback zone lists.
5510 5511
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5512
 */
5513
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5514
{
5515
	struct zone *zone;
5516
	enum zone_type zone_type = MAX_NR_ZONES;
5517
	int nr_zones = 0;
5518 5519

	do {
5520
		zone_type--;
5521
		zone = pgdat->node_zones + zone_type;
5522
		if (managed_zone(zone)) {
5523
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5524
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5525
		}
5526
	} while (zone_type);
5527

5528
	return nr_zones;
L
Linus Torvalds 已提交
5529 5530 5531
}

#ifdef CONFIG_NUMA
5532 5533 5534

static int __parse_numa_zonelist_order(char *s)
{
5535 5536 5537 5538 5539 5540 5541 5542
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5543 5544 5545 5546 5547 5548 5549
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5550 5551 5552
	if (!s)
		return 0;

5553
	return __parse_numa_zonelist_order(s);
5554 5555 5556
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5557 5558
char numa_zonelist_order[] = "Node";

5559 5560 5561
/*
 * sysctl handler for numa_zonelist_order
 */
5562
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5563
		void __user *buffer, size_t *length,
5564 5565
		loff_t *ppos)
{
5566
	char *str;
5567 5568
	int ret;

5569 5570 5571 5572 5573
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5574

5575 5576
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5577
	return ret;
5578 5579 5580
}


5581
#define MAX_NODE_LOAD (nr_online_nodes)
5582 5583
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5584
/**
5585
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5596 5597
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5598
 */
5599
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5600
{
5601
	int n, val;
L
Linus Torvalds 已提交
5602
	int min_val = INT_MAX;
D
David Rientjes 已提交
5603
	int best_node = NUMA_NO_NODE;
5604
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5605

5606 5607 5608 5609 5610
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5611

5612
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5621 5622 5623
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5624
		/* Give preference to headless and unused nodes */
5625 5626
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5645 5646 5647 5648 5649 5650

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5651 5652
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5653
{
5654 5655 5656 5657 5658 5659 5660 5661 5662
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5663

5664 5665 5666 5667 5668
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5669 5670
}

5671 5672 5673 5674 5675
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5676 5677
	struct zoneref *zonerefs;
	int nr_zones;
5678

5679 5680 5681 5682 5683
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5684 5685
}

5686 5687 5688 5689 5690 5691 5692 5693 5694
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5695 5696
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5697
	nodemask_t used_mask;
5698
	int local_node, prev_node;
L
Linus Torvalds 已提交
5699 5700 5701

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5702
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5703 5704
	prev_node = local_node;
	nodes_clear(used_mask);
5705 5706

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5713 5714
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5715 5716
			node_load[node] = load;

5717
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5718 5719 5720
		prev_node = node;
		load--;
	}
5721

5722
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5723
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5724 5725
}

5726 5727 5728 5729 5730 5731 5732 5733 5734
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5735
	struct zoneref *z;
5736

5737
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5738
				   gfp_zone(GFP_KERNEL),
5739
				   NULL);
5740
	return zone_to_nid(z->zone);
5741 5742
}
#endif
5743

5744 5745
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5746 5747
#else	/* CONFIG_NUMA */

5748
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5749
{
5750
	int node, local_node;
5751 5752
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5753 5754 5755

	local_node = pgdat->node_id;

5756 5757 5758
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5759

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5771 5772
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5773
	}
5774 5775 5776
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5777 5778
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5779 5780
	}

5781 5782
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5783 5784 5785 5786
}

#endif	/* CONFIG_NUMA */

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5804
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5805

5806
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5807
{
5808
	int nid;
5809
	int __maybe_unused cpu;
5810
	pg_data_t *self = data;
5811 5812 5813
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5814

5815 5816 5817
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5818

5819 5820 5821 5822
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5823 5824
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5825 5826 5827
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5828

5829 5830
			build_zonelists(pgdat);
		}
5831

5832 5833 5834 5835 5836 5837 5838 5839 5840
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5841
		for_each_online_cpu(cpu)
5842
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5843
#endif
5844
	}
5845 5846

	spin_unlock(&lock);
5847 5848
}

5849 5850 5851
static noinline void __init
build_all_zonelists_init(void)
{
5852 5853
	int cpu;

5854
	__build_all_zonelists(NULL);
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5872 5873 5874 5875
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5876 5877
/*
 * unless system_state == SYSTEM_BOOTING.
5878
 *
5879
 * __ref due to call of __init annotated helper build_all_zonelists_init
5880
 * [protected by SYSTEM_BOOTING].
5881
 */
5882
void __ref build_all_zonelists(pg_data_t *pgdat)
5883 5884
{
	if (system_state == SYSTEM_BOOTING) {
5885
		build_all_zonelists_init();
5886
	} else {
5887
		__build_all_zonelists(pgdat);
5888 5889
		/* cpuset refresh routine should be here */
	}
5890
	vm_total_pages = nr_free_pagecache_pages();
5891 5892 5893 5894 5895 5896 5897
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5898
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5899 5900 5901 5902
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5903
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5904 5905 5906
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5907
#ifdef CONFIG_NUMA
5908
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5909
#endif
L
Linus Torvalds 已提交
5910 5911
}

