page_alloc.c 245.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
71
#include <linux/padata.h>
72
#include <linux/khugepaged.h>
L
Linus Torvalds 已提交
73

74
#include <asm/sections.h>
L
Linus Torvalds 已提交
75
#include <asm/tlbflush.h>
76
#include <asm/div64.h>
L
Linus Torvalds 已提交
77
#include "internal.h"
78
#include "shuffle.h"
A
Alexander Duyck 已提交
79
#include "page_reporting.h"
L
Linus Torvalds 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
typedef int __bitwise fpi_t;

/* No special request */
#define FPI_NONE		((__force fpi_t)0)

/*
 * Skip free page reporting notification for the (possibly merged) page.
 * This does not hinder free page reporting from grabbing the page,
 * reporting it and marking it "reported" -  it only skips notifying
 * the free page reporting infrastructure about a newly freed page. For
 * example, used when temporarily pulling a page from a freelist and
 * putting it back unmodified.
 */
#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))

97 98 99 100 101 102 103 104 105 106 107 108
/*
 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 * page shuffling (relevant code - e.g., memory onlining - is expected to
 * shuffle the whole zone).
 *
 * Note: No code should rely on this flag for correctness - it's purely
 *       to allow for optimizations when handing back either fresh pages
 *       (memory onlining) or untouched pages (page isolation, free page
 *       reporting).
 */
#define FPI_TO_TAIL		((__force fpi_t)BIT(1))

109 110
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
111
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
112

113 114 115 116 117
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

118 119
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

120 121 122 123 124 125 126 127 128 129 130
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

131
/* work_structs for global per-cpu drains */
132 133 134 135
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
136 137
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
138

139
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
140
volatile unsigned long latent_entropy __latent_entropy;
141 142 143
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
144
/*
145
 * Array of node states.
L
Linus Torvalds 已提交
146
 */
147 148 149 150 151 152 153
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
154 155
#endif
	[N_MEMORY] = { { [0] = 1UL } },
156 157 158 159 160
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

161 162
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
163
unsigned long totalreserve_pages __read_mostly;
164
unsigned long totalcma_pages __read_mostly;
165

166
int percpu_pagelist_fraction;
167
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	ret = kstrtobool(buf, &bool_result);
188 189
	if (ret)
		return ret;
190 191 192 193 194 195
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
196
	return 0;
197 198 199 200 201 202 203 204 205
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	ret = kstrtobool(buf, &bool_result);
206 207
	if (ret)
		return ret;
208 209 210 211 212 213
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
214
	return 0;
215 216
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

236 237 238 239 240
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
241 242 243 244
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
245
 */
246 247 248 249

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
250
{
251
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
252 253 254 255
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
256 257
}

258
void pm_restrict_gfp_mask(void)
259
{
260
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
261 262
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
263
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
264
}
265 266 267

bool pm_suspended_storage(void)
{
268
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
269 270 271
		return false;
	return true;
}
272 273
#endif /* CONFIG_PM_SLEEP */

274
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
275
unsigned int pageblock_order __read_mostly;
276 277
#endif

278 279
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags);
280

L
Linus Torvalds 已提交
281 282 283 284 285 286
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
287
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
288 289 290
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
291
 */
292
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
293
#ifdef CONFIG_ZONE_DMA
294
	[ZONE_DMA] = 256,
295
#endif
296
#ifdef CONFIG_ZONE_DMA32
297
	[ZONE_DMA32] = 256,
298
#endif
299
	[ZONE_NORMAL] = 32,
300
#ifdef CONFIG_HIGHMEM
301
	[ZONE_HIGHMEM] = 0,
302
#endif
303
	[ZONE_MOVABLE] = 0,
304
};
L
Linus Torvalds 已提交
305

306
static char * const zone_names[MAX_NR_ZONES] = {
307
#ifdef CONFIG_ZONE_DMA
308
	 "DMA",
309
#endif
310
#ifdef CONFIG_ZONE_DMA32
311
	 "DMA32",
312
#endif
313
	 "Normal",
314
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
315
	 "HighMem",
316
#endif
M
Mel Gorman 已提交
317
	 "Movable",
318 319 320
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
321 322
};

323
const char * const migratetype_names[MIGRATE_TYPES] = {
324 325 326 327 328 329 330 331 332 333 334 335
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

336 337 338
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
339
#ifdef CONFIG_HUGETLB_PAGE
340
	[HUGETLB_PAGE_DTOR] = free_huge_page,
341
#endif
342
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
343
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
344
#endif
345 346
};

L
Linus Torvalds 已提交
347
int min_free_kbytes = 1024;
348
int user_min_free_kbytes = -1;
349 350 351 352 353 354 355 356 357 358 359 360
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
361
int watermark_boost_factor __read_mostly = 15000;
362
#endif
363
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
364

365 366 367
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
368

369 370
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
371
static unsigned long required_kernelcore __initdata;
372
static unsigned long required_kernelcore_percent __initdata;
373
static unsigned long required_movablecore __initdata;
374
static unsigned long required_movablecore_percent __initdata;
375
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
376
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
377 378 379 380

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
381

M
Miklos Szeredi 已提交
382
#if MAX_NUMNODES > 1
383
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
384
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
385
EXPORT_SYMBOL(nr_node_ids);
386
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
387 388
#endif

389 390
int page_group_by_mobility_disabled __read_mostly;

391
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

418
/* Returns true if the struct page for the pfn is uninitialised */
419
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
420
{
421 422 423
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
424 425 426 427 428 429
		return true;

	return false;
}

/*
430
 * Returns true when the remaining initialisation should be deferred until
431 432
 * later in the boot cycle when it can be parallelised.
 */
433 434
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
435
{
436 437 438 439 440 441 442 443 444 445 446
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

447
	/* Always populate low zones for address-constrained allocations */
448
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
449
		return false;
450 451 452 453 454

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
455
	nr_initialised++;
456
	if ((nr_initialised > PAGES_PER_SECTION) &&
457 458 459
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
460
	}
461
	return false;
462 463
}
#else
464 465
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

466 467 468 469 470
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

471
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
472
{
473
	return false;
474 475 476
}
#endif

477 478 479 480 481
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
482
	return section_to_usemap(__pfn_to_section(pfn));
483 484 485 486 487 488 489 490 491 492 493 494
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
495
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
496 497 498 499 500 501 502 503 504 505
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
506 507
static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page *page,
508 509 510 511 512 513 514 515 516 517 518 519 520
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
521
	return (word >> bitidx) & mask;
522 523 524 525 526
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long mask)
{
527
	return __get_pfnblock_flags_mask(page, pfn, mask);
528 529 530 531
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
532
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
551
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
552 553 554 555 556 557 558 559

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

560 561
	mask <<= bitidx;
	flags <<= bitidx;
562 563 564 565 566 567 568 569 570

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
571

572
void set_pageblock_migratetype(struct page *page, int migratetype)
573
{
574 575
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
576 577
		migratetype = MIGRATE_UNMOVABLE;

578
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
579
				page_to_pfn(page), MIGRATETYPE_MASK);
580 581
}

N
Nick Piggin 已提交
582
#ifdef CONFIG_DEBUG_VM
583
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
584
{
585 586 587
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
588
	unsigned long sp, start_pfn;
589

590 591
	do {
		seq = zone_span_seqbegin(zone);
592 593
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
594
		if (!zone_spans_pfn(zone, pfn))
595 596 597
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

598
	if (ret)
599 600 601
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
602

603
	return ret;
604 605 606 607
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
608
	if (!pfn_valid_within(page_to_pfn(page)))
609
		return 0;
L
Linus Torvalds 已提交
610
	if (zone != page_zone(page))
611 612 613 614 615 616 617
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
618
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 620
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
621
		return 1;
622 623 624
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
625 626
	return 0;
}
N
Nick Piggin 已提交
627
#else
628
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
629 630 631 632 633
{
	return 0;
}
#endif

634
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
635
{
636 637 638 639 640 641 642 643 644 645 646 647 648 649
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
650
			pr_alert(
651
			      "BUG: Bad page state: %lu messages suppressed\n",
652 653 654 655 656 657 658 659
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

660
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
661
		current->comm, page_to_pfn(page));
662
	__dump_page(page, reason);
663
	dump_page_owner(page);
664

665
	print_modules();
L
Linus Torvalds 已提交
666
	dump_stack();
667
out:
668
	/* Leave bad fields for debug, except PageBuddy could make trouble */
669
	page_mapcount_reset(page); /* remove PageBuddy */
670
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
671 672 673 674 675
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
676
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
677
 *
678 679
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
680
 *
681 682
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
683
 *
684
 * The first tail page's ->compound_order holds the order of allocation.
685
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
686
 */
687

688
void free_compound_page(struct page *page)
689
{
690
	mem_cgroup_uncharge(page);
691
	__free_pages_ok(page, compound_order(page), FPI_NONE);
692 693
}

694
void prep_compound_page(struct page *page, unsigned int order)
695 696 697 698 699 700 701
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
702
		set_page_count(p, 0);
703
		p->mapping = TAIL_MAPPING;
704
		set_compound_head(p, page);
705
	}
706 707 708

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
709
	atomic_set(compound_mapcount_ptr(page), -1);
710 711
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
712 713
}

714 715
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
716

717 718 719
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
720
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
721
EXPORT_SYMBOL(_debug_pagealloc_enabled);
722 723

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
724

725 726
static int __init early_debug_pagealloc(char *buf)
{
727
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
728 729 730
}
early_param("debug_pagealloc", early_debug_pagealloc);

731
void init_debug_pagealloc(void)
732
{
733 734 735
	if (!debug_pagealloc_enabled())
		return;

736 737
	static_branch_enable(&_debug_pagealloc_enabled);

738 739 740
	if (!debug_guardpage_minorder())
		return;

741
	static_branch_enable(&_debug_guardpage_enabled);
742 743
}

744 745 746 747 748
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
749
		pr_err("Bad debug_guardpage_minorder value\n");
750 751 752
		return 0;
	}
	_debug_guardpage_minorder = res;
753
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
754 755
	return 0;
}
756
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
757

758
static inline bool set_page_guard(struct zone *zone, struct page *page,
759
				unsigned int order, int migratetype)
760
{
761
	if (!debug_guardpage_enabled())
762 763 764 765
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
766

767
	__SetPageGuard(page);
768 769 770 771
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
772 773

	return true;
774 775
}

776 777
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
778
{
779 780 781
	if (!debug_guardpage_enabled())
		return;

782
	__ClearPageGuard(page);
783

784 785 786
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
787 788
}
#else
789 790
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
791 792
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
793 794
#endif

795
static inline void set_buddy_order(struct page *page, unsigned int order)
796
{
H
Hugh Dickins 已提交
797
	set_page_private(page, order);
798
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
799 800 801 802
}

/*
 * This function checks whether a page is free && is the buddy
803
 * we can coalesce a page and its buddy if
804
 * (a) the buddy is not in a hole (check before calling!) &&
805
 * (b) the buddy is in the buddy system &&
806 807
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
808
 *
809 810
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
811
 *
812
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
813
 */
814
static inline bool page_is_buddy(struct page *page, struct page *buddy,
815
							unsigned int order)
L
Linus Torvalds 已提交
816
{
817 818
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
819

820
	if (buddy_order(buddy) != order)
821
		return false;
822

823 824 825 826 827 828
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
829

830
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
831

832
	return true;
L
Linus Torvalds 已提交
833 834
}

835 836 837 838 839
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

840
	return unlikely(capc) &&
841 842
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
843
		capc->cc->zone == zone ? capc : NULL;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

905 906 907 908 909
/*
 * Used for pages which are on another list. Move the pages to the tail
 * of the list - so the moved pages won't immediately be considered for
 * allocation again (e.g., optimization for memory onlining).
 */
910 911 912 913 914
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

915
	list_move_tail(&page->lru, &area->free_list[migratetype]);
916 917 918 919 920
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
921 922 923 924
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

925 926 927 928 929 930
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
974 975
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
976
 * So when we are allocating or freeing one, we can derive the state of the
977 978
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
979
 * If a block is freed, and its buddy is also free, then this
980
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
981
 *
982
 * -- nyc
L
Linus Torvalds 已提交
983 984
 */

N
Nick Piggin 已提交
985
static inline void __free_one_page(struct page *page,
986
		unsigned long pfn,
987
		struct zone *zone, unsigned int order,
988
		int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
989
{
990
	struct capture_control *capc = task_capc(zone);
991
	unsigned long buddy_pfn;
992
	unsigned long combined_pfn;
993
	unsigned int max_order;
994 995
	struct page *buddy;
	bool to_tail;
996 997

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
998

999
	VM_BUG_ON(!zone_is_initialized(zone));
1000
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
1001

1002
	VM_BUG_ON(migratetype == -1);
1003
	if (likely(!is_migrate_isolate(migratetype)))
1004
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1005

1006
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1007
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
1008

1009
continue_merging:
1010
	while (order < max_order - 1) {
1011 1012 1013 1014 1015
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
1016 1017
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
1018 1019 1020

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
1021
		if (!page_is_buddy(page, buddy, order))
1022
			goto done_merging;
1023 1024 1025 1026
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1027
		if (page_is_guard(buddy))
1028
			clear_page_guard(zone, buddy, order, migratetype);
1029
		else
1030
			del_page_from_free_list(buddy, zone, order);
1031 1032 1033
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1034 1035
		order++;
	}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1048 1049
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
1062
	set_buddy_order(page, order);
1063

1064 1065 1066
	if (fpi_flags & FPI_TO_TAIL)
		to_tail = true;
	else if (is_shuffle_order(order))
1067
		to_tail = shuffle_pick_tail();
1068
	else
1069
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1070

1071
	if (to_tail)
1072
		add_to_free_list_tail(page, zone, order, migratetype);
1073
	else
1074
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1075 1076

	/* Notify page reporting subsystem of freed page */
1077
	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
A
Alexander Duyck 已提交
1078
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1103
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1104
{
1105
	const char *bad_reason = NULL;
1106

1107
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1108 1109 1110
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1111
	if (unlikely(page_ref_count(page) != 0))
1112
		bad_reason = "nonzero _refcount";
1113 1114 1115 1116 1117
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1118
	}
1119 1120 1121 1122
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1123 1124 1125 1126 1127 1128 1129
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1130 1131
}

1132
static inline int check_free_page(struct page *page)
1133
{
1134
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1135 1136 1137
		return 0;

	/* Something has gone sideways, find it */
1138
	check_free_page_bad(page);
1139
	return 1;
L
Linus Torvalds 已提交
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1158
		/* the first tail page: ->mapping may be compound_mapcount() */
1159
		if (unlikely(compound_mapcount(page))) {
1160
			bad_page(page, "nonzero compound_mapcount");
1161 1162 1163 1164 1165 1166
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1167
		 * deferred_list.next -- ignore value.
1168 1169 1170 1171
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1172
			bad_page(page, "corrupted mapping in tail page");
1173 1174 1175 1176 1177
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1178
		bad_page(page, "PageTail not set");
1179 1180 1181
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1182
		bad_page(page, "compound_head not consistent");
1183 1184 1185 1186 1187 1188 1189 1190 1191
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1192 1193 1194 1195
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1196 1197
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1198 1199
	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
1200
	kasan_enable_current();
1201 1202
}

1203 1204
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1205
{
1206
	int bad = 0;
1207 1208 1209

	VM_BUG_ON_PAGE(PageTail(page), page);

1210 1211
	trace_mm_page_free(page, order);

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (unlikely(PageHWPoison(page)) && !order) {
		/*
		 * Do not let hwpoison pages hit pcplists/buddy
		 * Untie memcg state and reset page's owner
		 */
		if (memcg_kmem_enabled() && PageKmemcg(page))
			__memcg_kmem_uncharge_page(page, order);
		reset_page_owner(page, order);
		return false;
	}

1223 1224 1225 1226 1227 1228 1229 1230 1231
	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1232

1233 1234
		if (compound)
			ClearPageDoubleMap(page);
1235 1236 1237
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1238
			if (unlikely(check_free_page(page + i))) {
1239 1240 1241 1242 1243 1244
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1245
	if (PageMappingFlags(page))
1246
		page->mapping = NULL;
1247
	if (memcg_kmem_enabled() && PageKmemcg(page))
1248
		__memcg_kmem_uncharge_page(page, order);
1249
	if (check_free)
1250
		bad += check_free_page(page);
1251 1252
	if (bad)
		return false;
1253

1254 1255 1256
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1257 1258 1259

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1260
					   PAGE_SIZE << order);
1261
		debug_check_no_obj_freed(page_address(page),
1262
					   PAGE_SIZE << order);
1263
	}
1264 1265 1266
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1267
	kernel_poison_pages(page, 1 << order, 0);
1268 1269 1270 1271 1272 1273 1274
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1275
	if (debug_pagealloc_enabled_static())
1276 1277
		kernel_map_pages(page, 1 << order, 0);

1278
	kasan_free_nondeferred_pages(page, order);
1279 1280 1281 1282

	return true;
}

1283
#ifdef CONFIG_DEBUG_VM
1284 1285 1286 1287 1288 1289
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1290 1291 1292 1293
{
	return free_pages_prepare(page, 0, true);
}

1294
static bool bulkfree_pcp_prepare(struct page *page)
1295
{
1296
	if (debug_pagealloc_enabled_static())
1297
		return check_free_page(page);
1298 1299
	else
		return false;
1300 1301
}
#else
1302 1303 1304 1305 1306 1307
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1308 1309
static bool free_pcp_prepare(struct page *page)
{
1310
	if (debug_pagealloc_enabled_static())
1311 1312 1313
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1314 1315
}

1316 1317
static bool bulkfree_pcp_prepare(struct page *page)
{
1318
	return check_free_page(page);
1319 1320 1321
}
#endif /* CONFIG_DEBUG_VM */

1322 1323 1324 1325 1326 1327 1328 1329 1330
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1331
/*
1332
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1333
 * Assumes all pages on list are in same zone, and of same order.
1334
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1342 1343
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1344
{
1345
	int migratetype = 0;
1346
	int batch_free = 0;
1347
	int prefetch_nr = 0;
1348
	bool isolated_pageblocks;
1349 1350
	struct page *page, *tmp;
	LIST_HEAD(head);
1351

1352 1353 1354 1355 1356
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1357
	while (count) {
1358 1359 1360
		struct list_head *list;

		/*
1361 1362 1363 1364 1365
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1366 1367
		 */
		do {
1368
			batch_free++;
1369 1370 1371 1372
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1373

1374 1375
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1376
			batch_free = count;
1377

1378
		do {
1379
			page = list_last_entry(list, struct page, lru);
1380
			/* must delete to avoid corrupting pcp list */
1381
			list_del(&page->lru);
1382
			pcp->count--;
1383

1384 1385 1386
			if (bulkfree_pcp_prepare(page))
				continue;

1387
			list_add_tail(&page->lru, &head);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1400
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1401
	}
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

1418
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1419 1420
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1421
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1422 1423
}

1424 1425
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1426
				unsigned int order,
1427
				int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1428
{
1429
	spin_lock(&zone->lock);
1430 1431 1432 1433
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1434
	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1435
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1436 1437
}

1438
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1439
				unsigned long zone, int nid)
1440
{
1441
	mm_zero_struct_page(page);
1442 1443 1444 1445
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1446
	page_kasan_tag_reset(page);
1447 1448 1449 1450 1451 1452 1453 1454 1455

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1456
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1457
static void __meminit init_reserved_page(unsigned long pfn)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1474
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1475 1476 1477 1478 1479 1480 1481
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1482 1483 1484 1485 1486 1487
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1488
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1489 1490 1491 1492
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1493 1494 1495 1496 1497
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1498 1499 1500 1501

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1502 1503 1504 1505 1506 1507
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1508 1509
		}
	}
1510 1511
}

1512 1513
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags)
1514
{
1515
	unsigned long flags;
M
Minchan Kim 已提交
1516
	int migratetype;
1517
	unsigned long pfn = page_to_pfn(page);
1518

1519
	if (!free_pages_prepare(page, order, true))
1520 1521
		return;

1522
	migratetype = get_pfnblock_migratetype(page, pfn);
1523 1524
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1525 1526
	free_one_page(page_zone(page), page, pfn, order, migratetype,
		      fpi_flags);
1527
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1528 1529
}

1530
void __free_pages_core(struct page *page, unsigned int order)
1531
{
1532
	unsigned int nr_pages = 1 << order;
1533
	struct page *p = page;
1534
	unsigned int loop;
1535

1536 1537 1538 1539 1540
	/*
	 * When initializing the memmap, __init_single_page() sets the refcount
	 * of all pages to 1 ("allocated"/"not free"). We have to set the
	 * refcount of all involved pages to 0.
	 */
1541 1542 1543
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1544 1545
		__ClearPageReserved(p);
		set_page_count(p, 0);
1546
	}
1547 1548
	__ClearPageReserved(p);
	set_page_count(p, 0);
1549

1550
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1551 1552 1553 1554 1555 1556

	/*
	 * Bypass PCP and place fresh pages right to the tail, primarily
	 * relevant for memory onlining.
	 */
	__free_pages_ok(page, order, FPI_TO_TAIL);
1557 1558
}

1559
#ifdef CONFIG_NEED_MULTIPLE_NODES
1560

1561 1562
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

1563 1564 1565 1566 1567 1568 1569
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
1570
{
1571
	unsigned long start_pfn, end_pfn;
1572 1573
	int nid;

1574 1575 1576 1577 1578 1579 1580 1581 1582
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1583 1584

	return nid;
1585
}
1586
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1587 1588 1589

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1590
	static DEFINE_SPINLOCK(early_pfn_lock);
1591 1592
	int nid;

1593
	spin_lock(&early_pfn_lock);
1594
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1595
	if (nid < 0)
1596
		nid = first_online_node;
1597
	spin_unlock(&early_pfn_lock);
1598

1599
	return nid;
1600
}
1601
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1602

1603
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1604 1605 1606 1607
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1608
	__free_pages_core(page, order);
1609 1610
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1640 1641 1642
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1671
		cond_resched();
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1683
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1684 1685
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1686
{
1687 1688
	struct page *page;
	unsigned long i;
1689

1690
	if (!nr_pages)
1691 1692
		return;

1693 1694
	page = pfn_to_page(pfn);

1695
	/* Free a large naturally-aligned chunk if possible */
1696 1697
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1698
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1699
		__free_pages_core(page, pageblock_order);
1700 1701 1702
		return;
	}

1703 1704 1705
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1706
		__free_pages_core(page, 0);
1707
	}
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1719

1720
/*
1721 1722 1723 1724 1725 1726 1727 1728
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1729
 */
1730
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1731
{
1732 1733 1734 1735 1736 1737
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1738

1739 1740 1741 1742
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1743
static void __init deferred_free_pages(unsigned long pfn,
1744 1745 1746 1747
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1748

1749
	for (; pfn < end_pfn; pfn++) {
1750
		if (!deferred_pfn_valid(pfn)) {
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1762 1763
}

1764 1765 1766 1767 1768
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1769
static unsigned long  __init deferred_init_pages(struct zone *zone,
1770 1771
						 unsigned long pfn,
						 unsigned long end_pfn)
1772 1773
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1774
	int nid = zone_to_nid(zone);
1775
	unsigned long nr_pages = 0;
1776
	int zid = zone_idx(zone);
1777 1778
	struct page *page = NULL;

1779
	for (; pfn < end_pfn; pfn++) {
1780
		if (!deferred_pfn_valid(pfn)) {
1781
			page = NULL;
1782
			continue;
1783
		} else if (!page || !(pfn & nr_pgmask)) {
1784
			page = pfn_to_page(pfn);
1785 1786
		} else {
			page++;
1787
		}
1788
		__init_single_page(page, pfn, zid, nid);
1789
		nr_pages++;
1790
	}
1791
	return (nr_pages);
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

1898 1899 1900 1901 1902 1903 1904
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

1905
/* Initialise remaining memory on a node */
1906
static int __init deferred_init_memmap(void *data)
1907
{
1908
	pg_data_t *pgdat = data;
1909
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1910
	unsigned long spfn = 0, epfn = 0;
1911
	unsigned long first_init_pfn, flags;
1912 1913
	unsigned long start = jiffies;
	struct zone *zone;
1914
	int zid, max_threads;
1915
	u64 i;
1916

1917 1918 1919 1920 1921 1922
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1923
	if (first_init_pfn == ULONG_MAX) {
1924
		pgdat_resize_unlock(pgdat, &flags);
1925
		pgdat_init_report_one_done();
1926 1927 1928
		return 0;
	}

1929 1930 1931 1932 1933
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

1934 1935 1936 1937 1938 1939 1940
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

1941 1942 1943 1944 1945 1946
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1947 1948 1949 1950 1951

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1952

1953
	max_threads = deferred_page_init_max_threads(cpumask);
1954

1955
	while (spfn < epfn) {
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
1970
	}
1971
zone_empty:
1972 1973 1974
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1975 1976
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1977 1978

	pgdat_init_report_one_done();
1979 1980
	return 0;
}
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2001
	pg_data_t *pgdat = zone->zone_pgdat;
2002
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2003 2004
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

2022 2023 2024 2025
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
2026
		pgdat_resize_unlock(pgdat, &flags);
2027 2028
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
2029 2030
	}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2041
		touch_nmi_watchdog();
2042

2043 2044 2045
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
2046

2047
		/* If our quota has been met we can stop here */
2048 2049 2050 2051
		if (nr_pages >= nr_pages_needed)
			break;
	}

2052
	pgdat->first_deferred_pfn = spfn;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2070
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2071 2072 2073

void __init page_alloc_init_late(void)
{
2074
	struct zone *zone;
2075
	int nid;
2076 2077

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2078

2079 2080
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2081 2082 2083 2084 2085
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2086
	wait_for_completion(&pgdat_init_all_done_comp);
2087

2088 2089 2090 2091 2092 2093 2094 2095
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2096 2097 2098 2099 2100 2101
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2102 2103
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2104
#endif
2105

P
Pavel Tatashin 已提交
2106 2107
	/* Discard memblock private memory */
	memblock_discard();
2108

2109 2110 2111
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2112 2113
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2114 2115
}

2116
#ifdef CONFIG_CMA
2117
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2118 2119 2120 2121 2122 2123 2124 2125
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2126
	} while (++p, --i);
2127 2128

	set_pageblock_migratetype(page, MIGRATE_CMA);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2143
	adjust_managed_page_count(page, pageblock_nr_pages);
2144 2145
}
#endif
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2159
 * -- nyc
L
Linus Torvalds 已提交
2160
 */
N
Nick Piggin 已提交
2161
static inline void expand(struct zone *zone, struct page *page,
2162
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2169
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2170

2171 2172 2173 2174 2175 2176 2177
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2178
			continue;
2179

2180
		add_to_free_list(&page[size], zone, high, migratetype);
2181
		set_buddy_order(&page[size], high);
L
Linus Torvalds 已提交
2182 2183 2184
	}
}

2185
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2186
{
2187
	if (unlikely(page->flags & __PG_HWPOISON)) {
2188 2189 2190
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2191
	}
2192 2193 2194

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2208 2209
}

2210
static inline bool free_pages_prezeroed(void)
2211
{
2212 2213
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2214 2215
}

2216
#ifdef CONFIG_DEBUG_VM
2217 2218 2219 2220 2221 2222
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2223
{
2224
	if (debug_pagealloc_enabled_static())
2225 2226 2227
		return check_new_page(page);
	else
		return false;
2228 2229
}

2230
static inline bool check_new_pcp(struct page *page)
2231 2232 2233 2234
{
	return check_new_page(page);
}
#else
2235 2236 2237 2238 2239 2240
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2241 2242 2243
{
	return check_new_page(page);
}
2244
static inline bool check_new_pcp(struct page *page)
2245
{
2246
	if (debug_pagealloc_enabled_static())
2247 2248 2249
		return check_new_page(page);
	else
		return false;
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2266 2267 2268 2269 2270 2271 2272
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2273
	if (debug_pagealloc_enabled_static())
2274
		kernel_map_pages(page, 1 << order, 1);
2275
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2276
	kernel_poison_pages(page, 1 << order, 1);
2277 2278 2279
	set_page_owner(page, order, gfp_flags);
}

2280
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2281
							unsigned int alloc_flags)
2282
{
2283
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2284

2285 2286
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2287 2288 2289 2290

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2291
	/*
2292
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2293 2294 2295 2296
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2297 2298 2299 2300
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2301 2302
}

2303 2304 2305 2306
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2307
static __always_inline
2308
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2309 2310 2311
						int migratetype)
{
	unsigned int current_order;
2312
	struct free_area *area;
2313 2314 2315 2316 2317
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2318
		page = get_page_from_free_area(area, migratetype);
2319 2320
		if (!page)
			continue;
2321 2322
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2323
		set_pcppage_migratetype(page, migratetype);
2324 2325 2326 2327 2328 2329 2330
		return page;
	}

	return NULL;
}


2331 2332 2333 2334
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2335
static int fallbacks[MIGRATE_TYPES][3] = {
2336 2337
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2338
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2339
#ifdef CONFIG_CMA
2340
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2341
#endif
2342
#ifdef CONFIG_MEMORY_ISOLATION
2343
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2344
#endif
2345 2346
};

2347
#ifdef CONFIG_CMA
2348
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2349 2350 2351 2352 2353 2354 2355 2356 2357
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2358
/*
2359
 * Move the free pages in a range to the freelist tail of the requested type.
2360
 * Note that start_page and end_pages are not aligned on a pageblock
2361 2362
 * boundary. If alignment is required, use move_freepages_block()
 */
2363
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2364
			  struct page *start_page, struct page *end_page,
2365
			  int migratetype, int *num_movable)
2366 2367
{
	struct page *page;
2368
	unsigned int order;
2369
	int pages_moved = 0;
2370 2371 2372 2373 2374 2375 2376 2377

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2378 2379 2380 2381 2382 2383 2384 2385 2386
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2387 2388 2389 2390
			page++;
			continue;
		}

2391 2392 2393 2394
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2395
		order = buddy_order(page);
2396
		move_to_free_list(page, zone, order, migratetype);
2397
		page += 1 << order;
2398
		pages_moved += 1 << order;
2399 2400
	}

2401
	return pages_moved;
2402 2403
}

2404
int move_freepages_block(struct zone *zone, struct page *page,
2405
				int migratetype, int *num_movable)
2406 2407 2408 2409
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2410 2411 2412
	if (num_movable)
		*num_movable = 0;

2413
	start_pfn = page_to_pfn(page);
2414
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2415
	start_page = pfn_to_page(start_pfn);
2416 2417
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2418 2419

	/* Do not cross zone boundaries */
2420
	if (!zone_spans_pfn(zone, start_pfn))
2421
		start_page = page;
2422
	if (!zone_spans_pfn(zone, end_pfn))
2423 2424
		return 0;

2425 2426
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2440
/*
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2451
 */
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2473 2474 2475 2476 2477 2478
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
		return;
2487 2488 2489

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2502 2503 2504 2505 2506 2507
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2508 2509 2510
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2511 2512 2513 2514
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2515 2516
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2517
		unsigned int alloc_flags, int start_type, bool whole_block)
2518
{
2519
	unsigned int current_order = buddy_order(page);
2520 2521 2522 2523
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2524

2525 2526 2527 2528
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2529
	if (is_migrate_highatomic(old_block_type))
2530 2531
		goto single_page;

2532 2533 2534
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2535
		goto single_page;
2536 2537
	}

2538 2539 2540 2541 2542 2543 2544
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2545
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2546

2547 2548 2549 2550
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2575
	/* moving whole block can fail due to zone boundary conditions */
2576
	if (!free_pages)
2577
		goto single_page;
2578

2579 2580 2581 2582 2583
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2584 2585
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2586 2587 2588 2589

	return;

single_page:
2590
	move_to_free_list(page, zone, current_order, start_type);
2591 2592
}

2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2611
		if (fallback_mt == MIGRATE_TYPES)
2612 2613
			break;

2614
		if (free_area_empty(area, fallback_mt))
2615
			continue;
2616

2617 2618 2619
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2620 2621 2622 2623 2624
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2625
	}
2626 2627

	return -1;
2628 2629
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2644
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2656 2657
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2658 2659
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2660
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2672 2673 2674
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2675
 */
2676 2677
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2678 2679 2680 2681 2682 2683 2684
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2685
	bool ret;
2686

2687
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2688
								ac->nodemask) {
2689 2690 2691 2692 2693 2694
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2695 2696 2697 2698 2699 2700
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2701
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2702
			if (!page)
2703 2704 2705
				continue;

			/*
2706 2707 2708 2709 2710
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2711
			 */
2712
			if (is_migrate_highatomic_page(page)) {
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2735 2736
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2737 2738 2739 2740
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2741 2742 2743
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2744 2745

	return false;
2746 2747
}

2748 2749 2750 2751 2752
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2753 2754 2755 2756
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2757
 */
2758
static __always_inline bool
2759 2760
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2761
{
2762
	struct free_area *area;
2763
	int current_order;
2764
	int min_order = order;
2765
	struct page *page;
2766 2767
	int fallback_mt;
	bool can_steal;
2768

2769 2770 2771 2772 2773 2774 2775 2776
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2777 2778 2779 2780 2781
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2782
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2783
				--current_order) {
2784 2785
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2786
				start_migratetype, false, &can_steal);
2787 2788
		if (fallback_mt == -1)
			continue;
2789

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2801

2802 2803
		goto do_steal;
	}
2804

2805
	return false;
2806

2807 2808 2809 2810 2811 2812 2813 2814
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2815 2816
	}

2817 2818 2819 2820 2821 2822 2823
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2824
	page = get_page_from_free_area(area, fallback_mt);
2825

2826 2827
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2828 2829 2830 2831 2832 2833

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2834 2835
}

2836
/*
L
Linus Torvalds 已提交
2837 2838 2839
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2840
static __always_inline struct page *
2841 2842
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2843 2844 2845
{
	struct page *page;

2846 2847 2848 2849 2850 2851
#ifdef CONFIG_CMA
	/*
	 * Balance movable allocations between regular and CMA areas by
	 * allocating from CMA when over half of the zone's free memory
	 * is in the CMA area.
	 */
2852
	if (alloc_flags & ALLOC_CMA &&
2853 2854 2855 2856 2857 2858 2859
	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
		page = __rmqueue_cma_fallback(zone, order);
		if (page)
			return page;
	}
#endif
2860
retry:
2861
	page = __rmqueue_smallest(zone, order, migratetype);
2862
	if (unlikely(!page)) {
2863
		if (alloc_flags & ALLOC_CMA)
2864 2865
			page = __rmqueue_cma_fallback(zone, order);

2866 2867
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2868
			goto retry;
2869 2870
	}

2871
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2872
	return page;
L
Linus Torvalds 已提交
2873 2874
}

2875
/*
L
Linus Torvalds 已提交
2876 2877 2878 2879
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2880
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2881
			unsigned long count, struct list_head *list,
2882
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2883
{
2884
	int i, alloced = 0;
2885

2886
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2887
	for (i = 0; i < count; ++i) {
2888 2889
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2890
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2891
			break;
2892

2893 2894 2895
		if (unlikely(check_pcp_refill(page)))
			continue;

2896
		/*
2897 2898 2899 2900 2901 2902 2903 2904
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2905
		 */
2906
		list_add_tail(&page->lru, list);
2907
		alloced++;
2908
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2909 2910
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2911
	}
2912 2913 2914 2915 2916 2917 2918

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2919
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2920
	spin_unlock(&zone->lock);
2921
	return alloced;
L
Linus Torvalds 已提交
2922 2923
}

2924
#ifdef CONFIG_NUMA
2925
/*
2926 2927 2928 2929
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2930 2931
 * Note that this function must be called with the thread pinned to
 * a single processor.
2932
 */
2933
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2934 2935
{
	unsigned long flags;
2936
	int to_drain, batch;
2937

2938
	local_irq_save(flags);
2939
	batch = READ_ONCE(pcp->batch);
2940
	to_drain = min(pcp->count, batch);
2941
	if (to_drain > 0)
2942
		free_pcppages_bulk(zone, to_drain, pcp);
2943
	local_irq_restore(flags);
2944 2945 2946
}
#endif

2947
/*
2948
 * Drain pcplists of the indicated processor and zone.
2949 2950 2951 2952 2953
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2954
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2955
{
N
Nick Piggin 已提交
2956
	unsigned long flags;
2957 2958
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2959

2960 2961
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2962

2963
	pcp = &pset->pcp;
2964
	if (pcp->count)
2965 2966 2967
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2982 2983 2984
	}
}

2985 2986
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2987 2988 2989
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2990
 */
2991
void drain_local_pages(struct zone *zone)
2992
{
2993 2994 2995 2996 2997 2998
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2999 3000
}

3001 3002
static void drain_local_pages_wq(struct work_struct *work)
{
3003 3004 3005 3006
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

3007 3008 3009 3010 3011 3012 3013 3014
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
3015
	drain_local_pages(drain->zone);
3016
	preempt_enable();
3017 3018
}

3019
/*
3020 3021
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
3022 3023
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
3024
 * Note that this can be extremely slow as the draining happens in a workqueue.
3025
 */
3026
void drain_all_pages(struct zone *zone)
3027
{
3028 3029 3030 3031 3032 3033 3034 3035
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

3036 3037 3038 3039 3040 3041 3042
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
3053

3054 3055 3056 3057 3058 3059 3060
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3061 3062
		struct per_cpu_pageset *pcp;
		struct zone *z;
3063
		bool has_pcps = false;
3064 3065

		if (zone) {
3066
			pcp = per_cpu_ptr(zone->pageset, cpu);
3067
			if (pcp->pcp.count)
3068
				has_pcps = true;
3069 3070 3071 3072 3073 3074 3075
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
3076 3077
			}
		}
3078

3079 3080 3081 3082 3083
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3084

3085
	for_each_cpu(cpu, &cpus_with_pcps) {
3086 3087 3088 3089 3090
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3091
	}
3092
	for_each_cpu(cpu, &cpus_with_pcps)
3093
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3094 3095

	mutex_unlock(&pcpu_drain_mutex);
3096 3097
}

3098
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3099

3100 3101 3102 3103 3104
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3105 3106
void mark_free_pages(struct zone *zone)
{
3107
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3108
	unsigned long flags;
3109
	unsigned int order, t;
3110
	struct page *page;
L
Linus Torvalds 已提交
3111

3112
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3113 3114 3115
		return;

	spin_lock_irqsave(&zone->lock, flags);
3116

3117
	max_zone_pfn = zone_end_pfn(zone);
3118 3119
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3120
			page = pfn_to_page(pfn);
3121

3122 3123 3124 3125 3126
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3127 3128 3129
			if (page_zone(page) != zone)
				continue;

3130 3131
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3132
		}
L
Linus Torvalds 已提交
3133

3134
	for_each_migratetype_order(order, t) {
3135 3136
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3137
			unsigned long i;
L
Linus Torvalds 已提交
3138

3139
			pfn = page_to_pfn(page);
3140 3141 3142 3143 3144
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3145
				swsusp_set_page_free(pfn_to_page(pfn + i));
3146
			}
3147
		}
3148
	}
L
Linus Torvalds 已提交
3149 3150
	spin_unlock_irqrestore(&zone->lock, flags);
}
3151
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3152

3153
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3154
{
3155
	int migratetype;
L
Linus Torvalds 已提交
3156

3157
	if (!free_pcp_prepare(page))
3158
		return false;
3159

3160
	migratetype = get_pfnblock_migratetype(page, pfn);
3161
	set_pcppage_migratetype(page, migratetype);
3162 3163 3164
	return true;
}

3165
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3166 3167 3168 3169 3170 3171
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3172
	__count_vm_event(PGFREE);
3173

3174 3175 3176
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3177
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3178 3179 3180 3181
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3182
		if (unlikely(is_migrate_isolate(migratetype))) {
3183 3184
			free_one_page(zone, page, pfn, 0, migratetype,
				      FPI_NONE);
3185
			return;
3186 3187 3188 3189
		}
		migratetype = MIGRATE_MOVABLE;
	}

3190
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3191
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3192
	pcp->count++;
N
Nick Piggin 已提交
3193
	if (pcp->count >= pcp->high) {
3194
		unsigned long batch = READ_ONCE(pcp->batch);
3195
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3196
	}
3197
}
3198

3199 3200 3201
/*
 * Free a 0-order page
 */
3202
void free_unref_page(struct page *page)
3203 3204 3205 3206
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3207
	if (!free_unref_page_prepare(page, pfn))
3208 3209 3210
		return;

	local_irq_save(flags);
3211
	free_unref_page_commit(page, pfn);
3212
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3213 3214
}

3215 3216 3217
/*
 * Free a list of 0-order pages
 */
3218
void free_unref_page_list(struct list_head *list)
3219 3220
{
	struct page *page, *next;
3221
	unsigned long flags, pfn;
3222
	int batch_count = 0;
3223 3224 3225 3226

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3227
		if (!free_unref_page_prepare(page, pfn))
3228 3229 3230
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3231

3232
	local_irq_save(flags);
3233
	list_for_each_entry_safe(page, next, list, lru) {
3234 3235 3236
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3237 3238
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3249
	}
3250
	local_irq_restore(flags);
3251 3252
}

N
Nick Piggin 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3265 3266
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3267

3268
	for (i = 1; i < (1 << order); i++)
3269
		set_page_refcounted(page + i);
3270
	split_page_owner(page, 1 << order);
N
Nick Piggin 已提交
3271
}
K
K. Y. Srinivasan 已提交
3272
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3273

3274
int __isolate_free_page(struct page *page, unsigned int order)
3275 3276 3277
{
	unsigned long watermark;
	struct zone *zone;
3278
	int mt;
3279 3280 3281 3282

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3283
	mt = get_pageblock_migratetype(page);
3284

3285
	if (!is_migrate_isolate(mt)) {
3286 3287 3288 3289 3290 3291
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3292
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3293
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3294 3295
			return 0;

3296
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3297
	}
3298 3299

	/* Remove page from free list */
3300

3301
	del_page_from_free_list(page, zone, order);
3302

3303 3304 3305 3306
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3307 3308
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3309 3310
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3311
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3312
			    && !is_migrate_highatomic(mt))
3313 3314 3315
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3316 3317
	}

3318

3319
	return 1UL << order;
3320 3321
}

3322 3323 3324 3325
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3326
 * @mt: The page's pageblock's migratetype
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
3339
	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3340
			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3341 3342
}

3343 3344 3345 3346 3347
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3348
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3349 3350
{
#ifdef CONFIG_NUMA
3351
	enum numa_stat_item local_stat = NUMA_LOCAL;
3352

3353 3354 3355 3356
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3357
	if (zone_to_nid(z) != numa_node_id())
3358 3359
		local_stat = NUMA_OTHER;

3360
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3361
		__inc_numa_state(z, NUMA_HIT);
3362
	else {
3363 3364
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3365
	}
3366
	__inc_numa_state(z, local_stat);
3367 3368 3369
#endif
}

3370 3371
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3372
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3373
			struct per_cpu_pages *pcp,
3374 3375 3376 3377 3378 3379 3380 3381
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3382
					migratetype, alloc_flags);
3383 3384 3385 3386
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3387
		page = list_first_entry(list, struct page, lru);
3388 3389 3390 3391 3392 3393 3394 3395 3396
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3397 3398
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3399 3400 3401 3402
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3403
	unsigned long flags;
3404

3405
	local_irq_save(flags);
3406 3407
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3408
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3409
	if (page) {
3410
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3411 3412
		zone_statistics(preferred_zone, zone);
	}
3413
	local_irq_restore(flags);
3414 3415 3416
	return page;
}

L
Linus Torvalds 已提交
3417
/*
3418
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3419
 */
3420
static inline
3421
struct page *rmqueue(struct zone *preferred_zone,
3422
			struct zone *zone, unsigned int order,
3423 3424
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3425 3426
{
	unsigned long flags;
3427
	struct page *page;
L
Linus Torvalds 已提交
3428

3429
	if (likely(order == 0)) {
3430 3431 3432 3433 3434 3435 3436
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3437
					migratetype, alloc_flags);
3438 3439
			goto out;
		}
3440
	}
3441

3442 3443 3444 3445 3446 3447
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3448

3449 3450
	do {
		page = NULL;
3451 3452 3453 3454 3455 3456 3457
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3458 3459 3460 3461
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3462
		if (!page)
3463
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3464 3465 3466 3467 3468 3469
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3470

3471
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3472
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3473
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3474

3475
out:
3476 3477 3478 3479 3480 3481
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3482
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3483
	return page;
N
Nick Piggin 已提交
3484 3485 3486 3487

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3488 3489
}

3490 3491
#ifdef CONFIG_FAIL_PAGE_ALLOC

3492
static struct {
3493 3494
	struct fault_attr attr;

3495
	bool ignore_gfp_highmem;
3496
	bool ignore_gfp_reclaim;
3497
	u32 min_order;
3498 3499
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3500
	.ignore_gfp_reclaim = true,
3501
	.ignore_gfp_highmem = true,
3502
	.min_order = 1,
3503 3504 3505 3506 3507 3508 3509 3510
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3511
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3512
{
3513
	if (order < fail_page_alloc.min_order)
3514
		return false;
3515
	if (gfp_mask & __GFP_NOFAIL)
3516
		return false;
3517
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3518
		return false;
3519 3520
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3521
		return false;
3522 3523 3524 3525 3526 3527 3528 3529

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3530
	umode_t mode = S_IFREG | 0600;
3531 3532
	struct dentry *dir;

3533 3534
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3535

3536 3537 3538 3539 3540
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3541

3542
	return 0;
3543 3544 3545 3546 3547 3548 3549 3550
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3551
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3552
{
3553
	return false;
3554 3555 3556 3557
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3558
noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3559 3560 3561 3562 3563
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3587
/*
3588 3589 3590 3591
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3592
 */
3593
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3594
			 int highest_zoneidx, unsigned int alloc_flags,
3595
			 long free_pages)
L
Linus Torvalds 已提交
3596
{
3597
	long min = mark;
L
Linus Torvalds 已提交
3598
	int o;
3599
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3600

3601
	/* free_pages may go negative - that's OK */
3602
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3603

R
Rohit Seth 已提交
3604
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3605
		min -= min / 2;
3606

3607
	if (unlikely(alloc_harder)) {
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3620 3621 3622 3623 3624
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3625
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3626
		return false;
L
Linus Torvalds 已提交
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3641
			if (!free_area_empty(area, mt))
3642 3643 3644 3645
				return true;
		}

#ifdef CONFIG_CMA
3646
		if ((alloc_flags & ALLOC_CMA) &&
3647
		    !free_area_empty(area, MIGRATE_CMA)) {
3648
			return true;
3649
		}
3650
#endif
3651
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3652
			return true;
L
Linus Torvalds 已提交
3653
	}
3654
	return false;
3655 3656
}

3657
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3658
		      int highest_zoneidx, unsigned int alloc_flags)
3659
{
3660
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3661 3662 3663
					zone_page_state(z, NR_FREE_PAGES));
}

3664
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3665
				unsigned long mark, int highest_zoneidx,
3666
				unsigned int alloc_flags, gfp_t gfp_mask)
3667
{
3668
	long free_pages;
3669

3670
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3671 3672 3673

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3674
	 * need to be calculated.
3675
	 */
3676 3677 3678 3679 3680 3681 3682 3683
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3684

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3702 3703
}

3704
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3705
			unsigned long mark, int highest_zoneidx)
3706 3707 3708 3709 3710 3711
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3712
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3713
								free_pages);
L
Linus Torvalds 已提交
3714 3715
}

3716
#ifdef CONFIG_NUMA
3717 3718
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3719
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3720
				node_reclaim_distance;
3721
}
3722
#else	/* CONFIG_NUMA */
3723 3724 3725 3726
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3727 3728
#endif	/* CONFIG_NUMA */

3729 3730 3731 3732 3733 3734 3735 3736 3737
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3738
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3739
{
3740
	unsigned int alloc_flags;
3741

3742 3743 3744 3745 3746
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3747 3748

#ifdef CONFIG_ZONE_DMA32
3749 3750 3751
	if (!zone)
		return alloc_flags;

3752
	if (zone_idx(zone) != ZONE_NORMAL)
3753
		return alloc_flags;
3754 3755 3756 3757 3758 3759 3760 3761

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3762
		return alloc_flags;
3763

3764
	alloc_flags |= ALLOC_NOFRAGMENT;
3765 3766
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3767 3768
}

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
					unsigned int alloc_flags)
{
#ifdef CONFIG_CMA
	unsigned int pflags = current->flags;

	if (!(pflags & PF_MEMALLOC_NOCMA) &&
			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;

#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
3783
/*
3784
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3785 3786 3787
 * a page.
 */
static struct page *
3788 3789
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3790
{
3791
	struct zoneref *z;
3792
	struct zone *zone;
3793
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3794
	bool no_fallback;
3795

3796
retry:
R
Rohit Seth 已提交
3797
	/*
3798
	 * Scan zonelist, looking for a zone with enough free.
3799
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3800
	 */
3801 3802
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3803 3804
	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
					ac->nodemask) {
3805
		struct page *page;
3806 3807
		unsigned long mark;

3808 3809
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3810
			!__cpuset_zone_allowed(zone, gfp_mask))
3811
				continue;
3812 3813
		/*
		 * When allocating a page cache page for writing, we
3814 3815
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3816
		 * proportional share of globally allowed dirty pages.
3817
		 * The dirty limits take into account the node's
3818 3819 3820 3821 3822
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3823
		 * exceed the per-node dirty limit in the slowpath
3824
		 * (spread_dirty_pages unset) before going into reclaim,
3825
		 * which is important when on a NUMA setup the allowed
3826
		 * nodes are together not big enough to reach the
3827
		 * global limit.  The proper fix for these situations
3828
		 * will require awareness of nodes in the
3829 3830
		 * dirty-throttling and the flusher threads.
		 */
3831 3832 3833 3834 3835 3836 3837 3838 3839
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3857
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3858
		if (!zone_watermark_fast(zone, order, mark,
3859 3860
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
3861 3862
			int ret;

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3873 3874 3875 3876 3877
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3878
			if (node_reclaim_mode == 0 ||
3879
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3880 3881
				continue;

3882
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3883
			switch (ret) {
3884
			case NODE_RECLAIM_NOSCAN:
3885
				/* did not scan */
3886
				continue;
3887
			case NODE_RECLAIM_FULL:
3888
				/* scanned but unreclaimable */
3889
				continue;
3890 3891
			default:
				/* did we reclaim enough */
3892
				if (zone_watermark_ok(zone, order, mark,
3893
					ac->highest_zoneidx, alloc_flags))
3894 3895 3896
					goto try_this_zone;

				continue;
3897
			}
R
Rohit Seth 已提交
3898 3899
		}

3900
try_this_zone:
3901
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3902
				gfp_mask, alloc_flags, ac->migratetype);
3903
		if (page) {
3904
			prep_new_page(page, order, gfp_mask, alloc_flags);
3905 3906 3907 3908 3909 3910 3911 3912

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3913
			return page;
3914 3915 3916 3917 3918 3919 3920 3921
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3922
		}
3923
	}
3924

3925 3926 3927 3928 3929 3930 3931 3932 3933
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3934
	return NULL;
M
Martin Hicks 已提交
3935 3936
}

3937
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3938 3939 3940 3941 3942 3943 3944 3945 3946
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3947
		if (tsk_is_oom_victim(current) ||
3948 3949
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3950
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3951 3952
		filter &= ~SHOW_MEM_FILTER_NODES;

3953
	show_mem(filter, nodemask);
3954 3955
}

3956
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3957 3958 3959
{
	struct va_format vaf;
	va_list args;
3960
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3961

3962
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3963 3964
		return;

3965 3966 3967
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3968
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3969 3970
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3971
	va_end(args);
J
Joe Perches 已提交
3972

3973
	cpuset_print_current_mems_allowed();
3974
	pr_cont("\n");
3975
	dump_stack();
3976
	warn_alloc_show_mem(gfp_mask, nodemask);
3977 3978
}

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3999 4000
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4001
	const struct alloc_context *ac, unsigned long *did_some_progress)
4002
{
4003 4004 4005
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
4006
		.memcg = NULL,
4007 4008 4009
		.gfp_mask = gfp_mask,
		.order = order,
	};
4010 4011
	struct page *page;

4012 4013 4014
	*did_some_progress = 0;

	/*
4015 4016
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
4017
	 */
4018
	if (!mutex_trylock(&oom_lock)) {
4019
		*did_some_progress = 1;
4020
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4021 4022
		return NULL;
	}
4023

4024 4025 4026
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
4027 4028 4029
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
4030
	 */
4031 4032 4033
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
4034
	if (page)
4035 4036
		goto out;

4037 4038 4039 4040 4041 4042
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
4043 4044 4045 4046 4047
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
4048 4049
	 *
	 * The OOM killer may not free memory on a specific node.
4050
	 */
4051
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4052
		goto out;
4053
	/* The OOM killer does not needlessly kill tasks for lowmem */
4054
	if (ac->highest_zoneidx < ZONE_NORMAL)
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4068
	/* Exhausted what can be done so it's blame time */
4069
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4070
		*did_some_progress = 1;
4071

4072 4073 4074 4075 4076 4077
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4078 4079
					ALLOC_NO_WATERMARKS, ac);
	}
4080
out:
4081
	mutex_unlock(&oom_lock);
4082 4083 4084
	return page;
}

4085 4086 4087 4088 4089 4090
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4091 4092 4093 4094
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4095
		unsigned int alloc_flags, const struct alloc_context *ac,
4096
		enum compact_priority prio, enum compact_result *compact_result)
4097
{
4098
	struct page *page = NULL;
4099
	unsigned long pflags;
4100
	unsigned int noreclaim_flag;
4101 4102

	if (!order)
4103 4104
		return NULL;

4105
	psi_memstall_enter(&pflags);
4106
	noreclaim_flag = memalloc_noreclaim_save();
4107

4108
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4109
								prio, &page);
4110

4111
	memalloc_noreclaim_restore(noreclaim_flag);
4112
	psi_memstall_leave(&pflags);
4113

4114 4115 4116 4117 4118
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4119

4120 4121 4122 4123 4124 4125 4126
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4127

4128 4129
	if (page) {
		struct zone *zone = page_zone(page);
4130

4131 4132 4133 4134 4135
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4136

4137 4138 4139 4140 4141
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4142

4143
	cond_resched();
4144 4145 4146

	return NULL;
}
4147

4148 4149 4150 4151
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4152
		     int *compaction_retries)
4153 4154
{
	int max_retries = MAX_COMPACT_RETRIES;
4155
	int min_priority;
4156 4157 4158
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4159 4160 4161 4162

	if (!order)
		return false;

4163 4164 4165
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4166 4167 4168 4169 4170
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4171 4172
	if (compaction_failed(compact_result))
		goto check_priority;
4173

4174 4175 4176 4177 4178 4179 4180 4181 4182
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4183 4184 4185
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4186 4187
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4188
	 */
4189
	if (compaction_withdrawn(compact_result)) {
4190
		goto check_priority;
4191
	}
4192 4193

	/*
4194
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4195 4196 4197 4198 4199 4200 4201 4202
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4203 4204 4205 4206
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4207

4208 4209 4210 4211 4212
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4213 4214
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4215

4216
	if (*compact_priority > min_priority) {
4217 4218
		(*compact_priority)--;
		*compaction_retries = 0;
4219
		ret = true;
4220
	}
4221 4222 4223
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4224
}
4225 4226 4227
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4228
		unsigned int alloc_flags, const struct alloc_context *ac,
4229
		enum compact_priority prio, enum compact_result *compact_result)
4230
{
4231
	*compact_result = COMPACT_SKIPPED;
4232 4233
	return NULL;
}
4234 4235

static inline bool
4236 4237
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4238
		     enum compact_priority *compact_priority,
4239
		     int *compaction_retries)
4240
{
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4253 4254
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4255
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4256
					ac->highest_zoneidx, alloc_flags))
4257 4258
			return true;
	}
4259 4260
	return false;
}
4261
#endif /* CONFIG_COMPACTION */
4262

4263
#ifdef CONFIG_LOCKDEP
4264
static struct lockdep_map __fs_reclaim_map =
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4276
	if (current->flags & PF_MEMALLOC)
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4299 4300 4301
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4302
		__fs_reclaim_acquire();
4303 4304 4305 4306 4307 4308
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4309
		__fs_reclaim_release();
4310 4311 4312 4313
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4314
/* Perform direct synchronous page reclaim */
4315
static unsigned long
4316 4317
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4318
{
4319
	unsigned int noreclaim_flag;
4320
	unsigned long pflags, progress;
4321 4322 4323 4324 4325

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4326
	psi_memstall_enter(&pflags);
4327
	fs_reclaim_acquire(gfp_mask);
4328
	noreclaim_flag = memalloc_noreclaim_save();
4329

4330 4331
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4332

4333
	memalloc_noreclaim_restore(noreclaim_flag);
4334
	fs_reclaim_release(gfp_mask);
4335
	psi_memstall_leave(&pflags);
4336 4337 4338

	cond_resched();

4339 4340 4341 4342 4343 4344
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4345
		unsigned int alloc_flags, const struct alloc_context *ac,
4346
		unsigned long *did_some_progress)
4347 4348 4349 4350
{
	struct page *page = NULL;
	bool drained = false;

4351
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4352 4353
	if (unlikely(!(*did_some_progress)))
		return NULL;
4354

4355
retry:
4356
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4357 4358 4359

	/*
	 * If an allocation failed after direct reclaim, it could be because
4360
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4361
	 * Shrink them and try again
4362 4363
	 */
	if (!page && !drained) {
4364
		unreserve_highatomic_pageblock(ac, false);
4365
		drain_all_pages(NULL);
4366 4367 4368 4369
		drained = true;
		goto retry;
	}

4370 4371 4372
	return page;
}

4373 4374
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4375 4376 4377
{
	struct zoneref *z;
	struct zone *zone;
4378
	pg_data_t *last_pgdat = NULL;
4379
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4380

4381
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4382
					ac->nodemask) {
4383
		if (last_pgdat != zone->zone_pgdat)
4384
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4385 4386
		last_pgdat = zone->zone_pgdat;
	}
4387 4388
}

4389
static inline unsigned int
4390 4391
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4392
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4393

4394 4395 4396 4397 4398
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4399
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4400
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4401

4402 4403 4404 4405
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4406
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4407
	 */
4408 4409
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4410

4411
	if (gfp_mask & __GFP_ATOMIC) {
4412
		/*
4413 4414
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4415
		 */
4416
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4417
			alloc_flags |= ALLOC_HARDER;
4418
		/*
4419
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4420
		 * comment for __cpuset_node_allowed().
4421
		 */
4422
		alloc_flags &= ~ALLOC_CPUSET;
4423
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4424 4425
		alloc_flags |= ALLOC_HARDER;

4426 4427
	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);

4428 4429 4430
	return alloc_flags;
}

4431
static bool oom_reserves_allowed(struct task_struct *tsk)
4432
{
4433 4434 4435 4436 4437 4438 4439 4440
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4441 4442
		return false;

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4454
	if (gfp_mask & __GFP_MEMALLOC)
4455
		return ALLOC_NO_WATERMARKS;
4456
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4457 4458 4459 4460 4461 4462 4463
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4464

4465 4466 4467 4468 4469 4470
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4471 4472
}

M
Michal Hocko 已提交
4473 4474 4475
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4476 4477 4478 4479
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4480 4481 4482 4483 4484 4485
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4486
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4487 4488 4489
{
	struct zone *zone;
	struct zoneref *z;
4490
	bool ret = false;
M
Michal Hocko 已提交
4491

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4502 4503 4504 4505
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4506 4507
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4508
		return unreserve_highatomic_pageblock(ac, true);
4509
	}
M
Michal Hocko 已提交
4510

4511 4512 4513 4514 4515
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4516
	 */
4517 4518
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4519
		unsigned long available;
4520
		unsigned long reclaimable;
4521 4522
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4523

4524 4525
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4526 4527

		/*
4528 4529
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4530
		 */
4531
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4532
				ac->highest_zoneidx, alloc_flags, available);
4533 4534 4535
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4536 4537 4538 4539 4540 4541 4542
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4543
				unsigned long write_pending;
4544

4545 4546
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4547

4548
				if (2 * write_pending > reclaimable) {
4549 4550 4551 4552
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4553

4554 4555
			ret = true;
			goto out;
M
Michal Hocko 已提交
4556 4557 4558
		}
	}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4607 4608
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4609
						struct alloc_context *ac)
4610
{
4611
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4612
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4613
	struct page *page = NULL;
4614
	unsigned int alloc_flags;
4615
	unsigned long did_some_progress;
4616
	enum compact_priority compact_priority;
4617
	enum compact_result compact_result;
4618 4619 4620
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4621
	int reserve_flags;
L
Linus Torvalds 已提交
4622

4623 4624 4625 4626 4627 4628 4629 4630
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4631 4632 4633 4634 4635
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4636 4637 4638 4639 4640 4641 4642 4643

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4644 4645 4646 4647 4648 4649 4650
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4651
					ac->highest_zoneidx, ac->nodemask);
4652 4653 4654
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4655
	if (alloc_flags & ALLOC_KSWAPD)
4656
		wake_all_kswapds(order, gfp_mask, ac);
4657 4658 4659 4660 4661 4662 4663 4664 4665

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4666 4667
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4668 4669 4670 4671 4672 4673
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4674
	 */
4675 4676 4677 4678
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4679 4680
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4681
						INIT_COMPACT_PRIORITY,
4682 4683 4684 4685
						&compact_result);
		if (page)
			goto got_pg;

4686 4687 4688 4689 4690
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4691 4692 4693 4694
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4695 4696
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4711 4712

			/*
4713 4714
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4715
			 * using async compaction.
4716
			 */
4717
			compact_priority = INIT_COMPACT_PRIORITY;
4718 4719
		}
	}
4720

4721
retry:
4722
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4723
	if (alloc_flags & ALLOC_KSWAPD)
4724
		wake_all_kswapds(order, gfp_mask, ac);
4725

4726 4727
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
4728
		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4729

4730
	/*
4731 4732 4733
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4734
	 */
4735
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4736
		ac->nodemask = NULL;
4737
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4738
					ac->highest_zoneidx, ac->nodemask);
4739 4740
	}

4741
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4742
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4743 4744
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4745

4746
	/* Caller is not willing to reclaim, we can't balance anything */
4747
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4748 4749
		goto nopage;

4750 4751
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4752 4753
		goto nopage;

4754 4755 4756 4757 4758 4759 4760
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4761
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4762
					compact_priority, &compact_result);
4763 4764
	if (page)
		goto got_pg;
4765

4766 4767
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4768
		goto nopage;
4769

M
Michal Hocko 已提交
4770 4771
	/*
	 * Do not retry costly high order allocations unless they are
4772
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4773
	 */
4774
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4775
		goto nopage;
M
Michal Hocko 已提交
4776 4777

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4778
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4779 4780
		goto retry;

4781 4782 4783 4784 4785 4786 4787
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4788
			should_compact_retry(ac, order, alloc_flags,
4789
				compact_result, &compact_priority,
4790
				&compaction_retries))
4791 4792
		goto retry;

4793 4794 4795

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4796 4797
		goto retry_cpuset;

4798 4799 4800 4801 4802
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4803
	/* Avoid allocations with no watermarks from looping endlessly */
4804
	if (tsk_is_oom_victim(current) &&
4805
	    (alloc_flags & ALLOC_OOM ||
4806
	     (gfp_mask & __GFP_NOMEMALLOC)))
4807 4808
		goto nopage;

4809
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4810 4811
	if (did_some_progress) {
		no_progress_loops = 0;
4812
		goto retry;
M
Michal Hocko 已提交
4813
	}
4814

L
Linus Torvalds 已提交
4815
nopage:
4816 4817
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4818 4819
		goto retry_cpuset;

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4857 4858 4859 4860
		cond_resched();
		goto retry;
	}
fail:
4861
	warn_alloc(gfp_mask, ac->nodemask,
4862
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4863
got_pg:
4864
	return page;
L
Linus Torvalds 已提交
4865
}
4866

4867
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4868
		int preferred_nid, nodemask_t *nodemask,
4869 4870
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4871
{
4872
	ac->highest_zoneidx = gfp_zone(gfp_mask);
4873
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4874
	ac->nodemask = nodemask;
4875
	ac->migratetype = gfp_migratetype(gfp_mask);
4876

4877
	if (cpusets_enabled()) {
4878
		*alloc_mask |= __GFP_HARDWALL;
4879 4880 4881 4882 4883
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
4884
			ac->nodemask = &cpuset_current_mems_allowed;
4885 4886
		else
			*alloc_flags |= ALLOC_CPUSET;
4887 4888
	}

4889 4890
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4891

4892
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4893 4894

	if (should_fail_alloc_page(gfp_mask, order))
4895
		return false;
4896

4897
	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4898

4899
	/* Dirty zone balancing only done in the fast path */
4900
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4901

4902 4903 4904 4905 4906
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4907
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4908
					ac->highest_zoneidx, ac->nodemask);
4909 4910

	return true;
4911 4912 4913 4914 4915 4916
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4917 4918
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4919 4920 4921
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4922
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4923 4924
	struct alloc_context ac = { };

4925 4926 4927 4928 4929 4930 4931 4932 4933
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4934
	gfp_mask &= gfp_allowed_mask;
4935
	alloc_mask = gfp_mask;
4936
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4937 4938
		return NULL;

4939 4940 4941 4942
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4943
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4944

4945
	/* First allocation attempt */
4946
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4947 4948
	if (likely(page))
		goto out;
4949

4950
	/*
4951 4952 4953 4954
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4955
	 */
4956
	alloc_mask = current_gfp_context(gfp_mask);
4957
	ac.spread_dirty_pages = false;
4958

4959 4960 4961 4962
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4963
	ac.nodemask = nodemask;
4964

4965
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4966

4967
out:
4968
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4969
	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4970 4971
		__free_pages(page, order);
		page = NULL;
4972 4973
	}

4974 4975
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4976
	return page;
L
Linus Torvalds 已提交
4977
}
4978
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4979 4980

/*
4981 4982 4983
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4984
 */
H
Harvey Harrison 已提交
4985
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4986
{
4987 4988
	struct page *page;

4989
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4990 4991 4992 4993 4994 4995
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4996
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4997
{
4998
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4999 5000 5001
}
EXPORT_SYMBOL(get_zeroed_page);

5002
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
5003
{
5004 5005 5006
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
5007
		__free_pages_ok(page, order, FPI_NONE);
L
Linus Torvalds 已提交
5008 5009
}

5010 5011 5012 5013
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
5014 5015 5016
	else if (!PageHead(page))
		while (order-- > 0)
			free_the_page(page + (1 << order), order);
5017
}
L
Linus Torvalds 已提交
5018 5019
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
5020
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
5021 5022
{
	if (addr != 0) {
N
Nick Piggin 已提交
5023
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
5041 5042
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5062
void __page_frag_cache_drain(struct page *page, unsigned int count)
5063 5064 5065
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5066 5067
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5068
}
5069
EXPORT_SYMBOL(__page_frag_cache_drain);
5070

5071 5072
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
5073 5074 5075 5076 5077 5078 5079
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5080
		page = __page_frag_cache_refill(nc, gfp_mask);
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5091
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5092 5093

		/* reset page count bias and offset to start of new frag */
5094
		nc->pfmemalloc = page_is_pfmemalloc(page);
5095
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5096 5097 5098 5099 5100 5101 5102
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5103
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5104 5105
			goto refill;

5106 5107 5108 5109 5110
		if (unlikely(nc->pfmemalloc)) {
			free_the_page(page, compound_order(page));
			goto refill;
		}

5111 5112 5113 5114 5115
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5116
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5117 5118

		/* reset page count bias and offset to start of new frag */
5119
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5120 5121 5122 5123 5124 5125 5126 5127
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
5128
EXPORT_SYMBOL(page_frag_alloc);
5129 5130 5131 5132

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5133
void page_frag_free(void *addr)
5134 5135 5136
{
	struct page *page = virt_to_head_page(addr);

5137 5138
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5139
}
5140
EXPORT_SYMBOL(page_frag_free);
5141

5142 5143
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5158 5159 5160
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5161
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5162 5163 5164 5165 5166 5167 5168 5169
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5170 5171
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5172 5173 5174 5175 5176 5177
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5178 5179 5180
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5181
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5182
	return make_alloc_exact(addr, order, size);
5183 5184 5185
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5186 5187 5188
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5189
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5190
 * @size: the number of bytes to allocate
5191
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5192 5193 5194
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5195 5196
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5197
 */
5198
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5199
{
5200
	unsigned int order = get_order(size);
5201 5202 5203 5204 5205 5206
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5207 5208 5209 5210 5211
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5231 5232 5233 5234
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5235
 * nr_free_zone_pages() counts the number of pages which are beyond the
5236 5237
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5238 5239
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5240 5241
 *
 * Return: number of pages beyond high watermark.
5242
 */
5243
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5244
{
5245
	struct zoneref *z;
5246 5247
	struct zone *zone;

5248
	/* Just pick one node, since fallback list is circular */
5249
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5250

5251
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5252

5253
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5254
		unsigned long size = zone_managed_pages(zone);
5255
		unsigned long high = high_wmark_pages(zone);
5256 5257
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5258 5259 5260 5261 5262
	}

	return sum;
}

5263 5264 5265 5266 5267
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5268 5269 5270
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5271
 */
5272
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5273
{
A
Al Viro 已提交
5274
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5275
}
5276
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5277

5278
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5279
{
5280
	if (IS_ENABLED(CONFIG_NUMA))
5281
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5282 5283
}

5284 5285 5286 5287 5288 5289
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5290
	unsigned long reclaimable;
5291 5292 5293 5294
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5295
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5296 5297

	for_each_zone(zone)
5298
		wmark_low += low_wmark_pages(zone);
5299 5300 5301 5302 5303

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5304
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5316 5317 5318
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5319
	 */
5320 5321
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5322
	available += reclaimable - min(reclaimable / 2, wmark_low);
5323

5324 5325 5326 5327 5328 5329
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5330 5331
void si_meminfo(struct sysinfo *val)
{
5332
	val->totalram = totalram_pages();
5333
	val->sharedram = global_node_page_state(NR_SHMEM);
5334
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5335
	val->bufferram = nr_blockdev_pages();
5336
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341 5342 5343 5344 5345
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5346 5347
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5348 5349
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5350 5351
	pg_data_t *pgdat = NODE_DATA(nid);

5352
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5353
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5354
	val->totalram = managed_pages;
5355
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5356
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5357
#ifdef CONFIG_HIGHMEM
5358 5359 5360 5361
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5362
			managed_highpages += zone_managed_pages(zone);
5363 5364 5365 5366 5367
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5368
#else
5369 5370
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5371
#endif
L
Linus Torvalds 已提交
5372 5373 5374 5375
	val->mem_unit = PAGE_SIZE;
}
#endif

5376
/*
5377 5378
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5379
 */
5380
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5381 5382
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5383
		return false;
5384

5385 5386 5387 5388 5389 5390 5391 5392 5393
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5394 5395
}

L
Linus Torvalds 已提交
5396 5397
#define K(x) ((x) << (PAGE_SHIFT-10))

5398 5399 5400 5401 5402
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5403 5404
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5405 5406 5407
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5408
#ifdef CONFIG_MEMORY_ISOLATION
5409
		[MIGRATE_ISOLATE]	= 'I',
5410
#endif
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5422
	printk(KERN_CONT "(%s) ", tmp);
5423 5424
}

L
Linus Torvalds 已提交
5425 5426 5427 5428
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5429 5430 5431 5432
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5433
 */
5434
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5435
{
5436
	unsigned long free_pcp = 0;
5437
	int cpu;
L
Linus Torvalds 已提交
5438
	struct zone *zone;
M
Mel Gorman 已提交
5439
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5440

5441
	for_each_populated_zone(zone) {
5442
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5443
			continue;
5444

5445 5446
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5447 5448
	}

K
KOSAKI Motohiro 已提交
5449 5450
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5451
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5452
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5453
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5454
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5455 5456 5457 5458 5459 5460 5461
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5462 5463
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5464 5465
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5466
		global_node_page_state(NR_FILE_MAPPED),
5467
		global_node_page_state(NR_SHMEM),
5468 5469 5470
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5471
		free_pcp,
5472
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5473

M
Mel Gorman 已提交
5474
	for_each_online_pgdat(pgdat) {
5475
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5476 5477
			continue;

M
Mel Gorman 已提交
5478 5479 5480 5481 5482 5483 5484 5485
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5486
			" mapped:%lukB"
5487 5488 5489 5490 5491 5492 5493 5494 5495
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5496 5497 5498 5499
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
M
Mel Gorman 已提交
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5510
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5511 5512
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5513
			K(node_page_state(pgdat, NR_SHMEM)),
5514 5515 5516 5517 5518 5519 5520
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5521 5522 5523 5524
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5525 5526
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5527 5528
	}

5529
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5530 5531
		int i;

5532
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5533
			continue;
5534 5535 5536 5537 5538

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5539
		show_node(zone);
5540 5541
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5542 5543 5544 5545
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5546
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5547 5548 5549 5550 5551
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5552
			" writepending:%lukB"
L
Linus Torvalds 已提交
5553
			" present:%lukB"
5554
			" managed:%lukB"
5555 5556 5557
			" mlocked:%lukB"
			" pagetables:%lukB"
			" bounce:%lukB"
5558 5559
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5560
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5561 5562
			"\n",
			zone->name,
5563
			K(zone_page_state(zone, NR_FREE_PAGES)),
5564 5565 5566
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5567
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5568 5569 5570 5571 5572
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5573
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5574
			K(zone->present_pages),
5575
			K(zone_managed_pages(zone)),
5576 5577 5578
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5579 5580
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5581
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5582 5583
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5584 5585
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5586 5587
	}

5588
	for_each_populated_zone(zone) {
5589 5590
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5591
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5592

5593
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5594
			continue;
L
Linus Torvalds 已提交
5595
		show_node(zone);
5596
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5597 5598 5599

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5600 5601 5602 5603
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5604
			total += nr[order] << order;
5605 5606 5607

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5608
				if (!free_area_empty(area, type))
5609 5610
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5611 5612
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5613
		for (order = 0; order < MAX_ORDER; order++) {
5614 5615
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5616 5617 5618
			if (nr[order])
				show_migration_types(types[order]);
		}
5619
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5620 5621
	}

5622 5623
	hugetlb_show_meminfo();

5624
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5625

L
Linus Torvalds 已提交
5626 5627 5628
	show_swap_cache_info();
}

5629 5630 5631 5632 5633 5634
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5635 5636
/*
 * Builds allocation fallback zone lists.
5637 5638
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5639
 */
5640
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5641
{
5642
	struct zone *zone;
5643
	enum zone_type zone_type = MAX_NR_ZONES;
5644
	int nr_zones = 0;
5645 5646

	do {
5647
		zone_type--;
5648
		zone = pgdat->node_zones + zone_type;
5649
		if (managed_zone(zone)) {
5650
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5651
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5652
		}
5653
	} while (zone_type);
5654

5655
	return nr_zones;
L
Linus Torvalds 已提交
5656 5657 5658
}

#ifdef CONFIG_NUMA
5659 5660 5661

static int __parse_numa_zonelist_order(char *s)
{
5662 5663 5664 5665 5666 5667 5668 5669
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5670 5671 5672 5673 5674
		return -EINVAL;
	}
	return 0;
}

5675 5676
char numa_zonelist_order[] = "Node";

5677 5678 5679
/*
 * sysctl handler for numa_zonelist_order
 */
5680
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5681
		void *buffer, size_t *length, loff_t *ppos)
5682
{
5683 5684 5685
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
5686 5687 5688
}


5689
#define MAX_NODE_LOAD (nr_online_nodes)
5690 5691
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5692
/**
5693
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5704 5705
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5706
 */
5707
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5708
{
5709
	int n, val;
L
Linus Torvalds 已提交
5710
	int min_val = INT_MAX;
D
David Rientjes 已提交
5711
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
5712

5713 5714 5715 5716 5717
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5718

5719
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725 5726 5727

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5728 5729 5730
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5731
		/* Give preference to headless and unused nodes */
5732
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5751 5752 5753 5754 5755 5756

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5757 5758
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5759
{
5760 5761 5762 5763 5764 5765 5766 5767 5768
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5769

5770 5771 5772 5773 5774
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5775 5776
}

5777 5778 5779 5780 5781
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5782 5783
	struct zoneref *zonerefs;
	int nr_zones;
5784

5785 5786 5787 5788 5789
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5790 5791
}

5792 5793 5794 5795 5796 5797 5798 5799 5800
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5801 5802
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
5803
	nodemask_t used_mask = NODE_MASK_NONE;
5804
	int local_node, prev_node;
L
Linus Torvalds 已提交
5805 5806 5807

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5808
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5809
	prev_node = local_node;
5810 5811

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5812 5813 5814 5815 5816 5817
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5818 5819
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5820 5821
			node_load[node] = load;

5822
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5823 5824 5825
		prev_node = node;
		load--;
	}
5826

5827
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5828
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5829 5830
}

5831 5832 5833 5834 5835 5836 5837 5838 5839
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5840
	struct zoneref *z;
5841

5842
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5843
				   gfp_zone(GFP_KERNEL),
5844
				   NULL);
5845
	return zone_to_nid(z->zone);
5846 5847
}
#endif
5848

5849 5850
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5851 5852
#else	/* CONFIG_NUMA */

5853
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5854
{
5855
	int node, local_node;
5856 5857
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5858 5859 5860

	local_node = pgdat->node_id;

5861 5862 5863
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5864

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5876 5877
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5878
	}
5879 5880 5881
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5882 5883
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5884 5885
	}

5886 5887
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5888 5889 5890 5891
}

#endif	/* CONFIG_NUMA */

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5909
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5910

5911
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5912
{
5913
	int nid;
5914
	int __maybe_unused cpu;
5915
	pg_data_t *self = data;
5916 5917 5918
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5919

5920 5921 5922
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5923

5924 5925 5926 5927
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5928 5929
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5930 5931 5932
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5933

5934 5935
			build_zonelists(pgdat);
		}
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5946
		for_each_online_cpu(cpu)
5947
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5948
#endif
5949
	}
5950 5951

	spin_unlock(&lock);
5952 5953
}

5954 5955 5956
static noinline void __init
build_all_zonelists_init(void)
{
5957 5958
	int cpu;

5959
	__build_all_zonelists(NULL);
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5977 5978 5979 5980
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5981 5982
/*
 * unless system_state == SYSTEM_BOOTING.
5983
 *
5984
 * __ref due to call of __init annotated helper build_all_zonelists_init
5985
 * [protected by SYSTEM_BOOTING].
5986
 */
5987
void __ref build_all_zonelists(pg_data_t *pgdat)
5988
{
D
David Hildenbrand 已提交
5989 5990
	unsigned long vm_total_pages;

5991
	if (system_state == SYSTEM_BOOTING) {
5992
		build_all_zonelists_init();
5993
	} else {
5994
		__build_all_zonelists(pgdat);
5995 5996
		/* cpuset refresh routine should be here */
	}
5997 5998
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5999 6000 6001 6002 6003 6004 6005
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
6006
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6007 6008 6009 6010
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

6011
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
6012 6013 6014
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
6015
#ifdef CONFIG_NUMA
6016
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6017
#endif
L
Linus Torvalds 已提交
6018 6019
}

6020 6021 6022 6023 6024 6025 6026 6027
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6028
			for_each_mem_region(r) {
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
6042 6043
/*
 * Initially all pages are reserved - free ones are freed
6044
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
6045
 * done. Non-atomic initialization, single-pass.
6046 6047 6048 6049
 *
 * All aligned pageblocks are initialized to the specified migratetype
 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 * zone stats (e.g., nr_isolate_pageblock) are touched.
L
Linus Torvalds 已提交
6050
 */
6051
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6052 6053 6054
		unsigned long start_pfn,
		enum meminit_context context,
		struct vmem_altmap *altmap, int migratetype)
L
Linus Torvalds 已提交
6055
{
6056
	unsigned long pfn, end_pfn = start_pfn + size;
6057
	struct page *page;
L
Linus Torvalds 已提交
6058

6059 6060 6061
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

6062
#ifdef CONFIG_ZONE_DEVICE
6063 6064
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6065 6066 6067 6068
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6069
	 */
6070 6071 6072 6073 6074 6075 6076 6077 6078
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6079

6080
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6081
		/*
6082 6083
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6084
		 */
6085
		if (context == MEMINIT_EARLY) {
6086 6087 6088 6089
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
6090
		}
6091

6092 6093
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6094
		if (context == MEMINIT_HOTPLUG)
6095
			__SetPageReserved(page);
6096

6097
		/*
6098 6099 6100
		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
		 * such that unmovable allocations won't be scattered all
		 * over the place during system boot.
6101
		 */
6102
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6103
			set_pageblock_migratetype(page, migratetype);
6104
			cond_resched();
6105
		}
6106
		pfn++;
L
Linus Torvalds 已提交
6107 6108 6109
	}
}

6110 6111 6112
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6113
				   unsigned long nr_pages,
6114 6115
				   struct dev_pagemap *pgmap)
{
6116
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6117
	struct pglist_data *pgdat = zone->zone_pgdat;
6118
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6119 6120 6121 6122
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6123
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6124 6125 6126 6127 6128 6129 6130
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6131
	if (altmap) {
6132
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6133
		nr_pages = end_pfn - start_pfn;
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6151 6152 6153
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6154 6155
		 */
		page->pgmap = pgmap;
6156
		page->zone_device_data = NULL;
6157 6158 6159 6160 6161 6162 6163 6164

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
6165
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6166
		 * because this is done early in section_activate()
6167
		 */
6168
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6169 6170 6171 6172 6173
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6174
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6175
		nr_pages, jiffies_to_msecs(jiffies - start));
6176 6177 6178
}

#endif
6179
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6180
{
6181
	unsigned int order, t;
6182 6183
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6184 6185 6186 6187
		zone->free_area[order].nr_free = 0;
	}
}

6188
void __meminit __weak memmap_init(unsigned long size, int nid,
6189 6190
				  unsigned long zone,
				  unsigned long range_start_pfn)
6191
{
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
	unsigned long start_pfn, end_pfn;
	unsigned long range_end_pfn = range_start_pfn + size;
	int i;

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);

		if (end_pfn > start_pfn) {
			size = end_pfn - start_pfn;
			memmap_init_zone(size, nid, zone, start_pfn,
6203
					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6204 6205
		}
	}
6206
}
L
Linus Torvalds 已提交
6207

6208
static int zone_batchsize(struct zone *zone)
6209
{
6210
#ifdef CONFIG_MMU
6211 6212 6213 6214
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6215
	 * size of the zone.
6216
	 */
6217
	batch = zone_managed_pages(zone) / 1024;
6218 6219 6220
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6221 6222 6223 6224 6225
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6226 6227 6228
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6229
	 *
6230 6231 6232 6233
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6234
	 */
6235
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6236

6237
	return batch;
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6255 6256
}

6257 6258 6259 6260 6261 6262 6263
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6264
 * those fields changing asynchronously (acording to the above rule).
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6284
/* a companion to pageset_set_high() */
6285 6286
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6287
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6288 6289
}

6290
static void pageset_init(struct per_cpu_pageset *p)
6291 6292
{
	struct per_cpu_pages *pcp;
6293
	int migratetype;
6294

6295 6296
	memset(p, 0, sizeof(*p));

6297
	pcp = &p->pcp;
6298 6299
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6300 6301
}

6302 6303 6304 6305 6306 6307
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6308
/*
6309
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6310 6311
 * to the value high for the pageset p.
 */
6312
static void pageset_set_high(struct per_cpu_pageset *p,
6313 6314
				unsigned long high)
{
6315 6316 6317
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6318

6319
	pageset_update(&p->pcp, high, batch);
6320 6321
}

6322 6323
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6324 6325
{
	if (percpu_pagelist_fraction)
6326
		pageset_set_high(pcp,
6327
			(zone_managed_pages(zone) /
6328 6329 6330 6331 6332
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6333 6334 6335 6336 6337 6338 6339 6340
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6341
void __meminit setup_zone_pageset(struct zone *zone)
6342 6343 6344
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6345 6346
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6347 6348
}

6349
/*
6350 6351
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6352
 */
6353
void __init setup_per_cpu_pageset(void)
6354
{
6355
	struct pglist_data *pgdat;
6356
	struct zone *zone;
6357
	int __maybe_unused cpu;
6358

6359 6360
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6361

6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
		memset(pcp->vm_numa_stat_diff, 0,
		       sizeof(pcp->vm_numa_stat_diff));
	}
#endif

6376 6377 6378
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6379 6380
}

6381
static __meminit void zone_pcp_init(struct zone *zone)
6382
{
6383 6384 6385 6386 6387 6388
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6389

6390
	if (populated_zone(zone))
6391 6392 6393
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6394 6395
}

6396
void __meminit init_currently_empty_zone(struct zone *zone,
6397
					unsigned long zone_start_pfn,
6398
					unsigned long size)
6399 6400
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6401
	int zone_idx = zone_idx(zone) + 1;
6402

6403 6404
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6405 6406 6407

	zone->zone_start_pfn = zone_start_pfn;

6408 6409 6410 6411 6412 6413
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6414
	zone_init_free_lists(zone);
6415
	zone->initialized = 1;
6416 6417
}

6418 6419
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6420 6421 6422
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6423 6424
 *
 * It returns the start and end page frame of a node based on information
6425
 * provided by memblock_set_node(). If called for a node
6426
 * with no available memory, a warning is printed and the start and end
6427
 * PFNs will be 0.
6428
 */
6429
void __init get_pfn_range_for_nid(unsigned int nid,
6430 6431
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6432
	unsigned long this_start_pfn, this_end_pfn;
6433
	int i;
6434

6435 6436 6437
	*start_pfn = -1UL;
	*end_pfn = 0;

6438 6439 6440
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6441 6442
	}

6443
	if (*start_pfn == -1UL)
6444 6445 6446
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6447 6448 6449 6450 6451
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6452
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6470
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6471 6472 6473 6474 6475 6476 6477
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6478
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6493 6494 6495 6496 6497 6498
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6499 6500 6501 6502 6503 6504
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6505 6506 6507 6508
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6509
static unsigned long __init zone_spanned_pages_in_node(int nid,
6510
					unsigned long zone_type,
6511 6512
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6513
					unsigned long *zone_start_pfn,
6514
					unsigned long *zone_end_pfn)
6515
{
6516 6517
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6518
	/* When hotadd a new node from cpu_up(), the node should be empty */
6519 6520 6521
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6522
	/* Get the start and end of the zone */
6523 6524
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6525 6526
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6527
				zone_start_pfn, zone_end_pfn);
6528 6529

	/* Check that this node has pages within the zone's required range */
6530
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6531 6532 6533
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6534 6535
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6536 6537

	/* Return the spanned pages */
6538
	return *zone_end_pfn - *zone_start_pfn;
6539 6540 6541 6542
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6543
 * then all holes in the requested range will be accounted for.
6544
 */
6545
unsigned long __init __absent_pages_in_range(int nid,
6546 6547 6548
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6549 6550 6551
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6552

6553 6554 6555 6556
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6557
	}
6558
	return nr_absent;
6559 6560 6561 6562 6563 6564 6565
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6566
 * Return: the number of pages frames in memory holes within a range.
6567 6568 6569 6570 6571 6572 6573 6574
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6575
static unsigned long __init zone_absent_pages_in_node(int nid,
6576
					unsigned long zone_type,
6577
					unsigned long node_start_pfn,
6578
					unsigned long node_end_pfn)
6579
{
6580 6581
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6582
	unsigned long zone_start_pfn, zone_end_pfn;
6583
	unsigned long nr_absent;
6584

6585
	/* When hotadd a new node from cpu_up(), the node should be empty */
6586 6587 6588
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6589 6590
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6591

M
Mel Gorman 已提交
6592 6593 6594
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6595 6596 6597 6598 6599 6600 6601
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6602 6603 6604 6605
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

6606
		for_each_mem_region(r) {
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6619 6620 6621 6622
		}
	}

	return nr_absent;
6623
}
6624

6625
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6626
						unsigned long node_start_pfn,
6627
						unsigned long node_end_pfn)
6628
{
6629
	unsigned long realtotalpages = 0, totalpages = 0;
6630 6631
	enum zone_type i;

6632 6633
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6634
		unsigned long zone_start_pfn, zone_end_pfn;
6635
		unsigned long spanned, absent;
6636
		unsigned long size, real_size;
6637

6638 6639 6640 6641 6642 6643 6644 6645
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
6646 6647 6648 6649

		size = spanned;
		real_size = size - absent;

6650 6651 6652 6653
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6654 6655 6656 6657 6658 6659 6660 6661
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6662 6663 6664 6665 6666
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6667 6668 6669
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6670 6671
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6672 6673 6674
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6675
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6676 6677 6678
{
	unsigned long usemapsize;

6679
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6680 6681
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6682 6683 6684 6685 6686 6687
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6688
static void __ref setup_usemap(struct pglist_data *pgdat,
6689 6690 6691
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6692
{
6693
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6694
	zone->pageblock_flags = NULL;
6695
	if (usemapsize) {
6696
		zone->pageblock_flags =
6697 6698
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6699 6700 6701 6702
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6703 6704
}
#else
6705 6706
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6707 6708
#endif /* CONFIG_SPARSEMEM */

6709
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6710

6711
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6712
void __init set_pageblock_order(void)
6713
{
6714 6715
	unsigned int order;

6716 6717 6718 6719
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6720 6721 6722 6723 6724
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6725 6726
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6727 6728
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6729 6730 6731 6732 6733
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6734 6735
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6736 6737 6738
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6739
 */
6740
void __init set_pageblock_order(void)
6741 6742
{
}
6743 6744 6745

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6746
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6747
						unsigned long present_pages)
6748 6749 6750 6751 6752 6753 6754 6755
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6756
	 * populated regions may not be naturally aligned on page boundary.
6757 6758 6759 6760 6761 6762 6763 6764 6765
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6766 6767 6768
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6769 6770 6771 6772 6773
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6788
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6789
{
6790
	pgdat_resize_init(pgdat);
6791 6792 6793 6794

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6795
	init_waitqueue_head(&pgdat->kswapd_wait);
6796
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6797

6798
	pgdat_page_ext_init(pgdat);
6799
	spin_lock_init(&pgdat->lru_lock);
6800
	lruvec_init(&pgdat->__lruvec);
6801 6802 6803 6804 6805
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6806
	atomic_long_set(&zone->managed_pages, remaining_pages);
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6847

6848
	pgdat_init_internals(pgdat);
6849 6850
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6851 6852
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6853
		unsigned long size, freesize, memmap_pages;
6854
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6855

6856
		size = zone->spanned_pages;
6857
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6858

6859
		/*
6860
		 * Adjust freesize so that it accounts for how much memory
6861 6862 6863
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6864
		memmap_pages = calc_memmap_size(size, freesize);
6865 6866 6867 6868 6869 6870 6871 6872
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6873
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6874 6875
					zone_names[j], memmap_pages, freesize);
		}
6876

6877
		/* Account for reserved pages */
6878 6879
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6880
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6881
					zone_names[0], dma_reserve);
6882 6883
		}

6884
		if (!is_highmem_idx(j))
6885
			nr_kernel_pages += freesize;
6886 6887 6888
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6889
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6890

6891 6892 6893 6894 6895
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6896
		zone_init_internals(zone, j, nid, freesize);
6897

6898
		if (!size)
L
Linus Torvalds 已提交
6899 6900
			continue;

6901
		set_pageblock_order();
6902 6903
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6904
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6905 6906 6907
	}
}

6908
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6909
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6910
{
6911
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6912 6913
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6914 6915 6916 6917
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6918 6919
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6920 6921
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6922
		unsigned long size, end;
A
Andy Whitcroft 已提交
6923 6924
		struct page *map;

6925 6926 6927 6928 6929
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6930
		end = pgdat_end_pfn(pgdat);
6931 6932
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6933 6934
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6935 6936 6937
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6938
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6939
	}
6940 6941 6942
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6943
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6944 6945 6946
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6947
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6948
		mem_map = NODE_DATA(0)->node_mem_map;
6949
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6950
			mem_map -= offset;
6951
	}
L
Linus Torvalds 已提交
6952 6953
#endif
}
6954 6955 6956
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6957

6958 6959 6960 6961 6962 6963 6964 6965 6966
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6967
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
6968
{
6969
	pg_data_t *pgdat = NODE_DATA(nid);
6970 6971
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6972

6973
	/* pg_data_t should be reset to zero when it's allocated */
6974
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6975

6976
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6977

L
Linus Torvalds 已提交
6978
	pgdat->node_id = nid;
6979
	pgdat->node_start_pfn = start_pfn;
6980
	pgdat->per_cpu_nodestats = NULL;
6981

6982
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6983 6984
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6985
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
6986 6987

	alloc_node_mem_map(pgdat);
6988
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6989

6990
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6991 6992
}

6993
void __init free_area_init_memoryless_node(int nid)
6994
{
6995
	free_area_init_node(nid);
6996 6997
}

M
Mike Rapoport 已提交
6998
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6999
/*
7000 7001
 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
 * PageReserved(). Return the number of struct pages that were initialized.
7002
 */
7003
static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
7014 7015 7016 7017 7018 7019 7020
		/*
		 * Use a fake node/zone (0) for now. Some of these pages
		 * (in memblock.reserved but not in memblock.memory) will
		 * get re-initialized via reserve_bootmem_region() later.
		 */
		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
		__SetPageReserved(pfn_to_page(pfn));
7021 7022 7023 7024 7025 7026
		pgcnt++;
	}

	return pgcnt;
}

7027 7028 7029 7030 7031
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
7032
 * flags). We must explicitly initialize those struct pages.
7033 7034 7035 7036
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
7037 7038
 * layout is manually configured via memmap=, or when the highest physical
 * address (max_pfn) does not end on a section boundary.
7039
 */
7040
static void __init init_unavailable_mem(void)
7041 7042 7043
{
	phys_addr_t start, end;
	u64 i, pgcnt;
7044
	phys_addr_t next = 0;
7045 7046

	/*
7047
	 * Loop through unavailable ranges not covered by memblock.memory.
7048 7049
	 */
	pgcnt = 0;
7050
	for_each_mem_range(i, &start, &end) {
7051
		if (next < start)
7052 7053
			pgcnt += init_unavailable_range(PFN_DOWN(next),
							PFN_UP(start));
7054 7055
		next = end;
	}
7056 7057 7058 7059 7060 7061 7062 7063

	/*
	 * Early sections always have a fully populated memmap for the whole
	 * section - see pfn_valid(). If the last section has holes at the
	 * end and that section is marked "online", the memmap will be
	 * considered initialized. Make sure that memmap has a well defined
	 * state.
	 */
7064 7065
	pgcnt += init_unavailable_range(PFN_DOWN(next),
					round_up(max_pfn, PAGES_PER_SECTION));
7066

7067 7068 7069 7070 7071
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
7072
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7073
}
7074 7075 7076 7077
#else
static inline void __init init_unavailable_mem(void)
{
}
M
Mike Rapoport 已提交
7078
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7079

M
Miklos Szeredi 已提交
7080 7081 7082 7083
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7084
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7085
{
7086
	unsigned int highest;
M
Miklos Szeredi 已提交
7087

7088
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7089 7090 7091 7092
	nr_node_ids = highest + 1;
}
#endif

7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7109
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7110 7111 7112 7113 7114
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7115
	unsigned long start, end, mask;
7116
	int last_nid = NUMA_NO_NODE;
7117
	int i, nid;
7118

7119
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7143 7144 7145
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7146
 * Return: the minimum PFN based on information provided via
7147
 * memblock_set_node().
7148 7149 7150
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7151
	return PHYS_PFN(memblock_start_of_DRAM());
7152 7153
}

7154 7155 7156
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7157
 * Populate N_MEMORY for calculating usable_nodes.
7158
 */
A
Adrian Bunk 已提交
7159
static unsigned long __init early_calculate_totalpages(void)
7160 7161
{
	unsigned long totalpages = 0;
7162 7163 7164 7165 7166
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7167

7168 7169
		totalpages += pages;
		if (pages)
7170
			node_set_state(nid, N_MEMORY);
7171
	}
7172
	return totalpages;
7173 7174
}

M
Mel Gorman 已提交
7175 7176 7177 7178 7179 7180
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7181
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7182 7183 7184 7185
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7186
	/* save the state before borrow the nodemask */
7187
	nodemask_t saved_node_state = node_states[N_MEMORY];
7188
	unsigned long totalpages = early_calculate_totalpages();
7189
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7190
	struct memblock_region *r;
7191 7192 7193 7194 7195 7196 7197 7198 7199

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7200
		for_each_mem_region(r) {
E
Emil Medve 已提交
7201
			if (!memblock_is_hotpluggable(r))
7202 7203
				continue;

7204
			nid = memblock_get_region_node(r);
7205

E
Emil Medve 已提交
7206
			usable_startpfn = PFN_DOWN(r->base);
7207 7208 7209 7210 7211 7212 7213
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7214

7215 7216 7217 7218 7219 7220
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

7221
		for_each_mem_region(r) {
7222 7223 7224
			if (memblock_is_mirror(r))
				continue;

7225
			nid = memblock_get_region_node(r);
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7240
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7241 7242 7243 7244

		goto out2;
	}

7245
	/*
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7273
		required_movablecore = min(totalpages, required_movablecore);
7274 7275 7276 7277 7278
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7279 7280 7281 7282 7283
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7284
		goto out;
M
Mel Gorman 已提交
7285 7286 7287 7288 7289 7290 7291

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7292
	for_each_node_state(nid, N_MEMORY) {
7293 7294
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7311
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7312 7313
			unsigned long size_pages;

7314
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7357
			 * satisfied
M
Mel Gorman 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7371
	 * satisfied
M
Mel Gorman 已提交
7372 7373 7374 7375 7376
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7377
out2:
M
Mel Gorman 已提交
7378 7379 7380 7381
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7382

7383
out:
7384
	/* restore the node_state */
7385
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7386 7387
}

7388 7389
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7390 7391 7392
{
	enum zone_type zone_type;

7393
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7394
		struct zone *zone = &pgdat->node_zones[zone_type];
7395
		if (populated_zone(zone)) {
7396 7397 7398
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7399
				node_set_state(nid, N_NORMAL_MEMORY);
7400 7401
			break;
		}
7402 7403 7404
	}
}

7405 7406 7407 7408 7409 7410 7411 7412 7413
/*
 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7414
/**
7415
 * free_area_init - Initialise all pg_data_t and zone data
7416
 * @max_zone_pfn: an array of max PFNs for each zone
7417 7418
 *
 * This will call free_area_init_node() for each active node in the system.
7419
 * Using the page ranges provided by memblock_set_node(), the size of each
7420 7421 7422 7423 7424 7425 7426
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7427
void __init free_area_init(unsigned long *max_zone_pfn)
7428
{
7429
	unsigned long start_pfn, end_pfn;
7430 7431
	int i, nid, zone;
	bool descending;
7432

7433 7434 7435 7436 7437
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7438 7439

	start_pfn = find_min_pfn_with_active_regions();
7440
	descending = arch_has_descending_max_zone_pfns();
7441 7442

	for (i = 0; i < MAX_NR_ZONES; i++) {
7443 7444 7445 7446 7447 7448
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7449
			continue;
7450

7451 7452 7453
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7454 7455

		start_pfn = end_pfn;
7456
	}
M
Mel Gorman 已提交
7457 7458 7459

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7460
	find_zone_movable_pfns_for_nodes();
7461 7462

	/* Print out the zone ranges */
7463
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7464 7465 7466
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7467
		pr_info("  %-8s ", zone_names[i]);
7468 7469
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7470
			pr_cont("empty\n");
7471
		else
7472 7473 7474 7475
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7476
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7477 7478 7479
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7480
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7481 7482
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7483 7484
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7485
	}
7486

7487 7488 7489 7490 7491
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7492
	pr_info("Early memory node ranges\n");
7493
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7494 7495 7496
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7497 7498
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7499 7500

	/* Initialise every node */
7501
	mminit_verify_pageflags_layout();
7502
	setup_nr_node_ids();
7503
	init_unavailable_mem();
7504 7505
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7506
		free_area_init_node(nid);
7507 7508 7509

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7510 7511
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7512 7513
	}
}
M
Mel Gorman 已提交
7514

7515 7516
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7517 7518
{
	unsigned long long coremem;
7519 7520
	char *endptr;

M
Mel Gorman 已提交
7521 7522 7523
	if (!p)
		return -EINVAL;

7524 7525 7526 7527 7528
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7529

7530 7531 7532 7533 7534
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7535

7536 7537 7538
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7539 7540
	return 0;
}
M
Mel Gorman 已提交
7541

7542 7543 7544 7545 7546 7547
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7548 7549 7550 7551 7552 7553
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7554 7555
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7556 7557 7558 7559 7560 7561 7562 7563
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7564 7565
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7566 7567
}

M
Mel Gorman 已提交
7568
early_param("kernelcore", cmdline_parse_kernelcore);
7569
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7570

7571 7572
void adjust_managed_page_count(struct page *page, long count)
{
7573
	atomic_long_add(count, &page_zone(page)->managed_pages);
7574
	totalram_pages_add(count);
7575 7576
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7577
		totalhigh_pages_add(count);
7578
#endif
7579
}
7580
EXPORT_SYMBOL(adjust_managed_page_count);
7581

7582
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7583
{
7584 7585
	void *pos;
	unsigned long pages = 0;
7586

7587 7588 7589
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7601
		if ((unsigned int)poison <= 0xFF)
7602 7603 7604
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7605 7606 7607
	}

	if (pages && s)
7608 7609
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7610 7611 7612 7613

	return pages;
}

7614 7615 7616 7617
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7618
	totalram_pages_inc();
7619
	atomic_long_inc(&page_zone(page)->managed_pages);
7620
	totalhigh_pages_inc();
7621 7622 7623
}
#endif

7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7646 7647 7648 7649
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7660
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7661
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7662
		", %luK highmem"
7663
#endif
J
Joe Perches 已提交
7664 7665 7666 7667 7668
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7669
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7670
		totalcma_pages << (PAGE_SHIFT - 10),
7671
#ifdef	CONFIG_HIGHMEM
7672
		totalhigh_pages() << (PAGE_SHIFT - 10),
7673
#endif
J
Joe Perches 已提交
7674
		str ? ", " : "", str ? str : "");
7675 7676
}

7677
/**
7678 7679
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7680
 *
7681
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7682 7683
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7684 7685 7686
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7687 7688 7689 7690 7691 7692
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7693
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7694 7695
{

7696 7697
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7698

7699 7700 7701 7702 7703 7704 7705
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7706

7707 7708 7709 7710 7711 7712 7713 7714 7715
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7716 7717
}

7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7731 7732
void __init page_alloc_init(void)
{
7733 7734
	int ret;

7735 7736 7737 7738 7739
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7740 7741 7742 7743
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7744 7745
}

7746
/*
7747
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7748 7749 7750 7751 7752 7753
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7754
	enum zone_type i, j;
7755 7756

	for_each_online_pgdat(pgdat) {
7757 7758 7759

		pgdat->totalreserve_pages = 0;

7760 7761
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7762
			long max = 0;
7763
			unsigned long managed_pages = zone_managed_pages(zone);
7764 7765 7766 7767 7768 7769 7770

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7771 7772
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7773

7774 7775
			if (max > managed_pages)
				max = managed_pages;
7776

7777
			pgdat->totalreserve_pages += max;
7778

7779 7780 7781 7782 7783 7784
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7785 7786
/*
 * setup_per_zone_lowmem_reserve - called whenever
7787
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7788 7789 7790 7791 7792 7793
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7794
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7795

7796
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7797 7798
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7799
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7800 7801 7802

			zone->lowmem_reserve[j] = 0;

7803 7804
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7805 7806
				struct zone *lower_zone;

7807
				idx--;
L
Linus Torvalds 已提交
7808
				lower_zone = pgdat->node_zones + idx;
7809

7810 7811
				if (!sysctl_lowmem_reserve_ratio[idx] ||
				    !zone_managed_pages(lower_zone)) {
7812
					lower_zone->lowmem_reserve[j] = 0;
7813
					continue;
7814 7815 7816 7817
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7818
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7819 7820 7821
			}
		}
	}
7822 7823 7824

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7825 7826
}

7827
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7828 7829 7830 7831 7832 7833 7834 7835 7836
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7837
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7838 7839 7840
	}

	for_each_zone(zone) {
7841 7842
		u64 tmp;

7843
		spin_lock_irqsave(&zone->lock, flags);
7844
		tmp = (u64)pages_min * zone_managed_pages(zone);
7845
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7846 7847
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7848 7849 7850 7851
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7852
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7853
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7854
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7855
			 */
7856
			unsigned long min_pages;
L
Linus Torvalds 已提交
7857

7858
			min_pages = zone_managed_pages(zone) / 1024;
7859
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7860
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7861
		} else {
N
Nick Piggin 已提交
7862 7863
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7864 7865
			 * proportionate to the zone's size.
			 */
7866
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7867 7868
		}

7869 7870 7871 7872 7873 7874
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7875
			    mult_frac(zone_managed_pages(zone),
7876 7877
				      watermark_scale_factor, 10000));

7878
		zone->watermark_boost = 0;
7879 7880
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7881

7882
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7883
	}
7884 7885 7886

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7887 7888
}

7889 7890 7891 7892 7893 7894 7895 7896 7897
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7898 7899 7900
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7901
	__setup_per_zone_wmarks();
7902
	spin_unlock(&lock);
7903 7904
}

L
Linus Torvalds 已提交
7905 7906 7907 7908
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
7909
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
7910 7911
 * bandwidth does not increase linearly with machine size.  We use
 *
7912
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7929
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7930 7931
{
	unsigned long lowmem_kbytes;
7932
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7933 7934

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7935 7936 7937 7938 7939 7940
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
7941 7942
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
7943 7944 7945 7946
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7947
	setup_per_zone_wmarks();
7948
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7949
	setup_per_zone_lowmem_reserve();
7950 7951 7952 7953 7954 7955

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

7956 7957
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
7958 7959
	return 0;
}
7960
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7961 7962

/*
7963
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7964 7965 7966
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7967
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7968
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7969
{
7970 7971 7972 7973 7974 7975
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7976 7977
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7978
		setup_per_zone_wmarks();
7979
	}
L
Linus Torvalds 已提交
7980 7981 7982
	return 0;
}

7983
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7984
		void *buffer, size_t *length, loff_t *ppos)
7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7998
#ifdef CONFIG_NUMA
7999
static void setup_min_unmapped_ratio(void)
8000
{
8001
	pg_data_t *pgdat;
8002 8003
	struct zone *zone;

8004
	for_each_online_pgdat(pgdat)
8005
		pgdat->min_unmapped_pages = 0;
8006

8007
	for_each_zone(zone)
8008 8009
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8010
}
8011

8012 8013

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8014
		void *buffer, size_t *length, loff_t *ppos)
8015 8016 8017
{
	int rc;

8018
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 8020 8021
	if (rc)
		return rc;

8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8032 8033 8034
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8035
	for_each_zone(zone)
8036 8037
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8038 8039 8040
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8041
		void *buffer, size_t *length, loff_t *ppos)
8042 8043 8044 8045 8046 8047 8048 8049 8050
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8051 8052
	return 0;
}
8053 8054
#endif

L
Linus Torvalds 已提交
8055 8056 8057 8058 8059 8060
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8061
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8062 8063
 * if in function of the boot time zone sizes.
 */
8064
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8065
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8066
{
8067 8068
	int i;

8069
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8070 8071 8072 8073 8074 8075

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8076 8077 8078 8079
	setup_per_zone_lowmem_reserve();
	return 0;
}

8080 8081 8082 8083 8084 8085 8086 8087 8088
static void __zone_pcp_update(struct zone *zone)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
}

8089 8090
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8091 8092
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8093
 */
8094
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8095
		void *buffer, size_t *length, loff_t *ppos)
8096 8097
{
	struct zone *zone;
8098
	int old_percpu_pagelist_fraction;
8099 8100
	int ret;

8101 8102 8103
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8104
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8119

8120 8121
	for_each_populated_zone(zone)
		__zone_pcp_update(zone);
8122
out:
8123
	mutex_unlock(&pcp_batch_high_lock);
8124
	return ret;
8125 8126
}

8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8166 8167
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8168
{
8169
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8170 8171
	unsigned long log2qty, size;
	void *table = NULL;
8172
	gfp_t gfp_flags;
8173
	bool virt;
L
Linus Torvalds 已提交
8174 8175 8176 8177

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8178
		numentries = nr_kernel_pages;
8179
		numentries -= arch_reserved_kernel_pages();
8180 8181 8182 8183

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8184

P
Pavel Tatashin 已提交
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8195 8196 8197 8198 8199
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8200 8201

		/* Make sure we've got at least a 0-order allocation.. */
8202 8203 8204 8205 8206 8207 8208 8209
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8210
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8211
	}
8212
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8213 8214 8215 8216 8217 8218

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8219
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8220

8221 8222
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8223 8224 8225
	if (numentries > max)
		numentries = max;

8226
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8227

8228
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8229
	do {
8230
		virt = false;
L
Linus Torvalds 已提交
8231
		size = bucketsize << log2qty;
8232 8233
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8234
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8235
			else
8236 8237
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8238
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8239
			table = __vmalloc(size, gfp_flags);
8240
			virt = true;
8241
		} else {
8242 8243
			/*
			 * If bucketsize is not a power-of-two, we may free
8244 8245
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8246
			 */
8247 8248
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8249 8250 8251 8252 8253 8254
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8255 8256 8257
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8258 8259 8260 8261 8262 8263 8264 8265

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8266

K
KAMEZAWA Hiroyuki 已提交
8267
/*
8268 8269
 * This function checks whether pageblock includes unmovable pages or not.
 *
8270
 * PageLRU check without isolation or lru_lock could race so that
8271 8272 8273
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8274 8275
 *
 * Returns a page without holding a reference. If the caller wants to
8276
 * dereference that page (e.g., dumping), it has to make sure that it
8277 8278
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8279
 */
8280 8281
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8282
{
8283 8284
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8285
	unsigned long offset = pfn % pageblock_nr_pages;
8286

8287 8288 8289 8290 8291 8292 8293
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8294
			return NULL;
8295

8296
		return page;
8297
	}
8298

8299
	for (; iter < pageblock_nr_pages - offset; iter++) {
8300
		if (!pfn_valid_within(pfn + iter))
8301
			continue;
8302

8303
		page = pfn_to_page(pfn + iter);
8304

8305 8306 8307 8308 8309 8310
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8311
		if (PageReserved(page))
8312
			return page;
8313

8314 8315 8316 8317 8318 8319 8320 8321
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8322 8323
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8324
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8325
		 * We need not scan over tail pages because we don't
8326 8327
		 * handle each tail page individually in migration.
		 */
8328
		if (PageHuge(page) || PageTransCompound(page)) {
8329 8330
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8331

8332 8333 8334 8335
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8336
				return page;
8337
			}
8338

8339
			skip_pages = compound_nr(head) - (page - head);
8340
			iter += skip_pages - 1;
8341 8342 8343
			continue;
		}

8344 8345 8346 8347
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8348
		 * because their page->_refcount is zero at all time.
8349
		 */
8350
		if (!page_ref_count(page)) {
8351
			if (PageBuddy(page))
8352
				iter += (1 << buddy_order(page)) - 1;
8353 8354
			continue;
		}
8355

8356 8357 8358 8359
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8360
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8361 8362
			continue;

8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8376
		if (__PageMovable(page) || PageLRU(page))
8377 8378
			continue;

8379
		/*
8380 8381 8382
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8383
		 */
8384
		return page;
8385
	}
8386
	return NULL;
8387 8388
}

8389
#ifdef CONFIG_CONTIG_ALLOC
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8403 8404
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8405 8406
{
	/* This function is based on compact_zone() from compaction.c. */
8407
	unsigned int nr_reclaimed;
8408 8409 8410
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8411 8412 8413 8414
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8415

8416
	migrate_prep();
8417

8418
	while (pfn < end || !list_empty(&cc->migratepages)) {
8419 8420 8421 8422 8423
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8424 8425
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8426
			pfn = isolate_migratepages_range(cc, pfn, end);
8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8437 8438 8439
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8440

8441 8442
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8443
	}
8444 8445 8446 8447 8448
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8449 8450 8451 8452 8453 8454
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8455 8456 8457 8458
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8459
 * @gfp_mask:	GFP mask to use during compaction
8460 8461
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8462
 * aligned.  The PFN range must belong to a single zone.
8463
 *
8464 8465 8466
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8467
 *
8468
 * Return: zero on success or negative error code.  On success all
8469 8470 8471
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8472
int alloc_contig_range(unsigned long start, unsigned long end,
8473
		       unsigned migratetype, gfp_t gfp_mask)
8474 8475
{
	unsigned long outer_start, outer_end;
8476 8477
	unsigned int order;
	int ret = 0;
8478

8479 8480 8481 8482
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8483
		.mode = MIGRATE_SYNC,
8484
		.ignore_skip_hint = true,
8485
		.no_set_skip_hint = true,
8486
		.gfp_mask = current_gfp_context(gfp_mask),
8487
		.alloc_contig = true,
8488 8489 8490
	};
	INIT_LIST_HEAD(&cc.migratepages);

8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8516
				       pfn_max_align_up(end), migratetype, 0);
8517
	if (ret)
8518
		return ret;
8519

8520 8521
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8522 8523 8524 8525 8526 8527 8528
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8529
	 */
8530
	ret = __alloc_contig_migrate_range(&cc, start, end);
8531
	if (ret && ret != -EBUSY)
8532
		goto done;
8533
	ret =0;
8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8558 8559
			outer_start = start;
			break;
8560 8561 8562 8563
		}
		outer_start &= ~0UL << order;
	}

8564
	if (outer_start != start) {
8565
		order = buddy_order(pfn_to_page(outer_start));
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8577
	/* Make sure the range is really isolated. */
8578
	if (test_pages_isolated(outer_start, end, 0)) {
8579
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8580
			__func__, outer_start, end);
8581 8582 8583 8584
		ret = -EBUSY;
		goto done;
	}

8585
	/* Grab isolated pages from freelists. */
8586
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8600
				pfn_max_align_up(end), migratetype);
8601 8602
	return ret;
}
8603
EXPORT_SYMBOL(alloc_contig_range);
8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8705
#endif /* CONFIG_CONTIG_ALLOC */
8706

8707
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8708
{
8709 8710 8711 8712 8713 8714 8715 8716 8717
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8718
}
8719
EXPORT_SYMBOL(free_contig_range);
8720

8721 8722 8723 8724
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8725 8726
void __meminit zone_pcp_update(struct zone *zone)
{
8727
	mutex_lock(&pcp_batch_high_lock);
8728
	__zone_pcp_update(zone);
8729
	mutex_unlock(&pcp_batch_high_lock);
8730 8731
}

8732 8733 8734
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8735 8736
	int cpu;
	struct per_cpu_pageset *pset;
8737 8738 8739 8740

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8741 8742 8743 8744
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8745 8746 8747 8748 8749 8750
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8751
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8752
/*
8753 8754
 * All pages in the range must be in a single zone, must not contain holes,
 * must span full sections, and must be isolated before calling this function.
K
KAMEZAWA Hiroyuki 已提交
8755
 */
8756
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
K
KAMEZAWA Hiroyuki 已提交
8757
{
8758
	unsigned long pfn = start_pfn;
K
KAMEZAWA Hiroyuki 已提交
8759 8760
	struct page *page;
	struct zone *zone;
8761
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8762
	unsigned long flags;
8763

8764
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8765 8766 8767 8768
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	while (pfn < end_pfn) {
		page = pfn_to_page(pfn);
8769 8770 8771 8772 8773 8774 8775 8776
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			continue;
		}
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			continue;
		}
8787

K
KAMEZAWA Hiroyuki 已提交
8788 8789
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
8790
		order = buddy_order(page);
8791
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8792 8793 8794 8795 8796
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8797 8798 8799 8800 8801 8802

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8803
	unsigned int order;
8804 8805 8806 8807 8808

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

8809
		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8810 8811 8812 8813 8814 8815
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8816 8817 8818

#ifdef CONFIG_MEMORY_FAILURE
/*
8819 8820
 * Break down a higher-order page in sub-pages, and keep our target out of
 * buddy allocator.
8821
 */
8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
static void break_down_buddy_pages(struct zone *zone, struct page *page,
				   struct page *target, int low, int high,
				   int migratetype)
{
	unsigned long size = 1 << high;
	struct page *current_buddy, *next_page;

	while (high > low) {
		high--;
		size >>= 1;

		if (target >= &page[size]) {
			next_page = page + size;
			current_buddy = page;
		} else {
			next_page = page;
			current_buddy = page + size;
		}

		if (set_page_guard(zone, current_buddy, high, migratetype))
			continue;

		if (current_buddy != target) {
			add_to_free_list(current_buddy, zone, high, migratetype);
8846
			set_buddy_order(current_buddy, high);
8847 8848 8849 8850 8851 8852 8853 8854 8855
			page = next_page;
		}
	}
}

/*
 * Take a page that will be marked as poisoned off the buddy allocator.
 */
bool take_page_off_buddy(struct page *page)
8856 8857 8858 8859 8860
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
8861
	bool ret = false;
8862 8863 8864 8865

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));
8866
		int page_order = buddy_order(page_head);
8867

8868
		if (PageBuddy(page_head) && page_order >= order) {
8869 8870 8871 8872
			unsigned long pfn_head = page_to_pfn(page_head);
			int migratetype = get_pfnblock_migratetype(page_head,
								   pfn_head);

8873
			del_page_from_free_list(page_head, zone, page_order);
8874
			break_down_buddy_pages(zone, page_head, page, 0,
8875
						page_order, migratetype);
8876
			ret = true;
8877 8878
			break;
		}
8879 8880
		if (page_count(page_head) > 0)
			break;
8881 8882
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8883
	return ret;
8884 8885
}
#endif