page_alloc.c 250.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/mmu_notifier.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
71
#include <linux/psi.h>
72
#include <linux/padata.h>
73
#include <linux/khugepaged.h>
74
#include <linux/buffer_head.h>
75
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
76

77
#include <asm/sections.h>
L
Linus Torvalds 已提交
78
#include <asm/tlbflush.h>
79
#include <asm/div64.h>
L
Linus Torvalds 已提交
80
#include "internal.h"
81
#include "shuffle.h"
A
Alexander Duyck 已提交
82
#include "page_reporting.h"
L
Linus Torvalds 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
typedef int __bitwise fpi_t;

/* No special request */
#define FPI_NONE		((__force fpi_t)0)

/*
 * Skip free page reporting notification for the (possibly merged) page.
 * This does not hinder free page reporting from grabbing the page,
 * reporting it and marking it "reported" -  it only skips notifying
 * the free page reporting infrastructure about a newly freed page. For
 * example, used when temporarily pulling a page from a freelist and
 * putting it back unmodified.
 */
#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))

100 101 102 103 104 105 106 107 108 109 110 111
/*
 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 * page shuffling (relevant code - e.g., memory onlining - is expected to
 * shuffle the whole zone).
 *
 * Note: No code should rely on this flag for correctness - it's purely
 *       to allow for optimizations when handing back either fresh pages
 *       (memory onlining) or untouched pages (page isolation, free page
 *       reporting).
 */
#define FPI_TO_TAIL		((__force fpi_t)BIT(1))

112 113 114 115 116 117 118 119 120 121 122
/*
 * Don't poison memory with KASAN (only for the tag-based modes).
 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 * Poisoning all that memory lengthens boot time, especially on systems with
 * large amount of RAM. This flag is used to skip that poisoning.
 * This is only done for the tag-based KASAN modes, as those are able to
 * detect memory corruptions with the memory tags assigned by default.
 * All memory allocated normally after boot gets poisoned as usual.
 */
#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))

123 124
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
125
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
126

127 128 129 130 131
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

132 133
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

134 135 136 137 138 139 140 141 142 143 144
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

145
/* work_structs for global per-cpu drains */
146 147 148 149
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
150 151
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
152

153
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
154
volatile unsigned long latent_entropy __latent_entropy;
155 156 157
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
158
/*
159
 * Array of node states.
L
Linus Torvalds 已提交
160
 */
161 162 163 164 165 166 167
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
168 169
#endif
	[N_MEMORY] = { { [0] = 1UL } },
170 171 172 173 174
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

175 176
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
177
unsigned long totalreserve_pages __read_mostly;
178
unsigned long totalcma_pages __read_mostly;
179

180
int percpu_pagelist_fraction;
181
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
182
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
183 184
EXPORT_SYMBOL(init_on_alloc);

185
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
186 187
EXPORT_SYMBOL(init_on_free);

188 189
static bool _init_on_alloc_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
190 191 192
static int __init early_init_on_alloc(char *buf)
{

193
	return kstrtobool(buf, &_init_on_alloc_enabled_early);
194 195 196
}
early_param("init_on_alloc", early_init_on_alloc);

197 198
static bool _init_on_free_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
199 200
static int __init early_init_on_free(char *buf)
{
201
	return kstrtobool(buf, &_init_on_free_enabled_early);
202 203
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

223 224 225 226 227
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
228 229 230 231
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
232
 */
233 234 235 236

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
237
{
238
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
239 240 241 242
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
243 244
}

245
void pm_restrict_gfp_mask(void)
246
{
247
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 249
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
250
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
251
}
252 253 254

bool pm_suspended_storage(void)
{
255
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
256 257 258
		return false;
	return true;
}
259 260
#endif /* CONFIG_PM_SLEEP */

261
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
262
unsigned int pageblock_order __read_mostly;
263 264
#endif

265 266
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags);
267

L
Linus Torvalds 已提交
268 269 270 271 272 273
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
274
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
275 276 277
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
278
 */
279
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
280
#ifdef CONFIG_ZONE_DMA
281
	[ZONE_DMA] = 256,
282
#endif
283
#ifdef CONFIG_ZONE_DMA32
284
	[ZONE_DMA32] = 256,
285
#endif
286
	[ZONE_NORMAL] = 32,
287
#ifdef CONFIG_HIGHMEM
288
	[ZONE_HIGHMEM] = 0,
289
#endif
290
	[ZONE_MOVABLE] = 0,
291
};
L
Linus Torvalds 已提交
292

293
static char * const zone_names[MAX_NR_ZONES] = {
294
#ifdef CONFIG_ZONE_DMA
295
	 "DMA",
296
#endif
297
#ifdef CONFIG_ZONE_DMA32
298
	 "DMA32",
299
#endif
300
	 "Normal",
301
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
302
	 "HighMem",
303
#endif
M
Mel Gorman 已提交
304
	 "Movable",
305 306 307
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
308 309
};

310
const char * const migratetype_names[MIGRATE_TYPES] = {
311 312 313 314 315 316 317 318 319 320 321 322
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

323 324 325
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
326
#ifdef CONFIG_HUGETLB_PAGE
327
	[HUGETLB_PAGE_DTOR] = free_huge_page,
328
#endif
329
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
330
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
331
#endif
332 333
};

L
Linus Torvalds 已提交
334
int min_free_kbytes = 1024;
335
int user_min_free_kbytes = -1;
336 337 338 339 340 341 342 343 344 345 346 347
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
348
int watermark_boost_factor __read_mostly = 15000;
349
#endif
350
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
351

352 353 354
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
355

356 357
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
358
static unsigned long required_kernelcore __initdata;
359
static unsigned long required_kernelcore_percent __initdata;
360
static unsigned long required_movablecore __initdata;
361
static unsigned long required_movablecore_percent __initdata;
362
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
363
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
364 365 366 367

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
368

M
Miklos Szeredi 已提交
369
#if MAX_NUMNODES > 1
370
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
371
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
372
EXPORT_SYMBOL(nr_node_ids);
373
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
374 375
#endif

376 377
int page_group_by_mobility_disabled __read_mostly;

378
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
399
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
400
						bool init, fpi_t fpi_flags)
401
{
402 403 404 405 406
	if (static_branch_unlikely(&deferred_pages))
		return;
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
407
	kasan_free_pages(page, order, init);
408 409
}

410
/* Returns true if the struct page for the pfn is uninitialised */
411
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
412
{
413 414 415
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
416 417 418 419 420 421
		return true;

	return false;
}

/*
422
 * Returns true when the remaining initialisation should be deferred until
423 424
 * later in the boot cycle when it can be parallelised.
 */
425 426
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
427
{
428 429 430 431 432 433 434 435 436 437 438
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

439
	/* Always populate low zones for address-constrained allocations */
440
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
441
		return false;
442

443 444
	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
		return true;
445 446 447 448
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
449
	nr_initialised++;
450
	if ((nr_initialised > PAGES_PER_SECTION) &&
451 452 453
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
454
	}
455
	return false;
456 457
}
#else
458
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
459
						bool init, fpi_t fpi_flags)
460 461 462 463
{
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
464
	kasan_free_pages(page, order, init);
465
}
466

467 468 469 470 471
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

472
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
473
{
474
	return false;
475 476 477
}
#endif

478 479 480 481 482
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
483
	return section_to_usemap(__pfn_to_section(pfn));
484 485 486 487 488 489 490 491 492 493 494 495
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
496
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
497 498
}

499 500
static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page *page,
501 502 503 504 505 506 507 508 509 510 511 512 513
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
514
	return (word >> bitidx) & mask;
515 516
}

M
Mauro Carvalho Chehab 已提交
517 518 519 520 521 522 523 524
/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
525 526 527
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long mask)
{
528
	return __get_pfnblock_flags_mask(page, pfn, mask);
529 530 531 532
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
533
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
552
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
553 554 555 556 557 558 559 560

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

561 562
	mask <<= bitidx;
	flags <<= bitidx;
563 564 565 566 567 568 569 570 571

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
572

573
void set_pageblock_migratetype(struct page *page, int migratetype)
574
{
575 576
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
577 578
		migratetype = MIGRATE_UNMOVABLE;

579
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
580
				page_to_pfn(page), MIGRATETYPE_MASK);
581 582
}

N
Nick Piggin 已提交
583
#ifdef CONFIG_DEBUG_VM
584
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
585
{
586 587 588
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
589
	unsigned long sp, start_pfn;
590

591 592
	do {
		seq = zone_span_seqbegin(zone);
593 594
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
595
		if (!zone_spans_pfn(zone, pfn))
596 597 598
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

599
	if (ret)
600 601 602
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
603

604
	return ret;
605 606 607 608
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
609
	if (!pfn_valid_within(page_to_pfn(page)))
610
		return 0;
L
Linus Torvalds 已提交
611
	if (zone != page_zone(page))
612 613 614 615 616 617 618
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
619
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
620 621
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
622
		return 1;
623 624 625
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
626 627
	return 0;
}
N
Nick Piggin 已提交
628
#else
629
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
630 631 632 633 634
{
	return 0;
}
#endif

635
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
636
{
637 638 639 640 641 642 643 644 645 646 647 648 649 650
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
651
			pr_alert(
652
			      "BUG: Bad page state: %lu messages suppressed\n",
653 654 655 656 657 658 659 660
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

661
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
662
		current->comm, page_to_pfn(page));
663
	__dump_page(page, reason);
664
	dump_page_owner(page);
665

666
	print_modules();
L
Linus Torvalds 已提交
667
	dump_stack();
668
out:
669
	/* Leave bad fields for debug, except PageBuddy could make trouble */
670
	page_mapcount_reset(page); /* remove PageBuddy */
671
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
672 673 674 675 676
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
677
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
678
 *
679 680
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
681
 *
682 683
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
684
 *
685
 * The first tail page's ->compound_order holds the order of allocation.
686
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
687
 */
688

689
void free_compound_page(struct page *page)
690
{
691
	mem_cgroup_uncharge(page);
692
	__free_pages_ok(page, compound_order(page), FPI_NONE);
693 694
}

695
void prep_compound_page(struct page *page, unsigned int order)
696 697 698 699 700 701 702
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
703
		set_page_count(p, 0);
704
		p->mapping = TAIL_MAPPING;
705
		set_compound_head(p, page);
706
	}
707 708 709

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
710
	atomic_set(compound_mapcount_ptr(page), -1);
711 712
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
713 714
}

715 716
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
717

718 719 720
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
721
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
722
EXPORT_SYMBOL(_debug_pagealloc_enabled);
723 724

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
725

726 727
static int __init early_debug_pagealloc(char *buf)
{
728
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
729 730 731
}
early_param("debug_pagealloc", early_debug_pagealloc);

732 733 734 735 736
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
737
		pr_err("Bad debug_guardpage_minorder value\n");
738 739 740
		return 0;
	}
	_debug_guardpage_minorder = res;
741
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
742 743
	return 0;
}
744
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
745

746
static inline bool set_page_guard(struct zone *zone, struct page *page,
747
				unsigned int order, int migratetype)
748
{
749
	if (!debug_guardpage_enabled())
750 751 752 753
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
754

755
	__SetPageGuard(page);
756 757 758 759
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
760 761

	return true;
762 763
}

764 765
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
766
{
767 768 769
	if (!debug_guardpage_enabled())
		return;

770
	__ClearPageGuard(page);
771

772 773 774
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
775 776
}
#else
777 778
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
779 780
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
781 782
#endif

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * Enable static keys related to various memory debugging and hardening options.
 * Some override others, and depend on early params that are evaluated in the
 * order of appearance. So we need to first gather the full picture of what was
 * enabled, and then make decisions.
 */
void init_mem_debugging_and_hardening(void)
{
	if (_init_on_alloc_enabled_early) {
		if (page_poisoning_enabled())
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_alloc\n");
		else
			static_branch_enable(&init_on_alloc);
	}
	if (_init_on_free_enabled_early) {
		if (page_poisoning_enabled())
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_free\n");
		else
			static_branch_enable(&init_on_free);
	}

806 807 808 809 810 811 812 813 814 815 816
#ifdef CONFIG_PAGE_POISONING
	/*
	 * Page poisoning is debug page alloc for some arches. If
	 * either of those options are enabled, enable poisoning.
	 */
	if (page_poisoning_enabled() ||
	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
	      debug_pagealloc_enabled()))
		static_branch_enable(&_page_poisoning_enabled);
#endif

817 818 819 820 821 822 823 824 825 826 827 828 829
#ifdef CONFIG_DEBUG_PAGEALLOC
	if (!debug_pagealloc_enabled())
		return;

	static_branch_enable(&_debug_pagealloc_enabled);

	if (!debug_guardpage_minorder())
		return;

	static_branch_enable(&_debug_guardpage_enabled);
#endif
}

830
static inline void set_buddy_order(struct page *page, unsigned int order)
831
{
H
Hugh Dickins 已提交
832
	set_page_private(page, order);
833
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
834 835 836 837
}

/*
 * This function checks whether a page is free && is the buddy
838
 * we can coalesce a page and its buddy if
839
 * (a) the buddy is not in a hole (check before calling!) &&
840
 * (b) the buddy is in the buddy system &&
841 842
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
843
 *
844 845
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
846
 *
847
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
848
 */
849
static inline bool page_is_buddy(struct page *page, struct page *buddy,
850
							unsigned int order)
L
Linus Torvalds 已提交
851
{
852 853
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
854

855
	if (buddy_order(buddy) != order)
856
		return false;
857

858 859 860 861 862 863
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
864

865
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
866

867
	return true;
L
Linus Torvalds 已提交
868 869
}

870 871 872 873 874
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

875
	return unlikely(capc) &&
876 877
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
878
		capc->cc->zone == zone ? capc : NULL;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

940 941 942 943 944
/*
 * Used for pages which are on another list. Move the pages to the tail
 * of the list - so the moved pages won't immediately be considered for
 * allocation again (e.g., optimization for memory onlining).
 */
945 946 947 948 949
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

950
	list_move_tail(&page->lru, &area->free_list[migratetype]);
951 952 953 954 955
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
956 957 958 959
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

960 961 962 963 964 965
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
1009 1010
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
1011
 * So when we are allocating or freeing one, we can derive the state of the
1012 1013
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
1014
 * If a block is freed, and its buddy is also free, then this
1015
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
1016
 *
1017
 * -- nyc
L
Linus Torvalds 已提交
1018 1019
 */

N
Nick Piggin 已提交
1020
static inline void __free_one_page(struct page *page,
1021
		unsigned long pfn,
1022
		struct zone *zone, unsigned int order,
1023
		int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1024
{
1025
	struct capture_control *capc = task_capc(zone);
1026
	unsigned long buddy_pfn;
1027
	unsigned long combined_pfn;
1028
	unsigned int max_order;
1029 1030
	struct page *buddy;
	bool to_tail;
1031

1032
	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
L
Linus Torvalds 已提交
1033

1034
	VM_BUG_ON(!zone_is_initialized(zone));
1035
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
1036

1037
	VM_BUG_ON(migratetype == -1);
1038
	if (likely(!is_migrate_isolate(migratetype)))
1039
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1040

1041
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1042
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
1043

1044
continue_merging:
1045
	while (order < max_order) {
1046 1047 1048 1049 1050
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
1051 1052
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
1053 1054 1055

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
1056
		if (!page_is_buddy(page, buddy, order))
1057
			goto done_merging;
1058 1059 1060 1061
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1062
		if (page_is_guard(buddy))
1063
			clear_page_guard(zone, buddy, order, migratetype);
1064
		else
1065
			del_page_from_free_list(buddy, zone, order);
1066 1067 1068
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1069 1070
		order++;
	}
1071
	if (order < MAX_ORDER - 1) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1083 1084
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1085 1086 1087 1088 1089 1090 1091
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
1092
		max_order = order + 1;
1093 1094 1095 1096
		goto continue_merging;
	}

done_merging:
1097
	set_buddy_order(page, order);
1098

1099 1100 1101
	if (fpi_flags & FPI_TO_TAIL)
		to_tail = true;
	else if (is_shuffle_order(order))
1102
		to_tail = shuffle_pick_tail();
1103
	else
1104
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1105

1106
	if (to_tail)
1107
		add_to_free_list_tail(page, zone, order, migratetype);
1108
	else
1109
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1110 1111

	/* Notify page reporting subsystem of freed page */
1112
	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
A
Alexander Duyck 已提交
1113
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
1130
			page->memcg_data |
1131 1132 1133 1134 1135 1136 1137
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1138
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1139
{
1140
	const char *bad_reason = NULL;
1141

1142
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1143 1144 1145
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1146
	if (unlikely(page_ref_count(page) != 0))
1147
		bad_reason = "nonzero _refcount";
1148 1149 1150 1151 1152
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1153
	}
1154
#ifdef CONFIG_MEMCG
1155
	if (unlikely(page->memcg_data))
1156 1157
		bad_reason = "page still charged to cgroup";
#endif
1158 1159 1160 1161 1162 1163 1164
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1165 1166
}

1167
static inline int check_free_page(struct page *page)
1168
{
1169
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1170 1171 1172
		return 0;

	/* Something has gone sideways, find it */
1173
	check_free_page_bad(page);
1174
	return 1;
L
Linus Torvalds 已提交
1175 1176
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1193
		/* the first tail page: ->mapping may be compound_mapcount() */
1194
		if (unlikely(compound_mapcount(page))) {
1195
			bad_page(page, "nonzero compound_mapcount");
1196 1197 1198 1199 1200 1201
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1202
		 * deferred_list.next -- ignore value.
1203 1204 1205 1206
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1207
			bad_page(page, "corrupted mapping in tail page");
1208 1209 1210 1211 1212
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1213
		bad_page(page, "PageTail not set");
1214 1215 1216
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1217
		bad_page(page, "compound_head not consistent");
1218 1219 1220 1221 1222 1223 1224 1225 1226
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1227 1228 1229 1230
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1231 1232
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1233
	for (i = 0; i < numpages; i++) {
1234
		u8 tag = page_kasan_tag(page + i);
1235
		page_kasan_tag_reset(page + i);
1236
		clear_highpage(page + i);
1237
		page_kasan_tag_set(page + i, tag);
1238
	}
1239
	kasan_enable_current();
1240 1241
}

1242
static __always_inline bool free_pages_prepare(struct page *page,
1243
			unsigned int order, bool check_free, fpi_t fpi_flags)
1244
{
1245
	int bad = 0;
1246
	bool init;
1247 1248 1249

	VM_BUG_ON_PAGE(PageTail(page), page);

1250 1251
	trace_mm_page_free(page, order);

1252 1253 1254 1255 1256
	if (unlikely(PageHWPoison(page)) && !order) {
		/*
		 * Do not let hwpoison pages hit pcplists/buddy
		 * Untie memcg state and reset page's owner
		 */
1257
		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1258 1259 1260 1261 1262
			__memcg_kmem_uncharge_page(page, order);
		reset_page_owner(page, order);
		return false;
	}

1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1272

1273 1274
		if (compound)
			ClearPageDoubleMap(page);
1275 1276 1277
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1278
			if (unlikely(check_free_page(page + i))) {
1279 1280 1281 1282 1283 1284
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1285
	if (PageMappingFlags(page))
1286
		page->mapping = NULL;
1287
	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1288
		__memcg_kmem_uncharge_page(page, order);
1289
	if (check_free)
1290
		bad += check_free_page(page);
1291 1292
	if (bad)
		return false;
1293

1294 1295 1296
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1297 1298 1299

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1300
					   PAGE_SIZE << order);
1301
		debug_check_no_obj_freed(page_address(page),
1302
					   PAGE_SIZE << order);
1303
	}
1304

1305 1306
	kernel_poison_pages(page, 1 << order);

1307
	/*
1308 1309 1310 1311
	 * As memory initialization might be integrated into KASAN,
	 * kasan_free_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 *
1312 1313 1314
	 * With hardware tag-based KASAN, memory tags must be set before the
	 * page becomes unavailable via debug_pagealloc or arch_free_page.
	 */
1315 1316 1317 1318
	init = want_init_on_free();
	if (init && !kasan_has_integrated_init())
		kernel_init_free_pages(page, 1 << order);
	kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1319

1320 1321 1322 1323 1324 1325 1326
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1327
	debug_pagealloc_unmap_pages(page, 1 << order);
1328

1329 1330 1331
	return true;
}

1332
#ifdef CONFIG_DEBUG_VM
1333 1334 1335 1336 1337 1338
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1339
{
1340
	return free_pages_prepare(page, 0, true, FPI_NONE);
1341 1342
}

1343
static bool bulkfree_pcp_prepare(struct page *page)
1344
{
1345
	if (debug_pagealloc_enabled_static())
1346
		return check_free_page(page);
1347 1348
	else
		return false;
1349 1350
}
#else
1351 1352 1353 1354 1355 1356
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1357 1358
static bool free_pcp_prepare(struct page *page)
{
1359
	if (debug_pagealloc_enabled_static())
1360
		return free_pages_prepare(page, 0, true, FPI_NONE);
1361
	else
1362
		return free_pages_prepare(page, 0, false, FPI_NONE);
1363 1364
}

1365 1366
static bool bulkfree_pcp_prepare(struct page *page)
{
1367
	return check_free_page(page);
1368 1369 1370
}
#endif /* CONFIG_DEBUG_VM */

1371 1372 1373 1374 1375 1376 1377 1378 1379
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1380
/*
1381
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1382
 * Assumes all pages on list are in same zone, and of same order.
1383
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1384 1385 1386 1387 1388 1389 1390
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1391 1392
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1393
{
1394
	int migratetype = 0;
1395
	int batch_free = 0;
1396
	int prefetch_nr = READ_ONCE(pcp->batch);
1397
	bool isolated_pageblocks;
1398 1399
	struct page *page, *tmp;
	LIST_HEAD(head);
1400

1401 1402 1403 1404 1405
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1406
	while (count) {
1407 1408 1409
		struct list_head *list;

		/*
1410 1411 1412 1413 1414
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1415 1416
		 */
		do {
1417
			batch_free++;
1418 1419 1420 1421
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1422

1423 1424
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1425
			batch_free = count;
1426

1427
		do {
1428
			page = list_last_entry(list, struct page, lru);
1429
			/* must delete to avoid corrupting pcp list */
1430
			list_del(&page->lru);
1431
			pcp->count--;
1432

1433 1434 1435
			if (bulkfree_pcp_prepare(page))
				continue;

1436
			list_add_tail(&page->lru, &head);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
1447
			if (prefetch_nr) {
1448
				prefetch_buddy(page);
1449 1450
				prefetch_nr--;
			}
1451
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1452
	}
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

1469
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1470 1471
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1472
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1477
				unsigned int order,
1478
				int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1479
{
1480
	spin_lock(&zone->lock);
1481 1482 1483 1484
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1485
	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1486
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1487 1488
}

1489
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1490
				unsigned long zone, int nid)
1491
{
1492
	mm_zero_struct_page(page);
1493 1494 1495 1496
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1497
	page_kasan_tag_reset(page);
1498 1499 1500 1501 1502 1503 1504 1505 1506

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1507
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1508
static void __meminit init_reserved_page(unsigned long pfn)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1525
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1526 1527 1528 1529 1530 1531 1532
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1533 1534 1535 1536 1537 1538
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1539
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1540 1541 1542 1543
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1544 1545 1546 1547 1548
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1549 1550 1551 1552

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1553 1554 1555 1556 1557 1558
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1559 1560
		}
	}
1561 1562
}

1563 1564
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags)
1565
{
1566
	unsigned long flags;
M
Minchan Kim 已提交
1567
	int migratetype;
1568
	unsigned long pfn = page_to_pfn(page);
1569

1570
	if (!free_pages_prepare(page, order, true, fpi_flags))
1571 1572
		return;

1573
	migratetype = get_pfnblock_migratetype(page, pfn);
1574 1575
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1576 1577
	free_one_page(page_zone(page), page, pfn, order, migratetype,
		      fpi_flags);
1578
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1579 1580
}

1581
void __free_pages_core(struct page *page, unsigned int order)
1582
{
1583
	unsigned int nr_pages = 1 << order;
1584
	struct page *p = page;
1585
	unsigned int loop;
1586

1587 1588 1589 1590 1591
	/*
	 * When initializing the memmap, __init_single_page() sets the refcount
	 * of all pages to 1 ("allocated"/"not free"). We have to set the
	 * refcount of all involved pages to 0.
	 */
1592 1593 1594
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1595 1596
		__ClearPageReserved(p);
		set_page_count(p, 0);
1597
	}
1598 1599
	__ClearPageReserved(p);
	set_page_count(p, 0);
1600

1601
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1602 1603 1604 1605 1606

	/*
	 * Bypass PCP and place fresh pages right to the tail, primarily
	 * relevant for memory onlining.
	 */
1607
	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1608 1609
}

1610
#ifdef CONFIG_NEED_MULTIPLE_NODES
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * During memory init memblocks map pfns to nids. The search is expensive and
 * this caches recent lookups. The implementation of __early_pfn_to_nid
 * treats start/end as pfns.
 */
struct mminit_pfnnid_cache {
	unsigned long last_start;
	unsigned long last_end;
	int last_nid;
};
1622

1623
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1624 1625 1626 1627

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
1628
static int __meminit __early_pfn_to_nid(unsigned long pfn,
1629
					struct mminit_pfnnid_cache *state)
1630
{
1631
	unsigned long start_pfn, end_pfn;
1632 1633
	int nid;

1634 1635 1636 1637 1638 1639 1640 1641 1642
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1643 1644

	return nid;
1645 1646 1647 1648
}

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1649
	static DEFINE_SPINLOCK(early_pfn_lock);
1650 1651
	int nid;

1652
	spin_lock(&early_pfn_lock);
1653
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1654
	if (nid < 0)
1655
		nid = first_online_node;
1656
	spin_unlock(&early_pfn_lock);
1657

1658
	return nid;
1659
}
1660
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1661

1662
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1663 1664 1665 1666
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1667
	__free_pages_core(page, order);
1668 1669
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1699 1700 1701
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1730
		cond_resched();
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1742
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1743 1744
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1745
{
1746 1747
	struct page *page;
	unsigned long i;
1748

1749
	if (!nr_pages)
1750 1751
		return;

1752 1753
	page = pfn_to_page(pfn);

1754
	/* Free a large naturally-aligned chunk if possible */
1755 1756
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1757
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1758
		__free_pages_core(page, pageblock_order);
1759 1760 1761
		return;
	}

1762 1763 1764
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1765
		__free_pages_core(page, 0);
1766
	}
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1778

1779
/*
1780 1781 1782 1783 1784 1785 1786 1787
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1788
 */
1789
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1790
{
1791 1792 1793 1794 1795 1796
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1797

1798 1799 1800 1801
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1802
static void __init deferred_free_pages(unsigned long pfn,
1803 1804 1805 1806
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1807

1808
	for (; pfn < end_pfn; pfn++) {
1809
		if (!deferred_pfn_valid(pfn)) {
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1821 1822
}

1823 1824 1825 1826 1827
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1828
static unsigned long  __init deferred_init_pages(struct zone *zone,
1829 1830
						 unsigned long pfn,
						 unsigned long end_pfn)
1831 1832
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1833
	int nid = zone_to_nid(zone);
1834
	unsigned long nr_pages = 0;
1835
	int zid = zone_idx(zone);
1836 1837
	struct page *page = NULL;

1838
	for (; pfn < end_pfn; pfn++) {
1839
		if (!deferred_pfn_valid(pfn)) {
1840
			page = NULL;
1841
			continue;
1842
		} else if (!page || !(pfn & nr_pgmask)) {
1843
			page = pfn_to_page(pfn);
1844 1845
		} else {
			page++;
1846
		}
1847
		__init_single_page(page, pfn, zid, nid);
1848
		nr_pages++;
1849
	}
1850
	return (nr_pages);
1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

1957 1958 1959 1960 1961 1962 1963
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

1964
/* Initialise remaining memory on a node */
1965
static int __init deferred_init_memmap(void *data)
1966
{
1967
	pg_data_t *pgdat = data;
1968
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1969
	unsigned long spfn = 0, epfn = 0;
1970
	unsigned long first_init_pfn, flags;
1971 1972
	unsigned long start = jiffies;
	struct zone *zone;
1973
	int zid, max_threads;
1974
	u64 i;
1975

1976 1977 1978 1979 1980 1981
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1982
	if (first_init_pfn == ULONG_MAX) {
1983
		pgdat_resize_unlock(pgdat, &flags);
1984
		pgdat_init_report_one_done();
1985 1986 1987
		return 0;
	}

1988 1989 1990 1991 1992
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

1993 1994 1995 1996 1997 1998 1999
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

2000 2001 2002 2003 2004 2005
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
2006 2007 2008 2009 2010

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
2011

2012
	max_threads = deferred_page_init_max_threads(cpumask);
2013

2014
	while (spfn < epfn) {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
2029
	}
2030
zone_empty:
2031 2032 2033
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

2034 2035
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2036 2037

	pgdat_init_report_one_done();
2038 2039
	return 0;
}
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2060
	pg_data_t *pgdat = zone->zone_pgdat;
2061
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2062 2063
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

2081 2082 2083 2084
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
2085
		pgdat_resize_unlock(pgdat, &flags);
2086 2087
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
2088 2089
	}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2100
		touch_nmi_watchdog();
2101

2102 2103 2104
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
2105

2106
		/* If our quota has been met we can stop here */
2107 2108 2109 2110
		if (nr_pages >= nr_pages_needed)
			break;
	}

2111
	pgdat->first_deferred_pfn = spfn;
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2129
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2130 2131 2132

void __init page_alloc_init_late(void)
{
2133
	struct zone *zone;
2134
	int nid;
2135 2136

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2137

2138 2139
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2140 2141 2142 2143 2144
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2145
	wait_for_completion(&pgdat_init_all_done_comp);
2146

2147 2148 2149 2150 2151 2152 2153 2154
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2155 2156 2157 2158 2159 2160
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2161 2162
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2163
#endif
2164

2165 2166
	buffer_init();

P
Pavel Tatashin 已提交
2167 2168
	/* Discard memblock private memory */
	memblock_discard();
2169

2170 2171 2172
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2173 2174
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2175 2176
}

2177
#ifdef CONFIG_CMA
2178
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2179 2180 2181 2182 2183 2184 2185 2186
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2187
	} while (++p, --i);
2188 2189

	set_pageblock_migratetype(page, MIGRATE_CMA);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2204
	adjust_managed_page_count(page, pageblock_nr_pages);
2205
	page_zone(page)->cma_pages += pageblock_nr_pages;
2206 2207
}
#endif
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2221
 * -- nyc
L
Linus Torvalds 已提交
2222
 */
N
Nick Piggin 已提交
2223
static inline void expand(struct zone *zone, struct page *page,
2224
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2231
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2232

2233 2234 2235 2236 2237 2238 2239
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2240
			continue;
2241

2242
		add_to_free_list(&page[size], zone, high, migratetype);
2243
		set_buddy_order(&page[size], high);
L
Linus Torvalds 已提交
2244 2245 2246
	}
}

2247
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2248
{
2249
	if (unlikely(page->flags & __PG_HWPOISON)) {
2250 2251 2252
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2253
	}
2254 2255 2256

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2270 2271
}

2272
#ifdef CONFIG_DEBUG_VM
2273 2274 2275 2276 2277 2278
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2279
{
2280
	if (debug_pagealloc_enabled_static())
2281 2282 2283
		return check_new_page(page);
	else
		return false;
2284 2285
}

2286
static inline bool check_new_pcp(struct page *page)
2287 2288 2289 2290
{
	return check_new_page(page);
}
#else
2291 2292 2293 2294 2295 2296
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2297 2298 2299
{
	return check_new_page(page);
}
2300
static inline bool check_new_pcp(struct page *page)
2301
{
2302
	if (debug_pagealloc_enabled_static())
2303 2304 2305
		return check_new_page(page);
	else
		return false;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2322 2323 2324
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
2325 2326
	bool init;

2327 2328 2329 2330
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2331
	debug_pagealloc_map_pages(page, 1 << order);
2332 2333 2334 2335 2336 2337

	/*
	 * Page unpoisoning must happen before memory initialization.
	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
	 * allocations and the page unpoisoning code will complain.
	 */
2338
	kernel_unpoison_pages(page, 1 << order);
2339

2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_alloc_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 */
	init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
	kasan_alloc_pages(page, order, init);
	if (init && !kasan_has_integrated_init())
2348
		kernel_init_free_pages(page, 1 << order);
2349 2350

	set_page_owner(page, order, gfp_flags);
2351 2352
}

2353
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2354
							unsigned int alloc_flags)
2355
{
2356
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2357 2358 2359 2360

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2361
	/*
2362
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2363 2364 2365 2366
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2367 2368 2369 2370
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2371 2372
}

2373 2374 2375 2376
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2377
static __always_inline
2378
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2379 2380 2381
						int migratetype)
{
	unsigned int current_order;
2382
	struct free_area *area;
2383 2384 2385 2386 2387
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2388
		page = get_page_from_free_area(area, migratetype);
2389 2390
		if (!page)
			continue;
2391 2392
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2393
		set_pcppage_migratetype(page, migratetype);
2394 2395 2396 2397 2398 2399 2400
		return page;
	}

	return NULL;
}


2401 2402 2403 2404
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2405
static int fallbacks[MIGRATE_TYPES][3] = {
2406 2407
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2408
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2409
#ifdef CONFIG_CMA
2410
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2411
#endif
2412
#ifdef CONFIG_MEMORY_ISOLATION
2413
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2414
#endif
2415 2416
};

2417
#ifdef CONFIG_CMA
2418
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2419 2420 2421 2422 2423 2424 2425 2426 2427
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2428
/*
2429
 * Move the free pages in a range to the freelist tail of the requested type.
2430
 * Note that start_page and end_pages are not aligned on a pageblock
2431 2432
 * boundary. If alignment is required, use move_freepages_block()
 */
2433
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2434
			  struct page *start_page, struct page *end_page,
2435
			  int migratetype, int *num_movable)
2436 2437
{
	struct page *page;
2438
	unsigned int order;
2439
	int pages_moved = 0;
2440 2441 2442 2443 2444 2445 2446 2447

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2448 2449 2450 2451 2452 2453 2454 2455 2456
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2457 2458 2459 2460
			page++;
			continue;
		}

2461 2462 2463 2464
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2465
		order = buddy_order(page);
2466
		move_to_free_list(page, zone, order, migratetype);
2467
		page += 1 << order;
2468
		pages_moved += 1 << order;
2469 2470
	}

2471
	return pages_moved;
2472 2473
}

2474
int move_freepages_block(struct zone *zone, struct page *page,
2475
				int migratetype, int *num_movable)
2476 2477 2478 2479
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2480 2481 2482
	if (num_movable)
		*num_movable = 0;

2483
	start_pfn = page_to_pfn(page);
2484
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2485
	start_page = pfn_to_page(start_pfn);
2486 2487
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2488 2489

	/* Do not cross zone boundaries */
2490
	if (!zone_spans_pfn(zone, start_pfn))
2491
		start_page = page;
2492
	if (!zone_spans_pfn(zone, end_pfn))
2493 2494
		return 0;

2495 2496
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2510
/*
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2521
 */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2543
static inline bool boost_watermark(struct zone *zone)
2544 2545 2546 2547
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
2548
		return false;
2549 2550 2551 2552 2553 2554 2555
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556
		return false;
2557 2558 2559

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
2570
		return false;
2571

2572 2573 2574 2575
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
2576 2577

	return true;
2578 2579
}

2580 2581 2582
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2583 2584 2585 2586
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2587 2588
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589
		unsigned int alloc_flags, int start_type, bool whole_block)
2590
{
2591
	unsigned int current_order = buddy_order(page);
2592 2593 2594 2595
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2596

2597 2598 2599 2600
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2601
	if (is_migrate_highatomic(old_block_type))
2602 2603
		goto single_page;

2604 2605 2606
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2607
		goto single_page;
2608 2609
	}

2610 2611 2612 2613 2614
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
2615
	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617

2618 2619 2620 2621
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2646
	/* moving whole block can fail due to zone boundary conditions */
2647
	if (!free_pages)
2648
		goto single_page;
2649

2650 2651 2652 2653 2654
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 2656
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2657 2658 2659 2660

	return;

single_page:
2661
	move_to_free_list(page, zone, current_order, start_type);
2662 2663
}

2664 2665 2666 2667 2668 2669 2670 2671
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2682
		if (fallback_mt == MIGRATE_TYPES)
2683 2684
			break;

2685
		if (free_area_empty(area, fallback_mt))
2686
			continue;
2687

2688 2689 2690
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2691 2692 2693 2694 2695
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2696
	}
2697 2698

	return -1;
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2715
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2727 2728
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2729 2730
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2743 2744 2745
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2746
 */
2747 2748
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2749 2750 2751 2752 2753 2754 2755
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2756
	bool ret;
2757

2758
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759
								ac->nodemask) {
2760 2761 2762 2763 2764 2765
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2766 2767 2768 2769 2770 2771
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2772
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773
			if (!page)
2774 2775 2776
				continue;

			/*
2777 2778 2779 2780 2781
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2782
			 */
2783
			if (is_migrate_highatomic_page(page)) {
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2806 2807
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2808 2809 2810 2811
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2812 2813 2814
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2815 2816

	return false;
2817 2818
}

2819 2820 2821 2822 2823
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2824 2825 2826 2827
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2828
 */
2829
static __always_inline bool
2830 2831
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2832
{
2833
	struct free_area *area;
2834
	int current_order;
2835
	int min_order = order;
2836
	struct page *page;
2837 2838
	int fallback_mt;
	bool can_steal;
2839

2840 2841 2842 2843 2844 2845 2846 2847
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2848 2849 2850 2851 2852
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2853
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854
				--current_order) {
2855 2856
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2857
				start_migratetype, false, &can_steal);
2858 2859
		if (fallback_mt == -1)
			continue;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2872

2873 2874
		goto do_steal;
	}
2875

2876
	return false;
2877

2878 2879 2880 2881 2882 2883 2884 2885
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2886 2887
	}

2888 2889 2890 2891 2892 2893 2894
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2895
	page = get_page_from_free_area(area, fallback_mt);
2896

2897 2898
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2899 2900 2901 2902 2903 2904

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2905 2906
}

2907
/*
L
Linus Torvalds 已提交
2908 2909 2910
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2911
static __always_inline struct page *
2912 2913
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2914 2915 2916
{
	struct page *page;

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	if (IS_ENABLED(CONFIG_CMA)) {
		/*
		 * Balance movable allocations between regular and CMA areas by
		 * allocating from CMA when over half of the zone's free memory
		 * is in the CMA area.
		 */
		if (alloc_flags & ALLOC_CMA &&
		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
			page = __rmqueue_cma_fallback(zone, order);
			if (page)
				goto out;
		}
2930
	}
2931
retry:
2932
	page = __rmqueue_smallest(zone, order, migratetype);
2933
	if (unlikely(!page)) {
2934
		if (alloc_flags & ALLOC_CMA)
2935 2936
			page = __rmqueue_cma_fallback(zone, order);

2937 2938
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2939
			goto retry;
2940
	}
2941 2942 2943
out:
	if (page)
		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944
	return page;
L
Linus Torvalds 已提交
2945 2946
}

2947
/*
L
Linus Torvalds 已提交
2948 2949 2950 2951
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2952
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953
			unsigned long count, struct list_head *list,
2954
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2955
{
2956
	int i, alloced = 0;
2957

2958
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2959
	for (i = 0; i < count; ++i) {
2960 2961
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2962
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2963
			break;
2964

2965 2966 2967
		if (unlikely(check_pcp_refill(page)))
			continue;

2968
		/*
2969 2970 2971 2972 2973 2974 2975 2976
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2977
		 */
2978
		list_add_tail(&page->lru, list);
2979
		alloced++;
2980
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 2982
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2983
	}
2984 2985 2986 2987 2988 2989 2990

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2991
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992
	spin_unlock(&zone->lock);
2993
	return alloced;
L
Linus Torvalds 已提交
2994 2995
}

2996
#ifdef CONFIG_NUMA
2997
/*
2998 2999 3000 3001
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
3002 3003
 * Note that this function must be called with the thread pinned to
 * a single processor.
3004
 */
3005
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 3007
{
	unsigned long flags;
3008
	int to_drain, batch;
3009

3010
	local_irq_save(flags);
3011
	batch = READ_ONCE(pcp->batch);
3012
	to_drain = min(pcp->count, batch);
3013
	if (to_drain > 0)
3014
		free_pcppages_bulk(zone, to_drain, pcp);
3015
	local_irq_restore(flags);
3016 3017 3018
}
#endif

3019
/*
3020
 * Drain pcplists of the indicated processor and zone.
3021 3022 3023 3024 3025
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
3026
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
3027
{
N
Nick Piggin 已提交
3028
	unsigned long flags;
3029 3030
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
3031

3032 3033
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
3034

3035
	pcp = &pset->pcp;
3036
	if (pcp->count)
3037 3038 3039
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
3054 3055 3056
	}
}

3057 3058
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059 3060 3061
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
3062
 */
3063
void drain_local_pages(struct zone *zone)
3064
{
3065 3066 3067 3068 3069 3070
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
3071 3072
}

3073 3074
static void drain_local_pages_wq(struct work_struct *work)
{
3075 3076 3077 3078
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

3079 3080 3081 3082 3083 3084 3085 3086
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
3087
	drain_local_pages(drain->zone);
3088
	preempt_enable();
3089 3090
}

3091
/*
3092 3093
 * The implementation of drain_all_pages(), exposing an extra parameter to
 * drain on all cpus.
3094
 *
3095 3096 3097 3098 3099
 * drain_all_pages() is optimized to only execute on cpus where pcplists are
 * not empty. The check for non-emptiness can however race with a free to
 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
 * that need the guarantee that every CPU has drained can disable the
 * optimizing racy check.
3100
 */
3101
static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102
{
3103 3104 3105 3106 3107 3108 3109 3110
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

3111 3112 3113 3114 3115 3116 3117
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
3128

3129 3130 3131 3132 3133 3134 3135
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3136 3137
		struct per_cpu_pageset *pcp;
		struct zone *z;
3138
		bool has_pcps = false;
3139

3140 3141 3142 3143 3144 3145 3146
		if (force_all_cpus) {
			/*
			 * The pcp.count check is racy, some callers need a
			 * guarantee that no cpu is missed.
			 */
			has_pcps = true;
		} else if (zone) {
3147
			pcp = per_cpu_ptr(zone->pageset, cpu);
3148
			if (pcp->pcp.count)
3149
				has_pcps = true;
3150 3151 3152 3153 3154 3155 3156
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
3157 3158
			}
		}
3159

3160 3161 3162 3163 3164
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3165

3166
	for_each_cpu(cpu, &cpus_with_pcps) {
3167 3168 3169 3170 3171
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172
	}
3173
	for_each_cpu(cpu, &cpus_with_pcps)
3174
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175 3176

	mutex_unlock(&pcpu_drain_mutex);
3177 3178
}

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
 * Note that this can be extremely slow as the draining happens in a workqueue.
 */
void drain_all_pages(struct zone *zone)
{
	__drain_all_pages(zone, false);
}

3191
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3192

3193 3194 3195 3196 3197
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3198 3199
void mark_free_pages(struct zone *zone)
{
3200
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201
	unsigned long flags;
3202
	unsigned int order, t;
3203
	struct page *page;
L
Linus Torvalds 已提交
3204

3205
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3206 3207 3208
		return;

	spin_lock_irqsave(&zone->lock, flags);
3209

3210
	max_zone_pfn = zone_end_pfn(zone);
3211 3212
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3213
			page = pfn_to_page(pfn);
3214

3215 3216 3217 3218 3219
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3220 3221 3222
			if (page_zone(page) != zone)
				continue;

3223 3224
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3225
		}
L
Linus Torvalds 已提交
3226

3227
	for_each_migratetype_order(order, t) {
3228 3229
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3230
			unsigned long i;
L
Linus Torvalds 已提交
3231

3232
			pfn = page_to_pfn(page);
3233 3234 3235 3236 3237
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3238
				swsusp_set_page_free(pfn_to_page(pfn + i));
3239
			}
3240
		}
3241
	}
L
Linus Torvalds 已提交
3242 3243
	spin_unlock_irqrestore(&zone->lock, flags);
}
3244
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3245

3246
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3247
{
3248
	int migratetype;
L
Linus Torvalds 已提交
3249

3250
	if (!free_pcp_prepare(page))
3251
		return false;
3252

3253
	migratetype = get_pfnblock_migratetype(page, pfn);
3254
	set_pcppage_migratetype(page, migratetype);
3255 3256 3257
	return true;
}

3258
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 3260 3261 3262 3263 3264
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3265
	__count_vm_event(PGFREE);
3266

3267 3268 3269
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3270
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 3272 3273 3274
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3275
		if (unlikely(is_migrate_isolate(migratetype))) {
3276 3277
			free_one_page(zone, page, pfn, 0, migratetype,
				      FPI_NONE);
3278
			return;
3279 3280 3281 3282
		}
		migratetype = MIGRATE_MOVABLE;
	}

3283
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3285
	pcp->count++;
3286 3287
	if (pcp->count >= READ_ONCE(pcp->high))
		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288
}
3289

3290 3291 3292
/*
 * Free a 0-order page
 */
3293
void free_unref_page(struct page *page)
3294 3295 3296 3297
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3298
	if (!free_unref_page_prepare(page, pfn))
3299 3300 3301
		return;

	local_irq_save(flags);
3302
	free_unref_page_commit(page, pfn);
3303
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3304 3305
}

3306 3307 3308
/*
 * Free a list of 0-order pages
 */
3309
void free_unref_page_list(struct list_head *list)
3310 3311
{
	struct page *page, *next;
3312
	unsigned long flags, pfn;
3313
	int batch_count = 0;
3314 3315 3316 3317

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3318
		if (!free_unref_page_prepare(page, pfn))
3319 3320 3321
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3322

3323
	local_irq_save(flags);
3324
	list_for_each_entry_safe(page, next, list, lru) {
3325 3326 3327
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3328 3329
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3340
	}
3341
	local_irq_restore(flags);
3342 3343
}

N
Nick Piggin 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3356 3357
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3358

3359
	for (i = 1; i < (1 << order); i++)
3360
		set_page_refcounted(page + i);
3361
	split_page_owner(page, 1 << order);
3362
	split_page_memcg(page, 1 << order);
N
Nick Piggin 已提交
3363
}
K
K. Y. Srinivasan 已提交
3364
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3365

3366
int __isolate_free_page(struct page *page, unsigned int order)
3367 3368 3369
{
	unsigned long watermark;
	struct zone *zone;
3370
	int mt;
3371 3372 3373 3374

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3375
	mt = get_pageblock_migratetype(page);
3376

3377
	if (!is_migrate_isolate(mt)) {
3378 3379 3380 3381 3382 3383
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3384
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 3387
			return 0;

3388
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3389
	}
3390 3391

	/* Remove page from free list */
3392

3393
	del_page_from_free_list(page, zone, order);
3394

3395 3396 3397 3398
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3399 3400
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3401 3402
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3403
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404
			    && !is_migrate_highatomic(mt))
3405 3406 3407
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3408 3409
	}

3410

3411
	return 1UL << order;
3412 3413
}

3414 3415 3416 3417
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3418
 * @mt: The page's pageblock's migratetype
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
3431
	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3432
			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 3434
}

3435 3436 3437 3438 3439
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3440
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 3442
{
#ifdef CONFIG_NUMA
3443
	enum numa_stat_item local_stat = NUMA_LOCAL;
3444

3445 3446 3447 3448
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3449
	if (zone_to_nid(z) != numa_node_id())
3450 3451
		local_stat = NUMA_OTHER;

3452
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453
		__inc_numa_state(z, NUMA_HIT);
3454
	else {
3455 3456
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457
	}
3458
	__inc_numa_state(z, local_stat);
3459 3460 3461
#endif
}

3462 3463
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3464
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3465
			struct per_cpu_pages *pcp,
3466 3467 3468 3469 3470 3471 3472
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
3473
					READ_ONCE(pcp->batch), list,
3474
					migratetype, alloc_flags);
3475 3476 3477 3478
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3479
		page = list_first_entry(list, struct page, lru);
3480 3481 3482 3483 3484 3485 3486 3487 3488
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3489 3490
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3491 3492 3493 3494
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3495
	unsigned long flags;
3496

3497
	local_irq_save(flags);
3498 3499
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3500
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3501
	if (page) {
3502
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3503 3504
		zone_statistics(preferred_zone, zone);
	}
3505
	local_irq_restore(flags);
3506 3507 3508
	return page;
}

L
Linus Torvalds 已提交
3509
/*
3510
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3511
 */
3512
static inline
3513
struct page *rmqueue(struct zone *preferred_zone,
3514
			struct zone *zone, unsigned int order,
3515 3516
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3517 3518
{
	unsigned long flags;
3519
	struct page *page;
L
Linus Torvalds 已提交
3520

3521
	if (likely(order == 0)) {
3522 3523 3524 3525 3526 3527 3528
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3529
					migratetype, alloc_flags);
3530 3531
			goto out;
		}
3532
	}
3533

3534 3535 3536 3537 3538 3539
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3540

3541 3542
	do {
		page = NULL;
3543 3544 3545 3546 3547 3548 3549
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3550 3551 3552 3553
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3554
		if (!page)
3555
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3556 3557 3558 3559 3560 3561
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3562

3563
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3564
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3565
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3566

3567
out:
3568 3569 3570 3571 3572 3573
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3574
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3575
	return page;
N
Nick Piggin 已提交
3576 3577 3578 3579

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3580 3581
}

3582 3583
#ifdef CONFIG_FAIL_PAGE_ALLOC

3584
static struct {
3585 3586
	struct fault_attr attr;

3587
	bool ignore_gfp_highmem;
3588
	bool ignore_gfp_reclaim;
3589
	u32 min_order;
3590 3591
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3592
	.ignore_gfp_reclaim = true,
3593
	.ignore_gfp_highmem = true,
3594
	.min_order = 1,
3595 3596 3597 3598 3599 3600 3601 3602
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3603
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3604
{
3605
	if (order < fail_page_alloc.min_order)
3606
		return false;
3607
	if (gfp_mask & __GFP_NOFAIL)
3608
		return false;
3609
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3610
		return false;
3611 3612
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3613
		return false;
3614 3615 3616 3617 3618 3619 3620 3621

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3622
	umode_t mode = S_IFREG | 0600;
3623 3624
	struct dentry *dir;

3625 3626
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3627

3628 3629 3630 3631 3632
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3633

3634
	return 0;
3635 3636 3637 3638 3639 3640 3641 3642
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3643
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3644
{
3645
	return false;
3646 3647 3648 3649
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3650
noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3651 3652 3653 3654 3655
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3679
/*
3680 3681 3682 3683
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3684
 */
3685
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3686
			 int highest_zoneidx, unsigned int alloc_flags,
3687
			 long free_pages)
L
Linus Torvalds 已提交
3688
{
3689
	long min = mark;
L
Linus Torvalds 已提交
3690
	int o;
3691
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3692

3693
	/* free_pages may go negative - that's OK */
3694
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3695

R
Rohit Seth 已提交
3696
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3697
		min -= min / 2;
3698

3699
	if (unlikely(alloc_harder)) {
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3712 3713 3714 3715 3716
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3717
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3718
		return false;
L
Linus Torvalds 已提交
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3733
			if (!free_area_empty(area, mt))
3734 3735 3736 3737
				return true;
		}

#ifdef CONFIG_CMA
3738
		if ((alloc_flags & ALLOC_CMA) &&
3739
		    !free_area_empty(area, MIGRATE_CMA)) {
3740
			return true;
3741
		}
3742
#endif
3743
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3744
			return true;
L
Linus Torvalds 已提交
3745
	}
3746
	return false;
3747 3748
}

3749
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3750
		      int highest_zoneidx, unsigned int alloc_flags)
3751
{
3752
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3753 3754 3755
					zone_page_state(z, NR_FREE_PAGES));
}

3756
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3757
				unsigned long mark, int highest_zoneidx,
3758
				unsigned int alloc_flags, gfp_t gfp_mask)
3759
{
3760
	long free_pages;
3761

3762
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3763 3764 3765

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3766
	 * need to be calculated.
3767
	 */
3768 3769 3770 3771 3772 3773 3774 3775
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3776

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3794 3795
}

3796
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3797
			unsigned long mark, int highest_zoneidx)
3798 3799 3800 3801 3802 3803
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3804
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3805
								free_pages);
L
Linus Torvalds 已提交
3806 3807
}

3808
#ifdef CONFIG_NUMA
3809 3810
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3811
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3812
				node_reclaim_distance;
3813
}
3814
#else	/* CONFIG_NUMA */
3815 3816 3817 3818
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3819 3820
#endif	/* CONFIG_NUMA */

3821 3822 3823 3824 3825 3826 3827 3828 3829
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3830
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3831
{
3832
	unsigned int alloc_flags;
3833

3834 3835 3836 3837 3838
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3839 3840

#ifdef CONFIG_ZONE_DMA32
3841 3842 3843
	if (!zone)
		return alloc_flags;

3844
	if (zone_idx(zone) != ZONE_NORMAL)
3845
		return alloc_flags;
3846 3847 3848 3849 3850 3851 3852 3853

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3854
		return alloc_flags;
3855

3856
	alloc_flags |= ALLOC_NOFRAGMENT;
3857 3858
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3859 3860
}

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
					unsigned int alloc_flags)
{
#ifdef CONFIG_CMA
	unsigned int pflags = current->flags;

	if (!(pflags & PF_MEMALLOC_NOCMA) &&
			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;

#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
3875
/*
3876
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3877 3878 3879
 * a page.
 */
static struct page *
3880 3881
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3882
{
3883
	struct zoneref *z;
3884
	struct zone *zone;
3885
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3886
	bool no_fallback;
3887

3888
retry:
R
Rohit Seth 已提交
3889
	/*
3890
	 * Scan zonelist, looking for a zone with enough free.
3891
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3892
	 */
3893 3894
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3895 3896
	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
					ac->nodemask) {
3897
		struct page *page;
3898 3899
		unsigned long mark;

3900 3901
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3902
			!__cpuset_zone_allowed(zone, gfp_mask))
3903
				continue;
3904 3905
		/*
		 * When allocating a page cache page for writing, we
3906 3907
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3908
		 * proportional share of globally allowed dirty pages.
3909
		 * The dirty limits take into account the node's
3910 3911 3912 3913 3914
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3915
		 * exceed the per-node dirty limit in the slowpath
3916
		 * (spread_dirty_pages unset) before going into reclaim,
3917
		 * which is important when on a NUMA setup the allowed
3918
		 * nodes are together not big enough to reach the
3919
		 * global limit.  The proper fix for these situations
3920
		 * will require awareness of nodes in the
3921 3922
		 * dirty-throttling and the flusher threads.
		 */
3923 3924 3925 3926 3927 3928 3929 3930 3931
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3949
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3950
		if (!zone_watermark_fast(zone, order, mark,
3951 3952
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
3953 3954
			int ret;

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3965 3966 3967 3968 3969
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3970
			if (node_reclaim_mode == 0 ||
3971
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3972 3973
				continue;

3974
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3975
			switch (ret) {
3976
			case NODE_RECLAIM_NOSCAN:
3977
				/* did not scan */
3978
				continue;
3979
			case NODE_RECLAIM_FULL:
3980
				/* scanned but unreclaimable */
3981
				continue;
3982 3983
			default:
				/* did we reclaim enough */
3984
				if (zone_watermark_ok(zone, order, mark,
3985
					ac->highest_zoneidx, alloc_flags))
3986 3987 3988
					goto try_this_zone;

				continue;
3989
			}
R
Rohit Seth 已提交
3990 3991
		}

3992
try_this_zone:
3993
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3994
				gfp_mask, alloc_flags, ac->migratetype);
3995
		if (page) {
3996
			prep_new_page(page, order, gfp_mask, alloc_flags);
3997 3998 3999 4000 4001 4002 4003 4004

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

4005
			return page;
4006 4007 4008 4009 4010 4011 4012 4013
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
4014
		}
4015
	}
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

4026
	return NULL;
M
Martin Hicks 已提交
4027 4028
}

4029
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4030 4031 4032 4033 4034 4035 4036 4037 4038
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
4039
		if (tsk_is_oom_victim(current) ||
4040 4041
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
4042
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4043 4044
		filter &= ~SHOW_MEM_FILTER_NODES;

4045
	show_mem(filter, nodemask);
4046 4047
}

4048
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4049 4050 4051
{
	struct va_format vaf;
	va_list args;
4052
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4053

4054
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4055 4056
		return;

4057 4058 4059
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
4060
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
4061 4062
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
4063
	va_end(args);
J
Joe Perches 已提交
4064

4065
	cpuset_print_current_mems_allowed();
4066
	pr_cont("\n");
4067
	dump_stack();
4068
	warn_alloc_show_mem(gfp_mask, nodemask);
4069 4070
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

4091 4092
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4093
	const struct alloc_context *ac, unsigned long *did_some_progress)
4094
{
4095 4096 4097
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
4098
		.memcg = NULL,
4099 4100 4101
		.gfp_mask = gfp_mask,
		.order = order,
	};
4102 4103
	struct page *page;

4104 4105 4106
	*did_some_progress = 0;

	/*
4107 4108
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
4109
	 */
4110
	if (!mutex_trylock(&oom_lock)) {
4111
		*did_some_progress = 1;
4112
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4113 4114
		return NULL;
	}
4115

4116 4117 4118
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
4119 4120 4121
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
4122
	 */
4123 4124 4125
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
4126
	if (page)
4127 4128
		goto out;

4129 4130 4131 4132 4133 4134
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
4135 4136 4137 4138 4139
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
4140 4141
	 *
	 * The OOM killer may not free memory on a specific node.
4142
	 */
4143
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4144
		goto out;
4145
	/* The OOM killer does not needlessly kill tasks for lowmem */
4146
	if (ac->highest_zoneidx < ZONE_NORMAL)
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4160
	/* Exhausted what can be done so it's blame time */
4161
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4162
		*did_some_progress = 1;
4163

4164 4165 4166 4167 4168 4169
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4170 4171
					ALLOC_NO_WATERMARKS, ac);
	}
4172
out:
4173
	mutex_unlock(&oom_lock);
4174 4175 4176
	return page;
}

4177 4178 4179 4180 4181 4182
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4183 4184 4185 4186
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4187
		unsigned int alloc_flags, const struct alloc_context *ac,
4188
		enum compact_priority prio, enum compact_result *compact_result)
4189
{
4190
	struct page *page = NULL;
4191
	unsigned long pflags;
4192
	unsigned int noreclaim_flag;
4193 4194

	if (!order)
4195 4196
		return NULL;

4197
	psi_memstall_enter(&pflags);
4198
	noreclaim_flag = memalloc_noreclaim_save();
4199

4200
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4201
								prio, &page);
4202

4203
	memalloc_noreclaim_restore(noreclaim_flag);
4204
	psi_memstall_leave(&pflags);
4205

4206 4207 4208 4209 4210
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4211

4212 4213 4214 4215 4216 4217 4218
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4219

4220 4221
	if (page) {
		struct zone *zone = page_zone(page);
4222

4223 4224 4225 4226 4227
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4228

4229 4230 4231 4232 4233
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4234

4235
	cond_resched();
4236 4237 4238

	return NULL;
}
4239

4240 4241 4242 4243
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4244
		     int *compaction_retries)
4245 4246
{
	int max_retries = MAX_COMPACT_RETRIES;
4247
	int min_priority;
4248 4249 4250
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4251 4252 4253 4254

	if (!order)
		return false;

4255 4256 4257
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4258 4259 4260 4261 4262
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4263 4264
	if (compaction_failed(compact_result))
		goto check_priority;
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4275 4276 4277
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4278 4279
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4280
	 */
4281
	if (compaction_withdrawn(compact_result)) {
4282
		goto check_priority;
4283
	}
4284 4285

	/*
4286
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4287 4288 4289 4290 4291 4292 4293 4294
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4295 4296 4297 4298
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4299

4300 4301 4302 4303 4304
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4305 4306
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4307

4308
	if (*compact_priority > min_priority) {
4309 4310
		(*compact_priority)--;
		*compaction_retries = 0;
4311
		ret = true;
4312
	}
4313 4314 4315
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4316
}
4317 4318 4319
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4320
		unsigned int alloc_flags, const struct alloc_context *ac,
4321
		enum compact_priority prio, enum compact_result *compact_result)
4322
{
4323
	*compact_result = COMPACT_SKIPPED;
4324 4325
	return NULL;
}
4326 4327

static inline bool
4328 4329
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4330
		     enum compact_priority *compact_priority,
4331
		     int *compaction_retries)
4332
{
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4345 4346
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4347
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4348
					ac->highest_zoneidx, alloc_flags))
4349 4350
			return true;
	}
4351 4352
	return false;
}
4353
#endif /* CONFIG_COMPACTION */
4354

4355
#ifdef CONFIG_LOCKDEP
4356
static struct lockdep_map __fs_reclaim_map =
4357 4358
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

4359
static bool __need_reclaim(gfp_t gfp_mask)
4360 4361 4362 4363 4364 4365
{
	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4366
	if (current->flags & PF_MEMALLOC)
4367 4368 4369 4370 4371 4372 4373 4374
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4385 4386
void fs_reclaim_acquire(gfp_t gfp_mask)
{
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_acquire();

#ifdef CONFIG_MMU_NOTIFIER
		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#endif

	}
4399 4400 4401 4402 4403
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
4404 4405 4406 4407 4408 4409
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_release();
	}
4410 4411 4412 4413
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4414
/* Perform direct synchronous page reclaim */
4415
static unsigned long
4416 4417
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4418
{
4419
	unsigned int noreclaim_flag;
4420
	unsigned long pflags, progress;
4421 4422 4423 4424 4425

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4426
	psi_memstall_enter(&pflags);
4427
	fs_reclaim_acquire(gfp_mask);
4428
	noreclaim_flag = memalloc_noreclaim_save();
4429

4430 4431
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4432

4433
	memalloc_noreclaim_restore(noreclaim_flag);
4434
	fs_reclaim_release(gfp_mask);
4435
	psi_memstall_leave(&pflags);
4436 4437 4438

	cond_resched();

4439 4440 4441 4442 4443 4444
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4445
		unsigned int alloc_flags, const struct alloc_context *ac,
4446
		unsigned long *did_some_progress)
4447 4448 4449 4450
{
	struct page *page = NULL;
	bool drained = false;

4451
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4452 4453
	if (unlikely(!(*did_some_progress)))
		return NULL;
4454

4455
retry:
4456
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457 4458 4459

	/*
	 * If an allocation failed after direct reclaim, it could be because
4460
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4461
	 * Shrink them and try again
4462 4463
	 */
	if (!page && !drained) {
4464
		unreserve_highatomic_pageblock(ac, false);
4465
		drain_all_pages(NULL);
4466 4467 4468 4469
		drained = true;
		goto retry;
	}

4470 4471 4472
	return page;
}

4473 4474
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4475 4476 4477
{
	struct zoneref *z;
	struct zone *zone;
4478
	pg_data_t *last_pgdat = NULL;
4479
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4480

4481
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4482
					ac->nodemask) {
4483
		if (last_pgdat != zone->zone_pgdat)
4484
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4485 4486
		last_pgdat = zone->zone_pgdat;
	}
4487 4488
}

4489
static inline unsigned int
4490 4491
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4492
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4493

4494 4495 4496 4497 4498
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4499
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4500
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4501

4502 4503 4504 4505
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4506
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4507
	 */
4508 4509
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4510

4511
	if (gfp_mask & __GFP_ATOMIC) {
4512
		/*
4513 4514
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4515
		 */
4516
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4517
			alloc_flags |= ALLOC_HARDER;
4518
		/*
4519
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4520
		 * comment for __cpuset_node_allowed().
4521
		 */
4522
		alloc_flags &= ~ALLOC_CPUSET;
4523
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4524 4525
		alloc_flags |= ALLOC_HARDER;

4526 4527
	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);

4528 4529 4530
	return alloc_flags;
}

4531
static bool oom_reserves_allowed(struct task_struct *tsk)
4532
{
4533 4534 4535 4536 4537 4538 4539 4540
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4541 4542
		return false;

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4554
	if (gfp_mask & __GFP_MEMALLOC)
4555
		return ALLOC_NO_WATERMARKS;
4556
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4557 4558 4559 4560 4561 4562 4563
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4564

4565 4566 4567 4568 4569 4570
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4571 4572
}

M
Michal Hocko 已提交
4573 4574 4575
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4576 4577 4578 4579
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4580 4581 4582 4583 4584 4585
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4586
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4587 4588 4589
{
	struct zone *zone;
	struct zoneref *z;
4590
	bool ret = false;
M
Michal Hocko 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4602 4603 4604 4605
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4606 4607
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4608
		return unreserve_highatomic_pageblock(ac, true);
4609
	}
M
Michal Hocko 已提交
4610

4611 4612 4613 4614 4615
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4616
	 */
4617 4618
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4619
		unsigned long available;
4620
		unsigned long reclaimable;
4621 4622
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4623

4624 4625
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4626 4627

		/*
4628 4629
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4630
		 */
4631
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4632
				ac->highest_zoneidx, alloc_flags, available);
4633 4634 4635
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4636 4637 4638 4639 4640 4641 4642
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4643
				unsigned long write_pending;
4644

4645 4646
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4647

4648
				if (2 * write_pending > reclaimable) {
4649 4650 4651 4652
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4653

4654 4655
			ret = true;
			goto out;
M
Michal Hocko 已提交
4656 4657 4658
		}
	}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4672 4673
}

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4707 4708
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4709
						struct alloc_context *ac)
4710
{
4711
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4712
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4713
	struct page *page = NULL;
4714
	unsigned int alloc_flags;
4715
	unsigned long did_some_progress;
4716
	enum compact_priority compact_priority;
4717
	enum compact_result compact_result;
4718 4719 4720
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4721
	int reserve_flags;
L
Linus Torvalds 已提交
4722

4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4731 4732 4733 4734 4735
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4736 4737 4738 4739 4740 4741 4742 4743

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4744 4745 4746 4747 4748 4749 4750
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4751
					ac->highest_zoneidx, ac->nodemask);
4752 4753 4754
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4755
	if (alloc_flags & ALLOC_KSWAPD)
4756
		wake_all_kswapds(order, gfp_mask, ac);
4757 4758 4759 4760 4761 4762 4763 4764 4765

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4766 4767
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4768 4769 4770 4771 4772 4773
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4774
	 */
4775 4776 4777 4778
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4779 4780
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4781
						INIT_COMPACT_PRIORITY,
4782 4783 4784 4785
						&compact_result);
		if (page)
			goto got_pg;

4786 4787 4788 4789 4790
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4791 4792 4793 4794
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4795 4796
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4811 4812

			/*
4813 4814
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4815
			 * using async compaction.
4816
			 */
4817
			compact_priority = INIT_COMPACT_PRIORITY;
4818 4819
		}
	}
4820

4821
retry:
4822
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4823
	if (alloc_flags & ALLOC_KSWAPD)
4824
		wake_all_kswapds(order, gfp_mask, ac);
4825

4826 4827
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
4828
		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4829

4830
	/*
4831 4832 4833
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4834
	 */
4835
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836
		ac->nodemask = NULL;
4837
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838
					ac->highest_zoneidx, ac->nodemask);
4839 4840
	}

4841
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4842
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4843 4844
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4845

4846
	/* Caller is not willing to reclaim, we can't balance anything */
4847
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4848 4849
		goto nopage;

4850 4851
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4852 4853
		goto nopage;

4854 4855 4856 4857 4858 4859 4860
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4861
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4862
					compact_priority, &compact_result);
4863 4864
	if (page)
		goto got_pg;
4865

4866 4867
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4868
		goto nopage;
4869

M
Michal Hocko 已提交
4870 4871
	/*
	 * Do not retry costly high order allocations unless they are
4872
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4873
	 */
4874
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4875
		goto nopage;
M
Michal Hocko 已提交
4876 4877

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4878
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4879 4880
		goto retry;

4881 4882 4883 4884 4885 4886 4887
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4888
			should_compact_retry(ac, order, alloc_flags,
4889
				compact_result, &compact_priority,
4890
				&compaction_retries))
4891 4892
		goto retry;

4893 4894 4895

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4896 4897
		goto retry_cpuset;

4898 4899 4900 4901 4902
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4903
	/* Avoid allocations with no watermarks from looping endlessly */
4904
	if (tsk_is_oom_victim(current) &&
4905
	    (alloc_flags & ALLOC_OOM ||
4906
	     (gfp_mask & __GFP_NOMEMALLOC)))
4907 4908
		goto nopage;

4909
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4910 4911
	if (did_some_progress) {
		no_progress_loops = 0;
4912
		goto retry;
M
Michal Hocko 已提交
4913
	}
4914

L
Linus Torvalds 已提交
4915
nopage:
4916 4917
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4918 4919
		goto retry_cpuset;

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4957 4958 4959 4960
		cond_resched();
		goto retry;
	}
fail:
4961
	warn_alloc(gfp_mask, ac->nodemask,
4962
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4963
got_pg:
4964
	return page;
L
Linus Torvalds 已提交
4965
}
4966

4967
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4968
		int preferred_nid, nodemask_t *nodemask,
4969
		struct alloc_context *ac, gfp_t *alloc_gfp,
4970
		unsigned int *alloc_flags)
4971
{
4972
	ac->highest_zoneidx = gfp_zone(gfp_mask);
4973
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4974
	ac->nodemask = nodemask;
4975
	ac->migratetype = gfp_migratetype(gfp_mask);
4976

4977
	if (cpusets_enabled()) {
4978
		*alloc_gfp |= __GFP_HARDWALL;
4979 4980 4981 4982 4983
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
4984
			ac->nodemask = &cpuset_current_mems_allowed;
4985 4986
		else
			*alloc_flags |= ALLOC_CPUSET;
4987 4988
	}

4989 4990
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4991

4992
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4993 4994

	if (should_fail_alloc_page(gfp_mask, order))
4995
		return false;
4996

4997
	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4998

4999
	/* Dirty zone balancing only done in the fast path */
5000
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5001

5002 5003 5004 5005 5006
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
5007
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008
					ac->highest_zoneidx, ac->nodemask);
5009 5010

	return true;
5011 5012 5013 5014 5015
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
5016
struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5017
							nodemask_t *nodemask)
5018 5019 5020
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5021
	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5022 5023
	struct alloc_context ac = { };

5024 5025 5026 5027 5028
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
5029
		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5030 5031 5032
		return NULL;
	}

5033 5034 5035
	gfp &= gfp_allowed_mask;
	alloc_gfp = gfp;
	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5036
			&alloc_gfp, &alloc_flags))
5037 5038
		return NULL;

5039 5040 5041 5042
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
5043
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5044

5045
	/* First allocation attempt */
5046
	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5047 5048
	if (likely(page))
		goto out;
5049

5050
	/*
5051 5052 5053 5054
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
5055
	 */
5056
	alloc_gfp = current_gfp_context(gfp);
5057
	ac.spread_dirty_pages = false;
5058

5059 5060 5061 5062
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
5063
	ac.nodemask = nodemask;
5064

5065
	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5066

5067
out:
5068 5069
	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5070 5071
		__free_pages(page, order);
		page = NULL;
5072 5073
	}

5074
	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5075

5076
	return page;
L
Linus Torvalds 已提交
5077
}
5078
EXPORT_SYMBOL(__alloc_pages);
L
Linus Torvalds 已提交
5079 5080

/*
5081 5082 5083
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
5084
 */
H
Harvey Harrison 已提交
5085
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
5086
{
5087 5088
	struct page *page;

5089
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
5096
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
5097
{
5098
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
5099 5100 5101
}
EXPORT_SYMBOL(get_zeroed_page);

5102
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
5103
{
5104 5105 5106
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
5107
		__free_pages_ok(page, order, FPI_NONE);
L
Linus Torvalds 已提交
5108 5109
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
/**
 * __free_pages - Free pages allocated with alloc_pages().
 * @page: The page pointer returned from alloc_pages().
 * @order: The order of the allocation.
 *
 * This function can free multi-page allocations that are not compound
 * pages.  It does not check that the @order passed in matches that of
 * the allocation, so it is easy to leak memory.  Freeing more memory
 * than was allocated will probably emit a warning.
 *
 * If the last reference to this page is speculative, it will be released
 * by put_page() which only frees the first page of a non-compound
 * allocation.  To prevent the remaining pages from being leaked, we free
 * the subsequent pages here.  If you want to use the page's reference
 * count to decide when to free the allocation, you should allocate a
 * compound page, and use put_page() instead of __free_pages().
 *
 * Context: May be called in interrupt context or while holding a normal
 * spinlock, but not in NMI context or while holding a raw spinlock.
 */
5130 5131 5132 5133
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
5134 5135 5136
	else if (!PageHead(page))
		while (order-- > 0)
			free_the_page(page + (1 << order), order);
5137
}
L
Linus Torvalds 已提交
5138 5139
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
5140
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
5141 5142
{
	if (addr != 0) {
N
Nick Piggin 已提交
5143
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
5161 5162
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5182
void __page_frag_cache_drain(struct page *page, unsigned int count)
5183 5184 5185
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5186 5187
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5188
}
5189
EXPORT_SYMBOL(__page_frag_cache_drain);
5190

5191 5192 5193
void *page_frag_alloc_align(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask,
		      unsigned int align_mask)
5194 5195 5196 5197 5198 5199 5200
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5201
		page = __page_frag_cache_refill(nc, gfp_mask);
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5212
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5213 5214

		/* reset page count bias and offset to start of new frag */
5215
		nc->pfmemalloc = page_is_pfmemalloc(page);
5216
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5217 5218 5219 5220 5221 5222 5223
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5224
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5225 5226
			goto refill;

5227 5228 5229 5230 5231
		if (unlikely(nc->pfmemalloc)) {
			free_the_page(page, compound_order(page));
			goto refill;
		}

5232 5233 5234 5235 5236
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5237
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5238 5239

		/* reset page count bias and offset to start of new frag */
5240
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5241 5242 5243 5244
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
5245
	offset &= align_mask;
5246 5247 5248 5249
	nc->offset = offset;

	return nc->va + offset;
}
5250
EXPORT_SYMBOL(page_frag_alloc_align);
5251 5252 5253 5254

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5255
void page_frag_free(void *addr)
5256 5257 5258
{
	struct page *page = virt_to_head_page(addr);

5259 5260
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5261
}
5262
EXPORT_SYMBOL(page_frag_free);
5263

5264 5265
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5280 5281 5282
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5283
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5284 5285 5286 5287 5288 5289 5290 5291
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5292 5293
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5294 5295 5296 5297 5298 5299
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5300 5301 5302
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5303
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5304
	return make_alloc_exact(addr, order, size);
5305 5306 5307
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5308 5309 5310
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5311
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5312
 * @size: the number of bytes to allocate
5313
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5314 5315 5316
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5317 5318
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5319
 */
5320
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5321
{
5322
	unsigned int order = get_order(size);
5323 5324 5325 5326 5327 5328
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5329 5330 5331 5332 5333
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5353 5354 5355 5356
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5357
 * nr_free_zone_pages() counts the number of pages which are beyond the
5358 5359
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5360 5361
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5362 5363
 *
 * Return: number of pages beyond high watermark.
5364
 */
5365
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5366
{
5367
	struct zoneref *z;
5368 5369
	struct zone *zone;

5370
	/* Just pick one node, since fallback list is circular */
5371
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5372

5373
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5374

5375
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5376
		unsigned long size = zone_managed_pages(zone);
5377
		unsigned long high = high_wmark_pages(zone);
5378 5379
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384
	}

	return sum;
}

5385 5386 5387 5388 5389
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5390 5391 5392
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5393
 */
5394
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5395
{
A
Al Viro 已提交
5396
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5397
}
5398
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5399

5400
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5401
{
5402
	if (IS_ENABLED(CONFIG_NUMA))
5403
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5404 5405
}

5406 5407 5408 5409 5410 5411
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5412
	unsigned long reclaimable;
5413 5414 5415 5416
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5417
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5418 5419

	for_each_zone(zone)
5420
		wmark_low += low_wmark_pages(zone);
5421 5422 5423 5424 5425

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5426
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5438 5439 5440
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5441
	 */
5442 5443
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5444
	available += reclaimable - min(reclaimable / 2, wmark_low);
5445

5446 5447 5448 5449 5450 5451
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5452 5453
void si_meminfo(struct sysinfo *val)
{
5454
	val->totalram = totalram_pages();
5455
	val->sharedram = global_node_page_state(NR_SHMEM);
5456
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5457
	val->bufferram = nr_blockdev_pages();
5458
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5468 5469
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5470 5471
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5472 5473
	pg_data_t *pgdat = NODE_DATA(nid);

5474
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5475
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5476
	val->totalram = managed_pages;
5477
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5478
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5479
#ifdef CONFIG_HIGHMEM
5480 5481 5482 5483
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5484
			managed_highpages += zone_managed_pages(zone);
5485 5486 5487 5488 5489
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5490
#else
5491 5492
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5493
#endif
L
Linus Torvalds 已提交
5494 5495 5496 5497
	val->mem_unit = PAGE_SIZE;
}
#endif

5498
/*
5499 5500
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5501
 */
5502
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5503 5504
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5505
		return false;
5506

5507 5508 5509 5510 5511 5512 5513 5514 5515
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5516 5517
}

L
Linus Torvalds 已提交
5518 5519
#define K(x) ((x) << (PAGE_SHIFT-10))

5520 5521 5522 5523 5524
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5525 5526
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5527 5528 5529
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5530
#ifdef CONFIG_MEMORY_ISOLATION
5531
		[MIGRATE_ISOLATE]	= 'I',
5532
#endif
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5544
	printk(KERN_CONT "(%s) ", tmp);
5545 5546
}

L
Linus Torvalds 已提交
5547 5548 5549 5550
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5551 5552 5553 5554
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5555
 */
5556
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5557
{
5558
	unsigned long free_pcp = 0;
5559
	int cpu;
L
Linus Torvalds 已提交
5560
	struct zone *zone;
M
Mel Gorman 已提交
5561
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5562

5563
	for_each_populated_zone(zone) {
5564
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5565
			continue;
5566

5567 5568
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5569 5570
	}

K
KOSAKI Motohiro 已提交
5571 5572
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5573
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5574
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5575
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5576
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5577 5578 5579 5580 5581 5582 5583
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5584 5585
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5586 5587
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5588
		global_node_page_state(NR_FILE_MAPPED),
5589
		global_node_page_state(NR_SHMEM),
5590
		global_node_page_state(NR_PAGETABLE),
5591 5592
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5593
		free_pcp,
5594
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5595

M
Mel Gorman 已提交
5596
	for_each_online_pgdat(pgdat) {
5597
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5598 5599
			continue;

M
Mel Gorman 已提交
5600 5601 5602 5603 5604 5605 5606 5607
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5608
			" mapped:%lukB"
5609 5610 5611 5612 5613 5614 5615 5616 5617
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5618 5619 5620 5621
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
5622
			" pagetables:%lukB"
M
Mel Gorman 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5633
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5634 5635
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5636
			K(node_page_state(pgdat, NR_SHMEM)),
5637
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5638
			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5639
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5640
			K(node_page_state(pgdat, NR_ANON_THPS)),
5641 5642
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5643 5644 5645 5646
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5647
			K(node_page_state(pgdat, NR_PAGETABLE)),
5648 5649
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5650 5651
	}

5652
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5653 5654
		int i;

5655
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5656
			continue;
5657 5658 5659 5660 5661

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5662
		show_node(zone);
5663 5664
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5665 5666 5667 5668
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5669
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5670 5671 5672 5673 5674
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5675
			" writepending:%lukB"
L
Linus Torvalds 已提交
5676
			" present:%lukB"
5677
			" managed:%lukB"
5678 5679
			" mlocked:%lukB"
			" bounce:%lukB"
5680 5681
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5682
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5683 5684
			"\n",
			zone->name,
5685
			K(zone_page_state(zone, NR_FREE_PAGES)),
5686 5687 5688
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5689
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5690 5691 5692 5693 5694
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5695
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5696
			K(zone->present_pages),
5697
			K(zone_managed_pages(zone)),
5698 5699
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_BOUNCE)),
5700 5701
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5702
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5703 5704
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5705 5706
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5707 5708
	}

5709
	for_each_populated_zone(zone) {
5710 5711
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5712
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5713

5714
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5715
			continue;
L
Linus Torvalds 已提交
5716
		show_node(zone);
5717
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5718 5719 5720

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5721 5722 5723 5724
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5725
			total += nr[order] << order;
5726 5727 5728

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5729
				if (!free_area_empty(area, type))
5730 5731
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5732 5733
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5734
		for (order = 0; order < MAX_ORDER; order++) {
5735 5736
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5737 5738 5739
			if (nr[order])
				show_migration_types(types[order]);
		}
5740
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5741 5742
	}

5743 5744
	hugetlb_show_meminfo();

5745
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5746

L
Linus Torvalds 已提交
5747 5748 5749
	show_swap_cache_info();
}

5750 5751 5752 5753 5754 5755
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5756 5757
/*
 * Builds allocation fallback zone lists.
5758 5759
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5760
 */
5761
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5762
{
5763
	struct zone *zone;
5764
	enum zone_type zone_type = MAX_NR_ZONES;
5765
	int nr_zones = 0;
5766 5767

	do {
5768
		zone_type--;
5769
		zone = pgdat->node_zones + zone_type;
5770
		if (managed_zone(zone)) {
5771
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5772
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5773
		}
5774
	} while (zone_type);
5775

5776
	return nr_zones;
L
Linus Torvalds 已提交
5777 5778 5779
}

#ifdef CONFIG_NUMA
5780 5781 5782

static int __parse_numa_zonelist_order(char *s)
{
5783 5784 5785 5786 5787 5788 5789 5790
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5791 5792 5793 5794 5795
		return -EINVAL;
	}
	return 0;
}

5796 5797
char numa_zonelist_order[] = "Node";

5798 5799 5800
/*
 * sysctl handler for numa_zonelist_order
 */
5801
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5802
		void *buffer, size_t *length, loff_t *ppos)
5803
{
5804 5805 5806
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
5807 5808 5809
}


5810
#define MAX_NODE_LOAD (nr_online_nodes)
5811 5812
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5813
/**
5814
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5825 5826
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5827
 */
5828
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5829
{
5830
	int n, val;
L
Linus Torvalds 已提交
5831
	int min_val = INT_MAX;
D
David Rientjes 已提交
5832
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
5833

5834 5835 5836 5837 5838
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5839

5840
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5841 5842 5843 5844 5845 5846 5847 5848

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5849 5850 5851
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5852
		/* Give preference to headless and unused nodes */
5853
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5872 5873 5874 5875 5876 5877

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5878 5879
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5880
{
5881 5882 5883 5884 5885 5886 5887 5888 5889
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5890

5891 5892 5893 5894 5895
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5896 5897
}

5898 5899 5900 5901 5902
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5903 5904
	struct zoneref *zonerefs;
	int nr_zones;
5905

5906 5907 5908 5909 5910
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5911 5912
}

5913 5914 5915 5916 5917 5918 5919 5920 5921
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5922 5923
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
5924
	nodemask_t used_mask = NODE_MASK_NONE;
5925
	int local_node, prev_node;
L
Linus Torvalds 已提交
5926 5927 5928

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5929
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5930
	prev_node = local_node;
5931 5932

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937 5938
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5939 5940
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5941 5942
			node_load[node] = load;

5943
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5944 5945 5946
		prev_node = node;
		load--;
	}
5947

5948
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5949
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5950 5951
}

5952 5953 5954 5955 5956 5957 5958 5959 5960
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5961
	struct zoneref *z;
5962

5963
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5964
				   gfp_zone(GFP_KERNEL),
5965
				   NULL);
5966
	return zone_to_nid(z->zone);
5967 5968
}
#endif
5969

5970 5971
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5972 5973
#else	/* CONFIG_NUMA */

5974
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5975
{
5976
	int node, local_node;
5977 5978
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5979 5980 5981

	local_node = pgdat->node_id;

5982 5983 5984
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5985

5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5997 5998
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5999
	}
6000 6001 6002
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
6003 6004
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
6005 6006
	}

6007 6008
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
6009 6010 6011 6012
}

#endif	/* CONFIG_NUMA */

6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
6028
static void pageset_init(struct per_cpu_pageset *p);
6029 6030 6031
/* These effectively disable the pcplists in the boot pageset completely */
#define BOOT_PAGESET_HIGH	0
#define BOOT_PAGESET_BATCH	1
6032
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6033
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6034

6035
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
6036
{
6037
	int nid;
6038
	int __maybe_unused cpu;
6039
	pg_data_t *self = data;
6040 6041 6042
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
6043

6044 6045 6046
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
6047

6048 6049 6050 6051
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
6052 6053
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
6054 6055 6056
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
6057

6058 6059
			build_zonelists(pgdat);
		}
6060

6061 6062 6063 6064 6065 6066 6067 6068 6069
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
6070
		for_each_online_cpu(cpu)
6071
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6072
#endif
6073
	}
6074 6075

	spin_unlock(&lock);
6076 6077
}

6078 6079 6080
static noinline void __init
build_all_zonelists_init(void)
{
6081 6082
	int cpu;

6083
	__build_all_zonelists(NULL);
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
6099
		pageset_init(&per_cpu(boot_pageset, cpu));
6100

6101 6102 6103 6104
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

6105 6106
/*
 * unless system_state == SYSTEM_BOOTING.
6107
 *
6108
 * __ref due to call of __init annotated helper build_all_zonelists_init
6109
 * [protected by SYSTEM_BOOTING].
6110
 */
6111
void __ref build_all_zonelists(pg_data_t *pgdat)
6112
{
D
David Hildenbrand 已提交
6113 6114
	unsigned long vm_total_pages;

6115
	if (system_state == SYSTEM_BOOTING) {
6116
		build_all_zonelists_init();
6117
	} else {
6118
		__build_all_zonelists(pgdat);
6119 6120
		/* cpuset refresh routine should be here */
	}
6121 6122
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6123 6124 6125 6126 6127 6128 6129
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
6130
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6131 6132 6133 6134
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

6135
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
6136 6137 6138
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
6139
#ifdef CONFIG_NUMA
6140
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6141
#endif
L
Linus Torvalds 已提交
6142 6143
}

6144 6145 6146 6147 6148 6149 6150 6151
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6152
			for_each_mem_region(r) {
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
6166 6167
/*
 * Initially all pages are reserved - free ones are freed
6168
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
6169
 * done. Non-atomic initialization, single-pass.
6170 6171 6172 6173
 *
 * All aligned pageblocks are initialized to the specified migratetype
 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 * zone stats (e.g., nr_isolate_pageblock) are touched.
L
Linus Torvalds 已提交
6174
 */
6175
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6176
		unsigned long start_pfn, unsigned long zone_end_pfn,
6177 6178
		enum meminit_context context,
		struct vmem_altmap *altmap, int migratetype)
L
Linus Torvalds 已提交
6179
{
6180
	unsigned long pfn, end_pfn = start_pfn + size;
6181
	struct page *page;
L
Linus Torvalds 已提交
6182

6183 6184 6185
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

6186
#ifdef CONFIG_ZONE_DEVICE
6187 6188
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6189 6190 6191 6192
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6193
	 */
6194 6195 6196 6197 6198 6199 6200 6201 6202
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6203

6204
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6205
		/*
6206 6207
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6208
		 */
6209
		if (context == MEMINIT_EARLY) {
6210 6211
			if (overlap_memmap_init(zone, &pfn))
				continue;
6212
			if (defer_init(nid, pfn, zone_end_pfn))
6213
				break;
D
Dave Hansen 已提交
6214
		}
6215

6216 6217
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6218
		if (context == MEMINIT_HOTPLUG)
6219
			__SetPageReserved(page);
6220

6221
		/*
6222 6223 6224
		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
		 * such that unmovable allocations won't be scattered all
		 * over the place during system boot.
6225
		 */
6226
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6227
			set_pageblock_migratetype(page, migratetype);
6228
			cond_resched();
6229
		}
6230
		pfn++;
L
Linus Torvalds 已提交
6231 6232 6233
	}
}

6234 6235 6236
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6237
				   unsigned long nr_pages,
6238 6239
				   struct dev_pagemap *pgmap)
{
6240
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6241
	struct pglist_data *pgdat = zone->zone_pgdat;
6242
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6243 6244 6245 6246
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6247
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6248 6249 6250 6251 6252 6253 6254
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6255
	if (altmap) {
6256
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6257
		nr_pages = end_pfn - start_pfn;
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6275 6276 6277
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6278 6279
		 */
		page->pgmap = pgmap;
6280
		page->zone_device_data = NULL;
6281 6282 6283 6284 6285 6286 6287 6288

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
6289
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6290
		 * because this is done early in section_activate()
6291
		 */
6292
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6293 6294 6295 6296 6297
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6298
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6299
		nr_pages, jiffies_to_msecs(jiffies - start));
6300 6301 6302
}

#endif
6303
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6304
{
6305
	unsigned int order, t;
6306 6307
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6308 6309 6310 6311
		zone->free_area[order].nr_free = 0;
	}
}

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
/*
 * Only struct pages that correspond to ranges defined by memblock.memory
 * are zeroed and initialized by going through __init_single_page() during
 * memmap_init_zone().
 *
 * But, there could be struct pages that correspond to holes in
 * memblock.memory. This can happen because of the following reasons:
 * - physical memory bank size is not necessarily the exact multiple of the
 *   arbitrary section size
 * - early reserved memory may not be listed in memblock.memory
 * - memory layouts defined with memmap= kernel parameter may not align
 *   nicely with memmap sections
 *
 * Explicitly initialize those struct pages so that:
 * - PG_Reserved is set
 * - zone and node links point to zone and node that span the page if the
 *   hole is in the middle of a zone
 * - zone and node links point to adjacent zone/node if the hole falls on
 *   the zone boundary; the pages in such holes will be prepended to the
 *   zone/node above the hole except for the trailing pages in the last
 *   section that will be appended to the zone/node below.
 */
static u64 __meminit init_unavailable_range(unsigned long spfn,
					    unsigned long epfn,
					    int zone, int node)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
		__SetPageReserved(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}
#else
static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
					 int zone, int node)
{
	return 0;
}
#endif

6363
void __meminit __weak memmap_init_zone(struct zone *zone)
6364
{
6365 6366 6367
	unsigned long zone_start_pfn = zone->zone_start_pfn;
	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6368
	static unsigned long hole_pfn;
6369
	unsigned long start_pfn, end_pfn;
6370
	u64 pgcnt = 0;
6371 6372

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6373 6374
		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6375

6376 6377 6378 6379
		if (end_pfn > start_pfn)
			memmap_init_range(end_pfn - start_pfn, nid,
					zone_id, start_pfn, zone_end_pfn,
					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6380 6381 6382 6383 6384

		if (hole_pfn < start_pfn)
			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
							zone_id, nid);
		hole_pfn = end_pfn;
6385
	}
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

#ifdef CONFIG_SPARSEMEM
	/*
	 * Initialize the hole in the range [zone_end_pfn, section_end].
	 * If zone boundary falls in the middle of a section, this hole
	 * will be re-initialized during the call to this function for the
	 * higher zone.
	 */
	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
	if (hole_pfn < end_pfn)
		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
						zone_id, nid);
#endif

	if (pgcnt)
		pr_info("  %s zone: %llu pages in unavailable ranges\n",
			zone->name, pgcnt);
6403
}
L
Linus Torvalds 已提交
6404

6405
static int zone_batchsize(struct zone *zone)
6406
{
6407
#ifdef CONFIG_MMU
6408 6409 6410 6411
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6412
	 * size of the zone.
6413
	 */
6414
	batch = zone_managed_pages(zone) / 1024;
6415 6416 6417
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6418 6419 6420 6421 6422
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6423 6424 6425
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6426
	 *
6427 6428 6429 6430
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6431
	 */
6432
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6433

6434
	return batch;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6452 6453
}

6454
/*
6455 6456 6457
 * pcp->high and pcp->batch values are related and generally batch is lower
 * than high. They are also related to pcp->count such that count is lower
 * than high, and as soon as it reaches high, the pcplist is flushed.
6458
 *
6459 6460 6461 6462 6463 6464
 * However, guaranteeing these relations at all times would require e.g. write
 * barriers here but also careful usage of read barriers at the read side, and
 * thus be prone to error and bad for performance. Thus the update only prevents
 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
 * can cope with those fields changing asynchronously, and fully trust only the
 * pcp->count field on the local CPU with interrupts disabled.
6465 6466 6467 6468 6469 6470 6471 6472
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
6473 6474
	WRITE_ONCE(pcp->batch, batch);
	WRITE_ONCE(pcp->high, high);
6475 6476
}

6477
static void pageset_init(struct per_cpu_pageset *p)
6478 6479
{
	struct per_cpu_pages *pcp;
6480
	int migratetype;
6481

6482 6483
	memset(p, 0, sizeof(*p));

6484
	pcp = &p->pcp;
6485 6486
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6487

6488 6489 6490 6491 6492 6493
	/*
	 * Set batch and high values safe for a boot pageset. A true percpu
	 * pageset's initialization will update them subsequently. Here we don't
	 * need to be as careful as pageset_update() as nobody can access the
	 * pageset yet.
	 */
6494 6495
	pcp->high = BOOT_PAGESET_HIGH;
	pcp->batch = BOOT_PAGESET_BATCH;
6496 6497
}

6498
static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
		unsigned long batch)
{
	struct per_cpu_pageset *p;
	int cpu;

	for_each_possible_cpu(cpu) {
		p = per_cpu_ptr(zone->pageset, cpu);
		pageset_update(&p->pcp, high, batch);
	}
}

6510
/*
6511
 * Calculate and set new high and batch values for all per-cpu pagesets of a
6512
 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6513
 */
6514
static void zone_set_pageset_high_and_batch(struct zone *zone)
6515
{
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
	unsigned long new_high, new_batch;

	if (percpu_pagelist_fraction) {
		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
		new_batch = max(1UL, new_high / 4);
		if ((new_high / 4) > (PAGE_SHIFT * 8))
			new_batch = PAGE_SHIFT * 8;
	} else {
		new_batch = zone_batchsize(zone);
		new_high = 6 * new_batch;
		new_batch = max(1UL, 1 * new_batch);
	}
6528

6529 6530 6531 6532 6533 6534 6535
	if (zone->pageset_high == new_high &&
	    zone->pageset_batch == new_batch)
		return;

	zone->pageset_high = new_high;
	zone->pageset_batch = new_batch;

6536
	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6537 6538
}

6539
void __meminit setup_zone_pageset(struct zone *zone)
6540
{
6541
	struct per_cpu_pageset *p;
6542
	int cpu;
6543

6544
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6545 6546 6547 6548 6549 6550
	for_each_possible_cpu(cpu) {
		p = per_cpu_ptr(zone->pageset, cpu);
		pageset_init(p);
	}

	zone_set_pageset_high_and_batch(zone);
6551 6552
}

6553
/*
6554 6555
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6556
 */
6557
void __init setup_per_cpu_pageset(void)
6558
{
6559
	struct pglist_data *pgdat;
6560
	struct zone *zone;
6561
	int __maybe_unused cpu;
6562

6563 6564
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6565

6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
		memset(pcp->vm_numa_stat_diff, 0,
		       sizeof(pcp->vm_numa_stat_diff));
	}
#endif

6580 6581 6582
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6583 6584
}

6585
static __meminit void zone_pcp_init(struct zone *zone)
6586
{
6587 6588 6589 6590 6591 6592
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6593 6594
	zone->pageset_high = BOOT_PAGESET_HIGH;
	zone->pageset_batch = BOOT_PAGESET_BATCH;
6595

6596
	if (populated_zone(zone))
6597 6598 6599
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6600 6601
}

6602
void __meminit init_currently_empty_zone(struct zone *zone,
6603
					unsigned long zone_start_pfn,
6604
					unsigned long size)
6605 6606
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6607
	int zone_idx = zone_idx(zone) + 1;
6608

6609 6610
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6611 6612 6613

	zone->zone_start_pfn = zone_start_pfn;

6614 6615 6616 6617 6618 6619
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6620
	zone_init_free_lists(zone);
6621
	zone->initialized = 1;
6622 6623
}

6624 6625
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6626 6627 6628
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6629 6630
 *
 * It returns the start and end page frame of a node based on information
6631
 * provided by memblock_set_node(). If called for a node
6632
 * with no available memory, a warning is printed and the start and end
6633
 * PFNs will be 0.
6634
 */
6635
void __init get_pfn_range_for_nid(unsigned int nid,
6636 6637
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6638
	unsigned long this_start_pfn, this_end_pfn;
6639
	int i;
6640

6641 6642 6643
	*start_pfn = -1UL;
	*end_pfn = 0;

6644 6645 6646
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6647 6648
	}

6649
	if (*start_pfn == -1UL)
6650 6651 6652
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6653 6654 6655 6656 6657
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6658
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6676
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6677 6678 6679 6680 6681 6682 6683
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6684
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6699 6700 6701 6702 6703 6704
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6705 6706 6707 6708 6709 6710
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6711 6712 6713 6714
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6715
static unsigned long __init zone_spanned_pages_in_node(int nid,
6716
					unsigned long zone_type,
6717 6718
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6719
					unsigned long *zone_start_pfn,
6720
					unsigned long *zone_end_pfn)
6721
{
6722 6723
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6724
	/* When hotadd a new node from cpu_up(), the node should be empty */
6725 6726 6727
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6728
	/* Get the start and end of the zone */
6729 6730
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6731 6732
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6733
				zone_start_pfn, zone_end_pfn);
6734 6735

	/* Check that this node has pages within the zone's required range */
6736
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6737 6738 6739
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6740 6741
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6742 6743

	/* Return the spanned pages */
6744
	return *zone_end_pfn - *zone_start_pfn;
6745 6746 6747 6748
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6749
 * then all holes in the requested range will be accounted for.
6750
 */
6751
unsigned long __init __absent_pages_in_range(int nid,
6752 6753 6754
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6755 6756 6757
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6758

6759 6760 6761 6762
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6763
	}
6764
	return nr_absent;
6765 6766 6767 6768 6769 6770 6771
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6772
 * Return: the number of pages frames in memory holes within a range.
6773 6774 6775 6776 6777 6778 6779 6780
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6781
static unsigned long __init zone_absent_pages_in_node(int nid,
6782
					unsigned long zone_type,
6783
					unsigned long node_start_pfn,
6784
					unsigned long node_end_pfn)
6785
{
6786 6787
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6788
	unsigned long zone_start_pfn, zone_end_pfn;
6789
	unsigned long nr_absent;
6790

6791
	/* When hotadd a new node from cpu_up(), the node should be empty */
6792 6793 6794
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6795 6796
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6797

M
Mel Gorman 已提交
6798 6799 6800
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6801 6802 6803 6804 6805 6806 6807
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6808 6809 6810 6811
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

6812
		for_each_mem_region(r) {
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6825 6826 6827 6828
		}
	}

	return nr_absent;
6829
}
6830

6831
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6832
						unsigned long node_start_pfn,
6833
						unsigned long node_end_pfn)
6834
{
6835
	unsigned long realtotalpages = 0, totalpages = 0;
6836 6837
	enum zone_type i;

6838 6839
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6840
		unsigned long zone_start_pfn, zone_end_pfn;
6841
		unsigned long spanned, absent;
6842
		unsigned long size, real_size;
6843

6844 6845 6846 6847 6848 6849 6850 6851
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
6852 6853 6854 6855

		size = spanned;
		real_size = size - absent;

6856 6857 6858 6859
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6860 6861 6862 6863 6864 6865 6866 6867
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6868 6869 6870 6871 6872
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6873 6874 6875
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6876 6877
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6878 6879 6880
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6881
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6882 6883 6884
{
	unsigned long usemapsize;

6885
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6886 6887
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6888 6889 6890 6891 6892 6893
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

6894
static void __ref setup_usemap(struct zone *zone)
6895
{
6896 6897
	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
					       zone->spanned_pages);
6898
	zone->pageblock_flags = NULL;
6899
	if (usemapsize) {
6900
		zone->pageblock_flags =
6901
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6902
					    zone_to_nid(zone));
6903 6904
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6905
			      usemapsize, zone->name, zone_to_nid(zone));
6906
	}
6907 6908
}
#else
6909
static inline void setup_usemap(struct zone *zone) {}
6910 6911
#endif /* CONFIG_SPARSEMEM */

6912
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6913

6914
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6915
void __init set_pageblock_order(void)
6916
{
6917 6918
	unsigned int order;

6919 6920 6921 6922
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6923 6924 6925 6926 6927
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6928 6929
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6930 6931
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6932 6933 6934 6935 6936
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6937 6938
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6939 6940 6941
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6942
 */
6943
void __init set_pageblock_order(void)
6944 6945
{
}
6946 6947 6948

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6949
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6950
						unsigned long present_pages)
6951 6952 6953 6954 6955 6956 6957 6958
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6959
	 * populated regions may not be naturally aligned on page boundary.
6960 6961 6962 6963 6964 6965 6966 6967 6968
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6969 6970 6971
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6972 6973 6974 6975 6976
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6991
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6992
{
6993
	pgdat_resize_init(pgdat);
6994 6995 6996 6997

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6998
	init_waitqueue_head(&pgdat->kswapd_wait);
6999
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7000

7001
	pgdat_page_ext_init(pgdat);
7002
	lruvec_init(&pgdat->__lruvec);
7003 7004 7005 7006 7007
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
7008
	atomic_long_set(&zone->managed_pages, remaining_pages);
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
7049

7050
	pgdat_init_internals(pgdat);
7051 7052
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
7053 7054
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
7055
		unsigned long size, freesize, memmap_pages;
L
Linus Torvalds 已提交
7056

7057
		size = zone->spanned_pages;
7058
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
7059

7060
		/*
7061
		 * Adjust freesize so that it accounts for how much memory
7062 7063 7064
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
7065
		memmap_pages = calc_memmap_size(size, freesize);
7066 7067 7068 7069 7070 7071 7072 7073
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
7074
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7075 7076
					zone_names[j], memmap_pages, freesize);
		}
7077

7078
		/* Account for reserved pages */
7079 7080
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
7081
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7082
					zone_names[0], dma_reserve);
7083 7084
		}

7085
		if (!is_highmem_idx(j))
7086
			nr_kernel_pages += freesize;
7087 7088 7089
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
7090
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
7091

7092 7093 7094 7095 7096
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
7097
		zone_init_internals(zone, j, nid, freesize);
7098

7099
		if (!size)
L
Linus Torvalds 已提交
7100 7101
			continue;

7102
		set_pageblock_order();
7103
		setup_usemap(zone);
7104
		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7105
		memmap_init_zone(zone);
L
Linus Torvalds 已提交
7106 7107 7108
	}
}

7109
#ifdef CONFIG_FLAT_NODE_MEM_MAP
7110
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
7111
{
7112
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
7113 7114
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
7115 7116 7117 7118
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

7119 7120
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
7121 7122
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
7123
		unsigned long size, end;
A
Andy Whitcroft 已提交
7124 7125
		struct page *map;

7126 7127 7128 7129 7130
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
7131
		end = pgdat_end_pfn(pgdat);
7132 7133
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
7134 7135
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
7136 7137 7138
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
7139
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
7140
	}
7141 7142 7143
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
7144
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
7145 7146 7147
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
7148
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
7149
		mem_map = NODE_DATA(0)->node_mem_map;
7150
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
7151
			mem_map -= offset;
7152
	}
L
Linus Torvalds 已提交
7153 7154
#endif
}
7155 7156 7157
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
7158

7159 7160 7161 7162 7163 7164 7165 7166 7167
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

7168
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
7169
{
7170
	pg_data_t *pgdat = NODE_DATA(nid);
7171 7172
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
7173

7174
	/* pg_data_t should be reset to zero when it's allocated */
7175
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7176

7177
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7178

L
Linus Torvalds 已提交
7179
	pgdat->node_id = nid;
7180
	pgdat->node_start_pfn = start_pfn;
7181
	pgdat->per_cpu_nodestats = NULL;
7182

7183
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7184 7185
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7186
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
7187 7188

	alloc_node_mem_map(pgdat);
7189
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
7190

7191
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
7192 7193
}

7194
void __init free_area_init_memoryless_node(int nid)
7195
{
7196
	free_area_init_node(nid);
7197 7198
}

M
Miklos Szeredi 已提交
7199 7200 7201 7202
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7203
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7204
{
7205
	unsigned int highest;
M
Miklos Szeredi 已提交
7206

7207
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7208 7209 7210 7211
	nr_node_ids = highest + 1;
}
#endif

7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7228
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7229 7230 7231 7232 7233
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7234
	unsigned long start, end, mask;
7235
	int last_nid = NUMA_NO_NODE;
7236
	int i, nid;
7237

7238
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7262 7263 7264
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7265
 * Return: the minimum PFN based on information provided via
7266
 * memblock_set_node().
7267 7268 7269
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7270
	return PHYS_PFN(memblock_start_of_DRAM());
7271 7272
}

7273 7274 7275
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7276
 * Populate N_MEMORY for calculating usable_nodes.
7277
 */
A
Adrian Bunk 已提交
7278
static unsigned long __init early_calculate_totalpages(void)
7279 7280
{
	unsigned long totalpages = 0;
7281 7282 7283 7284 7285
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7286

7287 7288
		totalpages += pages;
		if (pages)
7289
			node_set_state(nid, N_MEMORY);
7290
	}
7291
	return totalpages;
7292 7293
}

M
Mel Gorman 已提交
7294 7295 7296 7297 7298 7299
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7300
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7301 7302 7303 7304
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7305
	/* save the state before borrow the nodemask */
7306
	nodemask_t saved_node_state = node_states[N_MEMORY];
7307
	unsigned long totalpages = early_calculate_totalpages();
7308
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7309
	struct memblock_region *r;
7310 7311 7312 7313 7314 7315 7316 7317 7318

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7319
		for_each_mem_region(r) {
E
Emil Medve 已提交
7320
			if (!memblock_is_hotpluggable(r))
7321 7322
				continue;

7323
			nid = memblock_get_region_node(r);
7324

E
Emil Medve 已提交
7325
			usable_startpfn = PFN_DOWN(r->base);
7326 7327 7328 7329 7330 7331 7332
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7333

7334 7335 7336 7337 7338 7339
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

7340
		for_each_mem_region(r) {
7341 7342 7343
			if (memblock_is_mirror(r))
				continue;

7344
			nid = memblock_get_region_node(r);
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7359
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7360 7361 7362 7363

		goto out2;
	}

7364
	/*
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7392
		required_movablecore = min(totalpages, required_movablecore);
7393 7394 7395 7396 7397
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7398 7399 7400 7401 7402
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7403
		goto out;
M
Mel Gorman 已提交
7404 7405 7406 7407 7408 7409 7410

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7411
	for_each_node_state(nid, N_MEMORY) {
7412 7413
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7430
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7431 7432
			unsigned long size_pages;

7433
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7476
			 * satisfied
M
Mel Gorman 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7490
	 * satisfied
M
Mel Gorman 已提交
7491 7492 7493 7494 7495
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7496
out2:
M
Mel Gorman 已提交
7497 7498 7499 7500
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7501

7502
out:
7503
	/* restore the node_state */
7504
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7505 7506
}

7507 7508
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7509 7510 7511
{
	enum zone_type zone_type;

7512
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7513
		struct zone *zone = &pgdat->node_zones[zone_type];
7514
		if (populated_zone(zone)) {
7515 7516 7517
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7518
				node_set_state(nid, N_NORMAL_MEMORY);
7519 7520
			break;
		}
7521 7522 7523
	}
}

7524 7525 7526 7527 7528 7529 7530 7531 7532
/*
 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7533
/**
7534
 * free_area_init - Initialise all pg_data_t and zone data
7535
 * @max_zone_pfn: an array of max PFNs for each zone
7536 7537
 *
 * This will call free_area_init_node() for each active node in the system.
7538
 * Using the page ranges provided by memblock_set_node(), the size of each
7539 7540 7541 7542 7543 7544 7545
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7546
void __init free_area_init(unsigned long *max_zone_pfn)
7547
{
7548
	unsigned long start_pfn, end_pfn;
7549 7550
	int i, nid, zone;
	bool descending;
7551

7552 7553 7554 7555 7556
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7557 7558

	start_pfn = find_min_pfn_with_active_regions();
7559
	descending = arch_has_descending_max_zone_pfns();
7560 7561

	for (i = 0; i < MAX_NR_ZONES; i++) {
7562 7563 7564 7565 7566 7567
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7568
			continue;
7569

7570 7571 7572
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7573 7574

		start_pfn = end_pfn;
7575
	}
M
Mel Gorman 已提交
7576 7577 7578

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7579
	find_zone_movable_pfns_for_nodes();
7580 7581

	/* Print out the zone ranges */
7582
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7583 7584 7585
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7586
		pr_info("  %-8s ", zone_names[i]);
7587 7588
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7589
			pr_cont("empty\n");
7590
		else
7591 7592 7593 7594
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7595
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7596 7597 7598
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7599
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7600 7601
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7602 7603
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7604
	}
7605

7606 7607 7608 7609 7610
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7611
	pr_info("Early memory node ranges\n");
7612
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7613 7614 7615
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7616 7617
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7618 7619

	/* Initialise every node */
7620
	mminit_verify_pageflags_layout();
7621
	setup_nr_node_ids();
7622 7623
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7624
		free_area_init_node(nid);
7625 7626 7627

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7628 7629
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7630 7631
	}
}
M
Mel Gorman 已提交
7632

7633 7634
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7635 7636
{
	unsigned long long coremem;
7637 7638
	char *endptr;

M
Mel Gorman 已提交
7639 7640 7641
	if (!p)
		return -EINVAL;

7642 7643 7644 7645 7646
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7647

7648 7649 7650 7651 7652
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7653

7654 7655 7656
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7657 7658
	return 0;
}
M
Mel Gorman 已提交
7659

7660 7661 7662 7663 7664 7665
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7666 7667 7668 7669 7670 7671
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7672 7673
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7674 7675 7676 7677 7678 7679 7680 7681
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7682 7683
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7684 7685
}

M
Mel Gorman 已提交
7686
early_param("kernelcore", cmdline_parse_kernelcore);
7687
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7688

7689 7690
void adjust_managed_page_count(struct page *page, long count)
{
7691
	atomic_long_add(count, &page_zone(page)->managed_pages);
7692
	totalram_pages_add(count);
7693 7694
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7695
		totalhigh_pages_add(count);
7696
#endif
7697
}
7698
EXPORT_SYMBOL(adjust_managed_page_count);
7699

7700
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7701
{
7702 7703
	void *pos;
	unsigned long pages = 0;
7704

7705 7706 7707
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7719 7720 7721 7722 7723
		/*
		 * Perform a kasan-unchecked memset() since this memory
		 * has not been initialized.
		 */
		direct_map_addr = kasan_reset_tag(direct_map_addr);
7724
		if ((unsigned int)poison <= 0xFF)
7725 7726 7727
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7728 7729 7730
	}

	if (pages && s)
7731 7732
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7733 7734 7735 7736

	return pages;
}

7737
void __init mem_init_print_info(void)
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7758 7759 7760 7761
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7772
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7773
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7774
		", %luK highmem"
7775
#endif
7776
		")\n",
J
Joe Perches 已提交
7777 7778 7779 7780
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7781
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7782
		totalcma_pages << (PAGE_SHIFT - 10)
7783
#ifdef	CONFIG_HIGHMEM
7784
		, totalhigh_pages() << (PAGE_SHIFT - 10)
7785
#endif
7786
		);
7787 7788
}

7789
/**
7790 7791
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7792
 *
7793
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7794 7795
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7796 7797 7798
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7799 7800 7801 7802 7803 7804
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7805
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7806 7807
{

7808 7809
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7810

7811 7812 7813 7814 7815 7816 7817
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7818

7819 7820 7821 7822 7823 7824 7825 7826 7827
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7828 7829
}

7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7843 7844
void __init page_alloc_init(void)
{
7845 7846
	int ret;

7847 7848 7849 7850 7851
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7852 7853 7854 7855
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7856 7857
}

7858
/*
7859
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7860 7861 7862 7863 7864 7865
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7866
	enum zone_type i, j;
7867 7868

	for_each_online_pgdat(pgdat) {
7869 7870 7871

		pgdat->totalreserve_pages = 0;

7872 7873
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7874
			long max = 0;
7875
			unsigned long managed_pages = zone_managed_pages(zone);
7876 7877 7878 7879 7880 7881 7882

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7883 7884
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7885

7886 7887
			if (max > managed_pages)
				max = managed_pages;
7888

7889
			pgdat->totalreserve_pages += max;
7890

7891 7892 7893 7894 7895 7896
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7897 7898
/*
 * setup_per_zone_lowmem_reserve - called whenever
7899
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7900 7901 7902 7903 7904 7905
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7906
	enum zone_type i, j;
L
Linus Torvalds 已提交
7907

7908
	for_each_online_pgdat(pgdat) {
7909 7910 7911 7912 7913 7914 7915 7916 7917
		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
			struct zone *zone = &pgdat->node_zones[i];
			int ratio = sysctl_lowmem_reserve_ratio[i];
			bool clear = !ratio || !zone_managed_pages(zone);
			unsigned long managed_pages = 0;

			for (j = i + 1; j < MAX_NR_ZONES; j++) {
				if (clear) {
					zone->lowmem_reserve[j] = 0;
7918
				} else {
7919 7920 7921 7922
					struct zone *upper_zone = &pgdat->node_zones[j];

					managed_pages += zone_managed_pages(upper_zone);
					zone->lowmem_reserve[j] = managed_pages / ratio;
7923
				}
L
Linus Torvalds 已提交
7924 7925 7926
			}
		}
	}
7927 7928 7929

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7930 7931
}

7932
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7933 7934 7935 7936 7937 7938 7939 7940 7941
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7942
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7943 7944 7945
	}

	for_each_zone(zone) {
7946 7947
		u64 tmp;

7948
		spin_lock_irqsave(&zone->lock, flags);
7949
		tmp = (u64)pages_min * zone_managed_pages(zone);
7950
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7951 7952
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7953 7954 7955 7956
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7957
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7958
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7959
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7960
			 */
7961
			unsigned long min_pages;
L
Linus Torvalds 已提交
7962

7963
			min_pages = zone_managed_pages(zone) / 1024;
7964
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7965
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7966
		} else {
N
Nick Piggin 已提交
7967 7968
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7969 7970
			 * proportionate to the zone's size.
			 */
7971
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7972 7973
		}

7974 7975 7976 7977 7978 7979
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7980
			    mult_frac(zone_managed_pages(zone),
7981 7982
				      watermark_scale_factor, 10000));

7983
		zone->watermark_boost = 0;
7984 7985
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7986

7987
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7988
	}
7989 7990 7991

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7992 7993
}

7994 7995 7996 7997 7998 7999 8000 8001 8002
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
8003 8004 8005
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
8006
	__setup_per_zone_wmarks();
8007
	spin_unlock(&lock);
8008 8009
}

L
Linus Torvalds 已提交
8010 8011 8012 8013
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
8014
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
8015 8016
 * bandwidth does not increase linearly with machine size.  We use
 *
8017
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
8034
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
8035 8036
{
	unsigned long lowmem_kbytes;
8037
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
8038 8039

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8040 8041 8042 8043 8044 8045
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
8046 8047
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
8048 8049 8050 8051
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
8052
	setup_per_zone_wmarks();
8053
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
8054
	setup_per_zone_lowmem_reserve();
8055 8056 8057 8058 8059 8060

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

8061 8062
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
8063 8064
	return 0;
}
8065
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
8066 8067

/*
8068
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
8069 8070 8071
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
8072
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8073
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8074
{
8075 8076 8077 8078 8079 8080
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

8081 8082
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
8083
		setup_per_zone_wmarks();
8084
	}
L
Linus Torvalds 已提交
8085 8086 8087
	return 0;
}

8088
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8089
		void *buffer, size_t *length, loff_t *ppos)
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

8103
#ifdef CONFIG_NUMA
8104
static void setup_min_unmapped_ratio(void)
8105
{
8106
	pg_data_t *pgdat;
8107 8108
	struct zone *zone;

8109
	for_each_online_pgdat(pgdat)
8110
		pgdat->min_unmapped_pages = 0;
8111

8112
	for_each_zone(zone)
8113 8114
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8115
}
8116

8117 8118

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8119
		void *buffer, size_t *length, loff_t *ppos)
8120 8121 8122
{
	int rc;

8123
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8124 8125 8126
	if (rc)
		return rc;

8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8137 8138 8139
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8140
	for_each_zone(zone)
8141 8142
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8143 8144 8145
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8146
		void *buffer, size_t *length, loff_t *ppos)
8147 8148 8149 8150 8151 8152 8153 8154 8155
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8156 8157
	return 0;
}
8158 8159
#endif

L
Linus Torvalds 已提交
8160 8161 8162 8163 8164 8165
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8166
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8167 8168
 * if in function of the boot time zone sizes.
 */
8169
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8170
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8171
{
8172 8173
	int i;

8174
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8175 8176 8177 8178 8179 8180

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8181 8182 8183 8184
	setup_per_zone_lowmem_reserve();
	return 0;
}

8185 8186
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8187 8188
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8189
 */
8190
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8191
		void *buffer, size_t *length, loff_t *ppos)
8192 8193
{
	struct zone *zone;
8194
	int old_percpu_pagelist_fraction;
8195 8196
	int ret;

8197 8198 8199
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8200
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8215

8216
	for_each_populated_zone(zone)
8217
		zone_set_pageset_high_and_batch(zone);
8218
out:
8219
	mutex_unlock(&pcp_batch_high_lock);
8220
	return ret;
8221 8222
}

8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8262 8263
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8264
{
8265
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8266 8267
	unsigned long log2qty, size;
	void *table = NULL;
8268
	gfp_t gfp_flags;
8269
	bool virt;
8270
	bool huge;
L
Linus Torvalds 已提交
8271 8272 8273 8274

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8275
		numentries = nr_kernel_pages;
8276
		numentries -= arch_reserved_kernel_pages();
8277 8278 8279 8280

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8281

P
Pavel Tatashin 已提交
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8292 8293 8294 8295 8296
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8297 8298

		/* Make sure we've got at least a 0-order allocation.. */
8299 8300 8301 8302 8303 8304 8305 8306
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8307
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8308
	}
8309
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8310 8311 8312 8313 8314 8315

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8316
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8317

8318 8319
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8320 8321 8322
	if (numentries > max)
		numentries = max;

8323
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8324

8325
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8326
	do {
8327
		virt = false;
L
Linus Torvalds 已提交
8328
		size = bucketsize << log2qty;
8329 8330
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8331
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8332
			else
8333 8334
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8335
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8336
			table = __vmalloc(size, gfp_flags);
8337
			virt = true;
8338
			huge = is_vm_area_hugepages(table);
8339
		} else {
8340 8341
			/*
			 * If bucketsize is not a power-of-two, we may free
8342 8343
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8344
			 */
8345 8346
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8347 8348 8349 8350 8351 8352
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8353 8354
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8355
		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
L
Linus Torvalds 已提交
8356 8357 8358 8359 8360 8361 8362 8363

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8364

K
KAMEZAWA Hiroyuki 已提交
8365
/*
8366 8367
 * This function checks whether pageblock includes unmovable pages or not.
 *
8368
 * PageLRU check without isolation or lru_lock could race so that
8369 8370 8371
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8372 8373
 *
 * Returns a page without holding a reference. If the caller wants to
8374
 * dereference that page (e.g., dumping), it has to make sure that it
8375 8376
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8377
 */
8378 8379
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8380
{
8381 8382
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8383
	unsigned long offset = pfn % pageblock_nr_pages;
8384

8385 8386 8387 8388 8389 8390 8391
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8392
			return NULL;
8393

8394
		return page;
8395
	}
8396

8397
	for (; iter < pageblock_nr_pages - offset; iter++) {
8398
		if (!pfn_valid_within(pfn + iter))
8399
			continue;
8400

8401
		page = pfn_to_page(pfn + iter);
8402

8403 8404 8405 8406 8407 8408
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8409
		if (PageReserved(page))
8410
			return page;
8411

8412 8413 8414 8415 8416 8417 8418 8419
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8420 8421
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8422
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8423
		 * We need not scan over tail pages because we don't
8424 8425
		 * handle each tail page individually in migration.
		 */
8426
		if (PageHuge(page) || PageTransCompound(page)) {
8427 8428
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8429

8430 8431 8432 8433
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8434
				return page;
8435
			}
8436

8437
			skip_pages = compound_nr(head) - (page - head);
8438
			iter += skip_pages - 1;
8439 8440 8441
			continue;
		}

8442 8443 8444 8445
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8446
		 * because their page->_refcount is zero at all time.
8447
		 */
8448
		if (!page_ref_count(page)) {
8449
			if (PageBuddy(page))
8450
				iter += (1 << buddy_order(page)) - 1;
8451 8452
			continue;
		}
8453

8454 8455 8456 8457
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8458
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8459 8460
			continue;

8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8474
		if (__PageMovable(page) || PageLRU(page))
8475 8476
			continue;

8477
		/*
8478 8479 8480
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8481
		 */
8482
		return page;
8483
	}
8484
	return NULL;
8485 8486
}

8487
#ifdef CONFIG_CONTIG_ALLOC
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8501 8502
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8503 8504
{
	/* This function is based on compact_zone() from compaction.c. */
8505
	unsigned int nr_reclaimed;
8506 8507 8508
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8509 8510 8511 8512
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8513

8514
	migrate_prep();
8515

8516
	while (pfn < end || !list_empty(&cc->migratepages)) {
8517 8518 8519 8520 8521
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8522 8523
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8524
			pfn = isolate_migratepages_range(cc, pfn, end);
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8535 8536 8537
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8538

8539 8540
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8541
	}
8542 8543 8544 8545 8546
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8547 8548 8549 8550 8551 8552
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8553 8554 8555 8556
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8557
 * @gfp_mask:	GFP mask to use during compaction
8558 8559
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8560
 * aligned.  The PFN range must belong to a single zone.
8561
 *
8562 8563 8564
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8565
 *
8566
 * Return: zero on success or negative error code.  On success all
8567 8568 8569
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8570
int alloc_contig_range(unsigned long start, unsigned long end,
8571
		       unsigned migratetype, gfp_t gfp_mask)
8572 8573
{
	unsigned long outer_start, outer_end;
8574 8575
	unsigned int order;
	int ret = 0;
8576

8577 8578 8579 8580
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8581
		.mode = MIGRATE_SYNC,
8582
		.ignore_skip_hint = true,
8583
		.no_set_skip_hint = true,
8584
		.gfp_mask = current_gfp_context(gfp_mask),
8585
		.alloc_contig = true,
8586 8587 8588
	};
	INIT_LIST_HEAD(&cc.migratepages);

8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8614
				       pfn_max_align_up(end), migratetype, 0);
8615
	if (ret)
8616
		return ret;
8617

8618 8619
	drain_all_pages(cc.zone);

8620 8621
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8622 8623 8624 8625 8626 8627 8628
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8629
	 */
8630
	ret = __alloc_contig_migrate_range(&cc, start, end);
8631
	if (ret && ret != -EBUSY)
8632
		goto done;
8633
	ret =0;
8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8656 8657
			outer_start = start;
			break;
8658 8659 8660 8661
		}
		outer_start &= ~0UL << order;
	}

8662
	if (outer_start != start) {
8663
		order = buddy_order(pfn_to_page(outer_start));
8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8675
	/* Make sure the range is really isolated. */
8676
	if (test_pages_isolated(outer_start, end, 0)) {
8677 8678 8679 8680
		ret = -EBUSY;
		goto done;
	}

8681
	/* Grab isolated pages from freelists. */
8682
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8696
				pfn_max_align_up(end), migratetype);
8697 8698
	return ret;
}
8699
EXPORT_SYMBOL(alloc_contig_range);
8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8801
#endif /* CONFIG_CONTIG_ALLOC */
8802

8803
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8804
{
8805 8806 8807 8808 8809 8810 8811 8812 8813
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8814
}
8815
EXPORT_SYMBOL(free_contig_range);
8816

8817 8818 8819 8820
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8821 8822
void __meminit zone_pcp_update(struct zone *zone)
{
8823
	mutex_lock(&pcp_batch_high_lock);
8824
	zone_set_pageset_high_and_batch(zone);
8825
	mutex_unlock(&pcp_batch_high_lock);
8826 8827
}

8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
/*
 * Effectively disable pcplists for the zone by setting the high limit to 0
 * and draining all cpus. A concurrent page freeing on another CPU that's about
 * to put the page on pcplist will either finish before the drain and the page
 * will be drained, or observe the new high limit and skip the pcplist.
 *
 * Must be paired with a call to zone_pcp_enable().
 */
void zone_pcp_disable(struct zone *zone)
{
	mutex_lock(&pcp_batch_high_lock);
	__zone_set_pageset_high_and_batch(zone, 0, 1);
	__drain_all_pages(zone, true);
}

void zone_pcp_enable(struct zone *zone)
{
	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
	mutex_unlock(&pcp_batch_high_lock);
}

8849 8850 8851
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8852 8853
	int cpu;
	struct per_cpu_pageset *pset;
8854 8855 8856 8857

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8858 8859 8860 8861
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8862 8863 8864 8865 8866 8867
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8868
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8869
/*
8870 8871
 * All pages in the range must be in a single zone, must not contain holes,
 * must span full sections, and must be isolated before calling this function.
K
KAMEZAWA Hiroyuki 已提交
8872
 */
8873
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
K
KAMEZAWA Hiroyuki 已提交
8874
{
8875
	unsigned long pfn = start_pfn;
K
KAMEZAWA Hiroyuki 已提交
8876 8877
	struct page *page;
	struct zone *zone;
8878
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
8879
	unsigned long flags;
8880

8881
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8882 8883 8884 8885
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	while (pfn < end_pfn) {
		page = pfn_to_page(pfn);
8886 8887 8888 8889 8890 8891 8892 8893
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			continue;
		}
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			continue;
		}
8904

K
KAMEZAWA Hiroyuki 已提交
8905 8906
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
8907
		order = buddy_order(page);
8908
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8909 8910 8911 8912 8913
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8914 8915 8916 8917 8918 8919

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8920
	unsigned int order;
8921 8922 8923 8924 8925

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

8926
		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8927 8928 8929 8930 8931 8932
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8933 8934 8935

#ifdef CONFIG_MEMORY_FAILURE
/*
8936 8937
 * Break down a higher-order page in sub-pages, and keep our target out of
 * buddy allocator.
8938
 */
8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962
static void break_down_buddy_pages(struct zone *zone, struct page *page,
				   struct page *target, int low, int high,
				   int migratetype)
{
	unsigned long size = 1 << high;
	struct page *current_buddy, *next_page;

	while (high > low) {
		high--;
		size >>= 1;

		if (target >= &page[size]) {
			next_page = page + size;
			current_buddy = page;
		} else {
			next_page = page;
			current_buddy = page + size;
		}

		if (set_page_guard(zone, current_buddy, high, migratetype))
			continue;

		if (current_buddy != target) {
			add_to_free_list(current_buddy, zone, high, migratetype);
8963
			set_buddy_order(current_buddy, high);
8964 8965 8966 8967 8968 8969 8970 8971 8972
			page = next_page;
		}
	}
}

/*
 * Take a page that will be marked as poisoned off the buddy allocator.
 */
bool take_page_off_buddy(struct page *page)
8973 8974 8975 8976 8977
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
8978
	bool ret = false;
8979 8980 8981 8982

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));
8983
		int page_order = buddy_order(page_head);
8984

8985
		if (PageBuddy(page_head) && page_order >= order) {
8986 8987 8988 8989
			unsigned long pfn_head = page_to_pfn(page_head);
			int migratetype = get_pfnblock_migratetype(page_head,
								   pfn_head);

8990
			del_page_from_free_list(page_head, zone, page_order);
8991
			break_down_buddy_pages(zone, page_head, page, 0,
8992
						page_order, migratetype);
8993
			ret = true;
8994 8995
			break;
		}
8996 8997
		if (page_count(page_head) > 0)
			break;
8998 8999
	}
	spin_unlock_irqrestore(&zone->lock, flags);
9000
	return ret;
9001 9002
}
#endif