5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
5934 5935
/*
 * Initially all pages are reserved - free ones are freed
5936
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5937 5938
 * done. Non-atomic initialization, single-pass.
 */
5939
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5940 5941
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5942
{
5943
	unsigned long pfn, end_pfn = start_pfn + size;
5944
	struct page *page;
L
Linus Torvalds 已提交
5945

5946 5947 5948
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5949
#ifdef CONFIG_ZONE_DEVICE
5950 5951
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5952 5953 5954 5955
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5956
	 */
5957 5958 5959 5960 5961 5962 5963 5964 5965
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5966

5967
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
5968
		/*
5969 5970
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5971
		 */
5972 5973 5974 5975 5976
		if (context == MEMMAP_EARLY) {
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5977
		}
5978

5979 5980 5981
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5982
			__SetPageReserved(page);
5983

5984 5985 5986 5987 5988
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5989
		 * kernel allocations are made.
5990 5991 5992 5993 5994 5995 5996 5997
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5998
			cond_resched();
5999
		}
6000
		pfn++;
L
Linus Torvalds 已提交
6001 6002 6003
	}
}

6004 6005 6006
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6007
				   unsigned long nr_pages,
6008 6009
				   struct dev_pagemap *pgmap)
{
6010
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6011
	struct pglist_data *pgdat = zone->zone_pgdat;
6012
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6013 6014 6015 6016
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6017
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6018 6019 6020 6021 6022 6023 6024
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6025
	if (altmap) {
6026
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6027
		nr_pages = end_pfn - start_pfn;
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6045 6046 6047
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6048 6049
		 */
		page->pgmap = pgmap;
6050
		page->zone_device_data = NULL;
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6065
		 * because this is done early in section_activate()
6066 6067 6068 6069 6070 6071 6072
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6073
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6074
		nr_pages, jiffies_to_msecs(jiffies - start));
6075 6076 6077
}

#endif
6078
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6079
{
6080
	unsigned int order, t;
6081 6082
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6083 6084 6085 6086
		zone->free_area[order].nr_free = 0;
	}
}

6087
void __meminit __weak memmap_init(unsigned long size, int nid,
6088 6089
				  unsigned long zone,
				  unsigned long range_start_pfn)
6090
{
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
	unsigned long start_pfn, end_pfn;
	unsigned long range_end_pfn = range_start_pfn + size;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);

		if (end_pfn > start_pfn) {
			size = end_pfn - start_pfn;
			memmap_init_zone(size, nid, zone, start_pfn,
					 MEMMAP_EARLY, NULL);
		}
	}
6105
}
L
Linus Torvalds 已提交
6106

6107
static int zone_batchsize(struct zone *zone)
6108
{
6109
#ifdef CONFIG_MMU
6110 6111 6112 6113
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6114
	 * size of the zone.
6115
	 */
6116
	batch = zone_managed_pages(zone) / 1024;
6117 6118 6119
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6120 6121 6122 6123 6124
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6125 6126 6127
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6128
	 *
6129 6130 6131 6132
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6133
	 */
6134
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6135

6136
	return batch;
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6154 6155
}

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6183
/* a companion to pageset_set_high() */
6184 6185
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6186
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6187 6188
}

6189
static void pageset_init(struct per_cpu_pageset *p)
6190 6191
{
	struct per_cpu_pages *pcp;
6192
	int migratetype;
6193

6194 6195
	memset(p, 0, sizeof(*p));

6196
	pcp = &p->pcp;
6197 6198
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6199 6200
}

6201 6202 6203 6204 6205 6206
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6207
/*
6208
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6209 6210
 * to the value high for the pageset p.
 */
6211
static void pageset_set_high(struct per_cpu_pageset *p,
6212 6213
				unsigned long high)
{
6214 6215 6216
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6217

6218
	pageset_update(&p->pcp, high, batch);
6219 6220
}

6221 6222
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6223 6224
{
	if (percpu_pagelist_fraction)
6225
		pageset_set_high(pcp,
6226
			(zone_managed_pages(zone) /
6227 6228 6229 6230 6231
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6232 6233 6234 6235 6236 6237 6238 6239
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6240
void __meminit setup_zone_pageset(struct zone *zone)
6241 6242 6243
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6244 6245
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6246 6247
}

6248
/*
6249 6250
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6251
 */
6252
void __init setup_per_cpu_pageset(void)
6253
{
6254
	struct pglist_data *pgdat;
6255
	struct zone *zone;
6256

6257 6258
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6259 6260 6261 6262

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6263 6264
}

6265
static __meminit void zone_pcp_init(struct zone *zone)
6266
{
6267 6268 6269 6270 6271 6272
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6273

6274
	if (populated_zone(zone))
6275 6276 6277
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6278 6279
}

6280
void __meminit init_currently_empty_zone(struct zone *zone,
6281
					unsigned long zone_start_pfn,
6282
					unsigned long size)
6283 6284
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6285
	int zone_idx = zone_idx(zone) + 1;
6286

6287 6288
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6289 6290 6291

	zone->zone_start_pfn = zone_start_pfn;

6292 6293 6294 6295 6296 6297
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6298
	zone_init_free_lists(zone);
6299
	zone->initialized = 1;
6300 6301
}

6302
/**
6303
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6304
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6305
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6306
 *
6307 6308 6309
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6310
 */
6311
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6312
{
6313 6314
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6315

6316 6317 6318
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6319

6320
		if (start_pfn < end_pfn)
6321 6322 6323
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6324 6325 6326
	}
}

6327 6328
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6329
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6330
 *
6331 6332
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6333 6334 6335
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6336 6337
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6338

6339 6340
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6341 6342 6343 6344
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6345 6346 6347
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6348 6349
 *
 * It returns the start and end page frame of a node based on information
6350
 * provided by memblock_set_node(). If called for a node
6351
 * with no available memory, a warning is printed and the start and end
6352
 * PFNs will be 0.
6353
 */
6354
void __init get_pfn_range_for_nid(unsigned int nid,
6355 6356
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6357
	unsigned long this_start_pfn, this_end_pfn;
6358
	int i;
6359

6360 6361 6362
	*start_pfn = -1UL;
	*end_pfn = 0;

6363 6364 6365
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6366 6367
	}

6368
	if (*start_pfn == -1UL)
6369 6370 6371
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6372 6373 6374 6375 6376
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6377
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6395
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6396 6397 6398 6399 6400 6401 6402
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6403
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6418 6419 6420 6421 6422 6423
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6424 6425 6426 6427 6428 6429
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6430 6431 6432 6433
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6434
static unsigned long __init zone_spanned_pages_in_node(int nid,
6435
					unsigned long zone_type,
6436 6437
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6438 6439
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6440 6441
					unsigned long *ignored)
{
6442 6443
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6444
	/* When hotadd a new node from cpu_up(), the node should be empty */
6445 6446 6447
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6448
	/* Get the start and end of the zone */
6449 6450
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6451 6452
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6453
				zone_start_pfn, zone_end_pfn);
6454 6455

	/* Check that this node has pages within the zone's required range */
6456
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6457 6458 6459
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6460 6461
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6462 6463

	/* Return the spanned pages */
6464
	return *zone_end_pfn - *zone_start_pfn;
6465 6466 6467 6468
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6469
 * then all holes in the requested range will be accounted for.
6470
 */
6471
unsigned long __init __absent_pages_in_range(int nid,
6472 6473 6474
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6475 6476 6477
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6478

6479 6480 6481 6482
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6483
	}
6484
	return nr_absent;
6485 6486 6487 6488 6489 6490 6491
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6492
 * Return: the number of pages frames in memory holes within a range.
6493 6494 6495 6496 6497 6498 6499 6500
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6501
static unsigned long __init zone_absent_pages_in_node(int nid,
6502
					unsigned long zone_type,
6503 6504
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6505 6506
					unsigned long *ignored)
{
6507 6508
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6509
	unsigned long zone_start_pfn, zone_end_pfn;
6510
	unsigned long nr_absent;
6511

6512
	/* When hotadd a new node from cpu_up(), the node should be empty */
6513 6514 6515
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6516 6517
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6518

M
Mel Gorman 已提交
6519 6520 6521
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6522 6523 6524 6525 6526 6527 6528
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6546 6547 6548 6549
		}
	}

	return nr_absent;
6550
}
6551

6552
static inline unsigned long __init compat_zone_spanned_pages_in_node(int nid,
6553
					unsigned long zone_type,
6554 6555
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6556 6557
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6558 6559
					unsigned long *zones_size)
{
6560 6561 6562 6563 6564 6565 6566 6567
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6568 6569 6570
	return zones_size[zone_type];
}

6571
static inline unsigned long __init compat_zone_absent_pages_in_node(int nid,
6572
						unsigned long zone_type,
6573 6574
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6575 6576 6577 6578 6579 6580 6581
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6582

6583
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6584 6585 6586
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
6587 6588
						unsigned long *zholes_size,
						bool compat)
6589
{
6590
	unsigned long realtotalpages = 0, totalpages = 0;
6591 6592
	enum zone_type i;

6593 6594
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6595
		unsigned long zone_start_pfn, zone_end_pfn;
6596
		unsigned long spanned, absent;
6597
		unsigned long size, real_size;
6598

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
		if (compat) {
			spanned = compat_zone_spanned_pages_in_node(
						pgdat->node_id, i,
						node_start_pfn,
						node_end_pfn,
						&zone_start_pfn,
						&zone_end_pfn,
						zones_size);
			absent = compat_zone_absent_pages_in_node(
						pgdat->node_id, i,
						node_start_pfn,
						node_end_pfn,
						zholes_size);
		} else {
			spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						node_start_pfn,
						node_end_pfn,
						&zone_start_pfn,
						&zone_end_pfn,
						zones_size);
			absent = zone_absent_pages_in_node(pgdat->node_id, i,
						node_start_pfn,
						node_end_pfn,
						zholes_size);
		}

		size = spanned;
		real_size = size - absent;

6628 6629 6630 6631
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6632 6633 6634 6635 6636 6637 6638 6639
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6640 6641 6642 6643 6644
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6645 6646 6647
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6648 6649
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6650 6651 6652
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6653
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6654 6655 6656
{
	unsigned long usemapsize;

6657
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6658 6659
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6660 6661 6662 6663 6664 6665
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6666
static void __ref setup_usemap(struct pglist_data *pgdat,
6667 6668 6669
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6670
{
6671
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6672
	zone->pageblock_flags = NULL;
6673
	if (usemapsize) {
6674
		zone->pageblock_flags =
6675 6676
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6677 6678 6679 6680
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6681 6682
}
#else
6683 6684
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6685 6686
#endif /* CONFIG_SPARSEMEM */

6687
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6688

6689
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6690
void __init set_pageblock_order(void)
6691
{
6692 6693
	unsigned int order;

6694 6695 6696 6697
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6698 6699 6700 6701 6702
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6703 6704
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6705 6706
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6707 6708 6709 6710 6711
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6712 6713
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6714 6715 6716
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6717
 */
6718
void __init set_pageblock_order(void)
6719 6720
{
}
6721 6722 6723

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6724
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6725
						unsigned long present_pages)
6726 6727 6728 6729 6730 6731 6732 6733
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6734
	 * populated regions may not be naturally aligned on page boundary.
6735 6736 6737 6738 6739 6740 6741 6742 6743
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6744 6745 6746
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6747 6748 6749 6750 6751
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6766
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6767
{
6768
	pgdat_resize_init(pgdat);
6769 6770 6771 6772

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6773
	init_waitqueue_head(&pgdat->kswapd_wait);
6774
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6775

6776
	pgdat_page_ext_init(pgdat);
6777
	spin_lock_init(&pgdat->lru_lock);
6778
	lruvec_init(&pgdat->__lruvec);
6779 6780 6781 6782 6783
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6784
	atomic_long_set(&zone->managed_pages, remaining_pages);
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6825

6826
	pgdat_init_internals(pgdat);
6827 6828
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6829 6830
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6831
		unsigned long size, freesize, memmap_pages;
6832
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6833

6834
		size = zone->spanned_pages;
6835
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6836

6837
		/*
6838
		 * Adjust freesize so that it accounts for how much memory
6839 6840 6841
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6842
		memmap_pages = calc_memmap_size(size, freesize);
6843 6844 6845 6846 6847 6848 6849 6850
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6851
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6852 6853
					zone_names[j], memmap_pages, freesize);
		}
6854

6855
		/* Account for reserved pages */
6856 6857
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6858
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6859
					zone_names[0], dma_reserve);
6860 6861
		}

6862
		if (!is_highmem_idx(j))
6863
			nr_kernel_pages += freesize;
6864 6865 6866
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6867
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6868

6869 6870 6871 6872 6873
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6874
		zone_init_internals(zone, j, nid, freesize);
6875

6876
		if (!size)
L
Linus Torvalds 已提交
6877 6878
			continue;

6879
		set_pageblock_order();
6880 6881
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6882
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6883 6884 6885
	}
}

6886
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6887
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6888
{
6889
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6890 6891
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6892 6893 6894 6895
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6896 6897
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6898 6899
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6900
		unsigned long size, end;
A
Andy Whitcroft 已提交
6901 6902
		struct page *map;

6903 6904 6905 6906 6907
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6908
		end = pgdat_end_pfn(pgdat);
6909 6910
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6911 6912
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6913 6914 6915
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6916
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6917
	}
6918 6919 6920
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6921
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6922 6923 6924
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6925
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6926
		mem_map = NODE_DATA(0)->node_mem_map;
6927
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6928
			mem_map -= offset;
6929
	}
L
Linus Torvalds 已提交
6930 6931
#endif
}
6932 6933 6934
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6935

6936 6937 6938 6939 6940 6941 6942 6943 6944
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6945 6946 6947 6948
static void __init __free_area_init_node(int nid, unsigned long *zones_size,
					 unsigned long node_start_pfn,
					 unsigned long *zholes_size,
					 bool compat)
L
Linus Torvalds 已提交
6949
{
6950
	pg_data_t *pgdat = NODE_DATA(nid);
6951 6952
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6953

6954
	/* pg_data_t should be reset to zero when it's allocated */
6955
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6956

L
Linus Torvalds 已提交
6957 6958
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6959
	pgdat->per_cpu_nodestats = NULL;
6960 6961 6962 6963 6964 6965 6966 6967
	if (!compat) {
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
	} else {
		start_pfn = node_start_pfn;
	}
6968
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6969
				  zones_size, zholes_size, compat);
L
Linus Torvalds 已提交
6970 6971

	alloc_node_mem_map(pgdat);
6972
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6973

6974
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6975 6976
}

6977 6978 6979 6980 6981 6982 6983 6984
void __init free_area_init_node(int nid, unsigned long *zones_size,
				unsigned long node_start_pfn,
				unsigned long *zholes_size)
{
	__free_area_init_node(nid, zones_size, node_start_pfn, zholes_size,
			      true);
}

M
Mike Rapoport 已提交
6985
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6986
/*
6987 6988
 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
 * PageReserved(). Return the number of struct pages that were initialized.
6989
 */
6990
static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
7001 7002 7003 7004 7005 7006 7007
		/*
		 * Use a fake node/zone (0) for now. Some of these pages
		 * (in memblock.reserved but not in memblock.memory) will
		 * get re-initialized via reserve_bootmem_region() later.
		 */
		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
		__SetPageReserved(pfn_to_page(pfn));
7008 7009 7010 7011 7012 7013
		pgcnt++;
	}

	return pgcnt;
}

7014 7015 7016 7017 7018
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
7019
 * flags). We must explicitly initialize those struct pages.
7020 7021 7022 7023
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
7024 7025
 * layout is manually configured via memmap=, or when the highest physical
 * address (max_pfn) does not end on a section boundary.
7026
 */
7027
static void __init init_unavailable_mem(void)
7028 7029 7030
{
	phys_addr_t start, end;
	u64 i, pgcnt;
7031
	phys_addr_t next = 0;
7032 7033

	/*
7034
	 * Loop through unavailable ranges not covered by memblock.memory.
7035 7036
	 */
	pgcnt = 0;
7037 7038
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7039
		if (next < start)
7040 7041
			pgcnt += init_unavailable_range(PFN_DOWN(next),
							PFN_UP(start));
7042 7043
		next = end;
	}
7044 7045 7046 7047 7048 7049 7050 7051

	/*
	 * Early sections always have a fully populated memmap for the whole
	 * section - see pfn_valid(). If the last section has holes at the
	 * end and that section is marked "online", the memmap will be
	 * considered initialized. Make sure that memmap has a well defined
	 * state.
	 */
7052 7053
	pgcnt += init_unavailable_range(PFN_DOWN(next),
					round_up(max_pfn, PAGES_PER_SECTION));
7054

7055 7056 7057 7058 7059
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
7060
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7061
}
7062 7063 7064 7065
#else
static inline void __init init_unavailable_mem(void)
{
}
M
Mike Rapoport 已提交
7066
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7067

M
Miklos Szeredi 已提交
7068 7069 7070 7071
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7072
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7073
{
7074
	unsigned int highest;
M
Miklos Szeredi 已提交
7075

7076
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7077 7078 7079 7080
	nr_node_ids = highest + 1;
}
#endif

7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7097
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7098 7099 7100 7101 7102
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7103
	unsigned long start, end, mask;
7104
	int last_nid = NUMA_NO_NODE;
7105
	int i, nid;
7106

7107
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7131
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
7132
static unsigned long __init find_min_pfn_for_node(int nid)
7133
{
7134
	unsigned long min_pfn = ULONG_MAX;
7135 7136
	unsigned long start_pfn;
	int i;
7137

7138 7139
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
7140

7141
	if (min_pfn == ULONG_MAX) {
7142
		pr_warn("Could not find start_pfn for node %d\n", nid);
7143 7144 7145 7146
		return 0;
	}

	return min_pfn;
7147 7148 7149 7150 7151
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7152
 * Return: the minimum PFN based on information provided via
7153
 * memblock_set_node().
7154 7155 7156 7157 7158 7159
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7160 7161 7162
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7163
 * Populate N_MEMORY for calculating usable_nodes.
7164
 */
A
Adrian Bunk 已提交
7165
static unsigned long __init early_calculate_totalpages(void)
7166 7167
{
	unsigned long totalpages = 0;
7168 7169 7170 7171 7172
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7173

7174 7175
		totalpages += pages;
		if (pages)
7176
			node_set_state(nid, N_MEMORY);
7177
	}
7178
	return totalpages;
7179 7180
}

M
Mel Gorman 已提交
7181 7182 7183 7184 7185 7186
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7187
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7188 7189 7190 7191
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7192
	/* save the state before borrow the nodemask */
7193
	nodemask_t saved_node_state = node_states[N_MEMORY];
7194
	unsigned long totalpages = early_calculate_totalpages();
7195
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7196
	struct memblock_region *r;
7197 7198 7199 7200 7201 7202 7203 7204 7205

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7206 7207
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7208 7209
				continue;

7210
			nid = memblock_get_region_node(r);
7211

E
Emil Medve 已提交
7212
			usable_startpfn = PFN_DOWN(r->base);
7213 7214 7215 7216 7217 7218 7219
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7220

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

7231
			nid = memblock_get_region_node(r);
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7251
	/*
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7279
		required_movablecore = min(totalpages, required_movablecore);
7280 7281 7282 7283 7284
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7285 7286 7287 7288 7289
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7290
		goto out;
M
Mel Gorman 已提交
7291 7292 7293 7294 7295 7296 7297

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7298
	for_each_node_state(nid, N_MEMORY) {
7299 7300
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7317
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7318 7319
			unsigned long size_pages;

7320
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7363
			 * satisfied
M
Mel Gorman 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7377
	 * satisfied
M
Mel Gorman 已提交
7378 7379 7380 7381 7382
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7383
out2:
M
Mel Gorman 已提交
7384 7385 7386 7387
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7388

7389
out:
7390
	/* restore the node_state */
7391
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7392 7393
}

7394 7395
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7396 7397 7398
{
	enum zone_type zone_type;

7399
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7400
		struct zone *zone = &pgdat->node_zones[zone_type];
7401
		if (populated_zone(zone)) {
7402 7403 7404
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7405
				node_set_state(nid, N_NORMAL_MEMORY);
7406 7407
			break;
		}
7408 7409 7410
	}
}

7411
/**
7412
 * free_area_init - Initialise all pg_data_t and zone data
7413
 * @max_zone_pfn: an array of max PFNs for each zone
7414 7415
 *
 * This will call free_area_init_node() for each active node in the system.
7416
 * Using the page ranges provided by memblock_set_node(), the size of each
7417 7418 7419 7420 7421 7422 7423
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7424
void __init free_area_init(unsigned long *max_zone_pfn)
7425
{
7426 7427
	unsigned long start_pfn, end_pfn;
	int i, nid;
7428

7429 7430 7431 7432 7433
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7434 7435 7436 7437

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7438 7439
		if (i == ZONE_MOVABLE)
			continue;
7440 7441 7442 7443 7444 7445

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7446
	}
M
Mel Gorman 已提交
7447 7448 7449

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7450
	find_zone_movable_pfns_for_nodes();
7451 7452

	/* Print out the zone ranges */
7453
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7454 7455 7456
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7457
		pr_info("  %-8s ", zone_names[i]);
7458 7459
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7460
			pr_cont("empty\n");
7461
		else
7462 7463 7464 7465
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7466
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7467 7468 7469
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7470
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7471 7472
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7473 7474
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7475
	}
7476

7477 7478 7479 7480 7481
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7482
	pr_info("Early memory node ranges\n");
7483
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7484 7485 7486
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7487 7488
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7489 7490

	/* Initialise every node */
7491
	mminit_verify_pageflags_layout();
7492
	setup_nr_node_ids();
7493
	init_unavailable_mem();
7494 7495
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7496 7497
		__free_area_init_node(nid, NULL,
				      find_min_pfn_for_node(nid), NULL, false);
7498 7499 7500

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7501 7502
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7503 7504
	}
}
M
Mel Gorman 已提交
7505

7506 7507
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7508 7509
{
	unsigned long long coremem;
7510 7511
	char *endptr;

M
Mel Gorman 已提交
7512 7513 7514
	if (!p)
		return -EINVAL;

7515 7516 7517 7518 7519
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7520

7521 7522 7523 7524 7525
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7526

7527 7528 7529
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7530 7531
	return 0;
}
M
Mel Gorman 已提交
7532

7533 7534 7535 7536 7537 7538
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7539 7540 7541 7542 7543 7544
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7545 7546
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7547 7548 7549 7550 7551 7552 7553 7554
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7555 7556
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7557 7558
}

M
Mel Gorman 已提交
7559
early_param("kernelcore", cmdline_parse_kernelcore);
7560
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7561

7562 7563
void adjust_managed_page_count(struct page *page, long count)
{
7564
	atomic_long_add(count, &page_zone(page)->managed_pages);
7565
	totalram_pages_add(count);
7566 7567
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7568
		totalhigh_pages_add(count);
7569
#endif
7570
}
7571
EXPORT_SYMBOL(adjust_managed_page_count);
7572

7573
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7574
{
7575 7576
	void *pos;
	unsigned long pages = 0;
7577

7578 7579 7580
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7592
		if ((unsigned int)poison <= 0xFF)
7593 7594 7595
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7596 7597 7598
	}

	if (pages && s)
7599 7600
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7601 7602 7603 7604

	return pages;
}

7605 7606 7607 7608
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7609
	totalram_pages_inc();
7610
	atomic_long_inc(&page_zone(page)->managed_pages);
7611
	totalhigh_pages_inc();
7612 7613 7614
}
#endif

7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7637 7638 7639 7640
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7651
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7652
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7653
		", %luK highmem"
7654
#endif
J
Joe Perches 已提交
7655 7656 7657 7658 7659
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7660
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7661
		totalcma_pages << (PAGE_SHIFT - 10),
7662
#ifdef	CONFIG_HIGHMEM
7663
		totalhigh_pages() << (PAGE_SHIFT - 10),
7664
#endif
J
Joe Perches 已提交
7665
		str ? ", " : "", str ? str : "");
7666 7667
}

7668
/**
7669 7670
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7671
 *
7672
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7673 7674
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7675 7676 7677
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7678 7679 7680 7681 7682 7683
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7684
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7685 7686
{

7687 7688
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7689

7690 7691 7692 7693 7694 7695 7696
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7697

7698 7699 7700 7701 7702 7703 7704 7705 7706
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7707 7708
}

7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7722 7723
void __init page_alloc_init(void)
{
7724 7725
	int ret;

7726 7727 7728 7729 7730
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7731 7732 7733 7734
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7735 7736
}

7737
/*
7738
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7739 7740 7741 7742 7743 7744
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7745
	enum zone_type i, j;
7746 7747

	for_each_online_pgdat(pgdat) {
7748 7749 7750

		pgdat->totalreserve_pages = 0;

7751 7752
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7753
			long max = 0;
7754
			unsigned long managed_pages = zone_managed_pages(zone);
7755 7756 7757 7758 7759 7760 7761

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7762 7763
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7764

7765 7766
			if (max > managed_pages)
				max = managed_pages;
7767

7768
			pgdat->totalreserve_pages += max;
7769

7770 7771 7772 7773 7774 7775
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7776 7777
/*
 * setup_per_zone_lowmem_reserve - called whenever
7778
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7779 7780 7781 7782 7783 7784
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7785
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7786

7787
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7788 7789
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7790
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7791 7792 7793

			zone->lowmem_reserve[j] = 0;

7794 7795
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7796 7797
				struct zone *lower_zone;

7798
				idx--;
L
Linus Torvalds 已提交
7799
				lower_zone = pgdat->node_zones + idx;
7800 7801 7802 7803 7804 7805 7806 7807

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7808
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7809 7810 7811
			}
		}
	}
7812 7813 7814

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7815 7816
}

7817
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7818 7819 7820 7821 7822 7823 7824 7825 7826
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7827
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7828 7829 7830
	}

	for_each_zone(zone) {
7831 7832
		u64 tmp;

7833
		spin_lock_irqsave(&zone->lock, flags);
7834
		tmp = (u64)pages_min * zone_managed_pages(zone);
7835
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7836 7837
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7838 7839 7840 7841
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7842
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7843
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7844
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7845
			 */
7846
			unsigned long min_pages;
L
Linus Torvalds 已提交
7847

7848
			min_pages = zone_managed_pages(zone) / 1024;
7849
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7850
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7851
		} else {
N
Nick Piggin 已提交
7852 7853
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7854 7855
			 * proportionate to the zone's size.
			 */
7856
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7857 7858
		}

7859 7860 7861 7862 7863 7864
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7865
			    mult_frac(zone_managed_pages(zone),
7866 7867
				      watermark_scale_factor, 10000));

7868 7869
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7870
		zone->watermark_boost = 0;
7871

7872
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7873
	}
7874 7875 7876

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7877 7878
}

7879 7880 7881 7882 7883 7884 7885 7886 7887
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7888 7889 7890
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7891
	__setup_per_zone_wmarks();
7892
	spin_unlock(&lock);
7893 7894
}

L
Linus Torvalds 已提交
7895 7896 7897 7898 7899 7900 7901
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7902
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7919
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7920 7921
{
	unsigned long lowmem_kbytes;
7922
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7923 7924

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7925 7926 7927 7928 7929 7930
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
7931 7932
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
7933 7934 7935 7936
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7937
	setup_per_zone_wmarks();
7938
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7939
	setup_per_zone_lowmem_reserve();
7940 7941 7942 7943 7944 7945

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7946 7947
	return 0;
}
7948
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7949 7950

/*
7951
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7952 7953 7954
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7955
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7956
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7957
{
7958 7959 7960 7961 7962 7963
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7964 7965
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7966
		setup_per_zone_wmarks();
7967
	}
L
Linus Torvalds 已提交
7968 7969 7970
	return 0;
}

7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7998
#ifdef CONFIG_NUMA
7999
static void setup_min_unmapped_ratio(void)
8000
{
8001
	pg_data_t *pgdat;
8002 8003
	struct zone *zone;

8004
	for_each_online_pgdat(pgdat)
8005
		pgdat->min_unmapped_pages = 0;
8006

8007
	for_each_zone(zone)
8008 8009
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8010
}
8011

8012 8013

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8014
	void __user *buffer, size_t *length, loff_t *ppos)
8015 8016 8017
{
	int rc;

8018
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 8020 8021
	if (rc)
		return rc;

8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8032 8033 8034
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8035
	for_each_zone(zone)
8036 8037
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8051 8052
	return 0;
}
8053 8054
#endif

L
Linus Torvalds 已提交
8055 8056 8057 8058 8059 8060
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8061
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8062 8063
 * if in function of the boot time zone sizes.
 */
8064
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8065
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8066
{
8067
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
8068 8069 8070 8071
	setup_per_zone_lowmem_reserve();
	return 0;
}

8072 8073 8074 8075 8076 8077 8078 8079 8080
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8081 8082
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8083 8084
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8085
 */
8086
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8087
	void __user *buffer, size_t *length, loff_t *ppos)
8088 8089
{
	struct zone *zone;
8090
	int old_percpu_pagelist_fraction;
8091 8092
	int ret;

8093 8094 8095
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8096
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8111

8112 8113
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8114
out:
8115
	mutex_unlock(&pcp_batch_high_lock);
8116
	return ret;
8117 8118
}

8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8158 8159
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8160
{
8161
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8162 8163
	unsigned long log2qty, size;
	void *table = NULL;
8164
	gfp_t gfp_flags;
8165
	bool virt;
L
Linus Torvalds 已提交
8166 8167 8168 8169

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8170
		numentries = nr_kernel_pages;
8171
		numentries -= arch_reserved_kernel_pages();
8172 8173 8174 8175

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8176

P
Pavel Tatashin 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8187 8188 8189 8190 8191
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8192 8193

		/* Make sure we've got at least a 0-order allocation.. */
8194 8195 8196 8197 8198 8199 8200 8201
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8202
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8203
	}
8204
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8205 8206 8207 8208 8209 8210

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8211
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8212

8213 8214
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8215 8216 8217
	if (numentries > max)
		numentries = max;

8218
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8219

8220
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8221
	do {
8222
		virt = false;
L
Linus Torvalds 已提交
8223
		size = bucketsize << log2qty;
8224 8225
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8226
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8227
			else
8228 8229
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8230
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8231
			table = __vmalloc(size, gfp_flags);
8232
			virt = true;
8233
		} else {
8234 8235
			/*
			 * If bucketsize is not a power-of-two, we may free
8236 8237
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8238
			 */
8239 8240
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8241 8242 8243 8244 8245 8246
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8247 8248 8249
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8250 8251 8252 8253 8254 8255 8256 8257

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8258

K
KAMEZAWA Hiroyuki 已提交
8259
/*
8260 8261
 * This function checks whether pageblock includes unmovable pages or not.
 *
8262
 * PageLRU check without isolation or lru_lock could race so that
8263 8264 8265
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8266 8267 8268 8269 8270
 *
 * Returns a page without holding a reference. If the caller wants to
 * dereference that page (e.g., dumping), it has to make sure that that it
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8271
 */
8272 8273
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8274
{
8275 8276
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8277

8278
	/*
8279 8280 8281 8282 8283
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8284 8285
	 */

8286 8287 8288 8289 8290 8291 8292
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8293
			return NULL;
8294

8295
		return page;
8296
	}
8297

8298 8299
	for (; iter < pageblock_nr_pages; iter++) {
		if (!pfn_valid_within(pfn + iter))
8300
			continue;
8301

8302
		page = pfn_to_page(pfn + iter);
8303

8304
		if (PageReserved(page))
8305
			return page;
8306

8307 8308 8309 8310 8311 8312 8313 8314
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8315 8316
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8317
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8318
		 * We need not scan over tail pages because we don't
8319 8320
		 * handle each tail page individually in migration.
		 */
8321
		if (PageHuge(page) || PageTransCompound(page)) {
8322 8323
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8324

8325 8326 8327 8328
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8329
				return page;
8330
			}
8331

8332
			skip_pages = compound_nr(head) - (page - head);
8333
			iter += skip_pages - 1;
8334 8335 8336
			continue;
		}

8337 8338 8339 8340
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8341
		 * because their page->_refcount is zero at all time.
8342
		 */
8343
		if (!page_ref_count(page)) {
8344 8345 8346 8347
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8348

8349 8350 8351 8352
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8353
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8354 8355
			continue;

8356
		if (__PageMovable(page) || PageLRU(page))
8357 8358
			continue;

8359
		/*
8360 8361 8362
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8363 8364 8365 8366 8367 8368 8369 8370 8371
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
8372
		return page;
8373
	}
8374
	return NULL;
8375 8376
}

8377
#ifdef CONFIG_CONTIG_ALLOC
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8391 8392
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8393 8394
{
	/* This function is based on compact_zone() from compaction.c. */
8395
	unsigned long nr_reclaimed;
8396 8397 8398 8399
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8400
	migrate_prep();
8401

8402
	while (pfn < end || !list_empty(&cc->migratepages)) {
8403 8404 8405 8406 8407
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8408 8409
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8410
			pfn = isolate_migratepages_range(cc, pfn, end);
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8421 8422 8423
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8424

8425
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8426
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8427
	}
8428 8429 8430 8431 8432
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8433 8434 8435 8436 8437 8438
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8439 8440 8441 8442
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8443
 * @gfp_mask:	GFP mask to use during compaction
8444 8445
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8446
 * aligned.  The PFN range must belong to a single zone.
8447
 *
8448 8449 8450
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8451
 *
8452
 * Return: zero on success or negative error code.  On success all
8453 8454 8455
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8456
int alloc_contig_range(unsigned long start, unsigned long end,
8457
		       unsigned migratetype, gfp_t gfp_mask)
8458 8459
{
	unsigned long outer_start, outer_end;
8460 8461
	unsigned int order;
	int ret = 0;
8462

8463 8464 8465 8466
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8467
		.mode = MIGRATE_SYNC,
8468
		.ignore_skip_hint = true,
8469
		.no_set_skip_hint = true,
8470
		.gfp_mask = current_gfp_context(gfp_mask),
8471
		.alloc_contig = true,
8472 8473 8474
	};
	INIT_LIST_HEAD(&cc.migratepages);

8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8500
				       pfn_max_align_up(end), migratetype, 0);
8501
	if (ret < 0)
8502
		return ret;
8503

8504 8505
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8506 8507 8508 8509 8510 8511 8512
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8513
	 */
8514
	ret = __alloc_contig_migrate_range(&cc, start, end);
8515
	if (ret && ret != -EBUSY)
8516
		goto done;
8517
	ret =0;
8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8542 8543
			outer_start = start;
			break;
8544 8545 8546 8547
		}
		outer_start &= ~0UL << order;
	}

8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8561
	/* Make sure the range is really isolated. */
8562
	if (test_pages_isolated(outer_start, end, 0)) {
8563
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8564
			__func__, outer_start, end);
8565 8566 8567 8568
		ret = -EBUSY;
		goto done;
	}

8569
	/* Grab isolated pages from freelists. */
8570
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8584
				pfn_max_align_up(end), migratetype);
8585 8586
	return ret;
}
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8688
#endif /* CONFIG_CONTIG_ALLOC */
8689

8690
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8691
{
8692 8693 8694 8695 8696 8697 8698 8699 8700
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8701 8702
}

8703 8704 8705 8706
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8707 8708
void __meminit zone_pcp_update(struct zone *zone)
{
8709
	mutex_lock(&pcp_batch_high_lock);
8710
	__zone_pcp_update(zone);
8711
	mutex_unlock(&pcp_batch_high_lock);
8712 8713
}

8714 8715 8716
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8717 8718
	int cpu;
	struct per_cpu_pageset *pset;
8719 8720 8721 8722

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8723 8724 8725 8726
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8727 8728 8729 8730 8731 8732
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8733
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8734
/*
8735 8736
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8737
 */
8738
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8739 8740 8741 8742
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8743
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8744 8745
	unsigned long pfn;
	unsigned long flags;
8746 8747
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8748 8749 8750 8751 8752
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8753 8754
		return offlined_pages;

8755
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8756 8757 8758 8759 8760 8761 8762 8763 8764
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8765 8766 8767 8768 8769 8770
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
8771
			offlined_pages++;
8772 8773 8774
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8775 8776 8777
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8778
		offlined_pages += 1 << order;
8779
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8780 8781 8782
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8783 8784

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8785 8786
}
#endif
8787 8788 8789 8790 8791 8792

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8793
	unsigned int order;
8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif