page_alloc.c 219.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <xen/xen.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75 76
#include "internal.h"

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158 159 160 161 162
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167 168
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176 177
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209
#ifdef CONFIG_ZONE_DMA
210
	 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	 256,
214
#endif
215
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
216
	 32,
217
#endif
M
Mel Gorman 已提交
218
	 32,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274 275
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279 280
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308 309 310 311 312 313 314 315
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
316
	/* Always populate low zones for address-constrained allocations */
317 318
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
319 320 321
	/* Xen PV domains need page structures early */
	if (xen_pv_domain())
		return true;
322
	(*nr_initialised)++;
323
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
445

446
void set_pageblock_migratetype(struct page *page, int migratetype)
447
{
448 449
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
450 451
		migratetype = MIGRATE_UNMOVABLE;

452 453 454 455
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
456
#ifdef CONFIG_DEBUG_VM
457
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
458
{
459 460 461
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
462
	unsigned long sp, start_pfn;
463

464 465
	do {
		seq = zone_span_seqbegin(zone);
466 467
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
468
		if (!zone_spans_pfn(zone, pfn))
469 470 471
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

472
	if (ret)
473 474 475
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
476

477
	return ret;
478 479 480 481
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
482
	if (!pfn_valid_within(page_to_pfn(page)))
483
		return 0;
L
Linus Torvalds 已提交
484
	if (zone != page_zone(page))
485 486 487 488 489 490 491
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
492
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
493 494
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
495
		return 1;
496 497 498
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
499 500
	return 0;
}
N
Nick Piggin 已提交
501
#else
502
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
503 504 505 506 507
{
	return 0;
}
#endif

508 509
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
510
{
511 512 513 514 515 516 517 518 519 520 521 522 523 524
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
525
			pr_alert(
526
			      "BUG: Bad page state: %lu messages suppressed\n",
527 528 529 530 531 532 533 534
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

535
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536
		current->comm, page_to_pfn(page));
537 538 539 540 541
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
542
	dump_page_owner(page);
543

544
	print_modules();
L
Linus Torvalds 已提交
545
	dump_stack();
546
out:
547
	/* Leave bad fields for debug, except PageBuddy could make trouble */
548
	page_mapcount_reset(page); /* remove PageBuddy */
549
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
550 551 552 553 554
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
555
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
556
 *
557 558
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
559
 *
560 561
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
562
 *
563
 * The first tail page's ->compound_order holds the order of allocation.
564
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
565
 */
566

567
void free_compound_page(struct page *page)
568
{
569
	__free_pages_ok(page, compound_order(page));
570 571
}

572
void prep_compound_page(struct page *page, unsigned int order)
573 574 575 576
{
	int i;
	int nr_pages = 1 << order;

577
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 579 580 581
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
582
		set_page_count(p, 0);
583
		p->mapping = TAIL_MAPPING;
584
		set_compound_head(p, page);
585
	}
586
	atomic_set(compound_mapcount_ptr(page), -1);
587 588
}

589 590
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
591 592
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593
EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 595
bool _debug_guardpage_enabled __read_mostly;

596 597 598 599
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
600
	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 602 603
}
early_param("debug_pagealloc", early_debug_pagealloc);

604 605
static bool need_debug_guardpage(void)
{
606 607 608 609
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

610 611 612
	if (!debug_guardpage_minorder())
		return false;

613 614 615 616 617
	return true;
}

static void init_debug_guardpage(void)
{
618 619 620
	if (!debug_pagealloc_enabled())
		return;

621 622 623
	if (!debug_guardpage_minorder())
		return;

624 625 626 627 628 629 630
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
631 632 633 634 635 636

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
637
		pr_err("Bad debug_guardpage_minorder value\n");
638 639 640
		return 0;
	}
	_debug_guardpage_minorder = res;
641
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 643
	return 0;
}
644
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
645

646
static inline bool set_page_guard(struct zone *zone, struct page *page,
647
				unsigned int order, int migratetype)
648
{
649 650 651
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
652 653 654 655
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
656 657

	page_ext = lookup_page_ext(page);
658
	if (unlikely(!page_ext))
659
		return false;
660

661 662
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

663 664 665 666
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
667 668

	return true;
669 670
}

671 672
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
673
{
674 675 676 677 678 679
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
680 681 682
	if (unlikely(!page_ext))
		return;

683 684
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

685 686 687
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
688 689
}
#else
690
struct page_ext_operations debug_guardpage_ops;
691 692
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
693 694
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
695 696
#endif

697
static inline void set_page_order(struct page *page, unsigned int order)
698
{
H
Hugh Dickins 已提交
699
	set_page_private(page, order);
700
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
701 702 703 704
}

static inline void rmv_page_order(struct page *page)
{
705
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
706
	set_page_private(page, 0);
L
Linus Torvalds 已提交
707 708 709 710 711
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
712
 * (a) the buddy is not in a hole (check before calling!) &&
713
 * (b) the buddy is in the buddy system &&
714 715
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
716
 *
717 718 719 720
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
721
 *
722
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
723
 */
724
static inline int page_is_buddy(struct page *page, struct page *buddy,
725
							unsigned int order)
L
Linus Torvalds 已提交
726
{
727
	if (page_is_guard(buddy) && page_order(buddy) == order) {
728 729 730
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

731 732
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

733 734 735
		return 1;
	}

736
	if (PageBuddy(buddy) && page_order(buddy) == order) {
737 738 739 740 741 742 743 744
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

745 746
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

747
		return 1;
748
	}
749
	return 0;
L
Linus Torvalds 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
765 766 767
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
768
 * So when we are allocating or freeing one, we can derive the state of the
769 770
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
771
 * If a block is freed, and its buddy is also free, then this
772
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
773
 *
774
 * -- nyc
L
Linus Torvalds 已提交
775 776
 */

N
Nick Piggin 已提交
777
static inline void __free_one_page(struct page *page,
778
		unsigned long pfn,
779 780
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
781
{
782 783
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
784
	struct page *buddy;
785 786 787
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
788

789
	VM_BUG_ON(!zone_is_initialized(zone));
790
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
791

792
	VM_BUG_ON(migratetype == -1);
793
	if (likely(!is_migrate_isolate(migratetype)))
794
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
795

796
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
797
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
798

799
continue_merging:
800
	while (order < max_order - 1) {
801 802
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
803 804 805

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
806
		if (!page_is_buddy(page, buddy, order))
807
			goto done_merging;
808 809 810 811 812
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
813
			clear_page_guard(zone, buddy, order, migratetype);
814 815 816 817 818
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
819 820 821
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
822 823
		order++;
	}
824 825 826 827 828 829 830 831 832 833 834 835
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

836 837
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
838 839 840 841 842 843 844 845 846 847 848 849
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
850
	set_page_order(page, order);
851 852 853 854 855 856 857 858 859

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
860
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
861
		struct page *higher_page, *higher_buddy;
862 863 864 865
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
866 867
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
868 869 870 871 872 873 874 875
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
876 877 878
	zone->free_area[order].nr_free++;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

901
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
902
{
903 904 905 906 907
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
908

909
	if (unlikely(atomic_read(&page->_mapcount) != -1))
910 911 912
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
913
	if (unlikely(page_ref_count(page) != 0))
914
		bad_reason = "nonzero _refcount";
915 916 917 918
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
919 920 921 922
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
923
	bad_page(page, bad_reason, bad_flags);
924 925 926 927
}

static inline int free_pages_check(struct page *page)
{
928
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
929 930 931 932
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
933
	return 1;
L
Linus Torvalds 已提交
934 935
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

986 987
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
988
{
989
	int bad = 0;
990 991 992

	VM_BUG_ON_PAGE(PageTail(page), page);

993 994 995 996 997 998 999 1000 1001 1002 1003
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1004

1005 1006
		if (compound)
			ClearPageDoubleMap(page);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1017
	if (PageMappingFlags(page))
1018
		page->mapping = NULL;
1019
	if (memcg_kmem_enabled() && PageKmemcg(page))
1020
		memcg_kmem_uncharge(page, order);
1021 1022 1023 1024
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1025

1026 1027 1028
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1029 1030 1031

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1032
					   PAGE_SIZE << order);
1033
		debug_check_no_obj_freed(page_address(page),
1034
					   PAGE_SIZE << order);
1035
	}
1036 1037 1038
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1039
	kasan_free_pages(page, order);
1040 1041 1042 1043

	return true;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1060 1061 1062 1063 1064 1065
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1066 1067 1068 1069 1070 1071 1072 1073 1074
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1075
/*
1076
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1077
 * Assumes all pages on list are in same zone, and of same order.
1078
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1086 1087
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1088
{
1089
	int migratetype = 0;
1090
	int batch_free = 0;
1091
	int prefetch_nr = 0;
1092
	bool isolated_pageblocks;
1093 1094
	struct page *page, *tmp;
	LIST_HEAD(head);
1095

1096
	while (count) {
1097 1098 1099
		struct list_head *list;

		/*
1100 1101 1102 1103 1104
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1105 1106
		 */
		do {
1107
			batch_free++;
1108 1109 1110 1111
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1112

1113 1114
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1115
			batch_free = count;
1116

1117
		do {
1118
			page = list_last_entry(list, struct page, lru);
1119
			/* must delete to avoid corrupting pcp list */
1120
			list_del(&page->lru);
1121
			pcp->count--;
1122

1123 1124 1125
			if (bulkfree_pcp_prepare(page))
				continue;

1126
			list_add_tail(&page->lru, &head);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1139
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1140
	}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1160
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1161 1162
}

1163 1164
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1165
				unsigned int order,
1166
				int migratetype)
L
Linus Torvalds 已提交
1167
{
1168
	spin_lock(&zone->lock);
1169 1170 1171 1172
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1173
	__free_one_page(page, pfn, zone, order, migratetype);
1174
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1175 1176
}

1177
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178
				unsigned long zone, int nid)
1179
{
1180
	mm_zero_struct_page(page);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1194
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1195
static void __meminit init_reserved_page(unsigned long pfn)
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1212
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1213 1214 1215 1216 1217 1218 1219
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1220 1221 1222 1223 1224 1225
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1226
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1227 1228 1229 1230
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1231 1232 1233 1234 1235
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1236 1237 1238 1239

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1240 1241 1242
			SetPageReserved(page);
		}
	}
1243 1244
}

1245 1246
static void __free_pages_ok(struct page *page, unsigned int order)
{
1247
	unsigned long flags;
M
Minchan Kim 已提交
1248
	int migratetype;
1249
	unsigned long pfn = page_to_pfn(page);
1250

1251
	if (!free_pages_prepare(page, order, true))
1252 1253
		return;

1254
	migratetype = get_pfnblock_migratetype(page, pfn);
1255 1256
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1257
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1258
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1259 1260
}

1261
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1262
{
1263
	unsigned int nr_pages = 1 << order;
1264
	struct page *p = page;
1265
	unsigned int loop;
1266

1267 1268 1269
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1270 1271
		__ClearPageReserved(p);
		set_page_count(p, 0);
1272
	}
1273 1274
	__ClearPageReserved(p);
	set_page_count(p, 0);
1275

1276
	page_zone(page)->managed_pages += nr_pages;
1277 1278
	set_page_refcounted(page);
	__free_pages(page, order);
1279 1280
}

1281 1282
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1283

1284 1285 1286 1287
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1288
	static DEFINE_SPINLOCK(early_pfn_lock);
1289 1290
	int nid;

1291
	spin_lock(&early_pfn_lock);
1292
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1293
	if (nid < 0)
1294
		nid = first_online_node;
1295 1296 1297
	spin_unlock(&early_pfn_lock);

	return nid;
1298 1299 1300 1301
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1302 1303 1304
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1326 1327 1328
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1329 1330 1331 1332 1333 1334
{
	return true;
}
#endif


1335
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1336 1337 1338 1339
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1340
	return __free_pages_boot_core(page, order);
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1372 1373 1374
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1414
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1415 1416
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1417
{
1418 1419
	struct page *page;
	unsigned long i;
1420

1421
	if (!nr_pages)
1422 1423
		return;

1424 1425
	page = pfn_to_page(pfn);

1426
	/* Free a large naturally-aligned chunk if possible */
1427 1428
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1429
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430
		__free_pages_boot_core(page, pageblock_order);
1431 1432 1433
		return;
	}

1434 1435 1436
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437
		__free_pages_boot_core(page, 0);
1438
	}
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1450

1451
/*
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1464
 */
1465 1466 1467
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1468
{
1469 1470 1471 1472 1473 1474 1475 1476
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1488

1489 1490 1491 1492 1493 1494 1495
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1496
			touch_nmi_watchdog();
1497 1498 1499 1500 1501 1502
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1513 1514 1515 1516 1517 1518
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1519 1520 1521
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1522
			continue;
1523
		} else if (!page || !(pfn & nr_pgmask)) {
1524
			page = pfn_to_page(pfn);
1525
			touch_nmi_watchdog();
1526 1527
		} else {
			page++;
1528
		}
1529
		__init_single_page(page, pfn, zid, nid);
1530
		nr_pages++;
1531
	}
1532
	return (nr_pages);
1533 1534
}

1535
/* Initialise remaining memory on a node */
1536
static int __init deferred_init_memmap(void *data)
1537
{
1538 1539
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1540 1541
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1542
	unsigned long spfn, epfn, first_init_pfn, flags;
1543 1544
	phys_addr_t spa, epa;
	int zid;
1545
	struct zone *zone;
1546
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1547
	u64 i;
1548

1549 1550 1551 1552 1553 1554
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1555
	if (first_init_pfn == ULONG_MAX) {
1556
		pgdat_resize_unlock(pgdat, &flags);
1557
		pgdat_init_report_one_done();
1558 1559 1560
		return 0;
	}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1572
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1585 1586 1587
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588
		deferred_free_pages(nid, zid, spfn, epfn);
1589
	}
1590
	pgdat_resize_unlock(pgdat, &flags);
1591 1592 1593 1594

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1595
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1596
					jiffies_to_msecs(jiffies - start));
1597 1598

	pgdat_init_report_one_done();
1599 1600
	return 0;
}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1712
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1713 1714 1715

void __init page_alloc_init_late(void)
{
1716 1717 1718
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1719 1720
	int nid;

1721 1722
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1723 1724 1725 1726 1727
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1728
	wait_for_completion(&pgdat_init_all_done_comp);
1729

1730 1731 1732 1733 1734 1735
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1736 1737
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1738
#endif
P
Pavel Tatashin 已提交
1739 1740 1741 1742
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1743 1744 1745

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1746 1747
}

1748
#ifdef CONFIG_CMA
1749
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1775
	adjust_managed_page_count(page, pageblock_nr_pages);
1776 1777
}
#endif
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1791
 * -- nyc
L
Linus Torvalds 已提交
1792
 */
N
Nick Piggin 已提交
1793
static inline void expand(struct zone *zone, struct page *page,
1794 1795
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800 1801 1802
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1803
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1804

1805 1806 1807 1808 1809 1810 1811
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1812
			continue;
1813

1814
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1820
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1821
{
1822 1823
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1824

1825
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1826 1827 1828
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1829
	if (unlikely(page_ref_count(page) != 0))
1830
		bad_reason = "nonzero _count";
1831 1832 1833
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1834 1835 1836
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1837
	}
1838 1839 1840 1841
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1842 1843 1844 1845
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1860 1861
}

1862
static inline bool free_pages_prezeroed(void)
1863 1864
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1865
		page_poisoning_enabled();
1866 1867
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1915
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1916
							unsigned int alloc_flags)
1917 1918
{
	int i;
1919

1920
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1921

1922
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1923 1924
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1925 1926 1927 1928

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1929
	/*
1930
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1931 1932 1933 1934
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1935 1936 1937 1938
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1939 1940
}

1941 1942 1943 1944
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1945
static __always_inline
1946
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1947 1948 1949
						int migratetype)
{
	unsigned int current_order;
1950
	struct free_area *area;
1951 1952 1953 1954 1955
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1956
		page = list_first_entry_or_null(&area->free_list[migratetype],
1957
							struct page, lru);
1958 1959
		if (!page)
			continue;
1960 1961 1962 1963
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1964
		set_pcppage_migratetype(page, migratetype);
1965 1966 1967 1968 1969 1970 1971
		return page;
	}

	return NULL;
}


1972 1973 1974 1975
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1976
static int fallbacks[MIGRATE_TYPES][4] = {
1977 1978 1979
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1980
#ifdef CONFIG_CMA
1981
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1982
#endif
1983
#ifdef CONFIG_MEMORY_ISOLATION
1984
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1985
#endif
1986 1987
};

1988
#ifdef CONFIG_CMA
1989
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 1991 1992 1993 1994 1995 1996 1997 1998
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1999 2000
/*
 * Move the free pages in a range to the free lists of the requested type.
2001
 * Note that start_page and end_pages are not aligned on a pageblock
2002 2003
 * boundary. If alignment is required, use move_freepages_block()
 */
2004
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2005
			  struct page *start_page, struct page *end_page,
2006
			  int migratetype, int *num_movable)
2007 2008
{
	struct page *page;
2009
	unsigned int order;
2010
	int pages_moved = 0;
2011 2012 2013 2014 2015 2016 2017

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2018
	 * grouping pages by mobility
2019
	 */
2020 2021 2022
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2023 2024
#endif

2025 2026 2027
	if (num_movable)
		*num_movable = 0;

2028 2029 2030 2031 2032 2033
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2034 2035 2036
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2037
		if (!PageBuddy(page)) {
2038 2039 2040 2041 2042 2043 2044 2045 2046
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2047 2048 2049 2050 2051
			page++;
			continue;
		}

		order = page_order(page);
2052 2053
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2054
		page += 1 << order;
2055
		pages_moved += 1 << order;
2056 2057
	}

2058
	return pages_moved;
2059 2060
}

2061
int move_freepages_block(struct zone *zone, struct page *page,
2062
				int migratetype, int *num_movable)
2063 2064 2065 2066 2067
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2068
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2069
	start_page = pfn_to_page(start_pfn);
2070 2071
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2072 2073

	/* Do not cross zone boundaries */
2074
	if (!zone_spans_pfn(zone, start_pfn))
2075
		start_page = page;
2076
	if (!zone_spans_pfn(zone, end_pfn))
2077 2078
		return 0;

2079 2080
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2094
/*
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2105
 */
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2130 2131 2132 2133
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2134 2135
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2136
					int start_type, bool whole_block)
2137
{
2138
	unsigned int current_order = page_order(page);
2139
	struct free_area *area;
2140 2141 2142 2143
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2144

2145 2146 2147 2148
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2149
	if (is_migrate_highatomic(old_block_type))
2150 2151
		goto single_page;

2152 2153 2154
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2155
		goto single_page;
2156 2157
	}

2158 2159 2160 2161
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2186
	/* moving whole block can fail due to zone boundary conditions */
2187
	if (!free_pages)
2188
		goto single_page;
2189

2190 2191 2192 2193 2194
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2195 2196
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2197 2198 2199 2200 2201 2202

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2223
		if (fallback_mt == MIGRATE_TYPES)
2224 2225 2226 2227
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2228

2229 2230 2231
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2232 2233 2234 2235 2236
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2237
	}
2238 2239

	return -1;
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2268 2269
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2270 2271
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2272
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2284 2285 2286
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2287
 */
2288 2289
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2290 2291 2292 2293 2294 2295 2296
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2297
	bool ret;
2298 2299 2300

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2301 2302 2303 2304 2305 2306
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2307 2308 2309 2310 2311 2312
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2313 2314 2315 2316
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2317 2318 2319
				continue;

			/*
2320 2321 2322 2323 2324
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2325
			 */
2326
			if (is_migrate_highatomic_page(page)) {
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2349 2350
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2351 2352 2353 2354
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2355 2356 2357
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2358 2359

	return false;
2360 2361
}

2362 2363 2364 2365 2366
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2367 2368 2369 2370
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2371
 */
2372
static __always_inline bool
2373
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2374
{
2375
	struct free_area *area;
2376
	int current_order;
2377
	struct page *page;
2378 2379
	int fallback_mt;
	bool can_steal;
2380

2381 2382 2383 2384 2385
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2386
	for (current_order = MAX_ORDER - 1; current_order >= order;
2387
				--current_order) {
2388 2389
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2390
				start_migratetype, false, &can_steal);
2391 2392
		if (fallback_mt == -1)
			continue;
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2405

2406 2407
		goto do_steal;
	}
2408

2409
	return false;
2410

2411 2412 2413 2414 2415 2416 2417 2418
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2419 2420
	}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2438 2439
}

2440
/*
L
Linus Torvalds 已提交
2441 2442 2443
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2444 2445
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2446 2447 2448
{
	struct page *page;

2449
retry:
2450
	page = __rmqueue_smallest(zone, order, migratetype);
2451
	if (unlikely(!page)) {
2452 2453 2454
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2455 2456
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2457 2458
	}

2459
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2460
	return page;
L
Linus Torvalds 已提交
2461 2462
}

2463
/*
L
Linus Torvalds 已提交
2464 2465 2466 2467
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2468
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2469
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2470
			int migratetype)
L
Linus Torvalds 已提交
2471
{
2472
	int i, alloced = 0;
2473

2474
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2475
	for (i = 0; i < count; ++i) {
2476
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2477
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2478
			break;
2479

2480 2481 2482
		if (unlikely(check_pcp_refill(page)))
			continue;

2483
		/*
2484 2485 2486 2487 2488 2489 2490 2491
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2492
		 */
2493
		list_add_tail(&page->lru, list);
2494
		alloced++;
2495
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2496 2497
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2498
	}
2499 2500 2501 2502 2503 2504 2505

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2506
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2507
	spin_unlock(&zone->lock);
2508
	return alloced;
L
Linus Torvalds 已提交
2509 2510
}

2511
#ifdef CONFIG_NUMA
2512
/*
2513 2514 2515 2516
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2517 2518
 * Note that this function must be called with the thread pinned to
 * a single processor.
2519
 */
2520
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2521 2522
{
	unsigned long flags;
2523
	int to_drain, batch;
2524

2525
	local_irq_save(flags);
2526
	batch = READ_ONCE(pcp->batch);
2527
	to_drain = min(pcp->count, batch);
2528
	if (to_drain > 0)
2529
		free_pcppages_bulk(zone, to_drain, pcp);
2530
	local_irq_restore(flags);
2531 2532 2533
}
#endif

2534
/*
2535
 * Drain pcplists of the indicated processor and zone.
2536 2537 2538 2539 2540
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2541
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2542
{
N
Nick Piggin 已提交
2543
	unsigned long flags;
2544 2545
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2546

2547 2548
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2549

2550
	pcp = &pset->pcp;
2551
	if (pcp->count)
2552 2553 2554
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2555

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2569 2570 2571
	}
}

2572 2573
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2574 2575 2576
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2577
 */
2578
void drain_local_pages(struct zone *zone)
2579
{
2580 2581 2582 2583 2584 2585
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2586 2587
}

2588 2589
static void drain_local_pages_wq(struct work_struct *work)
{
2590 2591 2592 2593 2594 2595 2596 2597
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2598
	drain_local_pages(NULL);
2599
	preempt_enable();
2600 2601
}

2602
/*
2603 2604
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2605 2606
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2607
 * Note that this can be extremely slow as the draining happens in a workqueue.
2608
 */
2609
void drain_all_pages(struct zone *zone)
2610
{
2611 2612 2613 2614 2615 2616 2617 2618
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2619 2620 2621 2622 2623 2624 2625
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2636

2637 2638 2639 2640 2641 2642 2643
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2644 2645
		struct per_cpu_pageset *pcp;
		struct zone *z;
2646
		bool has_pcps = false;
2647 2648

		if (zone) {
2649
			pcp = per_cpu_ptr(zone->pageset, cpu);
2650
			if (pcp->pcp.count)
2651
				has_pcps = true;
2652 2653 2654 2655 2656 2657 2658
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2659 2660
			}
		}
2661

2662 2663 2664 2665 2666
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2667

2668 2669 2670
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2671
		queue_work_on(cpu, mm_percpu_wq, work);
2672
	}
2673 2674 2675 2676
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2677 2678
}

2679
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2680

2681 2682 2683 2684 2685
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2686 2687
void mark_free_pages(struct zone *zone)
{
2688
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2689
	unsigned long flags;
2690
	unsigned int order, t;
2691
	struct page *page;
L
Linus Torvalds 已提交
2692

2693
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2694 2695 2696
		return;

	spin_lock_irqsave(&zone->lock, flags);
2697

2698
	max_zone_pfn = zone_end_pfn(zone);
2699 2700
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2701
			page = pfn_to_page(pfn);
2702

2703 2704 2705 2706 2707
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2708 2709 2710
			if (page_zone(page) != zone)
				continue;

2711 2712
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2713
		}
L
Linus Torvalds 已提交
2714

2715
	for_each_migratetype_order(order, t) {
2716 2717
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2718
			unsigned long i;
L
Linus Torvalds 已提交
2719

2720
			pfn = page_to_pfn(page);
2721 2722 2723 2724 2725
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2726
				swsusp_set_page_free(pfn_to_page(pfn + i));
2727
			}
2728
		}
2729
	}
L
Linus Torvalds 已提交
2730 2731
	spin_unlock_irqrestore(&zone->lock, flags);
}
2732
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2733

2734
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2735
{
2736
	int migratetype;
L
Linus Torvalds 已提交
2737

2738
	if (!free_pcp_prepare(page))
2739
		return false;
2740

2741
	migratetype = get_pfnblock_migratetype(page, pfn);
2742
	set_pcppage_migratetype(page, migratetype);
2743 2744 2745
	return true;
}

2746
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2747 2748 2749 2750 2751 2752
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2753
	__count_vm_event(PGFREE);
2754

2755 2756 2757
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2758
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2759 2760 2761 2762
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2763
		if (unlikely(is_migrate_isolate(migratetype))) {
2764
			free_one_page(zone, page, pfn, 0, migratetype);
2765
			return;
2766 2767 2768 2769
		}
		migratetype = MIGRATE_MOVABLE;
	}

2770
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2771
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2772
	pcp->count++;
N
Nick Piggin 已提交
2773
	if (pcp->count >= pcp->high) {
2774
		unsigned long batch = READ_ONCE(pcp->batch);
2775
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2776
	}
2777
}
2778

2779 2780 2781
/*
 * Free a 0-order page
 */
2782
void free_unref_page(struct page *page)
2783 2784 2785 2786
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2787
	if (!free_unref_page_prepare(page, pfn))
2788 2789 2790
		return;

	local_irq_save(flags);
2791
	free_unref_page_commit(page, pfn);
2792
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2793 2794
}

2795 2796 2797
/*
 * Free a list of 0-order pages
 */
2798
void free_unref_page_list(struct list_head *list)
2799 2800
{
	struct page *page, *next;
2801
	unsigned long flags, pfn;
2802
	int batch_count = 0;
2803 2804 2805 2806

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2807
		if (!free_unref_page_prepare(page, pfn))
2808 2809 2810
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2811

2812
	local_irq_save(flags);
2813
	list_for_each_entry_safe(page, next, list, lru) {
2814 2815 2816
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2817 2818
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2829
	}
2830
	local_irq_restore(flags);
2831 2832
}

N
Nick Piggin 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2845 2846
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2847

2848
	for (i = 1; i < (1 << order); i++)
2849
		set_page_refcounted(page + i);
2850
	split_page_owner(page, order);
N
Nick Piggin 已提交
2851
}
K
K. Y. Srinivasan 已提交
2852
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2853

2854
int __isolate_free_page(struct page *page, unsigned int order)
2855 2856 2857
{
	unsigned long watermark;
	struct zone *zone;
2858
	int mt;
2859 2860 2861 2862

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2863
	mt = get_pageblock_migratetype(page);
2864

2865
	if (!is_migrate_isolate(mt)) {
2866 2867 2868 2869 2870 2871 2872
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2873
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2874 2875
			return 0;

2876
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2877
	}
2878 2879 2880 2881 2882

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2883

2884 2885 2886 2887
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2888 2889
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2890 2891
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2892
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2893
			    && !is_migrate_highatomic(mt))
2894 2895 2896
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2897 2898
	}

2899

2900
	return 1UL << order;
2901 2902
}

2903 2904 2905 2906 2907
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2908
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2909 2910
{
#ifdef CONFIG_NUMA
2911
	enum numa_stat_item local_stat = NUMA_LOCAL;
2912

2913 2914 2915 2916
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2917
	if (z->node != numa_node_id())
2918 2919
		local_stat = NUMA_OTHER;

2920
	if (z->node == preferred_zone->node)
2921
		__inc_numa_state(z, NUMA_HIT);
2922
	else {
2923 2924
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2925
	}
2926
	__inc_numa_state(z, local_stat);
2927 2928 2929
#endif
}

2930 2931
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2932
			struct per_cpu_pages *pcp,
2933 2934 2935 2936 2937 2938 2939 2940
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2941
					migratetype);
2942 2943 2944 2945
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2946
		page = list_first_entry(list, struct page, lru);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2962
	unsigned long flags;
2963

2964
	local_irq_save(flags);
2965 2966
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2967
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2968 2969 2970 2971
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2972
	local_irq_restore(flags);
2973 2974 2975
	return page;
}

L
Linus Torvalds 已提交
2976
/*
2977
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2978
 */
2979
static inline
2980
struct page *rmqueue(struct zone *preferred_zone,
2981
			struct zone *zone, unsigned int order,
2982 2983
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2984 2985
{
	unsigned long flags;
2986
	struct page *page;
L
Linus Torvalds 已提交
2987

2988
	if (likely(order == 0)) {
2989 2990 2991 2992
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2993

2994 2995 2996 2997 2998 2999
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3000

3001 3002 3003 3004 3005 3006 3007
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3008
		if (!page)
3009 3010 3011 3012 3013 3014 3015
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3016

3017
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3018
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3019
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3020

3021 3022
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3023
	return page;
N
Nick Piggin 已提交
3024 3025 3026 3027

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3028 3029
}

3030 3031
#ifdef CONFIG_FAIL_PAGE_ALLOC

3032
static struct {
3033 3034
	struct fault_attr attr;

3035
	bool ignore_gfp_highmem;
3036
	bool ignore_gfp_reclaim;
3037
	u32 min_order;
3038 3039
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3040
	.ignore_gfp_reclaim = true,
3041
	.ignore_gfp_highmem = true,
3042
	.min_order = 1,
3043 3044 3045 3046 3047 3048 3049 3050
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3051
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3052
{
3053
	if (order < fail_page_alloc.min_order)
3054
		return false;
3055
	if (gfp_mask & __GFP_NOFAIL)
3056
		return false;
3057
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3058
		return false;
3059 3060
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3061
		return false;
3062 3063 3064 3065 3066 3067 3068 3069

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
3070
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3071 3072
	struct dentry *dir;

3073 3074 3075 3076
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3077

3078
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3079
				&fail_page_alloc.ignore_gfp_reclaim))
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3090
	debugfs_remove_recursive(dir);
3091

3092
	return -ENOMEM;
3093 3094 3095 3096 3097 3098 3099 3100
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3101
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3102
{
3103
	return false;
3104 3105 3106 3107
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3108
/*
3109 3110 3111 3112
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3113
 */
3114 3115 3116
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3117
{
3118
	long min = mark;
L
Linus Torvalds 已提交
3119
	int o;
3120
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3121

3122
	/* free_pages may go negative - that's OK */
3123
	free_pages -= (1 << order) - 1;
3124

R
Rohit Seth 已提交
3125
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3126
		min -= min / 2;
3127 3128 3129 3130 3131 3132

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3133
	if (likely(!alloc_harder)) {
3134
		free_pages -= z->nr_reserved_highatomic;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3148

3149 3150 3151
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
3152
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3153
#endif
3154

3155 3156 3157 3158 3159 3160
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3161
		return false;
L
Linus Torvalds 已提交
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
3186 3187 3188
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3189
	}
3190
	return false;
3191 3192
}

3193
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3194
		      int classzone_idx, unsigned int alloc_flags)
3195 3196 3197 3198 3199
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3226
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3227
			unsigned long mark, int classzone_idx)
3228 3229 3230 3231 3232 3233
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3234
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3235
								free_pages);
L
Linus Torvalds 已提交
3236 3237
}

3238
#ifdef CONFIG_NUMA
3239 3240
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3241
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3242
				RECLAIM_DISTANCE;
3243
}
3244
#else	/* CONFIG_NUMA */
3245 3246 3247 3248
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3249 3250
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3251
/*
3252
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3253 3254 3255
 * a page.
 */
static struct page *
3256 3257
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3258
{
3259
	struct zoneref *z = ac->preferred_zoneref;
3260
	struct zone *zone;
3261 3262
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3263
	/*
3264
	 * Scan zonelist, looking for a zone with enough free.
3265
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3266
	 */
3267
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3268
								ac->nodemask) {
3269
		struct page *page;
3270 3271
		unsigned long mark;

3272 3273
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3274
			!__cpuset_zone_allowed(zone, gfp_mask))
3275
				continue;
3276 3277
		/*
		 * When allocating a page cache page for writing, we
3278 3279
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3280
		 * proportional share of globally allowed dirty pages.
3281
		 * The dirty limits take into account the node's
3282 3283 3284 3285 3286
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3287
		 * exceed the per-node dirty limit in the slowpath
3288
		 * (spread_dirty_pages unset) before going into reclaim,
3289
		 * which is important when on a NUMA setup the allowed
3290
		 * nodes are together not big enough to reach the
3291
		 * global limit.  The proper fix for these situations
3292
		 * will require awareness of nodes in the
3293 3294
		 * dirty-throttling and the flusher threads.
		 */
3295 3296 3297 3298 3299 3300 3301 3302 3303
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3304

3305
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3306
		if (!zone_watermark_fast(zone, order, mark,
3307
				       ac_classzone_idx(ac), alloc_flags)) {
3308 3309
			int ret;

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3320 3321 3322 3323 3324
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3325
			if (node_reclaim_mode == 0 ||
3326
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3327 3328
				continue;

3329
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3330
			switch (ret) {
3331
			case NODE_RECLAIM_NOSCAN:
3332
				/* did not scan */
3333
				continue;
3334
			case NODE_RECLAIM_FULL:
3335
				/* scanned but unreclaimable */
3336
				continue;
3337 3338
			default:
				/* did we reclaim enough */
3339
				if (zone_watermark_ok(zone, order, mark,
3340
						ac_classzone_idx(ac), alloc_flags))
3341 3342 3343
					goto try_this_zone;

				continue;
3344
			}
R
Rohit Seth 已提交
3345 3346
		}

3347
try_this_zone:
3348
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3349
				gfp_mask, alloc_flags, ac->migratetype);
3350
		if (page) {
3351
			prep_new_page(page, order, gfp_mask, alloc_flags);
3352 3353 3354 3355 3356 3357 3358 3359

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3360
			return page;
3361 3362 3363 3364 3365 3366 3367 3368
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3369
		}
3370
	}
3371

3372
	return NULL;
M
Martin Hicks 已提交
3373 3374
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3389
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3390 3391
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3392
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3393

3394
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3395 3396 3397 3398 3399 3400 3401 3402
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3403
		if (tsk_is_oom_victim(current) ||
3404 3405
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3406
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3407 3408
		filter &= ~SHOW_MEM_FILTER_NODES;

3409
	show_mem(filter, nodemask);
3410 3411
}

3412
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3413 3414 3415 3416 3417 3418
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3419
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3420 3421
		return;

3422 3423 3424
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3425 3426 3427
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3428
	va_end(args);
J
Joe Perches 已提交
3429

3430
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3431

3432
	dump_stack();
3433
	warn_alloc_show_mem(gfp_mask, nodemask);
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3456 3457
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3458
	const struct alloc_context *ac, unsigned long *did_some_progress)
3459
{
3460 3461 3462
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3463
		.memcg = NULL,
3464 3465 3466
		.gfp_mask = gfp_mask,
		.order = order,
	};
3467 3468
	struct page *page;

3469 3470 3471
	*did_some_progress = 0;

	/*
3472 3473
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3474
	 */
3475
	if (!mutex_trylock(&oom_lock)) {
3476
		*did_some_progress = 1;
3477
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3478 3479
		return NULL;
	}
3480

3481 3482 3483
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3484 3485 3486
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3487
	 */
3488 3489 3490
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3491
	if (page)
3492 3493
		goto out;

3494 3495 3496 3497 3498 3499
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3500 3501 3502 3503 3504 3505 3506 3507
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3526

3527
	/* Exhausted what can be done so it's blame time */
3528
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3529
		*did_some_progress = 1;
3530

3531 3532 3533 3534 3535 3536
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3537 3538
					ALLOC_NO_WATERMARKS, ac);
	}
3539
out:
3540
	mutex_unlock(&oom_lock);
3541 3542 3543
	return page;
}

3544 3545 3546 3547 3548 3549
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3550 3551 3552 3553
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3554
		unsigned int alloc_flags, const struct alloc_context *ac,
3555
		enum compact_priority prio, enum compact_result *compact_result)
3556
{
3557
	struct page *page;
3558
	unsigned int noreclaim_flag;
3559 3560

	if (!order)
3561 3562
		return NULL;

3563
	noreclaim_flag = memalloc_noreclaim_save();
3564
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3565
									prio);
3566
	memalloc_noreclaim_restore(noreclaim_flag);
3567

3568
	if (*compact_result <= COMPACT_INACTIVE)
3569
		return NULL;
3570

3571 3572 3573 3574 3575
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3576

3577
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3578

3579 3580
	if (page) {
		struct zone *zone = page_zone(page);
3581

3582 3583 3584 3585 3586
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3587

3588 3589 3590 3591 3592
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3593

3594
	cond_resched();
3595 3596 3597

	return NULL;
}
3598

3599 3600 3601 3602
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3603
		     int *compaction_retries)
3604 3605
{
	int max_retries = MAX_COMPACT_RETRIES;
3606
	int min_priority;
3607 3608 3609
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3610 3611 3612 3613

	if (!order)
		return false;

3614 3615 3616
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3617 3618 3619 3620 3621
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3622 3623
	if (compaction_failed(compact_result))
		goto check_priority;
3624 3625 3626 3627 3628 3629 3630

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3631 3632 3633 3634
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3635 3636

	/*
3637
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3638 3639 3640 3641 3642 3643 3644 3645
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3646 3647 3648 3649
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3650

3651 3652 3653 3654 3655
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3656 3657
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3658

3659
	if (*compact_priority > min_priority) {
3660 3661
		(*compact_priority)--;
		*compaction_retries = 0;
3662
		ret = true;
3663
	}
3664 3665 3666
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3667
}
3668 3669 3670
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671
		unsigned int alloc_flags, const struct alloc_context *ac,
3672
		enum compact_priority prio, enum compact_result *compact_result)
3673
{
3674
	*compact_result = COMPACT_SKIPPED;
3675 3676
	return NULL;
}
3677 3678

static inline bool
3679 3680
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3681
		     enum compact_priority *compact_priority,
3682
		     int *compaction_retries)
3683
{
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3702 3703
	return false;
}
3704
#endif /* CONFIG_COMPACTION */
3705

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3719
	if (current->flags & PF_MEMALLOC)
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3747 3748
/* Perform direct synchronous page reclaim */
static int
3749 3750
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3751 3752
{
	struct reclaim_state reclaim_state;
3753
	int progress;
3754
	unsigned int noreclaim_flag;
3755 3756 3757 3758 3759

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3760
	noreclaim_flag = memalloc_noreclaim_save();
3761
	fs_reclaim_acquire(gfp_mask);
3762
	reclaim_state.reclaimed_slab = 0;
3763
	current->reclaim_state = &reclaim_state;
3764

3765 3766
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3767

3768
	current->reclaim_state = NULL;
3769
	fs_reclaim_release(gfp_mask);
3770
	memalloc_noreclaim_restore(noreclaim_flag);
3771 3772 3773

	cond_resched();

3774 3775 3776 3777 3778 3779
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3780
		unsigned int alloc_flags, const struct alloc_context *ac,
3781
		unsigned long *did_some_progress)
3782 3783 3784 3785
{
	struct page *page = NULL;
	bool drained = false;

3786
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3787 3788
	if (unlikely(!(*did_some_progress)))
		return NULL;
3789

3790
retry:
3791
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3792 3793 3794

	/*
	 * If an allocation failed after direct reclaim, it could be because
3795 3796
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3797 3798
	 */
	if (!page && !drained) {
3799
		unreserve_highatomic_pageblock(ac, false);
3800
		drain_all_pages(NULL);
3801 3802 3803 3804
		drained = true;
		goto retry;
	}

3805 3806 3807
	return page;
}

3808
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3809 3810 3811
{
	struct zoneref *z;
	struct zone *zone;
3812
	pg_data_t *last_pgdat = NULL;
3813

3814
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3815 3816
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3817
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3818 3819
		last_pgdat = zone->zone_pgdat;
	}
3820 3821
}

3822
static inline unsigned int
3823 3824
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3825
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3826

3827
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3828
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3829

3830 3831 3832 3833
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3834
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3835
	 */
3836
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3837

3838
	if (gfp_mask & __GFP_ATOMIC) {
3839
		/*
3840 3841
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3842
		 */
3843
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3844
			alloc_flags |= ALLOC_HARDER;
3845
		/*
3846
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3847
		 * comment for __cpuset_node_allowed().
3848
		 */
3849
		alloc_flags &= ~ALLOC_CPUSET;
3850
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3851 3852
		alloc_flags |= ALLOC_HARDER;

3853
#ifdef CONFIG_CMA
3854
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3855 3856
		alloc_flags |= ALLOC_CMA;
#endif
3857 3858 3859
	return alloc_flags;
}

3860
static bool oom_reserves_allowed(struct task_struct *tsk)
3861
{
3862 3863 3864 3865 3866 3867 3868 3869
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3870 3871
		return false;

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3883
	if (gfp_mask & __GFP_MEMALLOC)
3884
		return ALLOC_NO_WATERMARKS;
3885
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3886 3887 3888 3889 3890 3891 3892
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3893

3894 3895 3896 3897 3898 3899
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3900 3901
}

M
Michal Hocko 已提交
3902 3903 3904
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3905 3906 3907 3908
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3909 3910 3911 3912 3913 3914
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3915
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3916 3917 3918 3919
{
	struct zone *zone;
	struct zoneref *z;

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3930 3931 3932 3933
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3934 3935
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3936
		return unreserve_highatomic_pageblock(ac, true);
3937
	}
M
Michal Hocko 已提交
3938

3939 3940 3941 3942 3943
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3944 3945 3946 3947
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3948
		unsigned long reclaimable;
3949 3950
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3951

3952 3953
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3954 3955

		/*
3956 3957
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3958
		 */
3959 3960 3961 3962 3963
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3964 3965 3966 3967 3968 3969 3970
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3971
				unsigned long write_pending;
3972

3973 3974
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3975

3976
				if (2 * write_pending > reclaimable) {
3977 3978 3979 3980
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3981

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3996 3997 3998 3999 4000 4001 4002
			return true;
		}
	}

	return false;
}

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4036 4037
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4038
						struct alloc_context *ac)
4039
{
4040
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4041
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4042
	struct page *page = NULL;
4043
	unsigned int alloc_flags;
4044
	unsigned long did_some_progress;
4045
	enum compact_priority compact_priority;
4046
	enum compact_result compact_result;
4047 4048 4049
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4050
	int reserve_flags;
L
Linus Torvalds 已提交
4051

4052 4053 4054 4055 4056 4057
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4058 4059
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4060
		return NULL;
4061
	}
L
Linus Torvalds 已提交
4062

4063 4064 4065 4066 4067 4068 4069 4070
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4071 4072 4073 4074 4075
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4076 4077 4078 4079 4080 4081 4082 4083

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4106 4107
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4108 4109 4110 4111 4112 4113
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114
	 */
4115 4116 4117 4118
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4119 4120
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4121
						INIT_COMPACT_PRIORITY,
4122 4123 4124 4125
						&compact_result);
		if (page)
			goto got_pg;

4126 4127 4128 4129
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4130
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4143 4144
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4145
			 * using async compaction.
4146
			 */
4147
			compact_priority = INIT_COMPACT_PRIORITY;
4148 4149
		}
	}
4150

4151
retry:
4152
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4153 4154 4155
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

4156 4157 4158
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4159

4160 4161 4162 4163 4164
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4165
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4166 4167 4168 4169 4170
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4171
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4172
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4173 4174
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4175

4176
	/* Caller is not willing to reclaim, we can't balance anything */
4177
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4178 4179
		goto nopage;

4180 4181
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4182 4183
		goto nopage;

4184 4185 4186 4187 4188 4189 4190
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4191
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4192
					compact_priority, &compact_result);
4193 4194
	if (page)
		goto got_pg;
4195

4196 4197
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4198
		goto nopage;
4199

M
Michal Hocko 已提交
4200 4201
	/*
	 * Do not retry costly high order allocations unless they are
4202
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4203
	 */
4204
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4205
		goto nopage;
M
Michal Hocko 已提交
4206 4207

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4208
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4209 4210
		goto retry;

4211 4212 4213 4214 4215 4216 4217
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4218
			should_compact_retry(ac, order, alloc_flags,
4219
				compact_result, &compact_priority,
4220
				&compaction_retries))
4221 4222
		goto retry;

4223 4224 4225

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4226 4227
		goto retry_cpuset;

4228 4229 4230 4231 4232
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4233
	/* Avoid allocations with no watermarks from looping endlessly */
4234 4235
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4236
	     (gfp_mask & __GFP_NOMEMALLOC)))
4237 4238
		goto nopage;

4239
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4240 4241
	if (did_some_progress) {
		no_progress_loops = 0;
4242
		goto retry;
M
Michal Hocko 已提交
4243
	}
4244

L
Linus Torvalds 已提交
4245
nopage:
4246 4247
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4248 4249
		goto retry_cpuset;

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4287 4288 4289 4290
		cond_resched();
		goto retry;
	}
fail:
4291
	warn_alloc(gfp_mask, ac->nodemask,
4292
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4293
got_pg:
4294
	return page;
L
Linus Torvalds 已提交
4295
}
4296

4297
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4298
		int preferred_nid, nodemask_t *nodemask,
4299 4300
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4301
{
4302
	ac->high_zoneidx = gfp_zone(gfp_mask);
4303
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4304 4305
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4306

4307
	if (cpusets_enabled()) {
4308 4309 4310
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4311 4312
		else
			*alloc_flags |= ALLOC_CPUSET;
4313 4314
	}

4315 4316
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4317

4318
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4319 4320

	if (should_fail_alloc_page(gfp_mask, order))
4321
		return false;
4322

4323 4324 4325 4326 4327
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4328

4329 4330 4331 4332
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4333
	/* Dirty zone balancing only done in the fast path */
4334
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4335

4336 4337 4338 4339 4340
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4341 4342 4343 4344 4345 4346 4347 4348
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4349 4350
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4351 4352 4353
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4354
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4355 4356 4357
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4358
	alloc_mask = gfp_mask;
4359
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4360 4361 4362
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4363

4364
	/* First allocation attempt */
4365
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4366 4367
	if (likely(page))
		goto out;
4368

4369
	/*
4370 4371 4372 4373
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4374
	 */
4375
	alloc_mask = current_gfp_context(gfp_mask);
4376
	ac.spread_dirty_pages = false;
4377

4378 4379 4380 4381
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4382
	if (unlikely(ac.nodemask != nodemask))
4383
		ac.nodemask = nodemask;
4384

4385
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4386

4387
out:
4388 4389 4390 4391
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4392 4393
	}

4394 4395
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4396
	return page;
L
Linus Torvalds 已提交
4397
}
4398
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4399 4400 4401 4402

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4403
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4404
{
4405 4406 4407
	struct page *page;

	/*
4408
	 * __get_free_pages() returns a virtual address, which cannot represent
4409 4410 4411 4412
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4420
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4421
{
4422
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4423 4424 4425
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4426
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4427
{
N
Nick Piggin 已提交
4428
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4429
		if (order == 0)
4430
			free_unref_page(page);
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4438
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4439 4440
{
	if (addr != 0) {
N
Nick Piggin 已提交
4441
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4459 4460
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4480
void __page_frag_cache_drain(struct page *page, unsigned int count)
4481 4482 4483 4484
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4485 4486
		unsigned int order = compound_order(page);

4487
		if (order == 0)
4488
			free_unref_page(page);
4489 4490 4491 4492
		else
			__free_pages_ok(page, order);
	}
}
4493
EXPORT_SYMBOL(__page_frag_cache_drain);
4494

4495 4496
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4497 4498 4499 4500 4501 4502 4503
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4504
		page = __page_frag_cache_refill(nc, gfp_mask);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4515
		page_ref_add(page, size - 1);
4516 4517

		/* reset page count bias and offset to start of new frag */
4518
		nc->pfmemalloc = page_is_pfmemalloc(page);
4519 4520 4521 4522 4523 4524 4525 4526
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4527
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4528 4529 4530 4531 4532 4533 4534
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4535
		set_page_count(page, size);
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4547
EXPORT_SYMBOL(page_frag_alloc);
4548 4549 4550 4551

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4552
void page_frag_free(void *addr)
4553 4554 4555 4556 4557 4558
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4559
EXPORT_SYMBOL(page_frag_free);
4560

4561 4562
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4596
	return make_alloc_exact(addr, order, size);
4597 4598 4599
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4600 4601 4602
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4603
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4604 4605 4606 4607 4608 4609
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4610
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4611
{
4612
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4613 4614 4615 4616 4617 4618
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4638 4639 4640 4641 4642 4643 4644
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4645 4646
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4647
 */
4648
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4649
{
4650
	struct zoneref *z;
4651 4652
	struct zone *zone;

4653
	/* Just pick one node, since fallback list is circular */
4654
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4655

4656
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4657

4658
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4659
		unsigned long size = zone->managed_pages;
4660
		unsigned long high = high_wmark_pages(zone);
4661 4662
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667
	}

	return sum;
}

4668 4669 4670 4671 4672
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4673
 */
4674
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4675
{
A
Al Viro 已提交
4676
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4677
}
4678
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4679

4680 4681 4682 4683 4684
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4685
 */
4686
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4687
{
M
Mel Gorman 已提交
4688
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4689
}
4690 4691

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4692
{
4693
	if (IS_ENABLED(CONFIG_NUMA))
4694
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4695 4696
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4707
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4708 4709 4710 4711 4712 4713 4714 4715

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4716
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4731 4732 4733
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4734 4735 4736 4737 4738 4739 4740

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4741 4742 4743
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4744
	val->sharedram = global_node_page_state(NR_SHMEM);
4745
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4757 4758
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4759 4760
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4761 4762
	pg_data_t *pgdat = NODE_DATA(nid);

4763 4764 4765
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4766
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4767
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4768
#ifdef CONFIG_HIGHMEM
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4779
#else
4780 4781
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4782
#endif
L
Linus Torvalds 已提交
4783 4784 4785 4786
	val->mem_unit = PAGE_SIZE;
}
#endif

4787
/*
4788 4789
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4790
 */
4791
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4792 4793
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4794
		return false;
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4805 4806
}

L
Linus Torvalds 已提交
4807 4808
#define K(x) ((x) << (PAGE_SHIFT-10))

4809 4810 4811 4812 4813
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4814 4815
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4816 4817 4818
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4819
#ifdef CONFIG_MEMORY_ISOLATION
4820
		[MIGRATE_ISOLATE]	= 'I',
4821
#endif
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4833
	printk(KERN_CONT "(%s) ", tmp);
4834 4835
}

L
Linus Torvalds 已提交
4836 4837 4838 4839
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4840 4841 4842 4843
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4844
 */
4845
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4846
{
4847
	unsigned long free_pcp = 0;
4848
	int cpu;
L
Linus Torvalds 已提交
4849
	struct zone *zone;
M
Mel Gorman 已提交
4850
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4851

4852
	for_each_populated_zone(zone) {
4853
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4854
			continue;
4855

4856 4857
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4858 4859
	}

K
KOSAKI Motohiro 已提交
4860 4861
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4862 4863
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4864
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4865
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4866 4867 4868 4869 4870 4871 4872
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4873 4874 4875
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4876 4877
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4878
		global_node_page_state(NR_FILE_MAPPED),
4879
		global_node_page_state(NR_SHMEM),
4880 4881 4882
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4883
		free_pcp,
4884
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4885

M
Mel Gorman 已提交
4886
	for_each_online_pgdat(pgdat) {
4887
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4888 4889
			continue;

M
Mel Gorman 已提交
4890 4891 4892 4893 4894 4895 4896 4897
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4898
			" mapped:%lukB"
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4919
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4920 4921
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4922
			K(node_page_state(pgdat, NR_SHMEM)),
4923 4924 4925 4926 4927 4928 4929 4930
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4931 4932
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4933 4934
	}

4935
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4936 4937
		int i;

4938
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4939
			continue;
4940 4941 4942 4943 4944

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4945
		show_node(zone);
4946 4947
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4948 4949 4950 4951
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4952 4953 4954 4955 4956
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4957
			" writepending:%lukB"
L
Linus Torvalds 已提交
4958
			" present:%lukB"
4959
			" managed:%lukB"
4960
			" mlocked:%lukB"
4961
			" kernel_stack:%lukB"
4962 4963
			" pagetables:%lukB"
			" bounce:%lukB"
4964 4965
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4966
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4967 4968
			"\n",
			zone->name,
4969
			K(zone_page_state(zone, NR_FREE_PAGES)),
4970 4971 4972
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4973 4974 4975 4976 4977
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4978
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4979
			K(zone->present_pages),
4980
			K(zone->managed_pages),
4981
			K(zone_page_state(zone, NR_MLOCK)),
4982
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4983 4984
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4985 4986
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4987
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4988 4989
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4990 4991
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4992 4993
	}

4994
	for_each_populated_zone(zone) {
4995 4996
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4997
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4998

4999
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5000
			continue;
L
Linus Torvalds 已提交
5001
		show_node(zone);
5002
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5003 5004 5005

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5006 5007 5008 5009
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5010
			total += nr[order] << order;
5011 5012 5013 5014 5015 5016

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5017 5018
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5019
		for (order = 0; order < MAX_ORDER; order++) {
5020 5021
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5022 5023 5024
			if (nr[order])
				show_migration_types(types[order]);
		}
5025
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5026 5027
	}

5028 5029
	hugetlb_show_meminfo();

5030
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5031

L
Linus Torvalds 已提交
5032 5033 5034
	show_swap_cache_info();
}

5035 5036 5037 5038 5039 5040
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5041 5042
/*
 * Builds allocation fallback zone lists.
5043 5044
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5045
 */
5046
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5047
{
5048
	struct zone *zone;
5049
	enum zone_type zone_type = MAX_NR_ZONES;
5050
	int nr_zones = 0;
5051 5052

	do {
5053
		zone_type--;
5054
		zone = pgdat->node_zones + zone_type;
5055
		if (managed_zone(zone)) {
5056
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5057
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5058
		}
5059
	} while (zone_type);
5060

5061
	return nr_zones;
L
Linus Torvalds 已提交
5062 5063 5064
}

#ifdef CONFIG_NUMA
5065 5066 5067

static int __parse_numa_zonelist_order(char *s)
{
5068 5069 5070 5071 5072 5073 5074 5075
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5076 5077 5078 5079 5080 5081 5082
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5083 5084 5085
	if (!s)
		return 0;

5086
	return __parse_numa_zonelist_order(s);
5087 5088 5089
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5090 5091
char numa_zonelist_order[] = "Node";

5092 5093 5094
/*
 * sysctl handler for numa_zonelist_order
 */
5095
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5096
		void __user *buffer, size_t *length,
5097 5098
		loff_t *ppos)
{
5099
	char *str;
5100 5101
	int ret;

5102 5103 5104 5105 5106
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5107

5108 5109
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5110
	return ret;
5111 5112 5113
}


5114
#define MAX_NODE_LOAD (nr_online_nodes)
5115 5116
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5117
/**
5118
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5131
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5132
{
5133
	int n, val;
L
Linus Torvalds 已提交
5134
	int min_val = INT_MAX;
D
David Rientjes 已提交
5135
	int best_node = NUMA_NO_NODE;
5136
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5137

5138 5139 5140 5141 5142
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5143

5144
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150 5151 5152

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5153 5154 5155
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5156
		/* Give preference to headless and unused nodes */
5157 5158
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5177 5178 5179 5180 5181 5182

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5183 5184
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5185
{
5186 5187 5188 5189 5190 5191 5192 5193 5194
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5195

5196 5197 5198 5199 5200
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5201 5202
}

5203 5204 5205 5206 5207
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5208 5209
	struct zoneref *zonerefs;
	int nr_zones;
5210

5211 5212 5213 5214 5215
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5216 5217
}

5218 5219 5220 5221 5222 5223 5224 5225 5226
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5227 5228
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5229
	nodemask_t used_mask;
5230
	int local_node, prev_node;
L
Linus Torvalds 已提交
5231 5232 5233

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5234
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5235 5236
	prev_node = local_node;
	nodes_clear(used_mask);
5237 5238

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5245 5246
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5247 5248
			node_load[node] = load;

5249
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5250 5251 5252
		prev_node = node;
		load--;
	}
5253

5254
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5255
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5256 5257
}

5258 5259 5260 5261 5262 5263 5264 5265 5266
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5267
	struct zoneref *z;
5268

5269
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5270
				   gfp_zone(GFP_KERNEL),
5271 5272
				   NULL);
	return z->zone->node;
5273 5274
}
#endif
5275

5276 5277
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5278 5279
#else	/* CONFIG_NUMA */

5280
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5281
{
5282
	int node, local_node;
5283 5284
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5285 5286 5287

	local_node = pgdat->node_id;

5288 5289 5290
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5291

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5303 5304
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5305
	}
5306 5307 5308
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5309 5310
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5311 5312
	}

5313 5314
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5315 5316 5317 5318
}

#endif	/* CONFIG_NUMA */

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5336
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5337

5338
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5339
{
5340
	int nid;
5341
	int __maybe_unused cpu;
5342
	pg_data_t *self = data;
5343 5344 5345
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5346

5347 5348 5349
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5350

5351 5352 5353 5354
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5355 5356
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5357 5358 5359
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5360

5361 5362
			build_zonelists(pgdat);
		}
5363

5364 5365 5366 5367 5368 5369 5370 5371 5372
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5373
		for_each_online_cpu(cpu)
5374
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5375
#endif
5376
	}
5377 5378

	spin_unlock(&lock);
5379 5380
}

5381 5382 5383
static noinline void __init
build_all_zonelists_init(void)
{
5384 5385
	int cpu;

5386
	__build_all_zonelists(NULL);
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5404 5405 5406 5407
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5408 5409
/*
 * unless system_state == SYSTEM_BOOTING.
5410
 *
5411
 * __ref due to call of __init annotated helper build_all_zonelists_init
5412
 * [protected by SYSTEM_BOOTING].
5413
 */
5414
void __ref build_all_zonelists(pg_data_t *pgdat)
5415 5416
{
	if (system_state == SYSTEM_BOOTING) {
5417
		build_all_zonelists_init();
5418
	} else {
5419
		__build_all_zonelists(pgdat);
5420 5421
		/* cpuset refresh routine should be here */
	}
5422
	vm_total_pages = nr_free_pagecache_pages();
5423 5424 5425 5426 5427 5428 5429
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5430
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5431 5432 5433 5434
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5435
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5436 5437 5438
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5439
#ifdef CONFIG_NUMA
5440
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5441
#endif
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5449
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5450 5451
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5452
{
A
Andy Whitcroft 已提交
5453
	unsigned long end_pfn = start_pfn + size;
5454
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5455
	unsigned long pfn;
5456
	unsigned long nr_initialised = 0;
5457
	struct page *page;
5458 5459 5460
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5461

5462 5463 5464
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5465 5466 5467 5468 5469 5470 5471
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5472
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5473
		/*
5474 5475
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5476
		 */
5477 5478 5479
		if (context != MEMMAP_EARLY)
			goto not_early;

5480
		if (!early_pfn_valid(pfn))
5481 5482 5483 5484 5485
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5486 5487

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5505
			}
D
Dave Hansen 已提交
5506
		}
5507
#endif
5508

5509
not_early:
5510 5511 5512 5513 5514
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5515 5516 5517 5518 5519
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5520
		 * kernel allocations are made.
5521 5522 5523 5524 5525
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5526 5527 5528
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5529 5530 5531
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5532
			cond_resched();
5533
		}
L
Linus Torvalds 已提交
5534 5535 5536
	}
}

5537
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5538
{
5539
	unsigned int order, t;
5540 5541
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5548
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5549 5550
#endif

5551
static int zone_batchsize(struct zone *zone)
5552
{
5553
#ifdef CONFIG_MMU
5554 5555 5556 5557
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5558
	 * size of the zone.  But no more than 1/2 of a meg.
5559 5560 5561
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5562
	batch = zone->managed_pages / 1024;
5563 5564
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5565 5566 5567 5568 5569
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5570 5571 5572
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5573
	 *
5574 5575 5576 5577
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5578
	 */
5579
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5580

5581
	return batch;
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5599 5600
}

5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5628
/* a companion to pageset_set_high() */
5629 5630
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5631
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5632 5633
}

5634
static void pageset_init(struct per_cpu_pageset *p)
5635 5636
{
	struct per_cpu_pages *pcp;
5637
	int migratetype;
5638

5639 5640
	memset(p, 0, sizeof(*p));

5641
	pcp = &p->pcp;
5642
	pcp->count = 0;
5643 5644
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5645 5646
}

5647 5648 5649 5650 5651 5652
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5653
/*
5654
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5655 5656
 * to the value high for the pageset p.
 */
5657
static void pageset_set_high(struct per_cpu_pageset *p,
5658 5659
				unsigned long high)
{
5660 5661 5662
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5663

5664
	pageset_update(&p->pcp, high, batch);
5665 5666
}

5667 5668
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5669 5670
{
	if (percpu_pagelist_fraction)
5671
		pageset_set_high(pcp,
5672 5673 5674 5675 5676 5677
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5678 5679 5680 5681 5682 5683 5684 5685
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5686
void __meminit setup_zone_pageset(struct zone *zone)
5687 5688 5689
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5690 5691
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5692 5693
}

5694
/*
5695 5696
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5697
 */
5698
void __init setup_per_cpu_pageset(void)
5699
{
5700
	struct pglist_data *pgdat;
5701
	struct zone *zone;
5702

5703 5704
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5705 5706 5707 5708

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5709 5710
}

5711
static __meminit void zone_pcp_init(struct zone *zone)
5712
{
5713 5714 5715 5716 5717 5718
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5719

5720
	if (populated_zone(zone))
5721 5722 5723
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5724 5725
}

5726
void __meminit init_currently_empty_zone(struct zone *zone,
5727
					unsigned long zone_start_pfn,
5728
					unsigned long size)
5729 5730
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5731

5732 5733 5734 5735
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5736 5737 5738 5739 5740 5741
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5742
	zone_init_free_lists(zone);
5743
	zone->initialized = 1;
5744 5745
}

T
Tejun Heo 已提交
5746
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5747
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5748

5749 5750 5751
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5752 5753
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5754
{
5755
	unsigned long start_pfn, end_pfn;
5756
	int nid;
5757

5758 5759
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5760

5761 5762
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5763 5764 5765
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5766 5767 5768
	}

	return nid;
5769 5770 5771 5772
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5773
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5774
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5775
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5776
 *
5777 5778 5779
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5780
 */
5781
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5782
{
5783 5784
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5785

5786 5787 5788
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5789

5790
		if (start_pfn < end_pfn)
5791 5792 5793
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5794 5795 5796
	}
}

5797 5798
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5799
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5800
 *
5801 5802
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5803 5804 5805
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5806 5807
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5808

5809 5810
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5811 5812 5813 5814
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5815 5816 5817
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5818 5819
 *
 * It returns the start and end page frame of a node based on information
5820
 * provided by memblock_set_node(). If called for a node
5821
 * with no available memory, a warning is printed and the start and end
5822
 * PFNs will be 0.
5823
 */
5824
void __meminit get_pfn_range_for_nid(unsigned int nid,
5825 5826
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5827
	unsigned long this_start_pfn, this_end_pfn;
5828
	int i;
5829

5830 5831 5832
	*start_pfn = -1UL;
	*end_pfn = 0;

5833 5834 5835
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5836 5837
	}

5838
	if (*start_pfn == -1UL)
5839 5840 5841
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5842 5843 5844 5845 5846
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5847
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5865
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5866 5867 5868 5869 5870 5871 5872
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5873
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5888 5889 5890 5891 5892 5893
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5894 5895 5896 5897 5898 5899
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5900 5901 5902 5903
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5904
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5905
					unsigned long zone_type,
5906 5907
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5908 5909
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5910 5911
					unsigned long *ignored)
{
5912
	/* When hotadd a new node from cpu_up(), the node should be empty */
5913 5914 5915
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5916
	/* Get the start and end of the zone */
5917 5918
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5919 5920
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5921
				zone_start_pfn, zone_end_pfn);
5922 5923

	/* Check that this node has pages within the zone's required range */
5924
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5925 5926 5927
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5928 5929
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5930 5931

	/* Return the spanned pages */
5932
	return *zone_end_pfn - *zone_start_pfn;
5933 5934 5935 5936
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5937
 * then all holes in the requested range will be accounted for.
5938
 */
5939
unsigned long __meminit __absent_pages_in_range(int nid,
5940 5941 5942
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5943 5944 5945
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5946

5947 5948 5949 5950
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5951
	}
5952
	return nr_absent;
5953 5954 5955 5956 5957 5958 5959
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5960
 * It returns the number of pages frames in memory holes within a range.
5961 5962 5963 5964 5965 5966 5967 5968
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5969
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5970
					unsigned long zone_type,
5971 5972
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5973 5974
					unsigned long *ignored)
{
5975 5976
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5977
	unsigned long zone_start_pfn, zone_end_pfn;
5978
	unsigned long nr_absent;
5979

5980
	/* When hotadd a new node from cpu_up(), the node should be empty */
5981 5982 5983
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5984 5985
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5986

M
Mel Gorman 已提交
5987 5988 5989
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5990 5991 5992 5993 5994 5995 5996
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6014 6015 6016 6017
		}
	}

	return nr_absent;
6018
}
6019

T
Tejun Heo 已提交
6020
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6021
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6022
					unsigned long zone_type,
6023 6024
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6025 6026
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6027 6028
					unsigned long *zones_size)
{
6029 6030 6031 6032 6033 6034 6035 6036
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6037 6038 6039
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6040
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6041
						unsigned long zone_type,
6042 6043
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6044 6045 6046 6047 6048 6049 6050
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6051

T
Tejun Heo 已提交
6052
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6053

6054
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6055 6056 6057 6058
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6059
{
6060
	unsigned long realtotalpages = 0, totalpages = 0;
6061 6062
	enum zone_type i;

6063 6064
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6065
		unsigned long zone_start_pfn, zone_end_pfn;
6066
		unsigned long size, real_size;
6067

6068 6069 6070
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6071 6072
						  &zone_start_pfn,
						  &zone_end_pfn,
6073 6074
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6075 6076
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6077 6078 6079 6080
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6081 6082 6083 6084 6085 6086 6087 6088
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6089 6090 6091 6092 6093
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6094 6095 6096
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6097 6098
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6099 6100 6101
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6102
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6103 6104 6105
{
	unsigned long usemapsize;

6106
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6107 6108
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6109 6110 6111 6112 6113 6114 6115
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
6116 6117 6118
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6119
{
6120
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6121
	zone->pageblock_flags = NULL;
6122
	if (usemapsize)
6123 6124 6125
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6126 6127
}
#else
6128 6129
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6130 6131
#endif /* CONFIG_SPARSEMEM */

6132
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6133

6134
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6135
void __paginginit set_pageblock_order(void)
6136
{
6137 6138
	unsigned int order;

6139 6140 6141 6142
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6143 6144 6145 6146 6147
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6148 6149
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6150 6151
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6152 6153 6154 6155 6156
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6157 6158
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6159 6160 6161
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6162
 */
6163
void __paginginit set_pageblock_order(void)
6164 6165
{
}
6166 6167 6168

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6179
	 * populated regions may not be naturally aligned on page boundary.
6180 6181 6182 6183 6184 6185 6186 6187 6188
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6189 6190 6191 6192 6193
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6194 6195
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6196
 */
6197
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6198
{
6199
	enum zone_type j;
6200
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6201

6202
	pgdat_resize_init(pgdat);
6203 6204 6205 6206
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6207 6208 6209 6210 6211
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6212
#endif
L
Linus Torvalds 已提交
6213
	init_waitqueue_head(&pgdat->kswapd_wait);
6214
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6215 6216 6217
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6218
	pgdat_page_ext_init(pgdat);
6219
	spin_lock_init(&pgdat->lru_lock);
6220
	lruvec_init(node_lruvec(pgdat));
6221

6222 6223
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6224 6225
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6226
		unsigned long size, realsize, freesize, memmap_pages;
6227
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6228

6229 6230
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6231

6232
		/*
6233
		 * Adjust freesize so that it accounts for how much memory
6234 6235 6236
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6237
		memmap_pages = calc_memmap_size(size, realsize);
6238 6239 6240 6241 6242 6243 6244 6245
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6246
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6247 6248
					zone_names[j], memmap_pages, freesize);
		}
6249

6250
		/* Account for reserved pages */
6251 6252
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6253
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6254
					zone_names[0], dma_reserve);
6255 6256
		}

6257
		if (!is_highmem_idx(j))
6258
			nr_kernel_pages += freesize;
6259 6260 6261
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6262
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6263

6264 6265 6266 6267 6268 6269
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6270
#ifdef CONFIG_NUMA
6271
		zone->node = nid;
6272
#endif
L
Linus Torvalds 已提交
6273
		zone->name = zone_names[j];
6274
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6275
		spin_lock_init(&zone->lock);
6276
		zone_seqlock_init(zone);
6277
		zone_pcp_init(zone);
6278

L
Linus Torvalds 已提交
6279 6280 6281
		if (!size)
			continue;

6282
		set_pageblock_order();
6283
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6284
		init_currently_empty_zone(zone, zone_start_pfn, size);
6285
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6286 6287 6288
	}
}

6289
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6290
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6291
{
6292
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6293 6294
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6295 6296 6297 6298
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6299 6300
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6301 6302
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6303
		unsigned long size, end;
A
Andy Whitcroft 已提交
6304 6305
		struct page *map;

6306 6307 6308 6309 6310
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6311
		end = pgdat_end_pfn(pgdat);
6312 6313
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6314
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6315
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6316
	}
6317 6318 6319
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6320
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6321 6322 6323
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6324
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6325
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6326
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6327
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6328
			mem_map -= offset;
T
Tejun Heo 已提交
6329
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6330
	}
L
Linus Torvalds 已提交
6331 6332
#endif
}
6333 6334 6335
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6336

6337 6338
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6339
{
6340
	pg_data_t *pgdat = NODE_DATA(nid);
6341 6342
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6343

6344
	/* pg_data_t should be reset to zero when it's allocated */
6345
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6346

L
Linus Torvalds 已提交
6347 6348
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6349
	pgdat->per_cpu_nodestats = NULL;
6350 6351
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6352
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6353 6354
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6355 6356
#else
	start_pfn = node_start_pfn;
6357 6358 6359
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6360 6361 6362

	alloc_node_mem_map(pgdat);

6363 6364 6365 6366 6367 6368 6369 6370 6371
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
					 pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
#endif
6372
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6373 6374
}

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6396 6397
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
				continue;
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6415
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6416 6417 6418 6419 6420

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6421
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6422
{
6423
	unsigned int highest;
M
Miklos Szeredi 已提交
6424

6425
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6426 6427 6428 6429
	nr_node_ids = highest + 1;
}
#endif

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6452
	unsigned long start, end, mask;
6453
	int last_nid = -1;
6454
	int i, nid;
6455

6456
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6480
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6481
static unsigned long __init find_min_pfn_for_node(int nid)
6482
{
6483
	unsigned long min_pfn = ULONG_MAX;
6484 6485
	unsigned long start_pfn;
	int i;
6486

6487 6488
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6489

6490
	if (min_pfn == ULONG_MAX) {
6491
		pr_warn("Could not find start_pfn for node %d\n", nid);
6492 6493 6494 6495
		return 0;
	}

	return min_pfn;
6496 6497 6498 6499 6500 6501
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6502
 * memblock_set_node().
6503 6504 6505 6506 6507 6508
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6509 6510 6511
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6512
 * Populate N_MEMORY for calculating usable_nodes.
6513
 */
A
Adrian Bunk 已提交
6514
static unsigned long __init early_calculate_totalpages(void)
6515 6516
{
	unsigned long totalpages = 0;
6517 6518 6519 6520 6521
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6522

6523 6524
		totalpages += pages;
		if (pages)
6525
			node_set_state(nid, N_MEMORY);
6526
	}
6527
	return totalpages;
6528 6529
}

M
Mel Gorman 已提交
6530 6531 6532 6533 6534 6535
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6536
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6537 6538 6539 6540
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6541
	/* save the state before borrow the nodemask */
6542
	nodemask_t saved_node_state = node_states[N_MEMORY];
6543
	unsigned long totalpages = early_calculate_totalpages();
6544
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6545
	struct memblock_region *r;
6546 6547 6548 6549 6550 6551 6552 6553 6554

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6555 6556
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6557 6558
				continue;

E
Emil Medve 已提交
6559
			nid = r->nid;
6560

E
Emil Medve 已提交
6561
			usable_startpfn = PFN_DOWN(r->base);
6562 6563 6564 6565 6566 6567 6568
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6569

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6600
	/*
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6628
		required_movablecore = min(totalpages, required_movablecore);
6629 6630 6631 6632 6633
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6634 6635 6636 6637 6638
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6639
		goto out;
M
Mel Gorman 已提交
6640 6641 6642 6643 6644 6645 6646

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6647
	for_each_node_state(nid, N_MEMORY) {
6648 6649
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6666
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6667 6668
			unsigned long size_pages;

6669
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6712
			 * satisfied
M
Mel Gorman 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6726
	 * satisfied
M
Mel Gorman 已提交
6727 6728 6729 6730 6731
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6732
out2:
M
Mel Gorman 已提交
6733 6734 6735 6736
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6737

6738
out:
6739
	/* restore the node_state */
6740
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6741 6742
}

6743 6744
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6745 6746 6747
{
	enum zone_type zone_type;

6748 6749 6750 6751
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6752
		struct zone *zone = &pgdat->node_zones[zone_type];
6753
		if (populated_zone(zone)) {
6754 6755 6756 6757
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6758 6759
			break;
		}
6760 6761 6762
	}
}

6763 6764
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6765
 * @max_zone_pfn: an array of max PFNs for each zone
6766 6767
 *
 * This will call free_area_init_node() for each active node in the system.
6768
 * Using the page ranges provided by memblock_set_node(), the size of each
6769 6770 6771 6772 6773 6774 6775 6776 6777
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6778 6779
	unsigned long start_pfn, end_pfn;
	int i, nid;
6780

6781 6782 6783 6784 6785
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6786 6787 6788 6789

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6790 6791
		if (i == ZONE_MOVABLE)
			continue;
6792 6793 6794 6795 6796 6797

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6798
	}
M
Mel Gorman 已提交
6799 6800 6801

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6802
	find_zone_movable_pfns_for_nodes();
6803 6804

	/* Print out the zone ranges */
6805
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6806 6807 6808
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6809
		pr_info("  %-8s ", zone_names[i]);
6810 6811
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6812
			pr_cont("empty\n");
6813
		else
6814 6815 6816 6817
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6818
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6819 6820 6821
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6822
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6823 6824
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6825 6826
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6827
	}
6828

6829
	/* Print out the early node map */
6830
	pr_info("Early memory node ranges\n");
6831
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6832 6833 6834
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6835 6836

	/* Initialise every node */
6837
	mminit_verify_pageflags_layout();
6838
	setup_nr_node_ids();
6839 6840
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6841
		free_area_init_node(nid, NULL,
6842
				find_min_pfn_for_node(nid), NULL);
6843 6844 6845

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6846 6847
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6848
	}
6849
	zero_resv_unavail();
6850
}
M
Mel Gorman 已提交
6851

6852 6853
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6854 6855
{
	unsigned long long coremem;
6856 6857
	char *endptr;

M
Mel Gorman 已提交
6858 6859 6860
	if (!p)
		return -EINVAL;

6861 6862 6863 6864 6865
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
6866

6867 6868 6869 6870 6871
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
6872

6873 6874 6875
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
6876 6877
	return 0;
}
M
Mel Gorman 已提交
6878

6879 6880 6881 6882 6883 6884
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6885 6886 6887 6888 6889 6890
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6891 6892
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
6893 6894 6895 6896 6897 6898 6899 6900
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
6901 6902
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
6903 6904
}

M
Mel Gorman 已提交
6905
early_param("kernelcore", cmdline_parse_kernelcore);
6906
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6907

T
Tejun Heo 已提交
6908
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6909

6910 6911 6912 6913 6914
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6915 6916 6917 6918
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6919 6920
	spin_unlock(&managed_page_count_lock);
}
6921
EXPORT_SYMBOL(adjust_managed_page_count);
6922

6923
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6924
{
6925 6926
	void *pos;
	unsigned long pages = 0;
6927

6928 6929 6930
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6931
		if ((unsigned int)poison <= 0xFF)
6932 6933
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6934 6935 6936
	}

	if (pages && s)
6937 6938
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6939 6940 6941

	return pages;
}
6942
EXPORT_SYMBOL(free_reserved_area);
6943

6944 6945 6946 6947 6948
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6949
	page_zone(page)->managed_pages++;
6950 6951 6952 6953
	totalhigh_pages++;
}
#endif

6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6976 6977 6978 6979
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6990
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6991
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6992
		", %luK highmem"
6993
#endif
J
Joe Perches 已提交
6994 6995 6996 6997 6998 6999 7000
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7001
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7002
		totalhigh_pages << (PAGE_SHIFT - 10),
7003
#endif
J
Joe Perches 已提交
7004
		str ? ", " : "", str ? str : "");
7005 7006
}

7007
/**
7008 7009
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7010
 *
7011
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7012 7013
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7014 7015 7016
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7017 7018 7019 7020 7021 7022
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7023 7024
void __init free_area_init(unsigned long *zones_size)
{
7025
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7026
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7027
	zero_resv_unavail();
L
Linus Torvalds 已提交
7028 7029
}

7030
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7031 7032
{

7033 7034
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7035

7036 7037 7038 7039 7040 7041 7042
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7043

7044 7045 7046 7047 7048 7049 7050 7051 7052
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7053 7054 7055 7056
}

void __init page_alloc_init(void)
{
7057 7058 7059 7060 7061 7062
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7063 7064
}

7065
/*
7066
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7067 7068 7069 7070 7071 7072
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7073
	enum zone_type i, j;
7074 7075

	for_each_online_pgdat(pgdat) {
7076 7077 7078

		pgdat->totalreserve_pages = 0;

7079 7080
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7081
			long max = 0;
7082 7083 7084 7085 7086 7087 7088

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7089 7090
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7091

7092 7093
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7094

7095
			pgdat->totalreserve_pages += max;
7096

7097 7098 7099 7100 7101 7102
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7103 7104
/*
 * setup_per_zone_lowmem_reserve - called whenever
7105
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7106 7107 7108 7109 7110 7111
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7112
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7113

7114
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7115 7116
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7117
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7118 7119 7120

			zone->lowmem_reserve[j] = 0;

7121 7122
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7123 7124
				struct zone *lower_zone;

7125 7126
				idx--;

L
Linus Torvalds 已提交
7127 7128 7129 7130
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
7131
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
7132
					sysctl_lowmem_reserve_ratio[idx];
7133
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7134 7135 7136
			}
		}
	}
7137 7138 7139

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7140 7141
}

7142
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7152
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7153 7154 7155
	}

	for_each_zone(zone) {
7156 7157
		u64 tmp;

7158
		spin_lock_irqsave(&zone->lock, flags);
7159
		tmp = (u64)pages_min * zone->managed_pages;
7160
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7161 7162
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7163 7164 7165 7166
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7167
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7168
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7169
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7170
			 */
7171
			unsigned long min_pages;
L
Linus Torvalds 已提交
7172

7173
			min_pages = zone->managed_pages / 1024;
7174
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7175
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7176
		} else {
N
Nick Piggin 已提交
7177 7178
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7179 7180
			 * proportionate to the zone's size.
			 */
7181
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7182 7183
		}

7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7195

7196
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7197
	}
7198 7199 7200

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7201 7202
}

7203 7204 7205 7206 7207 7208 7209 7210 7211
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7212 7213 7214
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7215
	__setup_per_zone_wmarks();
7216
	spin_unlock(&lock);
7217 7218
}

L
Linus Torvalds 已提交
7219 7220 7221 7222 7223 7224 7225
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7226
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7243
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7244 7245
{
	unsigned long lowmem_kbytes;
7246
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7247 7248

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7261
	setup_per_zone_wmarks();
7262
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7263
	setup_per_zone_lowmem_reserve();
7264 7265 7266 7267 7268 7269

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7270 7271
	return 0;
}
7272
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7273 7274

/*
7275
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7276 7277 7278
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7279
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7280
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7281
{
7282 7283 7284 7285 7286 7287
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7288 7289
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7290
		setup_per_zone_wmarks();
7291
	}
L
Linus Torvalds 已提交
7292 7293 7294
	return 0;
}

7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7310
#ifdef CONFIG_NUMA
7311
static void setup_min_unmapped_ratio(void)
7312
{
7313
	pg_data_t *pgdat;
7314 7315
	struct zone *zone;

7316
	for_each_online_pgdat(pgdat)
7317
		pgdat->min_unmapped_pages = 0;
7318

7319
	for_each_zone(zone)
7320
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7321 7322
				sysctl_min_unmapped_ratio) / 100;
}
7323

7324 7325

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7326
	void __user *buffer, size_t *length, loff_t *ppos)
7327 7328 7329
{
	int rc;

7330
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7331 7332 7333
	if (rc)
		return rc;

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7344 7345 7346
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7347
	for_each_zone(zone)
7348
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7349
				sysctl_min_slab_ratio) / 100;
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7363 7364
	return 0;
}
7365 7366
#endif

L
Linus Torvalds 已提交
7367 7368 7369 7370 7371 7372
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7373
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7374 7375
 * if in function of the boot time zone sizes.
 */
7376
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7377
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7378
{
7379
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7380 7381 7382 7383
	setup_per_zone_lowmem_reserve();
	return 0;
}

7384 7385
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7386 7387
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7388
 */
7389
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7390
	void __user *buffer, size_t *length, loff_t *ppos)
7391 7392
{
	struct zone *zone;
7393
	int old_percpu_pagelist_fraction;
7394 7395
	int ret;

7396 7397 7398
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7399
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7414

7415
	for_each_populated_zone(zone) {
7416 7417
		unsigned int cpu;

7418
		for_each_possible_cpu(cpu)
7419 7420
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7421
	}
7422
out:
7423
	mutex_unlock(&pcp_batch_high_lock);
7424
	return ret;
7425 7426
}

7427
#ifdef CONFIG_NUMA
7428
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7479 7480
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7481
{
7482
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7483 7484
	unsigned long log2qty, size;
	void *table = NULL;
7485
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7486 7487 7488 7489

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7490
		numentries = nr_kernel_pages;
7491
		numentries -= arch_reserved_kernel_pages();
7492 7493 7494 7495

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7496

P
Pavel Tatashin 已提交
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7507 7508 7509 7510 7511
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7512 7513

		/* Make sure we've got at least a 0-order allocation.. */
7514 7515 7516 7517 7518 7519 7520 7521
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7522
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7523
	}
7524
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7525 7526 7527 7528 7529 7530

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7531
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7532

7533 7534
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7535 7536 7537
	if (numentries > max)
		numentries = max;

7538
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7539

7540
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7541 7542
	do {
		size = bucketsize << log2qty;
7543 7544 7545 7546 7547 7548
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7549
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7550
		} else {
7551 7552
			/*
			 * If bucketsize is not a power-of-two, we may free
7553 7554
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7555
			 */
7556
			if (get_order(size) < MAX_ORDER) {
7557 7558
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7559
			}
L
Linus Torvalds 已提交
7560 7561 7562 7563 7564 7565
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7566 7567
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7568 7569 7570 7571 7572 7573 7574 7575

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7576

K
KAMEZAWA Hiroyuki 已提交
7577
/*
7578 7579 7580
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7581
 * PageLRU check without isolation or lru_lock could race so that
7582 7583 7584
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7585
 */
7586
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7587
			 int migratetype,
7588
			 bool skip_hwpoisoned_pages)
7589 7590
{
	unsigned long pfn, iter, found;
7591

7592 7593
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7594
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7595 7596
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7597
		return false;
7598

7599 7600 7601 7602 7603 7604 7605 7606 7607
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7608 7609 7610 7611
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7612
		if (!pfn_valid_within(check))
7613
			continue;
7614

7615
		page = pfn_to_page(check);
7616

7617 7618 7619
		if (PageReserved(page))
			return true;

7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7630 7631 7632 7633
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7634
		 * because their page->_refcount is zero at all time.
7635
		 */
7636
		if (!page_ref_count(page)) {
7637 7638 7639 7640
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7641

7642 7643 7644 7645 7646 7647 7648
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7649 7650 7651
		if (__PageMovable(page))
			continue;

7652 7653 7654
		if (!PageLRU(page))
			found++;
		/*
7655 7656 7657
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7668
			return true;
7669
	}
7670
	return false;
7671 7672 7673 7674
}

bool is_pageblock_removable_nolock(struct page *page)
{
7675 7676
	struct zone *zone;
	unsigned long pfn;
7677 7678 7679 7680 7681

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7682 7683
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7684
	 */
7685 7686 7687 7688 7689
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7690
	if (!zone_spans_pfn(zone, pfn))
7691 7692
		return false;

7693
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7694
}
K
KAMEZAWA Hiroyuki 已提交
7695

7696
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7711 7712
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7713 7714
{
	/* This function is based on compact_zone() from compaction.c. */
7715
	unsigned long nr_reclaimed;
7716 7717 7718 7719
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7720
	migrate_prep();
7721

7722
	while (pfn < end || !list_empty(&cc->migratepages)) {
7723 7724 7725 7726 7727
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7728 7729
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7730
			pfn = isolate_migratepages_range(cc, pfn, end);
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7741 7742 7743
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7744

7745
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7746
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7747
	}
7748 7749 7750 7751 7752
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7753 7754 7755 7756 7757 7758
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7759 7760 7761 7762
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7763
 * @gfp_mask:	GFP mask to use during compaction
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7776
int alloc_contig_range(unsigned long start, unsigned long end,
7777
		       unsigned migratetype, gfp_t gfp_mask)
7778 7779
{
	unsigned long outer_start, outer_end;
7780 7781
	unsigned int order;
	int ret = 0;
7782

7783 7784 7785 7786
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7787
		.mode = MIGRATE_SYNC,
7788
		.ignore_skip_hint = true,
7789
		.no_set_skip_hint = true,
7790
		.gfp_mask = current_gfp_context(gfp_mask),
7791 7792 7793
	};
	INIT_LIST_HEAD(&cc.migratepages);

7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7819 7820
				       pfn_max_align_up(end), migratetype,
				       false);
7821
	if (ret)
7822
		return ret;
7823

7824 7825
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7826 7827 7828 7829 7830 7831 7832
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7833
	 */
7834
	ret = __alloc_contig_migrate_range(&cc, start, end);
7835
	if (ret && ret != -EBUSY)
7836
		goto done;
7837
	ret =0;
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7857
	drain_all_pages(cc.zone);
7858 7859 7860 7861 7862

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7863 7864
			outer_start = start;
			break;
7865 7866 7867 7868
		}
		outer_start &= ~0UL << order;
	}

7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7882
	/* Make sure the range is really isolated. */
7883
	if (test_pages_isolated(outer_start, end, false)) {
7884
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7885
			__func__, outer_start, end);
7886 7887 7888 7889
		ret = -EBUSY;
		goto done;
	}

7890
	/* Grab isolated pages from freelists. */
7891
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7905
				pfn_max_align_up(end), migratetype);
7906 7907 7908 7909 7910
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7911 7912 7913 7914 7915 7916 7917 7918 7919
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7920 7921 7922
}
#endif

7923
#ifdef CONFIG_MEMORY_HOTPLUG
7924 7925 7926 7927
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7928 7929
void __meminit zone_pcp_update(struct zone *zone)
{
7930
	unsigned cpu;
7931
	mutex_lock(&pcp_batch_high_lock);
7932
	for_each_possible_cpu(cpu)
7933 7934
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7935
	mutex_unlock(&pcp_batch_high_lock);
7936 7937 7938
}
#endif

7939 7940 7941
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7942 7943
	int cpu;
	struct per_cpu_pageset *pset;
7944 7945 7946 7947

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7948 7949 7950 7951
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7952 7953 7954 7955 7956 7957
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7958
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7959
/*
7960 7961
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7962 7963 7964 7965 7966 7967
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7968
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7969 7970 7971 7972 7973 7974 7975 7976
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7977
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7997 7998 7999 8000
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8001 8002
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8014 8015 8016 8017 8018 8019

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8020
	unsigned int order;
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}