page_alloc.c 232.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269
int watermark_boost_factor __read_mostly = 15000;
270
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
271

272 273 274
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
275

T
Tejun Heo 已提交
276
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 278
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
279
static unsigned long required_kernelcore __initdata;
280
static unsigned long required_kernelcore_percent __initdata;
281
static unsigned long required_movablecore __initdata;
282
static unsigned long required_movablecore_percent __initdata;
283
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
284
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
285 286 287 288 289

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
290

M
Miklos Szeredi 已提交
291
#if MAX_NUMNODES > 1
292
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
293
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
294
EXPORT_SYMBOL(nr_node_ids);
295
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
296 297
#endif

298 299
int page_group_by_mobility_disabled __read_mostly;

300
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

327
/* Returns true if the struct page for the pfn is uninitialised */
328
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329
{
330 331 332
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
333 334 335 336 337 338
		return true;

	return false;
}

/*
339
 * Returns true when the remaining initialisation should be deferred until
340 341
 * later in the boot cycle when it can be parallelised.
 */
342 343
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344
{
345 346 347 348 349 350 351 352 353 354 355
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

356
	/* Always populate low zones for address-constrained allocations */
357
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
358
		return false;
359 360 361 362 363

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
364
	nr_initialised++;
365
	if ((nr_initialised > PAGES_PER_SECTION) &&
366 367 368
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
369
	}
370
	return false;
371 372
}
#else
373 374
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

375 376 377 378 379
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

380
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
381
{
382
	return false;
383 384 385
}
#endif

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
466
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
487

488
void set_pageblock_migratetype(struct page *page, int migratetype)
489
{
490 491
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
492 493
		migratetype = MIGRATE_UNMOVABLE;

494 495 496 497
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
498
#ifdef CONFIG_DEBUG_VM
499
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
500
{
501 502 503
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
504
	unsigned long sp, start_pfn;
505

506 507
	do {
		seq = zone_span_seqbegin(zone);
508 509
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
510
		if (!zone_spans_pfn(zone, pfn))
511 512 513
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

514
	if (ret)
515 516 517
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
518

519
	return ret;
520 521 522 523
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
524
	if (!pfn_valid_within(page_to_pfn(page)))
525
		return 0;
L
Linus Torvalds 已提交
526
	if (zone != page_zone(page))
527 528 529 530 531 532 533
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
534
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 536
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
537
		return 1;
538 539 540
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
541 542
	return 0;
}
N
Nick Piggin 已提交
543
#else
544
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
545 546 547 548 549
{
	return 0;
}
#endif

550 551
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
552
{
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
567
			pr_alert(
568
			      "BUG: Bad page state: %lu messages suppressed\n",
569 570 571 572 573 574 575 576
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

577
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578
		current->comm, page_to_pfn(page));
579 580 581 582 583
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
584
	dump_page_owner(page);
585

586
	print_modules();
L
Linus Torvalds 已提交
587
	dump_stack();
588
out:
589
	/* Leave bad fields for debug, except PageBuddy could make trouble */
590
	page_mapcount_reset(page); /* remove PageBuddy */
591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
592 593 594 595 596
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
597
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
598
 *
599 600
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
601
 *
602 603
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
604
 *
605
 * The first tail page's ->compound_order holds the order of allocation.
606
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
607
 */
608

609
void free_compound_page(struct page *page)
610
{
611
	__free_pages_ok(page, compound_order(page));
612 613
}

614
void prep_compound_page(struct page *page, unsigned int order)
615 616 617 618
{
	int i;
	int nr_pages = 1 << order;

619
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 621 622 623
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
624
		set_page_count(p, 0);
625
		p->mapping = TAIL_MAPPING;
626
		set_compound_head(p, page);
627
	}
628
	atomic_set(compound_mapcount_ptr(page), -1);
629 630
}

631 632
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
633 634
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635
EXPORT_SYMBOL(_debug_pagealloc_enabled);
636 637
bool _debug_guardpage_enabled __read_mostly;

638 639 640 641
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
642
	return kstrtobool(buf, &_debug_pagealloc_enabled);
643 644 645
}
early_param("debug_pagealloc", early_debug_pagealloc);

646 647
static bool need_debug_guardpage(void)
{
648 649 650 651
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

652 653 654
	if (!debug_guardpage_minorder())
		return false;

655 656 657 658 659
	return true;
}

static void init_debug_guardpage(void)
{
660 661 662
	if (!debug_pagealloc_enabled())
		return;

663 664 665
	if (!debug_guardpage_minorder())
		return;

666 667 668 669 670 671 672
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
673 674 675 676 677 678

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
679
		pr_err("Bad debug_guardpage_minorder value\n");
680 681 682
		return 0;
	}
	_debug_guardpage_minorder = res;
683
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 685
	return 0;
}
686
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687

688
static inline bool set_page_guard(struct zone *zone, struct page *page,
689
				unsigned int order, int migratetype)
690
{
691 692 693
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
694 695 696 697
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
698 699

	page_ext = lookup_page_ext(page);
700
	if (unlikely(!page_ext))
701
		return false;
702

703 704
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

705 706 707 708
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
709 710

	return true;
711 712
}

713 714
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
715
{
716 717 718 719 720 721
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
722 723 724
	if (unlikely(!page_ext))
		return;

725 726
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

727 728 729
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
730 731
}
#else
732
struct page_ext_operations debug_guardpage_ops;
733 734
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
735 736
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
737 738
#endif

739
static inline void set_page_order(struct page *page, unsigned int order)
740
{
H
Hugh Dickins 已提交
741
	set_page_private(page, order);
742
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
743 744 745 746
}

static inline void rmv_page_order(struct page *page)
{
747
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
748
	set_page_private(page, 0);
L
Linus Torvalds 已提交
749 750 751 752
}

/*
 * This function checks whether a page is free && is the buddy
753
 * we can coalesce a page and its buddy if
754
 * (a) the buddy is not in a hole (check before calling!) &&
755
 * (b) the buddy is in the buddy system &&
756 757
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
758
 *
759 760
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
761
 *
762
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
763
 */
764
static inline int page_is_buddy(struct page *page, struct page *buddy,
765
							unsigned int order)
L
Linus Torvalds 已提交
766
{
767
	if (page_is_guard(buddy) && page_order(buddy) == order) {
768 769 770
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

771 772
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

773 774 775
		return 1;
	}

776
	if (PageBuddy(buddy) && page_order(buddy) == order) {
777 778 779 780 781 782 783 784
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

785 786
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

787
		return 1;
788
	}
789
	return 0;
L
Linus Torvalds 已提交
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
856 857
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
858
 * So when we are allocating or freeing one, we can derive the state of the
859 860
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
861
 * If a block is freed, and its buddy is also free, then this
862
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
863
 *
864
 * -- nyc
L
Linus Torvalds 已提交
865 866
 */

N
Nick Piggin 已提交
867
static inline void __free_one_page(struct page *page,
868
		unsigned long pfn,
869 870
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
871
{
872 873
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
874
	struct page *buddy;
875
	unsigned int max_order;
876
	struct capture_control *capc = task_capc(zone);
877 878

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
879

880
	VM_BUG_ON(!zone_is_initialized(zone));
881
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
882

883
	VM_BUG_ON(migratetype == -1);
884
	if (likely(!is_migrate_isolate(migratetype)))
885
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
886

887
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
888
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
889

890
continue_merging:
891
	while (order < max_order - 1) {
892 893 894 895 896
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
897 898
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
899 900 901

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
902
		if (!page_is_buddy(page, buddy, order))
903
			goto done_merging;
904 905 906 907 908
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
909
			clear_page_guard(zone, buddy, order, migratetype);
910 911 912 913 914
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
915 916 917
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
918 919
		order++;
	}
920 921 922 923 924 925 926 927 928 929 930 931
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

932 933
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
934 935 936 937 938 939 940 941 942 943 944 945
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
946
	set_page_order(page, order);
947 948 949 950 951 952 953 954 955

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
956
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
957
		struct page *higher_page, *higher_buddy;
958 959 960 961
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
962 963
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
964 965 966 967 968 969 970 971
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
972 973 974
	zone->free_area[order].nr_free++;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

997
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
998
{
999 1000 1001 1002 1003
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1004

1005
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1006 1007 1008
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1009
	if (unlikely(page_ref_count(page) != 0))
1010
		bad_reason = "nonzero _refcount";
1011 1012 1013 1014
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1015 1016 1017 1018
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1019
	bad_page(page, bad_reason, bad_flags);
1020 1021 1022 1023
}

static inline int free_pages_check(struct page *page)
{
1024
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1025 1026 1027 1028
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1029
	return 1;
L
Linus Torvalds 已提交
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1048
		/* the first tail page: ->mapping may be compound_mapcount() */
1049 1050 1051 1052 1053 1054 1055 1056
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1057
		 * deferred_list.next -- ignore value.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1082 1083
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1084
{
1085
	int bad = 0;
1086 1087 1088

	VM_BUG_ON_PAGE(PageTail(page), page);

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1100

1101 1102
		if (compound)
			ClearPageDoubleMap(page);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1113
	if (PageMappingFlags(page))
1114
		page->mapping = NULL;
1115
	if (memcg_kmem_enabled() && PageKmemcg(page))
1116
		__memcg_kmem_uncharge(page, order);
1117 1118 1119 1120
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1121

1122 1123 1124
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1125 1126 1127

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1128
					   PAGE_SIZE << order);
1129
		debug_check_no_obj_freed(page_address(page),
1130
					   PAGE_SIZE << order);
1131
	}
1132 1133 1134
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1135
	kasan_free_nondeferred_pages(page, order);
1136 1137 1138 1139

	return true;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1156 1157 1158 1159 1160 1161
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1162 1163 1164 1165 1166 1167 1168 1169 1170
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1171
/*
1172
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1173
 * Assumes all pages on list are in same zone, and of same order.
1174
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179 1180 1181
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1182 1183
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1184
{
1185
	int migratetype = 0;
1186
	int batch_free = 0;
1187
	int prefetch_nr = 0;
1188
	bool isolated_pageblocks;
1189 1190
	struct page *page, *tmp;
	LIST_HEAD(head);
1191

1192
	while (count) {
1193 1194 1195
		struct list_head *list;

		/*
1196 1197 1198 1199 1200
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1201 1202
		 */
		do {
1203
			batch_free++;
1204 1205 1206 1207
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1208

1209 1210
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1211
			batch_free = count;
1212

1213
		do {
1214
			page = list_last_entry(list, struct page, lru);
1215
			/* must delete to avoid corrupting pcp list */
1216
			list_del(&page->lru);
1217
			pcp->count--;
1218

1219 1220 1221
			if (bulkfree_pcp_prepare(page))
				continue;

1222
			list_add_tail(&page->lru, &head);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1235
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1236
	}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1256
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1257 1258
}

1259 1260
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1261
				unsigned int order,
1262
				int migratetype)
L
Linus Torvalds 已提交
1263
{
1264
	spin_lock(&zone->lock);
1265 1266 1267 1268
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1269
	__free_one_page(page, pfn, zone, order, migratetype);
1270
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1271 1272
}

1273
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1274
				unsigned long zone, int nid)
1275
{
1276
	mm_zero_struct_page(page);
1277 1278 1279 1280
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1281
	page_kasan_tag_reset(page);
1282 1283 1284 1285 1286 1287 1288 1289 1290

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1291
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1292
static void __meminit init_reserved_page(unsigned long pfn)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1309
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1310 1311 1312 1313 1314 1315 1316
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1317 1318 1319 1320 1321 1322
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1323
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1324 1325 1326 1327
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1328 1329 1330 1331 1332
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1333 1334 1335 1336

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1337 1338 1339 1340 1341 1342
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1343 1344
		}
	}
1345 1346
}

1347 1348
static void __free_pages_ok(struct page *page, unsigned int order)
{
1349
	unsigned long flags;
M
Minchan Kim 已提交
1350
	int migratetype;
1351
	unsigned long pfn = page_to_pfn(page);
1352

1353
	if (!free_pages_prepare(page, order, true))
1354 1355
		return;

1356
	migratetype = get_pfnblock_migratetype(page, pfn);
1357 1358
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1359
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1360
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1361 1362
}

1363
void __free_pages_core(struct page *page, unsigned int order)
1364
{
1365
	unsigned int nr_pages = 1 << order;
1366
	struct page *p = page;
1367
	unsigned int loop;
1368

1369 1370 1371
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1372 1373
		__ClearPageReserved(p);
		set_page_count(p, 0);
1374
	}
1375 1376
	__ClearPageReserved(p);
	set_page_count(p, 0);
1377

1378
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1379 1380
	set_page_refcounted(page);
	__free_pages(page, order);
1381 1382
}

1383 1384
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1385

1386 1387 1388 1389
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1390
	static DEFINE_SPINLOCK(early_pfn_lock);
1391 1392
	int nid;

1393
	spin_lock(&early_pfn_lock);
1394
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1395
	if (nid < 0)
1396
		nid = first_online_node;
1397 1398 1399
	spin_unlock(&early_pfn_lock);

	return nid;
1400 1401 1402 1403
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1404 1405 1406
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1428 1429 1430
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1431 1432 1433 1434 1435 1436
{
	return true;
}
#endif


1437
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1438 1439 1440 1441
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1442
	__free_pages_core(page, order);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1474 1475 1476
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1516
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1517 1518
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1519
{
1520 1521
	struct page *page;
	unsigned long i;
1522

1523
	if (!nr_pages)
1524 1525
		return;

1526 1527
	page = pfn_to_page(pfn);

1528
	/* Free a large naturally-aligned chunk if possible */
1529 1530
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1531
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1532
		__free_pages_core(page, pageblock_order);
1533 1534 1535
		return;
	}

1536 1537 1538
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1539
		__free_pages_core(page, 0);
1540
	}
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1552

1553
/*
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1566
 */
1567 1568 1569
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1570
{
1571 1572 1573 1574 1575 1576 1577 1578
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1590

1591 1592 1593 1594 1595 1596 1597
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1598
			touch_nmi_watchdog();
1599 1600 1601 1602 1603 1604
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1615 1616 1617 1618 1619 1620
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1621 1622 1623
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1624
			continue;
1625
		} else if (!page || !(pfn & nr_pgmask)) {
1626
			page = pfn_to_page(pfn);
1627
			touch_nmi_watchdog();
1628 1629
		} else {
			page++;
1630
		}
1631
		__init_single_page(page, pfn, zid, nid);
1632
		nr_pages++;
1633
	}
1634
	return (nr_pages);
1635 1636
}

1637
/* Initialise remaining memory on a node */
1638
static int __init deferred_init_memmap(void *data)
1639
{
1640 1641
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1642 1643
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1644
	unsigned long spfn, epfn, first_init_pfn, flags;
1645 1646
	phys_addr_t spa, epa;
	int zid;
1647
	struct zone *zone;
1648
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1649
	u64 i;
1650

1651 1652 1653 1654 1655 1656
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1657
	if (first_init_pfn == ULONG_MAX) {
1658
		pgdat_resize_unlock(pgdat, &flags);
1659
		pgdat_init_report_one_done();
1660 1661 1662
		return 0;
	}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1674
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1687 1688 1689
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1690
		deferred_free_pages(nid, zid, spfn, epfn);
1691
	}
1692
	pgdat_resize_unlock(pgdat, &flags);
1693 1694 1695 1696

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1697
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1698
					jiffies_to_msecs(jiffies - start));
1699 1700

	pgdat_init_report_one_done();
1701 1702
	return 0;
}
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1807
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1808 1809 1810

void __init page_alloc_init_late(void)
{
1811 1812 1813
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1814 1815
	int nid;

1816 1817
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1818 1819 1820 1821 1822
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1823
	wait_for_completion(&pgdat_init_all_done_comp);
1824

1825 1826 1827 1828 1829 1830
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1831 1832
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1833
#endif
P
Pavel Tatashin 已提交
1834 1835 1836 1837
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1838 1839 1840

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1841 1842
}

1843
#ifdef CONFIG_CMA
1844
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1845 1846 1847 1848 1849 1850 1851 1852
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1853
	} while (++p, --i);
1854 1855

	set_pageblock_migratetype(page, MIGRATE_CMA);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1870
	adjust_managed_page_count(page, pageblock_nr_pages);
1871 1872
}
#endif
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1886
 * -- nyc
L
Linus Torvalds 已提交
1887
 */
N
Nick Piggin 已提交
1888
static inline void expand(struct zone *zone, struct page *page,
1889 1890
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1898
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1899

1900 1901 1902 1903 1904 1905 1906
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1907
			continue;
1908

1909
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1915
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1916
{
1917 1918
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1919

1920
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1921 1922 1923
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1924
	if (unlikely(page_ref_count(page) != 0))
1925
		bad_reason = "nonzero _count";
1926 1927 1928
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1929 1930 1931
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1932
	}
1933 1934 1935 1936
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1937 1938 1939 1940
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1955 1956
}

1957
static inline bool free_pages_prezeroed(void)
1958 1959
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1960
		page_poisoning_enabled();
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2006
	kernel_poison_pages(page, 1 << order, 1);
2007 2008 2009
	set_page_owner(page, order, gfp_flags);
}

2010
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2011
							unsigned int alloc_flags)
2012 2013
{
	int i;
2014

2015
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2016

2017
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2018 2019
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2020 2021 2022 2023

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2024
	/*
2025
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2026 2027 2028 2029
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2030 2031 2032 2033
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2034 2035
}

2036 2037 2038 2039
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2040
static __always_inline
2041
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2042 2043 2044
						int migratetype)
{
	unsigned int current_order;
2045
	struct free_area *area;
2046 2047 2048 2049 2050
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2051
		page = list_first_entry_or_null(&area->free_list[migratetype],
2052
							struct page, lru);
2053 2054
		if (!page)
			continue;
2055 2056 2057 2058
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2059
		set_pcppage_migratetype(page, migratetype);
2060 2061 2062 2063 2064 2065 2066
		return page;
	}

	return NULL;
}


2067 2068 2069 2070
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2071
static int fallbacks[MIGRATE_TYPES][4] = {
2072 2073
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2074
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2075
#ifdef CONFIG_CMA
2076
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2077
#endif
2078
#ifdef CONFIG_MEMORY_ISOLATION
2079
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2080
#endif
2081 2082
};

2083
#ifdef CONFIG_CMA
2084
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2085 2086 2087 2088 2089 2090 2091 2092 2093
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2094 2095
/*
 * Move the free pages in a range to the free lists of the requested type.
2096
 * Note that start_page and end_pages are not aligned on a pageblock
2097 2098
 * boundary. If alignment is required, use move_freepages_block()
 */
2099
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2100
			  struct page *start_page, struct page *end_page,
2101
			  int migratetype, int *num_movable)
2102 2103
{
	struct page *page;
2104
	unsigned int order;
2105
	int pages_moved = 0;
2106 2107 2108 2109 2110 2111 2112

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2113
	 * grouping pages by mobility
2114
	 */
2115 2116 2117
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2118 2119 2120 2121 2122 2123 2124
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2125 2126 2127
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2128
		if (!PageBuddy(page)) {
2129 2130 2131 2132 2133 2134 2135 2136 2137
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2138 2139 2140 2141 2142
			page++;
			continue;
		}

		order = page_order(page);
2143 2144
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2145
		page += 1 << order;
2146
		pages_moved += 1 << order;
2147 2148
	}

2149
	return pages_moved;
2150 2151
}

2152
int move_freepages_block(struct zone *zone, struct page *page,
2153
				int migratetype, int *num_movable)
2154 2155 2156 2157
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2158 2159 2160
	if (num_movable)
		*num_movable = 0;

2161
	start_pfn = page_to_pfn(page);
2162
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2163
	start_page = pfn_to_page(start_pfn);
2164 2165
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2166 2167

	/* Do not cross zone boundaries */
2168
	if (!zone_spans_pfn(zone, start_pfn))
2169
		start_page = page;
2170
	if (!zone_spans_pfn(zone, end_pfn))
2171 2172
		return 0;

2173 2174
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2175 2176
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2188
/*
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2199
 */
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2221 2222 2223 2224 2225 2226 2227 2228 2229
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2242 2243 2244 2245 2246 2247
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2248 2249 2250
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2251 2252 2253 2254
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2255 2256
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2257
		unsigned int alloc_flags, int start_type, bool whole_block)
2258
{
2259
	unsigned int current_order = page_order(page);
2260
	struct free_area *area;
2261 2262 2263 2264
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2265

2266 2267 2268 2269
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2270
	if (is_migrate_highatomic(old_block_type))
2271 2272
		goto single_page;

2273 2274 2275
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2276
		goto single_page;
2277 2278
	}

2279 2280 2281 2282 2283 2284 2285
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2286
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2287

2288 2289 2290 2291
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2316
	/* moving whole block can fail due to zone boundary conditions */
2317
	if (!free_pages)
2318
		goto single_page;
2319

2320 2321 2322 2323 2324
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2325 2326
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2327 2328 2329 2330 2331 2332

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2353
		if (fallback_mt == MIGRATE_TYPES)
2354 2355 2356 2357
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2358

2359 2360 2361
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2362 2363 2364 2365 2366
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2367
	}
2368 2369

	return -1;
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2386
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2398 2399
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2400 2401
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2402
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2414 2415 2416
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2417
 */
2418 2419
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2420 2421 2422 2423 2424 2425 2426
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2427
	bool ret;
2428 2429 2430

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2431 2432 2433 2434 2435 2436
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2437 2438 2439 2440 2441 2442
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2443 2444 2445 2446
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2447 2448 2449
				continue;

			/*
2450 2451 2452 2453 2454
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2455
			 */
2456
			if (is_migrate_highatomic_page(page)) {
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2479 2480
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2481 2482 2483 2484
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2485 2486 2487
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2488 2489

	return false;
2490 2491
}

2492 2493 2494 2495 2496
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2497 2498 2499 2500
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2501
 */
2502
static __always_inline bool
2503 2504
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2505
{
2506
	struct free_area *area;
2507
	int current_order;
2508
	int min_order = order;
2509
	struct page *page;
2510 2511
	int fallback_mt;
	bool can_steal;
2512

2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2521 2522 2523 2524 2525
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2526
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2527
				--current_order) {
2528 2529
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2530
				start_migratetype, false, &can_steal);
2531 2532
		if (fallback_mt == -1)
			continue;
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2545

2546 2547
		goto do_steal;
	}
2548

2549
	return false;
2550

2551 2552 2553 2554 2555 2556 2557 2558
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2559 2560
	}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2571 2572
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2573 2574 2575 2576 2577 2578

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2579 2580
}

2581
/*
L
Linus Torvalds 已提交
2582 2583 2584
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2585
static __always_inline struct page *
2586 2587
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2588 2589 2590
{
	struct page *page;

2591
retry:
2592
	page = __rmqueue_smallest(zone, order, migratetype);
2593
	if (unlikely(!page)) {
2594 2595 2596
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2597 2598
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2599
			goto retry;
2600 2601
	}

2602
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2603
	return page;
L
Linus Torvalds 已提交
2604 2605
}

2606
/*
L
Linus Torvalds 已提交
2607 2608 2609 2610
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2611
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2612
			unsigned long count, struct list_head *list,
2613
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2614
{
2615
	int i, alloced = 0;
2616

2617
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2618
	for (i = 0; i < count; ++i) {
2619 2620
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2621
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2622
			break;
2623

2624 2625 2626
		if (unlikely(check_pcp_refill(page)))
			continue;

2627
		/*
2628 2629 2630 2631 2632 2633 2634 2635
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2636
		 */
2637
		list_add_tail(&page->lru, list);
2638
		alloced++;
2639
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2640 2641
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2642
	}
2643 2644 2645 2646 2647 2648 2649

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2650
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2651
	spin_unlock(&zone->lock);
2652
	return alloced;
L
Linus Torvalds 已提交
2653 2654
}

2655
#ifdef CONFIG_NUMA
2656
/*
2657 2658 2659 2660
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2661 2662
 * Note that this function must be called with the thread pinned to
 * a single processor.
2663
 */
2664
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2665 2666
{
	unsigned long flags;
2667
	int to_drain, batch;
2668

2669
	local_irq_save(flags);
2670
	batch = READ_ONCE(pcp->batch);
2671
	to_drain = min(pcp->count, batch);
2672
	if (to_drain > 0)
2673
		free_pcppages_bulk(zone, to_drain, pcp);
2674
	local_irq_restore(flags);
2675 2676 2677
}
#endif

2678
/*
2679
 * Drain pcplists of the indicated processor and zone.
2680 2681 2682 2683 2684
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2685
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2686
{
N
Nick Piggin 已提交
2687
	unsigned long flags;
2688 2689
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2690

2691 2692
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2693

2694
	pcp = &pset->pcp;
2695
	if (pcp->count)
2696 2697 2698
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2713 2714 2715
	}
}

2716 2717
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2718 2719 2720
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2721
 */
2722
void drain_local_pages(struct zone *zone)
2723
{
2724 2725 2726 2727 2728 2729
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2730 2731
}

2732 2733
static void drain_local_pages_wq(struct work_struct *work)
{
2734 2735 2736 2737
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2746
	drain_local_pages(drain->zone);
2747
	preempt_enable();
2748 2749
}

2750
/*
2751 2752
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2753 2754
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2755
 * Note that this can be extremely slow as the draining happens in a workqueue.
2756
 */
2757
void drain_all_pages(struct zone *zone)
2758
{
2759 2760 2761 2762 2763 2764 2765 2766
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2767 2768 2769 2770 2771 2772 2773
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2784

2785 2786 2787 2788 2789 2790 2791
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2792 2793
		struct per_cpu_pageset *pcp;
		struct zone *z;
2794
		bool has_pcps = false;
2795 2796

		if (zone) {
2797
			pcp = per_cpu_ptr(zone->pageset, cpu);
2798
			if (pcp->pcp.count)
2799
				has_pcps = true;
2800 2801 2802 2803 2804 2805 2806
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2807 2808
			}
		}
2809

2810 2811 2812 2813 2814
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2815

2816
	for_each_cpu(cpu, &cpus_with_pcps) {
2817 2818 2819 2820 2821
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2822
	}
2823
	for_each_cpu(cpu, &cpus_with_pcps)
2824
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2825 2826

	mutex_unlock(&pcpu_drain_mutex);
2827 2828
}

2829
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2830

2831 2832 2833 2834 2835
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2836 2837
void mark_free_pages(struct zone *zone)
{
2838
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2839
	unsigned long flags;
2840
	unsigned int order, t;
2841
	struct page *page;
L
Linus Torvalds 已提交
2842

2843
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2844 2845 2846
		return;

	spin_lock_irqsave(&zone->lock, flags);
2847

2848
	max_zone_pfn = zone_end_pfn(zone);
2849 2850
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2851
			page = pfn_to_page(pfn);
2852

2853 2854 2855 2856 2857
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2858 2859 2860
			if (page_zone(page) != zone)
				continue;

2861 2862
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2863
		}
L
Linus Torvalds 已提交
2864

2865
	for_each_migratetype_order(order, t) {
2866 2867
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2868
			unsigned long i;
L
Linus Torvalds 已提交
2869

2870
			pfn = page_to_pfn(page);
2871 2872 2873 2874 2875
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2876
				swsusp_set_page_free(pfn_to_page(pfn + i));
2877
			}
2878
		}
2879
	}
L
Linus Torvalds 已提交
2880 2881
	spin_unlock_irqrestore(&zone->lock, flags);
}
2882
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2883

2884
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2885
{
2886
	int migratetype;
L
Linus Torvalds 已提交
2887

2888
	if (!free_pcp_prepare(page))
2889
		return false;
2890

2891
	migratetype = get_pfnblock_migratetype(page, pfn);
2892
	set_pcppage_migratetype(page, migratetype);
2893 2894 2895
	return true;
}

2896
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2897 2898 2899 2900 2901 2902
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2903
	__count_vm_event(PGFREE);
2904

2905 2906 2907
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2908
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2909 2910 2911 2912
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2913
		if (unlikely(is_migrate_isolate(migratetype))) {
2914
			free_one_page(zone, page, pfn, 0, migratetype);
2915
			return;
2916 2917 2918 2919
		}
		migratetype = MIGRATE_MOVABLE;
	}

2920
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2921
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2922
	pcp->count++;
N
Nick Piggin 已提交
2923
	if (pcp->count >= pcp->high) {
2924
		unsigned long batch = READ_ONCE(pcp->batch);
2925
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2926
	}
2927
}
2928

2929 2930 2931
/*
 * Free a 0-order page
 */
2932
void free_unref_page(struct page *page)
2933 2934 2935 2936
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2937
	if (!free_unref_page_prepare(page, pfn))
2938 2939 2940
		return;

	local_irq_save(flags);
2941
	free_unref_page_commit(page, pfn);
2942
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2943 2944
}

2945 2946 2947
/*
 * Free a list of 0-order pages
 */
2948
void free_unref_page_list(struct list_head *list)
2949 2950
{
	struct page *page, *next;
2951
	unsigned long flags, pfn;
2952
	int batch_count = 0;
2953 2954 2955 2956

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2957
		if (!free_unref_page_prepare(page, pfn))
2958 2959 2960
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2961

2962
	local_irq_save(flags);
2963
	list_for_each_entry_safe(page, next, list, lru) {
2964 2965 2966
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2967 2968
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2979
	}
2980
	local_irq_restore(flags);
2981 2982
}

N
Nick Piggin 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2995 2996
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2997

2998
	for (i = 1; i < (1 << order); i++)
2999
		set_page_refcounted(page + i);
3000
	split_page_owner(page, order);
N
Nick Piggin 已提交
3001
}
K
K. Y. Srinivasan 已提交
3002
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3003

3004
int __isolate_free_page(struct page *page, unsigned int order)
3005 3006 3007
{
	unsigned long watermark;
	struct zone *zone;
3008
	int mt;
3009 3010 3011 3012

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3013
	mt = get_pageblock_migratetype(page);
3014

3015
	if (!is_migrate_isolate(mt)) {
3016 3017 3018 3019 3020 3021
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3022
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3023
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3024 3025
			return 0;

3026
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3027
	}
3028 3029 3030 3031 3032

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
3033

3034 3035 3036 3037
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3038 3039
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3040 3041
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3042
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3043
			    && !is_migrate_highatomic(mt))
3044 3045 3046
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3047 3048
	}

3049

3050
	return 1UL << order;
3051 3052
}

3053 3054 3055 3056 3057
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3058
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3059 3060
{
#ifdef CONFIG_NUMA
3061
	enum numa_stat_item local_stat = NUMA_LOCAL;
3062

3063 3064 3065 3066
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3067
	if (zone_to_nid(z) != numa_node_id())
3068 3069
		local_stat = NUMA_OTHER;

3070
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3071
		__inc_numa_state(z, NUMA_HIT);
3072
	else {
3073 3074
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3075
	}
3076
	__inc_numa_state(z, local_stat);
3077 3078 3079
#endif
}

3080 3081
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3082
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3083
			struct per_cpu_pages *pcp,
3084 3085 3086 3087 3088 3089 3090 3091
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3092
					migratetype, alloc_flags);
3093 3094 3095 3096
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3097
		page = list_first_entry(list, struct page, lru);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3108 3109
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3110 3111 3112 3113
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3114
	unsigned long flags;
3115

3116
	local_irq_save(flags);
3117 3118
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3119
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3120 3121 3122 3123
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3124
	local_irq_restore(flags);
3125 3126 3127
	return page;
}

L
Linus Torvalds 已提交
3128
/*
3129
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3130
 */
3131
static inline
3132
struct page *rmqueue(struct zone *preferred_zone,
3133
			struct zone *zone, unsigned int order,
3134 3135
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3136 3137
{
	unsigned long flags;
3138
	struct page *page;
L
Linus Torvalds 已提交
3139

3140
	if (likely(order == 0)) {
3141
		page = rmqueue_pcplist(preferred_zone, zone, order,
3142
				gfp_flags, migratetype, alloc_flags);
3143 3144
		goto out;
	}
3145

3146 3147 3148 3149 3150 3151
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3152

3153 3154 3155 3156 3157 3158 3159
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3160
		if (!page)
3161
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3162 3163 3164 3165 3166 3167
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3168

3169
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3170
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3171
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3172

3173
out:
3174 3175 3176 3177 3178 3179
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3180
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3181
	return page;
N
Nick Piggin 已提交
3182 3183 3184 3185

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3186 3187
}

3188 3189
#ifdef CONFIG_FAIL_PAGE_ALLOC

3190
static struct {
3191 3192
	struct fault_attr attr;

3193
	bool ignore_gfp_highmem;
3194
	bool ignore_gfp_reclaim;
3195
	u32 min_order;
3196 3197
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3198
	.ignore_gfp_reclaim = true,
3199
	.ignore_gfp_highmem = true,
3200
	.min_order = 1,
3201 3202 3203 3204 3205 3206 3207 3208
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3209
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3210
{
3211
	if (order < fail_page_alloc.min_order)
3212
		return false;
3213
	if (gfp_mask & __GFP_NOFAIL)
3214
		return false;
3215
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3216
		return false;
3217 3218
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3219
		return false;
3220 3221 3222 3223 3224 3225 3226 3227

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3228
	umode_t mode = S_IFREG | 0600;
3229 3230
	struct dentry *dir;

3231 3232
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3233

3234 3235 3236 3237 3238
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3239

3240
	return 0;
3241 3242 3243 3244 3245 3246 3247 3248
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3249
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3250
{
3251
	return false;
3252 3253 3254 3255
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3256 3257 3258 3259 3260 3261
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3262
/*
3263 3264 3265 3266
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3267
 */
3268 3269 3270
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3271
{
3272
	long min = mark;
L
Linus Torvalds 已提交
3273
	int o;
3274
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3275

3276
	/* free_pages may go negative - that's OK */
3277
	free_pages -= (1 << order) - 1;
3278

R
Rohit Seth 已提交
3279
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3280
		min -= min / 2;
3281 3282 3283 3284 3285 3286

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3287
	if (likely(!alloc_harder)) {
3288
		free_pages -= z->nr_reserved_highatomic;
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3302

3303 3304 3305 3306 3307 3308
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3309 3310 3311 3312 3313 3314
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3315
		return false;
L
Linus Torvalds 已提交
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3335 3336
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3337
			return true;
3338
		}
3339
#endif
3340 3341 3342
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3343
	}
3344
	return false;
3345 3346
}

3347
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3348
		      int classzone_idx, unsigned int alloc_flags)
3349 3350 3351 3352 3353
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3354 3355 3356 3357
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3358 3359 3360 3361 3362 3363 3364
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3365 3366 3367 3368 3369 3370 3371 3372

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3373
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3374 3375 3376 3377 3378 3379
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3380
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3381
			unsigned long mark, int classzone_idx)
3382 3383 3384 3385 3386 3387
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3388
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3389
								free_pages);
L
Linus Torvalds 已提交
3390 3391
}

3392
#ifdef CONFIG_NUMA
3393 3394
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3395
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3396
				RECLAIM_DISTANCE;
3397
}
3398
#else	/* CONFIG_NUMA */
3399 3400 3401 3402
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3403 3404
#endif	/* CONFIG_NUMA */

3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3414
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3415
{
3416 3417 3418 3419 3420 3421
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3422
	if (zone_idx(zone) != ZONE_NORMAL)
3423
		goto out;
3424 3425 3426 3427 3428 3429 3430 3431

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3432
		goto out;
3433

3434 3435 3436
out:
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3437 3438
}

R
Rohit Seth 已提交
3439
/*
3440
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3441 3442 3443
 * a page.
 */
static struct page *
3444 3445
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3446
{
3447
	struct zoneref *z;
3448
	struct zone *zone;
3449
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3450
	bool no_fallback;
3451

3452
retry:
R
Rohit Seth 已提交
3453
	/*
3454
	 * Scan zonelist, looking for a zone with enough free.
3455
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3456
	 */
3457 3458
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3459
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3460
								ac->nodemask) {
3461
		struct page *page;
3462 3463
		unsigned long mark;

3464 3465
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3466
			!__cpuset_zone_allowed(zone, gfp_mask))
3467
				continue;
3468 3469
		/*
		 * When allocating a page cache page for writing, we
3470 3471
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3472
		 * proportional share of globally allowed dirty pages.
3473
		 * The dirty limits take into account the node's
3474 3475 3476 3477 3478
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3479
		 * exceed the per-node dirty limit in the slowpath
3480
		 * (spread_dirty_pages unset) before going into reclaim,
3481
		 * which is important when on a NUMA setup the allowed
3482
		 * nodes are together not big enough to reach the
3483
		 * global limit.  The proper fix for these situations
3484
		 * will require awareness of nodes in the
3485 3486
		 * dirty-throttling and the flusher threads.
		 */
3487 3488 3489 3490 3491 3492 3493 3494 3495
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3496

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3513
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3514
		if (!zone_watermark_fast(zone, order, mark,
3515
				       ac_classzone_idx(ac), alloc_flags)) {
3516 3517
			int ret;

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3528 3529 3530 3531 3532
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3533
			if (node_reclaim_mode == 0 ||
3534
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3535 3536
				continue;

3537
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3538
			switch (ret) {
3539
			case NODE_RECLAIM_NOSCAN:
3540
				/* did not scan */
3541
				continue;
3542
			case NODE_RECLAIM_FULL:
3543
				/* scanned but unreclaimable */
3544
				continue;
3545 3546
			default:
				/* did we reclaim enough */
3547
				if (zone_watermark_ok(zone, order, mark,
3548
						ac_classzone_idx(ac), alloc_flags))
3549 3550 3551
					goto try_this_zone;

				continue;
3552
			}
R
Rohit Seth 已提交
3553 3554
		}

3555
try_this_zone:
3556
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3557
				gfp_mask, alloc_flags, ac->migratetype);
3558
		if (page) {
3559
			prep_new_page(page, order, gfp_mask, alloc_flags);
3560 3561 3562 3563 3564 3565 3566 3567

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3568
			return page;
3569 3570 3571 3572 3573 3574 3575 3576
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3577
		}
3578
	}
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3589
	return NULL;
M
Martin Hicks 已提交
3590 3591
}

3592
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3593 3594
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3595
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3596

3597
	if (!__ratelimit(&show_mem_rs))
3598 3599 3600 3601 3602 3603 3604 3605
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3606
		if (tsk_is_oom_victim(current) ||
3607 3608
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3609
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3610 3611
		filter &= ~SHOW_MEM_FILTER_NODES;

3612
	show_mem(filter, nodemask);
3613 3614
}

3615
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3616 3617 3618 3619 3620 3621
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3622
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3623 3624
		return;

3625 3626 3627
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3628
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3629 3630
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3631
	va_end(args);
J
Joe Perches 已提交
3632

3633
	cpuset_print_current_mems_allowed();
3634
	pr_cont("\n");
3635
	dump_stack();
3636
	warn_alloc_show_mem(gfp_mask, nodemask);
3637 3638
}

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3659 3660
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3661
	const struct alloc_context *ac, unsigned long *did_some_progress)
3662
{
3663 3664 3665
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3666
		.memcg = NULL,
3667 3668 3669
		.gfp_mask = gfp_mask,
		.order = order,
	};
3670 3671
	struct page *page;

3672 3673 3674
	*did_some_progress = 0;

	/*
3675 3676
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3677
	 */
3678
	if (!mutex_trylock(&oom_lock)) {
3679
		*did_some_progress = 1;
3680
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3681 3682
		return NULL;
	}
3683

3684 3685 3686
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3687 3688 3689
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3690
	 */
3691 3692 3693
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3694
	if (page)
3695 3696
		goto out;

3697 3698 3699 3700 3701 3702
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3703 3704 3705 3706 3707 3708 3709 3710
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3729

3730
	/* Exhausted what can be done so it's blame time */
3731
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3732
		*did_some_progress = 1;
3733

3734 3735 3736 3737 3738 3739
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3740 3741
					ALLOC_NO_WATERMARKS, ac);
	}
3742
out:
3743
	mutex_unlock(&oom_lock);
3744 3745 3746
	return page;
}

3747 3748 3749 3750 3751 3752
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3753 3754 3755 3756
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3757
		unsigned int alloc_flags, const struct alloc_context *ac,
3758
		enum compact_priority prio, enum compact_result *compact_result)
3759
{
3760
	struct page *page = NULL;
3761
	unsigned long pflags;
3762
	unsigned int noreclaim_flag;
3763 3764

	if (!order)
3765 3766
		return NULL;

3767
	psi_memstall_enter(&pflags);
3768
	noreclaim_flag = memalloc_noreclaim_save();
3769

3770
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3771
								prio, &page);
3772

3773
	memalloc_noreclaim_restore(noreclaim_flag);
3774
	psi_memstall_leave(&pflags);
3775

3776 3777
	if (*compact_result <= COMPACT_INACTIVE) {
		WARN_ON_ONCE(page);
3778
		return NULL;
3779
	}
3780

3781 3782 3783 3784 3785
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3786

3787 3788 3789 3790 3791 3792 3793
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3794

3795 3796
	if (page) {
		struct zone *zone = page_zone(page);
3797

3798 3799 3800 3801 3802
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3803

3804 3805 3806 3807 3808
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3809

3810
	cond_resched();
3811 3812 3813

	return NULL;
}
3814

3815 3816 3817 3818
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3819
		     int *compaction_retries)
3820 3821
{
	int max_retries = MAX_COMPACT_RETRIES;
3822
	int min_priority;
3823 3824 3825
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3826 3827 3828 3829

	if (!order)
		return false;

3830 3831 3832
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3833 3834 3835 3836 3837
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3838 3839
	if (compaction_failed(compact_result))
		goto check_priority;
3840 3841 3842 3843 3844 3845 3846

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3847 3848 3849 3850
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3851 3852

	/*
3853
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3854 3855 3856 3857 3858 3859 3860 3861
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3862 3863 3864 3865
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3866

3867 3868 3869 3870 3871
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3872 3873
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3874

3875
	if (*compact_priority > min_priority) {
3876 3877
		(*compact_priority)--;
		*compaction_retries = 0;
3878
		ret = true;
3879
	}
3880 3881 3882
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3883
}
3884 3885 3886
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3887
		unsigned int alloc_flags, const struct alloc_context *ac,
3888
		enum compact_priority prio, enum compact_result *compact_result)
3889
{
3890
	*compact_result = COMPACT_SKIPPED;
3891 3892
	return NULL;
}
3893 3894

static inline bool
3895 3896
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3897
		     enum compact_priority *compact_priority,
3898
		     int *compaction_retries)
3899
{
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3918 3919
	return false;
}
3920
#endif /* CONFIG_COMPACTION */
3921

3922
#ifdef CONFIG_LOCKDEP
3923
static struct lockdep_map __fs_reclaim_map =
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3935
	if (current->flags & PF_MEMALLOC)
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3958 3959 3960
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3961
		__fs_reclaim_acquire();
3962 3963 3964 3965 3966 3967
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3968
		__fs_reclaim_release();
3969 3970 3971 3972
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3973 3974
/* Perform direct synchronous page reclaim */
static int
3975 3976
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3977 3978
{
	struct reclaim_state reclaim_state;
3979
	int progress;
3980
	unsigned int noreclaim_flag;
3981
	unsigned long pflags;
3982 3983 3984 3985 3986

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3987
	psi_memstall_enter(&pflags);
3988
	fs_reclaim_acquire(gfp_mask);
3989
	noreclaim_flag = memalloc_noreclaim_save();
3990
	reclaim_state.reclaimed_slab = 0;
3991
	current->reclaim_state = &reclaim_state;
3992

3993 3994
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3995

3996
	current->reclaim_state = NULL;
3997
	memalloc_noreclaim_restore(noreclaim_flag);
3998
	fs_reclaim_release(gfp_mask);
3999
	psi_memstall_leave(&pflags);
4000 4001 4002

	cond_resched();

4003 4004 4005 4006 4007 4008
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4009
		unsigned int alloc_flags, const struct alloc_context *ac,
4010
		unsigned long *did_some_progress)
4011 4012 4013 4014
{
	struct page *page = NULL;
	bool drained = false;

4015
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4016 4017
	if (unlikely(!(*did_some_progress)))
		return NULL;
4018

4019
retry:
4020
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4021 4022 4023

	/*
	 * If an allocation failed after direct reclaim, it could be because
4024 4025
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4026 4027
	 */
	if (!page && !drained) {
4028
		unreserve_highatomic_pageblock(ac, false);
4029
		drain_all_pages(NULL);
4030 4031 4032 4033
		drained = true;
		goto retry;
	}

4034 4035 4036
	return page;
}

4037 4038
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4039 4040 4041
{
	struct zoneref *z;
	struct zone *zone;
4042
	pg_data_t *last_pgdat = NULL;
4043
	enum zone_type high_zoneidx = ac->high_zoneidx;
4044

4045 4046
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4047
		if (last_pgdat != zone->zone_pgdat)
4048
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4049 4050
		last_pgdat = zone->zone_pgdat;
	}
4051 4052
}

4053
static inline unsigned int
4054 4055
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4056
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4057

4058
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4059
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4060

4061 4062 4063 4064
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4065
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4066
	 */
4067
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4068

4069
	if (gfp_mask & __GFP_ATOMIC) {
4070
		/*
4071 4072
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4073
		 */
4074
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4075
			alloc_flags |= ALLOC_HARDER;
4076
		/*
4077
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4078
		 * comment for __cpuset_node_allowed().
4079
		 */
4080
		alloc_flags &= ~ALLOC_CPUSET;
4081
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4082 4083
		alloc_flags |= ALLOC_HARDER;

4084 4085 4086
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4087 4088 4089 4090
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4091 4092 4093
	return alloc_flags;
}

4094
static bool oom_reserves_allowed(struct task_struct *tsk)
4095
{
4096 4097 4098 4099 4100 4101 4102 4103
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4104 4105
		return false;

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4117
	if (gfp_mask & __GFP_MEMALLOC)
4118
		return ALLOC_NO_WATERMARKS;
4119
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4120 4121 4122 4123 4124 4125 4126
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4127

4128 4129 4130 4131 4132 4133
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4134 4135
}

M
Michal Hocko 已提交
4136 4137 4138
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4139 4140 4141 4142
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4143 4144 4145 4146 4147 4148
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4149
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4150 4151 4152
{
	struct zone *zone;
	struct zoneref *z;
4153
	bool ret = false;
M
Michal Hocko 已提交
4154

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4165 4166 4167 4168
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4169 4170
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4171
		return unreserve_highatomic_pageblock(ac, true);
4172
	}
M
Michal Hocko 已提交
4173

4174 4175 4176 4177 4178
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4179 4180 4181 4182
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4183
		unsigned long reclaimable;
4184 4185
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4186

4187 4188
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4189 4190

		/*
4191 4192
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4193
		 */
4194 4195 4196 4197 4198
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4199 4200 4201 4202 4203 4204 4205
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4206
				unsigned long write_pending;
4207

4208 4209
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4210

4211
				if (2 * write_pending > reclaimable) {
4212 4213 4214 4215
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4216

4217 4218
			ret = true;
			goto out;
M
Michal Hocko 已提交
4219 4220 4221
		}
	}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4235 4236
}

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4270 4271
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4272
						struct alloc_context *ac)
4273
{
4274
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4275
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4276
	struct page *page = NULL;
4277
	unsigned int alloc_flags;
4278
	unsigned long did_some_progress;
4279
	enum compact_priority compact_priority;
4280
	enum compact_result compact_result;
4281 4282 4283
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4284
	int reserve_flags;
L
Linus Torvalds 已提交
4285

4286 4287 4288 4289 4290 4291 4292 4293
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4294 4295 4296 4297 4298
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4299 4300 4301 4302 4303 4304 4305 4306

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4318
	if (alloc_flags & ALLOC_KSWAPD)
4319
		wake_all_kswapds(order, gfp_mask, ac);
4320 4321 4322 4323 4324 4325 4326 4327 4328

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4329 4330
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4331 4332 4333 4334 4335 4336
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4337
	 */
4338 4339 4340 4341
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4342 4343
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4344
						INIT_COMPACT_PRIORITY,
4345 4346 4347 4348
						&compact_result);
		if (page)
			goto got_pg;

4349 4350 4351 4352
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4353
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4366 4367
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4368
			 * using async compaction.
4369
			 */
4370
			compact_priority = INIT_COMPACT_PRIORITY;
4371 4372
		}
	}
4373

4374
retry:
4375
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4376
	if (alloc_flags & ALLOC_KSWAPD)
4377
		wake_all_kswapds(order, gfp_mask, ac);
4378

4379 4380 4381
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4382

4383
	/*
4384 4385 4386
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4387
	 */
4388
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4389
		ac->nodemask = NULL;
4390 4391 4392 4393
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4394
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4395
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4396 4397
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4398

4399
	/* Caller is not willing to reclaim, we can't balance anything */
4400
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4401 4402
		goto nopage;

4403 4404
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4405 4406
		goto nopage;

4407 4408 4409 4410 4411 4412 4413
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4414
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4415
					compact_priority, &compact_result);
4416 4417
	if (page)
		goto got_pg;
4418

4419 4420
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4421
		goto nopage;
4422

M
Michal Hocko 已提交
4423 4424
	/*
	 * Do not retry costly high order allocations unless they are
4425
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4426
	 */
4427
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4428
		goto nopage;
M
Michal Hocko 已提交
4429 4430

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4431
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4432 4433
		goto retry;

4434 4435 4436 4437 4438 4439 4440
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4441
			should_compact_retry(ac, order, alloc_flags,
4442
				compact_result, &compact_priority,
4443
				&compaction_retries))
4444 4445
		goto retry;

4446 4447 4448

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4449 4450
		goto retry_cpuset;

4451 4452 4453 4454 4455
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4456
	/* Avoid allocations with no watermarks from looping endlessly */
4457 4458
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4459
	     (gfp_mask & __GFP_NOMEMALLOC)))
4460 4461
		goto nopage;

4462
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4463 4464
	if (did_some_progress) {
		no_progress_loops = 0;
4465
		goto retry;
M
Michal Hocko 已提交
4466
	}
4467

L
Linus Torvalds 已提交
4468
nopage:
4469 4470
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4471 4472
		goto retry_cpuset;

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4510 4511 4512 4513
		cond_resched();
		goto retry;
	}
fail:
4514
	warn_alloc(gfp_mask, ac->nodemask,
4515
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4516
got_pg:
4517
	return page;
L
Linus Torvalds 已提交
4518
}
4519

4520
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4521
		int preferred_nid, nodemask_t *nodemask,
4522 4523
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4524
{
4525
	ac->high_zoneidx = gfp_zone(gfp_mask);
4526
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4527 4528
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4529

4530
	if (cpusets_enabled()) {
4531 4532 4533
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4534 4535
		else
			*alloc_flags |= ALLOC_CPUSET;
4536 4537
	}

4538 4539
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4540

4541
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4542 4543

	if (should_fail_alloc_page(gfp_mask, order))
4544
		return false;
4545

4546 4547 4548
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4549 4550
	return true;
}
4551

4552
/* Determine whether to spread dirty pages and what the first usable zone */
4553
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4554
{
4555
	/* Dirty zone balancing only done in the fast path */
4556
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4557

4558 4559 4560 4561 4562
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4563 4564 4565 4566 4567 4568 4569 4570
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4571 4572
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4573 4574 4575
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4576
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4577 4578
	struct alloc_context ac = { };

4579 4580 4581 4582 4583 4584 4585 4586 4587
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4588
	gfp_mask &= gfp_allowed_mask;
4589
	alloc_mask = gfp_mask;
4590
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4591 4592
		return NULL;

4593
	finalise_ac(gfp_mask, &ac);
4594

4595 4596 4597 4598
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4599
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4600

4601
	/* First allocation attempt */
4602
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4603 4604
	if (likely(page))
		goto out;
4605

4606
	/*
4607 4608 4609 4610
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4611
	 */
4612
	alloc_mask = current_gfp_context(gfp_mask);
4613
	ac.spread_dirty_pages = false;
4614

4615 4616 4617 4618
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4619
	if (unlikely(ac.nodemask != nodemask))
4620
		ac.nodemask = nodemask;
4621

4622
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4623

4624
out:
4625
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4626
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4627 4628
		__free_pages(page, order);
		page = NULL;
4629 4630
	}

4631 4632
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4633
	return page;
L
Linus Torvalds 已提交
4634
}
4635
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4636 4637

/*
4638 4639 4640
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4641
 */
H
Harvey Harrison 已提交
4642
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4643
{
4644 4645
	struct page *page;

4646
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4653
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4654
{
4655
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4656 4657 4658
}
EXPORT_SYMBOL(get_zeroed_page);

4659
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4660
{
4661 4662 4663 4664
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4665 4666
}

4667 4668 4669 4670 4671
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4672 4673
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4674
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4675 4676
{
	if (addr != 0) {
N
Nick Piggin 已提交
4677
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4695 4696
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4716
void __page_frag_cache_drain(struct page *page, unsigned int count)
4717 4718 4719
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4720 4721
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4722
}
4723
EXPORT_SYMBOL(__page_frag_cache_drain);
4724

4725 4726
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4727 4728 4729 4730 4731 4732 4733
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4734
		page = __page_frag_cache_refill(nc, gfp_mask);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4745
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4746 4747

		/* reset page count bias and offset to start of new frag */
4748
		nc->pfmemalloc = page_is_pfmemalloc(page);
4749
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4750 4751 4752 4753 4754 4755 4756
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4757
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4758 4759 4760 4761 4762 4763 4764
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4765
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4766 4767

		/* reset page count bias and offset to start of new frag */
4768
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4769 4770 4771 4772 4773 4774 4775 4776
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4777
EXPORT_SYMBOL(page_frag_alloc);
4778 4779 4780 4781

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4782
void page_frag_free(void *addr)
4783 4784 4785
{
	struct page *page = virt_to_head_page(addr);

4786 4787
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4788
}
4789
EXPORT_SYMBOL(page_frag_free);
4790

4791 4792
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4819 4820
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4821 4822 4823 4824 4825 4826 4827
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4828
	return make_alloc_exact(addr, order, size);
4829 4830 4831
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4832 4833 4834
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4835
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4836 4837 4838 4839 4840
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4841 4842
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4843
 */
4844
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4845
{
4846
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4847 4848 4849 4850 4851 4852
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4872 4873 4874 4875
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4876
 * nr_free_zone_pages() counts the number of pages which are beyond the
4877 4878
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4879 4880
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4881 4882
 *
 * Return: number of pages beyond high watermark.
4883
 */
4884
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4885
{
4886
	struct zoneref *z;
4887 4888
	struct zone *zone;

4889
	/* Just pick one node, since fallback list is circular */
4890
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4891

4892
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4893

4894
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4895
		unsigned long size = zone_managed_pages(zone);
4896
		unsigned long high = high_wmark_pages(zone);
4897 4898
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903
	}

	return sum;
}

4904 4905 4906 4907 4908
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4909 4910 4911
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4912
 */
4913
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4914
{
A
Al Viro 已提交
4915
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4916
}
4917
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4918

4919 4920 4921 4922 4923
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
4924 4925
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
4926
 */
4927
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4928
{
M
Mel Gorman 已提交
4929
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4930
}
4931 4932

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4933
{
4934
	if (IS_ENABLED(CONFIG_NUMA))
4935
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4936 4937
}

4938 4939 4940 4941 4942 4943
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4944
	unsigned long reclaimable;
4945 4946 4947 4948
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4949
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4950 4951

	for_each_zone(zone)
4952
		wmark_low += low_wmark_pages(zone);
4953 4954 4955 4956 4957

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4958
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4970 4971 4972
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4973
	 */
4974 4975 4976
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4977

4978 4979 4980 4981 4982 4983
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4984 4985
void si_meminfo(struct sysinfo *val)
{
4986
	val->totalram = totalram_pages();
4987
	val->sharedram = global_node_page_state(NR_SHMEM);
4988
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4989
	val->bufferram = nr_blockdev_pages();
4990
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5000 5001
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5002 5003
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5004 5005
	pg_data_t *pgdat = NODE_DATA(nid);

5006
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5007
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5008
	val->totalram = managed_pages;
5009
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5010
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5011
#ifdef CONFIG_HIGHMEM
5012 5013 5014 5015
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5016
			managed_highpages += zone_managed_pages(zone);
5017 5018 5019 5020 5021
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5022
#else
5023 5024
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5025
#endif
L
Linus Torvalds 已提交
5026 5027 5028 5029
	val->mem_unit = PAGE_SIZE;
}
#endif

5030
/*
5031 5032
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5033
 */
5034
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5035 5036
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5037
		return false;
5038

5039 5040 5041 5042 5043 5044 5045 5046 5047
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5048 5049
}

L
Linus Torvalds 已提交
5050 5051
#define K(x) ((x) << (PAGE_SHIFT-10))

5052 5053 5054 5055 5056
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5057 5058
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5059 5060 5061
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5062
#ifdef CONFIG_MEMORY_ISOLATION
5063
		[MIGRATE_ISOLATE]	= 'I',
5064
#endif
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5076
	printk(KERN_CONT "(%s) ", tmp);
5077 5078
}

L
Linus Torvalds 已提交
5079 5080 5081 5082
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5083 5084 5085 5086
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5087
 */
5088
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5089
{
5090
	unsigned long free_pcp = 0;
5091
	int cpu;
L
Linus Torvalds 已提交
5092
	struct zone *zone;
M
Mel Gorman 已提交
5093
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5094

5095
	for_each_populated_zone(zone) {
5096
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5097
			continue;
5098

5099 5100
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5101 5102
	}

K
KOSAKI Motohiro 已提交
5103 5104
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5105 5106
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5107
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5108
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5109 5110 5111 5112 5113 5114 5115
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5116 5117 5118
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5119 5120
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5121
		global_node_page_state(NR_FILE_MAPPED),
5122
		global_node_page_state(NR_SHMEM),
5123 5124 5125
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5126
		free_pcp,
5127
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5128

M
Mel Gorman 已提交
5129
	for_each_online_pgdat(pgdat) {
5130
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5131 5132
			continue;

M
Mel Gorman 已提交
5133 5134 5135 5136 5137 5138 5139 5140
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5141
			" mapped:%lukB"
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5162
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5163 5164
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5165
			K(node_page_state(pgdat, NR_SHMEM)),
5166 5167 5168 5169 5170 5171 5172 5173
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5174 5175
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5176 5177
	}

5178
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5179 5180
		int i;

5181
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5182
			continue;
5183 5184 5185 5186 5187

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5188
		show_node(zone);
5189 5190
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5191 5192 5193 5194
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5195 5196 5197 5198 5199
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5200
			" writepending:%lukB"
L
Linus Torvalds 已提交
5201
			" present:%lukB"
5202
			" managed:%lukB"
5203
			" mlocked:%lukB"
5204
			" kernel_stack:%lukB"
5205 5206
			" pagetables:%lukB"
			" bounce:%lukB"
5207 5208
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5209
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5210 5211
			"\n",
			zone->name,
5212
			K(zone_page_state(zone, NR_FREE_PAGES)),
5213 5214 5215
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5216 5217 5218 5219 5220
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5221
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5222
			K(zone->present_pages),
5223
			K(zone_managed_pages(zone)),
5224
			K(zone_page_state(zone, NR_MLOCK)),
5225
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5226 5227
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5228 5229
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5230
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5231 5232
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5233 5234
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5235 5236
	}

5237
	for_each_populated_zone(zone) {
5238 5239
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5240
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5241

5242
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5243
			continue;
L
Linus Torvalds 已提交
5244
		show_node(zone);
5245
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5246 5247 5248

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5249 5250 5251 5252
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5253
			total += nr[order] << order;
5254 5255 5256 5257 5258 5259

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5260 5261
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5262
		for (order = 0; order < MAX_ORDER; order++) {
5263 5264
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5265 5266 5267
			if (nr[order])
				show_migration_types(types[order]);
		}
5268
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5269 5270
	}

5271 5272
	hugetlb_show_meminfo();

5273
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5274

L
Linus Torvalds 已提交
5275 5276 5277
	show_swap_cache_info();
}

5278 5279 5280 5281 5282 5283
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5284 5285
/*
 * Builds allocation fallback zone lists.
5286 5287
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5288
 */
5289
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5290
{
5291
	struct zone *zone;
5292
	enum zone_type zone_type = MAX_NR_ZONES;
5293
	int nr_zones = 0;
5294 5295

	do {
5296
		zone_type--;
5297
		zone = pgdat->node_zones + zone_type;
5298
		if (managed_zone(zone)) {
5299
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5300
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5301
		}
5302
	} while (zone_type);
5303

5304
	return nr_zones;
L
Linus Torvalds 已提交
5305 5306 5307
}

#ifdef CONFIG_NUMA
5308 5309 5310

static int __parse_numa_zonelist_order(char *s)
{
5311 5312 5313 5314 5315 5316 5317 5318
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5319 5320 5321 5322 5323 5324 5325
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5326 5327 5328
	if (!s)
		return 0;

5329
	return __parse_numa_zonelist_order(s);
5330 5331 5332
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5333 5334
char numa_zonelist_order[] = "Node";

5335 5336 5337
/*
 * sysctl handler for numa_zonelist_order
 */
5338
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5339
		void __user *buffer, size_t *length,
5340 5341
		loff_t *ppos)
{
5342
	char *str;
5343 5344
	int ret;

5345 5346 5347 5348 5349
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5350

5351 5352
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5353
	return ret;
5354 5355 5356
}


5357
#define MAX_NODE_LOAD (nr_online_nodes)
5358 5359
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5360
/**
5361
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5372 5373
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5374
 */
5375
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5376
{
5377
	int n, val;
L
Linus Torvalds 已提交
5378
	int min_val = INT_MAX;
D
David Rientjes 已提交
5379
	int best_node = NUMA_NO_NODE;
5380
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5381

5382 5383 5384 5385 5386
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5387

5388
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394 5395 5396

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5397 5398 5399
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5400
		/* Give preference to headless and unused nodes */
5401 5402
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5421 5422 5423 5424 5425 5426

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5427 5428
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5429
{
5430 5431 5432 5433 5434 5435 5436 5437 5438
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5439

5440 5441 5442 5443 5444
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5445 5446
}

5447 5448 5449 5450 5451
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5452 5453
	struct zoneref *zonerefs;
	int nr_zones;
5454

5455 5456 5457 5458 5459
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5460 5461
}

5462 5463 5464 5465 5466 5467 5468 5469 5470
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5471 5472
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5473
	nodemask_t used_mask;
5474
	int local_node, prev_node;
L
Linus Torvalds 已提交
5475 5476 5477

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5478
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5479 5480
	prev_node = local_node;
	nodes_clear(used_mask);
5481 5482

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5489 5490
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5491 5492
			node_load[node] = load;

5493
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5494 5495 5496
		prev_node = node;
		load--;
	}
5497

5498
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5499
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5500 5501
}

5502 5503 5504 5505 5506 5507 5508 5509 5510
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5511
	struct zoneref *z;
5512

5513
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5514
				   gfp_zone(GFP_KERNEL),
5515
				   NULL);
5516
	return zone_to_nid(z->zone);
5517 5518
}
#endif
5519

5520 5521
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5522 5523
#else	/* CONFIG_NUMA */

5524
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5525
{
5526
	int node, local_node;
5527 5528
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5529 5530 5531

	local_node = pgdat->node_id;

5532 5533 5534
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5535

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5547 5548
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5549
	}
5550 5551 5552
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5553 5554
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5555 5556
	}

5557 5558
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5559 5560 5561 5562
}

#endif	/* CONFIG_NUMA */

5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5580
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5581

5582
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5583
{
5584
	int nid;
5585
	int __maybe_unused cpu;
5586
	pg_data_t *self = data;
5587 5588 5589
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5590

5591 5592 5593
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5594

5595 5596 5597 5598
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5599 5600
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5601 5602 5603
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5604

5605 5606
			build_zonelists(pgdat);
		}
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5617
		for_each_online_cpu(cpu)
5618
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5619
#endif
5620
	}
5621 5622

	spin_unlock(&lock);
5623 5624
}

5625 5626 5627
static noinline void __init
build_all_zonelists_init(void)
{
5628 5629
	int cpu;

5630
	__build_all_zonelists(NULL);
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5648 5649 5650 5651
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5652 5653
/*
 * unless system_state == SYSTEM_BOOTING.
5654
 *
5655
 * __ref due to call of __init annotated helper build_all_zonelists_init
5656
 * [protected by SYSTEM_BOOTING].
5657
 */
5658
void __ref build_all_zonelists(pg_data_t *pgdat)
5659 5660
{
	if (system_state == SYSTEM_BOOTING) {
5661
		build_all_zonelists_init();
5662
	} else {
5663
		__build_all_zonelists(pgdat);
5664 5665
		/* cpuset refresh routine should be here */
	}
5666
	vm_total_pages = nr_free_pagecache_pages();
5667 5668 5669 5670 5671 5672 5673
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5674
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5675 5676 5677 5678
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5679
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5680 5681 5682
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5683
#ifdef CONFIG_NUMA
5684
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5685
#endif
L
Linus Torvalds 已提交
5686 5687
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5712 5713
/*
 * Initially all pages are reserved - free ones are freed
5714
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5715 5716
 * done. Non-atomic initialization, single-pass.
 */
5717
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5718 5719
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5720
{
5721
	unsigned long pfn, end_pfn = start_pfn + size;
5722
	struct page *page;
L
Linus Torvalds 已提交
5723

5724 5725 5726
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5727
#ifdef CONFIG_ZONE_DEVICE
5728 5729
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5730 5731 5732 5733
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5734
	 */
5735 5736 5737 5738 5739 5740 5741 5742 5743
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5744

5745
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5746
		/*
5747 5748
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5749
		 */
5750 5751
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5752
				continue;
5753 5754 5755 5756 5757 5758
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5759
		}
5760

5761 5762 5763
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5764
			__SetPageReserved(page);
5765

5766 5767 5768 5769 5770
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5771
		 * kernel allocations are made.
5772 5773 5774 5775 5776 5777 5778 5779
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5780
			cond_resched();
5781
		}
L
Linus Torvalds 已提交
5782 5783 5784
	}
}

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5860
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5861
{
5862
	unsigned int order, t;
5863 5864
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5865 5866 5867 5868
		zone->free_area[order].nr_free = 0;
	}
}

5869 5870 5871 5872 5873
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5874

5875
static int zone_batchsize(struct zone *zone)
5876
{
5877
#ifdef CONFIG_MMU
5878 5879 5880 5881
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5882
	 * size of the zone.
5883
	 */
5884
	batch = zone_managed_pages(zone) / 1024;
5885 5886 5887
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5888 5889 5890 5891 5892
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5893 5894 5895
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5896
	 *
5897 5898 5899 5900
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5901
	 */
5902
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5903

5904
	return batch;
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5922 5923
}

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5951
/* a companion to pageset_set_high() */
5952 5953
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5954
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5955 5956
}

5957
static void pageset_init(struct per_cpu_pageset *p)
5958 5959
{
	struct per_cpu_pages *pcp;
5960
	int migratetype;
5961

5962 5963
	memset(p, 0, sizeof(*p));

5964
	pcp = &p->pcp;
5965 5966
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5967 5968
}

5969 5970 5971 5972 5973 5974
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5975
/*
5976
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5977 5978
 * to the value high for the pageset p.
 */
5979
static void pageset_set_high(struct per_cpu_pageset *p,
5980 5981
				unsigned long high)
{
5982 5983 5984
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5985

5986
	pageset_update(&p->pcp, high, batch);
5987 5988
}

5989 5990
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5991 5992
{
	if (percpu_pagelist_fraction)
5993
		pageset_set_high(pcp,
5994
			(zone_managed_pages(zone) /
5995 5996 5997 5998 5999
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6000 6001 6002 6003 6004 6005 6006 6007
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6008
void __meminit setup_zone_pageset(struct zone *zone)
6009 6010 6011
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6012 6013
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6014 6015
}

6016
/*
6017 6018
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6019
 */
6020
void __init setup_per_cpu_pageset(void)
6021
{
6022
	struct pglist_data *pgdat;
6023
	struct zone *zone;
6024

6025 6026
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6027 6028 6029 6030

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6031 6032
}

6033
static __meminit void zone_pcp_init(struct zone *zone)
6034
{
6035 6036 6037 6038 6039 6040
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6041

6042
	if (populated_zone(zone))
6043 6044 6045
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6046 6047
}

6048
void __meminit init_currently_empty_zone(struct zone *zone,
6049
					unsigned long zone_start_pfn,
6050
					unsigned long size)
6051 6052
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6053
	int zone_idx = zone_idx(zone) + 1;
6054

6055 6056
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6057 6058 6059

	zone->zone_start_pfn = zone_start_pfn;

6060 6061 6062 6063 6064 6065
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6066
	zone_init_free_lists(zone);
6067
	zone->initialized = 1;
6068 6069
}

T
Tejun Heo 已提交
6070
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6071
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6072

6073 6074 6075
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6076 6077
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6078
{
6079
	unsigned long start_pfn, end_pfn;
6080
	int nid;
6081

6082 6083
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6084

6085
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6086
	if (nid != NUMA_NO_NODE) {
6087 6088 6089
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6090 6091 6092
	}

	return nid;
6093 6094 6095 6096
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6097
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6098
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6099
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6100
 *
6101 6102 6103
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6104
 */
6105
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6106
{
6107 6108
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6109

6110 6111 6112
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6113

6114
		if (start_pfn < end_pfn)
6115 6116 6117
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6118 6119 6120
	}
}

6121 6122
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6123
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6124
 *
6125 6126
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6127 6128 6129
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6130 6131
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6132

6133 6134
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6135 6136 6137 6138
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6139 6140 6141
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6142 6143
 *
 * It returns the start and end page frame of a node based on information
6144
 * provided by memblock_set_node(). If called for a node
6145
 * with no available memory, a warning is printed and the start and end
6146
 * PFNs will be 0.
6147
 */
6148
void __init get_pfn_range_for_nid(unsigned int nid,
6149 6150
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6151
	unsigned long this_start_pfn, this_end_pfn;
6152
	int i;
6153

6154 6155 6156
	*start_pfn = -1UL;
	*end_pfn = 0;

6157 6158 6159
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6160 6161
	}

6162
	if (*start_pfn == -1UL)
6163 6164 6165
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6166 6167 6168 6169 6170
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6171
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6189
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6190 6191 6192 6193 6194 6195 6196
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6197
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6212 6213 6214 6215 6216 6217
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6218 6219 6220 6221 6222 6223
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6224 6225 6226 6227
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6228
static unsigned long __init zone_spanned_pages_in_node(int nid,
6229
					unsigned long zone_type,
6230 6231
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6232 6233
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6234 6235
					unsigned long *ignored)
{
6236
	/* When hotadd a new node from cpu_up(), the node should be empty */
6237 6238 6239
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6240
	/* Get the start and end of the zone */
6241 6242
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6243 6244
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6245
				zone_start_pfn, zone_end_pfn);
6246 6247

	/* Check that this node has pages within the zone's required range */
6248
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6249 6250 6251
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6252 6253
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6254 6255

	/* Return the spanned pages */
6256
	return *zone_end_pfn - *zone_start_pfn;
6257 6258 6259 6260
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6261
 * then all holes in the requested range will be accounted for.
6262
 */
6263
unsigned long __init __absent_pages_in_range(int nid,
6264 6265 6266
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6267 6268 6269
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6270

6271 6272 6273 6274
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6275
	}
6276
	return nr_absent;
6277 6278 6279 6280 6281 6282 6283
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6284
 * Return: the number of pages frames in memory holes within a range.
6285 6286 6287 6288 6289 6290 6291 6292
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6293
static unsigned long __init zone_absent_pages_in_node(int nid,
6294
					unsigned long zone_type,
6295 6296
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6297 6298
					unsigned long *ignored)
{
6299 6300
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6301
	unsigned long zone_start_pfn, zone_end_pfn;
6302
	unsigned long nr_absent;
6303

6304
	/* When hotadd a new node from cpu_up(), the node should be empty */
6305 6306 6307
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6308 6309
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6310

M
Mel Gorman 已提交
6311 6312 6313
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6314 6315 6316 6317 6318 6319 6320
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6338 6339 6340 6341
		}
	}

	return nr_absent;
6342
}
6343

T
Tejun Heo 已提交
6344
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6345
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6346
					unsigned long zone_type,
6347 6348
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6349 6350
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6351 6352
					unsigned long *zones_size)
{
6353 6354 6355 6356 6357 6358 6359 6360
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6361 6362 6363
	return zones_size[zone_type];
}

6364
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6365
						unsigned long zone_type,
6366 6367
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6368 6369 6370 6371 6372 6373 6374
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6375

T
Tejun Heo 已提交
6376
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6377

6378
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6379 6380 6381 6382
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6383
{
6384
	unsigned long realtotalpages = 0, totalpages = 0;
6385 6386
	enum zone_type i;

6387 6388
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6389
		unsigned long zone_start_pfn, zone_end_pfn;
6390
		unsigned long size, real_size;
6391

6392 6393 6394
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6395 6396
						  &zone_start_pfn,
						  &zone_end_pfn,
6397 6398
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6399 6400
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6401 6402 6403 6404
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6405 6406 6407 6408 6409 6410 6411 6412
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6413 6414 6415 6416 6417
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6418 6419 6420
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6421 6422
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6423 6424 6425
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6426
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6427 6428 6429
{
	unsigned long usemapsize;

6430
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6431 6432
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6433 6434 6435 6436 6437 6438
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6439
static void __ref setup_usemap(struct pglist_data *pgdat,
6440 6441 6442
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6443
{
6444
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6445
	zone->pageblock_flags = NULL;
6446
	if (usemapsize) {
6447
		zone->pageblock_flags =
6448 6449
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6450 6451 6452 6453
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6454 6455
}
#else
6456 6457
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6458 6459
#endif /* CONFIG_SPARSEMEM */

6460
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6461

6462
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6463
void __init set_pageblock_order(void)
6464
{
6465 6466
	unsigned int order;

6467 6468 6469 6470
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6471 6472 6473 6474 6475
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6476 6477
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6478 6479
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6480 6481 6482 6483 6484
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6485 6486
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6487 6488 6489
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6490
 */
6491
void __init set_pageblock_order(void)
6492 6493
{
}
6494 6495 6496

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6497
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6498
						unsigned long present_pages)
6499 6500 6501 6502 6503 6504 6505 6506
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6507
	 * populated regions may not be naturally aligned on page boundary.
6508 6509 6510 6511 6512 6513 6514 6515 6516
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6537
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6538
{
6539
	pgdat_resize_init(pgdat);
6540 6541 6542 6543

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6544
	init_waitqueue_head(&pgdat->kswapd_wait);
6545
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6546

6547
	pgdat_page_ext_init(pgdat);
6548
	spin_lock_init(&pgdat->lru_lock);
6549
	lruvec_init(node_lruvec(pgdat));
6550 6551 6552 6553 6554
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6555
	atomic_long_set(&zone->managed_pages, remaining_pages);
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6596

6597
	pgdat_init_internals(pgdat);
6598 6599
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6600 6601
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6602
		unsigned long size, freesize, memmap_pages;
6603
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6604

6605
		size = zone->spanned_pages;
6606
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6607

6608
		/*
6609
		 * Adjust freesize so that it accounts for how much memory
6610 6611 6612
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6613
		memmap_pages = calc_memmap_size(size, freesize);
6614 6615 6616 6617 6618 6619 6620 6621
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6622
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6623 6624
					zone_names[j], memmap_pages, freesize);
		}
6625

6626
		/* Account for reserved pages */
6627 6628
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6629
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6630
					zone_names[0], dma_reserve);
6631 6632
		}

6633
		if (!is_highmem_idx(j))
6634
			nr_kernel_pages += freesize;
6635 6636 6637
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6638
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6639

6640 6641 6642 6643 6644
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6645
		zone_init_internals(zone, j, nid, freesize);
6646

6647
		if (!size)
L
Linus Torvalds 已提交
6648 6649
			continue;

6650
		set_pageblock_order();
6651 6652
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6653
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6654 6655 6656
	}
}

6657
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6658
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6659
{
6660
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6661 6662
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6663 6664 6665 6666
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6667 6668
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6669 6670
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6671
		unsigned long size, end;
A
Andy Whitcroft 已提交
6672 6673
		struct page *map;

6674 6675 6676 6677 6678
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6679
		end = pgdat_end_pfn(pgdat);
6680 6681
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6682 6683
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6684 6685 6686
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6687
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6688
	}
6689 6690 6691
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6692
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6693 6694 6695
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6696
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6697
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6698
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6699
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6700
			mem_map -= offset;
T
Tejun Heo 已提交
6701
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6702
	}
L
Linus Torvalds 已提交
6703 6704
#endif
}
6705 6706 6707
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6708

6709 6710 6711 6712 6713 6714 6715 6716 6717
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6718
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6719 6720
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6721
{
6722
	pg_data_t *pgdat = NODE_DATA(nid);
6723 6724
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6725

6726
	/* pg_data_t should be reset to zero when it's allocated */
6727
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6728

L
Linus Torvalds 已提交
6729 6730
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6731
	pgdat->per_cpu_nodestats = NULL;
6732 6733
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6734
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6735 6736
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6737 6738
#else
	start_pfn = node_start_pfn;
6739 6740 6741
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6742 6743

	alloc_node_mem_map(pgdat);
6744
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6745

6746
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6747 6748
}

M
Mike Rapoport 已提交
6749
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6772 6773 6774 6775 6776 6777
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6778 6779 6780 6781 6782
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6783
 */
6784
void __init zero_resv_unavail(void)
6785 6786 6787
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6788
	phys_addr_t next = 0;
6789 6790

	/*
6791
	 * Loop through unavailable ranges not covered by memblock.memory.
6792 6793
	 */
	pgcnt = 0;
6794 6795
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6796 6797
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6798 6799
		next = end;
	}
6800
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6801

6802 6803 6804 6805 6806
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6807
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6808
}
M
Mike Rapoport 已提交
6809
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6810

T
Tejun Heo 已提交
6811
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6812 6813 6814 6815 6816

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6817
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6818
{
6819
	unsigned int highest;
M
Miklos Szeredi 已提交
6820

6821
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6822 6823 6824 6825
	nr_node_ids = highest + 1;
}
#endif

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6842
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6843 6844 6845 6846 6847
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6848
	unsigned long start, end, mask;
6849
	int last_nid = NUMA_NO_NODE;
6850
	int i, nid;
6851

6852
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6876
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6877
static unsigned long __init find_min_pfn_for_node(int nid)
6878
{
6879
	unsigned long min_pfn = ULONG_MAX;
6880 6881
	unsigned long start_pfn;
	int i;
6882

6883 6884
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6885

6886
	if (min_pfn == ULONG_MAX) {
6887
		pr_warn("Could not find start_pfn for node %d\n", nid);
6888 6889 6890 6891
		return 0;
	}

	return min_pfn;
6892 6893 6894 6895 6896
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6897
 * Return: the minimum PFN based on information provided via
6898
 * memblock_set_node().
6899 6900 6901 6902 6903 6904
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6905 6906 6907
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6908
 * Populate N_MEMORY for calculating usable_nodes.
6909
 */
A
Adrian Bunk 已提交
6910
static unsigned long __init early_calculate_totalpages(void)
6911 6912
{
	unsigned long totalpages = 0;
6913 6914 6915 6916 6917
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6918

6919 6920
		totalpages += pages;
		if (pages)
6921
			node_set_state(nid, N_MEMORY);
6922
	}
6923
	return totalpages;
6924 6925
}

M
Mel Gorman 已提交
6926 6927 6928 6929 6930 6931
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6932
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6933 6934 6935 6936
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6937
	/* save the state before borrow the nodemask */
6938
	nodemask_t saved_node_state = node_states[N_MEMORY];
6939
	unsigned long totalpages = early_calculate_totalpages();
6940
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6941
	struct memblock_region *r;
6942 6943 6944 6945 6946 6947 6948 6949 6950

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6951 6952
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6953 6954
				continue;

E
Emil Medve 已提交
6955
			nid = r->nid;
6956

E
Emil Medve 已提交
6957
			usable_startpfn = PFN_DOWN(r->base);
6958 6959 6960 6961 6962 6963 6964
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6965

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6996
	/*
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7024
		required_movablecore = min(totalpages, required_movablecore);
7025 7026 7027 7028 7029
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7030 7031 7032 7033 7034
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7035
		goto out;
M
Mel Gorman 已提交
7036 7037 7038 7039 7040 7041 7042

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7043
	for_each_node_state(nid, N_MEMORY) {
7044 7045
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7062
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7063 7064
			unsigned long size_pages;

7065
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7108
			 * satisfied
M
Mel Gorman 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7122
	 * satisfied
M
Mel Gorman 已提交
7123 7124 7125 7126 7127
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7128
out2:
M
Mel Gorman 已提交
7129 7130 7131 7132
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7133

7134
out:
7135
	/* restore the node_state */
7136
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7137 7138
}

7139 7140
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7141 7142 7143
{
	enum zone_type zone_type;

7144
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7145
		struct zone *zone = &pgdat->node_zones[zone_type];
7146
		if (populated_zone(zone)) {
7147 7148 7149
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7150
				node_set_state(nid, N_NORMAL_MEMORY);
7151 7152
			break;
		}
7153 7154 7155
	}
}

7156 7157
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7158
 * @max_zone_pfn: an array of max PFNs for each zone
7159 7160
 *
 * This will call free_area_init_node() for each active node in the system.
7161
 * Using the page ranges provided by memblock_set_node(), the size of each
7162 7163 7164 7165 7166 7167 7168 7169 7170
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7171 7172
	unsigned long start_pfn, end_pfn;
	int i, nid;
7173

7174 7175 7176 7177 7178
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7179 7180 7181 7182

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7183 7184
		if (i == ZONE_MOVABLE)
			continue;
7185 7186 7187 7188 7189 7190

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7191
	}
M
Mel Gorman 已提交
7192 7193 7194

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7195
	find_zone_movable_pfns_for_nodes();
7196 7197

	/* Print out the zone ranges */
7198
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7199 7200 7201
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7202
		pr_info("  %-8s ", zone_names[i]);
7203 7204
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7205
			pr_cont("empty\n");
7206
		else
7207 7208 7209 7210
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7211
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7212 7213 7214
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7215
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7216 7217
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7218 7219
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7220
	}
7221

7222
	/* Print out the early node map */
7223
	pr_info("Early memory node ranges\n");
7224
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7225 7226 7227
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7228 7229

	/* Initialise every node */
7230
	mminit_verify_pageflags_layout();
7231
	setup_nr_node_ids();
7232
	zero_resv_unavail();
7233 7234
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7235
		free_area_init_node(nid, NULL,
7236
				find_min_pfn_for_node(nid), NULL);
7237 7238 7239

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7240 7241
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7242 7243
	}
}
M
Mel Gorman 已提交
7244

7245 7246
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7247 7248
{
	unsigned long long coremem;
7249 7250
	char *endptr;

M
Mel Gorman 已提交
7251 7252 7253
	if (!p)
		return -EINVAL;

7254 7255 7256 7257 7258
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7259

7260 7261 7262 7263 7264
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7265

7266 7267 7268
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7269 7270
	return 0;
}
M
Mel Gorman 已提交
7271

7272 7273 7274 7275 7276 7277
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7278 7279 7280 7281 7282 7283
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7284 7285
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7286 7287 7288 7289 7290 7291 7292 7293
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7294 7295
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7296 7297
}

M
Mel Gorman 已提交
7298
early_param("kernelcore", cmdline_parse_kernelcore);
7299
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7300

T
Tejun Heo 已提交
7301
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7302

7303 7304
void adjust_managed_page_count(struct page *page, long count)
{
7305
	atomic_long_add(count, &page_zone(page)->managed_pages);
7306
	totalram_pages_add(count);
7307 7308
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7309
		totalhigh_pages_add(count);
7310
#endif
7311
}
7312
EXPORT_SYMBOL(adjust_managed_page_count);
7313

7314
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7315
{
7316 7317
	void *pos;
	unsigned long pages = 0;
7318

7319 7320 7321
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7333
		if ((unsigned int)poison <= 0xFF)
7334 7335 7336
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7337 7338 7339
	}

	if (pages && s)
7340 7341
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7342 7343 7344 7345

	return pages;
}

7346 7347 7348 7349
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7350
	totalram_pages_inc();
7351
	atomic_long_inc(&page_zone(page)->managed_pages);
7352
	totalhigh_pages_inc();
7353 7354 7355
}
#endif

7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7378 7379 7380 7381
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7382 7383 7384 7385 7386 7387 7388 7389 7390 7391

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7392
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7393
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7394
		", %luK highmem"
7395
#endif
J
Joe Perches 已提交
7396 7397 7398 7399 7400
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7401
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7402
		totalcma_pages << (PAGE_SHIFT - 10),
7403
#ifdef	CONFIG_HIGHMEM
7404
		totalhigh_pages() << (PAGE_SHIFT - 10),
7405
#endif
J
Joe Perches 已提交
7406
		str ? ", " : "", str ? str : "");
7407 7408
}

7409
/**
7410 7411
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7412
 *
7413
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7414 7415
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7416 7417 7418
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7419 7420 7421 7422 7423 7424
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7425 7426
void __init free_area_init(unsigned long *zones_size)
{
7427
	zero_resv_unavail();
7428
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7429 7430 7431
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7432
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7433 7434
{

7435 7436
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7437

7438 7439 7440 7441 7442 7443 7444
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7445

7446 7447 7448 7449 7450 7451 7452 7453 7454
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7455 7456 7457 7458
}

void __init page_alloc_init(void)
{
7459 7460 7461 7462 7463 7464
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7465 7466
}

7467
/*
7468
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7469 7470 7471 7472 7473 7474
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7475
	enum zone_type i, j;
7476 7477

	for_each_online_pgdat(pgdat) {
7478 7479 7480

		pgdat->totalreserve_pages = 0;

7481 7482
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7483
			long max = 0;
7484
			unsigned long managed_pages = zone_managed_pages(zone);
7485 7486 7487 7488 7489 7490 7491

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7492 7493
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7494

7495 7496
			if (max > managed_pages)
				max = managed_pages;
7497

7498
			pgdat->totalreserve_pages += max;
7499

7500 7501 7502 7503 7504 7505
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7506 7507
/*
 * setup_per_zone_lowmem_reserve - called whenever
7508
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7509 7510 7511 7512 7513 7514
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7515
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7516

7517
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7518 7519
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7520
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7521 7522 7523

			zone->lowmem_reserve[j] = 0;

7524 7525
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7526 7527
				struct zone *lower_zone;

7528
				idx--;
L
Linus Torvalds 已提交
7529
				lower_zone = pgdat->node_zones + idx;
7530 7531 7532 7533 7534 7535 7536 7537

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7538
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7539 7540 7541
			}
		}
	}
7542 7543 7544

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7545 7546
}

7547
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7548 7549 7550 7551 7552 7553 7554 7555 7556
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7557
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7558 7559 7560
	}

	for_each_zone(zone) {
7561 7562
		u64 tmp;

7563
		spin_lock_irqsave(&zone->lock, flags);
7564
		tmp = (u64)pages_min * zone_managed_pages(zone);
7565
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7566 7567
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7568 7569 7570 7571
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7572
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7573
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7574
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7575
			 */
7576
			unsigned long min_pages;
L
Linus Torvalds 已提交
7577

7578
			min_pages = zone_managed_pages(zone) / 1024;
7579
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7580
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7581
		} else {
N
Nick Piggin 已提交
7582 7583
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7584 7585
			 * proportionate to the zone's size.
			 */
7586
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7587 7588
		}

7589 7590 7591 7592 7593 7594
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7595
			    mult_frac(zone_managed_pages(zone),
7596 7597
				      watermark_scale_factor, 10000));

7598 7599
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7600
		zone->watermark_boost = 0;
7601

7602
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7603
	}
7604 7605 7606

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7607 7608
}

7609 7610 7611 7612 7613 7614 7615 7616 7617
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7618 7619 7620
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7621
	__setup_per_zone_wmarks();
7622
	spin_unlock(&lock);
7623 7624
}

L
Linus Torvalds 已提交
7625 7626 7627 7628 7629 7630 7631
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7632
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7649
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7650 7651
{
	unsigned long lowmem_kbytes;
7652
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7653 7654

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7667
	setup_per_zone_wmarks();
7668
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7669
	setup_per_zone_lowmem_reserve();
7670 7671 7672 7673 7674 7675

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7676 7677
	return 0;
}
7678
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7679 7680

/*
7681
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7682 7683 7684
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7685
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7686
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7687
{
7688 7689 7690 7691 7692 7693
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7694 7695
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7696
		setup_per_zone_wmarks();
7697
	}
L
Linus Torvalds 已提交
7698 7699 7700
	return 0;
}

7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7728
#ifdef CONFIG_NUMA
7729
static void setup_min_unmapped_ratio(void)
7730
{
7731
	pg_data_t *pgdat;
7732 7733
	struct zone *zone;

7734
	for_each_online_pgdat(pgdat)
7735
		pgdat->min_unmapped_pages = 0;
7736

7737
	for_each_zone(zone)
7738 7739
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7740
}
7741

7742 7743

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7744
	void __user *buffer, size_t *length, loff_t *ppos)
7745 7746 7747
{
	int rc;

7748
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7749 7750 7751
	if (rc)
		return rc;

7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7762 7763 7764
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7765
	for_each_zone(zone)
7766 7767
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7781 7782
	return 0;
}
7783 7784
#endif

L
Linus Torvalds 已提交
7785 7786 7787 7788 7789 7790
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7791
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7792 7793
 * if in function of the boot time zone sizes.
 */
7794
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7795
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7796
{
7797
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7798 7799 7800 7801
	setup_per_zone_lowmem_reserve();
	return 0;
}

7802 7803
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7804 7805
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7806
 */
7807
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7808
	void __user *buffer, size_t *length, loff_t *ppos)
7809 7810
{
	struct zone *zone;
7811
	int old_percpu_pagelist_fraction;
7812 7813
	int ret;

7814 7815 7816
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7817
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7832

7833
	for_each_populated_zone(zone) {
7834 7835
		unsigned int cpu;

7836
		for_each_possible_cpu(cpu)
7837 7838
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7839
	}
7840
out:
7841
	mutex_unlock(&pcp_batch_high_lock);
7842
	return ret;
7843 7844
}

7845
#ifdef CONFIG_NUMA
7846
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7897 7898
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7899
{
7900
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7901 7902
	unsigned long log2qty, size;
	void *table = NULL;
7903
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7904 7905 7906 7907

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7908
		numentries = nr_kernel_pages;
7909
		numentries -= arch_reserved_kernel_pages();
7910 7911 7912 7913

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7914

P
Pavel Tatashin 已提交
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7925 7926 7927 7928 7929
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7930 7931

		/* Make sure we've got at least a 0-order allocation.. */
7932 7933 7934 7935 7936 7937 7938 7939
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7940
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7941
	}
7942
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7943 7944 7945 7946 7947 7948

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7949
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7950

7951 7952
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7953 7954 7955
	if (numentries > max)
		numentries = max;

7956
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7957

7958
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7959 7960
	do {
		size = bucketsize << log2qty;
7961 7962
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7963
				table = memblock_alloc(size, SMP_CACHE_BYTES);
7964
			else
7965 7966
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7967
		} else if (hashdist) {
7968
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7969
		} else {
7970 7971
			/*
			 * If bucketsize is not a power-of-two, we may free
7972 7973
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7974
			 */
7975
			if (get_order(size) < MAX_ORDER) {
7976 7977
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7978
			}
L
Linus Torvalds 已提交
7979 7980 7981 7982 7983 7984
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7985 7986
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7987 7988 7989 7990 7991 7992 7993 7994

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7995

K
KAMEZAWA Hiroyuki 已提交
7996
/*
7997 7998 7999
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8000
 * PageLRU check without isolation or lru_lock could race so that
8001 8002 8003
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8004
 */
8005
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8006
			 int migratetype, int flags)
8007
{
8008 8009 8010 8011
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8012

8013
	/*
8014 8015 8016 8017 8018
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8019 8020
	 */

8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8033

8034
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8035 8036
		unsigned long check = pfn + iter;

8037
		if (!pfn_valid_within(check))
8038
			continue;
8039

8040
		page = pfn_to_page(check);
8041

8042
		if (PageReserved(page))
8043
			goto unmovable;
8044

8045 8046 8047 8048 8049 8050 8051 8052
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8053 8054
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8055
		 * We need not scan over tail pages because we don't
8056 8057 8058
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8059 8060
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8061

8062
			if (!hugepage_migration_supported(page_hstate(head)))
8063 8064
				goto unmovable;

8065 8066
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8067 8068 8069
			continue;
		}

8070 8071 8072 8073
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8074
		 * because their page->_refcount is zero at all time.
8075
		 */
8076
		if (!page_ref_count(page)) {
8077 8078 8079 8080
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8081

8082 8083 8084 8085
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8086
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8087 8088
			continue;

8089 8090 8091
		if (__PageMovable(page))
			continue;

8092 8093 8094
		if (!PageLRU(page))
			found++;
		/*
8095 8096 8097
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8108
			goto unmovable;
8109
	}
8110
	return false;
8111 8112
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8113
	if (flags & REPORT_FAILURE)
8114
		dump_page(pfn_to_page(pfn + iter), reason);
8115
	return true;
8116 8117
}

8118
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8133 8134
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8135 8136
{
	/* This function is based on compact_zone() from compaction.c. */
8137
	unsigned long nr_reclaimed;
8138 8139 8140 8141
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8142
	migrate_prep();
8143

8144
	while (pfn < end || !list_empty(&cc->migratepages)) {
8145 8146 8147 8148 8149
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8150 8151
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8152
			pfn = isolate_migratepages_range(cc, pfn, end);
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8163 8164 8165
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8166

8167
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8168
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8169
	}
8170 8171 8172 8173 8174
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8175 8176 8177 8178 8179 8180
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8181 8182 8183 8184
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8185
 * @gfp_mask:	GFP mask to use during compaction
8186 8187
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8188
 * aligned.  The PFN range must belong to a single zone.
8189
 *
8190 8191 8192
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8193
 *
8194
 * Return: zero on success or negative error code.  On success all
8195 8196 8197
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8198
int alloc_contig_range(unsigned long start, unsigned long end,
8199
		       unsigned migratetype, gfp_t gfp_mask)
8200 8201
{
	unsigned long outer_start, outer_end;
8202 8203
	unsigned int order;
	int ret = 0;
8204

8205 8206 8207 8208
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8209
		.mode = MIGRATE_SYNC,
8210
		.ignore_skip_hint = true,
8211
		.no_set_skip_hint = true,
8212
		.gfp_mask = current_gfp_context(gfp_mask),
8213 8214 8215
	};
	INIT_LIST_HEAD(&cc.migratepages);

8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8241
				       pfn_max_align_up(end), migratetype, 0);
8242
	if (ret < 0)
8243
		return ret;
8244

8245 8246
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8247 8248 8249 8250 8251 8252 8253
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8254
	 */
8255
	ret = __alloc_contig_migrate_range(&cc, start, end);
8256
	if (ret && ret != -EBUSY)
8257
		goto done;
8258
	ret =0;
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8283 8284
			outer_start = start;
			break;
8285 8286 8287 8288
		}
		outer_start &= ~0UL << order;
	}

8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8302
	/* Make sure the range is really isolated. */
8303
	if (test_pages_isolated(outer_start, end, false)) {
8304
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8305
			__func__, outer_start, end);
8306 8307 8308 8309
		ret = -EBUSY;
		goto done;
	}

8310
	/* Grab isolated pages from freelists. */
8311
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8325
				pfn_max_align_up(end), migratetype);
8326 8327 8328 8329 8330
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8331 8332 8333 8334 8335 8336 8337 8338 8339
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8340 8341 8342
}
#endif

8343
#ifdef CONFIG_MEMORY_HOTPLUG
8344 8345 8346 8347
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8348 8349
void __meminit zone_pcp_update(struct zone *zone)
{
8350
	unsigned cpu;
8351
	mutex_lock(&pcp_batch_high_lock);
8352
	for_each_possible_cpu(cpu)
8353 8354
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8355
	mutex_unlock(&pcp_batch_high_lock);
8356 8357 8358
}
#endif

8359 8360 8361
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8362 8363
	int cpu;
	struct per_cpu_pageset *pset;
8364 8365 8366 8367

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8368 8369 8370 8371
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8372 8373 8374 8375 8376 8377
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8378
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8379
/*
8380 8381
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8382 8383 8384 8385 8386 8387
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8388
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8389 8390 8391 8392 8393 8394 8395 8396
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8397
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8398 8399 8400 8401 8402 8403 8404 8405 8406
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8417 8418 8419 8420
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8421 8422
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8434 8435 8436 8437 8438 8439

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8440
	unsigned int order;
8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif