page_alloc.c 224.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
23
#include <linux/memblock.h>
L
Linus Torvalds 已提交
24
#include <linux/compiler.h>
25
#include <linux/kernel.h>
26
#include <linux/kasan.h>
L
Linus Torvalds 已提交
27 28 29 30 31
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
32
#include <linux/ratelimit.h>
33
#include <linux/oom.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
39 40
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
41
#include <linux/vmstat.h>
42
#include <linux/mempolicy.h>
43
#include <linux/memremap.h>
44
#include <linux/stop_machine.h>
45 46
#include <linux/sort.h>
#include <linux/pfn.h>
47
#include <linux/backing-dev.h>
48
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
49
#include <linux/page-isolation.h>
50
#include <linux/page_ext.h>
51
#include <linux/debugobjects.h>
52
#include <linux/kmemleak.h>
53
#include <linux/compaction.h>
54
#include <trace/events/kmem.h>
55
#include <trace/events/oom.h>
56
#include <linux/prefetch.h>
57
#include <linux/mm_inline.h>
58
#include <linux/migrate.h>
59
#include <linux/hugetlb.h>
60
#include <linux/sched/rt.h>
61
#include <linux/sched/mm.h>
62
#include <linux/page_owner.h>
63
#include <linux/kthread.h>
64
#include <linux/memcontrol.h>
65
#include <linux/ftrace.h>
66
#include <linux/lockdep.h>
67
#include <linux/nmi.h>
68
#include <linux/psi.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

86 87 88 89 90 91 92 93 94
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95
int _node_numa_mem_[MAX_NUMNODES];
96 97
#endif

98 99 100 101
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

102
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103
volatile unsigned long latent_entropy __latent_entropy;
104 105 106
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
107
/*
108
 * Array of node states.
L
Linus Torvalds 已提交
109
 */
110 111 112 113 114 115 116
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 118
#endif
	[N_MEMORY] = { { [0] = 1UL } },
119 120 121 122 123
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

124 125 126
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

127
unsigned long totalram_pages __read_mostly;
128
unsigned long totalreserve_pages __read_mostly;
129
unsigned long totalcma_pages __read_mostly;
130

131
int percpu_pagelist_fraction;
132
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

152 153 154 155 156
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
157 158 159 160
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
161
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166
{
167
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175
{
176
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208
#ifdef CONFIG_ZONE_DMA
209
	[ZONE_DMA] = 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	[ZONE_DMA32] = 256,
213
#endif
214
	[ZONE_NORMAL] = 32,
215
#ifdef CONFIG_HIGHMEM
216
	[ZONE_HIGHMEM] = 0,
217
#endif
218
	[ZONE_MOVABLE] = 0,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274 275
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279 280
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308
		return true;

	return false;
}

/*
309
 * Returns true when the remaining initialisation should be deferred until
310 311
 * later in the boot cycle when it can be parallelised.
 */
312 313
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314
{
315 316 317 318 319 320 321 322 323 324 325
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

326
	/* Always populate low zones for address-constrained allocations */
327
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328
		return false;
329 330 331 332 333
	nr_initialised++;
	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
334
	}
335
	return false;
336 337 338 339 340 341 342
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

343
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344
{
345
	return false;
346 347 348
}
#endif

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
449

450
void set_pageblock_migratetype(struct page *page, int migratetype)
451
{
452 453
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
454 455
		migratetype = MIGRATE_UNMOVABLE;

456 457 458 459
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
460
#ifdef CONFIG_DEBUG_VM
461
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
462
{
463 464 465
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
466
	unsigned long sp, start_pfn;
467

468 469
	do {
		seq = zone_span_seqbegin(zone);
470 471
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
472
		if (!zone_spans_pfn(zone, pfn))
473 474 475
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

476
	if (ret)
477 478 479
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
480

481
	return ret;
482 483 484 485
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
486
	if (!pfn_valid_within(page_to_pfn(page)))
487
		return 0;
L
Linus Torvalds 已提交
488
	if (zone != page_zone(page))
489 490 491 492 493 494 495
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
496
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497 498
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
499
		return 1;
500 501 502
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
503 504
	return 0;
}
N
Nick Piggin 已提交
505
#else
506
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
507 508 509 510 511
{
	return 0;
}
#endif

512 513
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
514
{
515 516 517 518 519 520 521 522 523 524 525 526 527 528
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
529
			pr_alert(
530
			      "BUG: Bad page state: %lu messages suppressed\n",
531 532 533 534 535 536 537 538
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

539
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
540
		current->comm, page_to_pfn(page));
541 542 543 544 545
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
546
	dump_page_owner(page);
547

548
	print_modules();
L
Linus Torvalds 已提交
549
	dump_stack();
550
out:
551
	/* Leave bad fields for debug, except PageBuddy could make trouble */
552
	page_mapcount_reset(page); /* remove PageBuddy */
553
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
554 555 556 557 558
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
559
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
560
 *
561 562
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
563
 *
564 565
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
566
 *
567
 * The first tail page's ->compound_order holds the order of allocation.
568
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
569
 */
570

571
void free_compound_page(struct page *page)
572
{
573
	__free_pages_ok(page, compound_order(page));
574 575
}

576
void prep_compound_page(struct page *page, unsigned int order)
577 578 579 580
{
	int i;
	int nr_pages = 1 << order;

581
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 583 584 585
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
586
		set_page_count(p, 0);
587
		p->mapping = TAIL_MAPPING;
588
		set_compound_head(p, page);
589
	}
590
	atomic_set(compound_mapcount_ptr(page), -1);
591 592
}

593 594
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
595 596
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597
EXPORT_SYMBOL(_debug_pagealloc_enabled);
598 599
bool _debug_guardpage_enabled __read_mostly;

600 601 602 603
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
604
	return kstrtobool(buf, &_debug_pagealloc_enabled);
605 606 607
}
early_param("debug_pagealloc", early_debug_pagealloc);

608 609
static bool need_debug_guardpage(void)
{
610 611 612 613
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

614 615 616
	if (!debug_guardpage_minorder())
		return false;

617 618 619 620 621
	return true;
}

static void init_debug_guardpage(void)
{
622 623 624
	if (!debug_pagealloc_enabled())
		return;

625 626 627
	if (!debug_guardpage_minorder())
		return;

628 629 630 631 632 633 634
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
635 636 637 638 639 640

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
641
		pr_err("Bad debug_guardpage_minorder value\n");
642 643 644
		return 0;
	}
	_debug_guardpage_minorder = res;
645
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 647
	return 0;
}
648
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649

650
static inline bool set_page_guard(struct zone *zone, struct page *page,
651
				unsigned int order, int migratetype)
652
{
653 654 655
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
656 657 658 659
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
660 661

	page_ext = lookup_page_ext(page);
662
	if (unlikely(!page_ext))
663
		return false;
664

665 666
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

667 668 669 670
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
671 672

	return true;
673 674
}

675 676
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
677
{
678 679 680 681 682 683
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
684 685 686
	if (unlikely(!page_ext))
		return;

687 688
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

689 690 691
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
692 693
}
#else
694
struct page_ext_operations debug_guardpage_ops;
695 696
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
697 698
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
699 700
#endif

701
static inline void set_page_order(struct page *page, unsigned int order)
702
{
H
Hugh Dickins 已提交
703
	set_page_private(page, order);
704
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
705 706 707 708
}

static inline void rmv_page_order(struct page *page)
{
709
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
710
	set_page_private(page, 0);
L
Linus Torvalds 已提交
711 712 713 714
}

/*
 * This function checks whether a page is free && is the buddy
715
 * we can coalesce a page and its buddy if
716
 * (a) the buddy is not in a hole (check before calling!) &&
717
 * (b) the buddy is in the buddy system &&
718 719
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
720
 *
721 722
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
723
 *
724
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
725
 */
726
static inline int page_is_buddy(struct page *page, struct page *buddy,
727
							unsigned int order)
L
Linus Torvalds 已提交
728
{
729
	if (page_is_guard(buddy) && page_order(buddy) == order) {
730 731 732
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

733 734
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

735 736 737
		return 1;
	}

738
	if (PageBuddy(buddy) && page_order(buddy) == order) {
739 740 741 742 743 744 745 746
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

747 748
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

749
		return 1;
750
	}
751
	return 0;
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
767 768
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
769
 * So when we are allocating or freeing one, we can derive the state of the
770 771
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
772
 * If a block is freed, and its buddy is also free, then this
773
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
774
 *
775
 * -- nyc
L
Linus Torvalds 已提交
776 777
 */

N
Nick Piggin 已提交
778
static inline void __free_one_page(struct page *page,
779
		unsigned long pfn,
780 781
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
782
{
783 784
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
785
	struct page *buddy;
786 787 788
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
789

790
	VM_BUG_ON(!zone_is_initialized(zone));
791
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
792

793
	VM_BUG_ON(migratetype == -1);
794
	if (likely(!is_migrate_isolate(migratetype)))
795
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
796

797
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
799

800
continue_merging:
801
	while (order < max_order - 1) {
802 803
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
804 805 806

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
807
		if (!page_is_buddy(page, buddy, order))
808
			goto done_merging;
809 810 811 812 813
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
814
			clear_page_guard(zone, buddy, order, migratetype);
815 816 817 818 819
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
820 821 822
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
823 824
		order++;
	}
825 826 827 828 829 830 831 832 833 834 835 836
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

837 838
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
839 840 841 842 843 844 845 846 847 848 849 850
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
851
	set_page_order(page, order);
852 853 854 855 856 857 858 859 860

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
861
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862
		struct page *higher_page, *higher_buddy;
863 864 865 866
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 868
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 870 871 872 873 874 875 876
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
877 878 879
	zone->free_area[order].nr_free++;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

902
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
903
{
904 905 906 907 908
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
909

910
	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 912 913
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
914
	if (unlikely(page_ref_count(page) != 0))
915
		bad_reason = "nonzero _refcount";
916 917 918 919
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
920 921 922 923
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
924
	bad_page(page, bad_reason, bad_flags);
925 926 927 928
}

static inline int free_pages_check(struct page *page)
{
929
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 931 932 933
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
934
	return 1;
L
Linus Torvalds 已提交
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
953
		/* the first tail page: ->mapping may be compound_mapcount() */
954 955 956 957 958 959 960 961
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
962
		 * deferred_list.next -- ignore value.
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

987 988
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
989
{
990
	int bad = 0;
991 992 993

	VM_BUG_ON_PAGE(PageTail(page), page);

994 995 996 997 998 999 1000 1001 1002 1003 1004
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005

1006 1007
		if (compound)
			ClearPageDoubleMap(page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1018
	if (PageMappingFlags(page))
1019
		page->mapping = NULL;
1020
	if (memcg_kmem_enabled() && PageKmemcg(page))
1021
		memcg_kmem_uncharge(page, order);
1022 1023 1024 1025
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1026

1027 1028 1029
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1030 1031 1032

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1033
					   PAGE_SIZE << order);
1034
		debug_check_no_obj_freed(page_address(page),
1035
					   PAGE_SIZE << order);
1036
	}
1037 1038 1039
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1040
	kasan_free_pages(page, order);
1041 1042 1043 1044

	return true;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1061 1062 1063 1064 1065 1066
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1067 1068 1069 1070 1071 1072 1073 1074 1075
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1076
/*
1077
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1078
 * Assumes all pages on list are in same zone, and of same order.
1079
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1080 1081 1082 1083 1084 1085 1086
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1087 1088
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1089
{
1090
	int migratetype = 0;
1091
	int batch_free = 0;
1092
	int prefetch_nr = 0;
1093
	bool isolated_pageblocks;
1094 1095
	struct page *page, *tmp;
	LIST_HEAD(head);
1096

1097
	while (count) {
1098 1099 1100
		struct list_head *list;

		/*
1101 1102 1103 1104 1105
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1106 1107
		 */
		do {
1108
			batch_free++;
1109 1110 1111 1112
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1113

1114 1115
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1116
			batch_free = count;
1117

1118
		do {
1119
			page = list_last_entry(list, struct page, lru);
1120
			/* must delete to avoid corrupting pcp list */
1121
			list_del(&page->lru);
1122
			pcp->count--;
1123

1124 1125 1126
			if (bulkfree_pcp_prepare(page))
				continue;

1127
			list_add_tail(&page->lru, &head);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1140
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1141
	}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1161
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1162 1163
}

1164 1165
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1166
				unsigned int order,
1167
				int migratetype)
L
Linus Torvalds 已提交
1168
{
1169
	spin_lock(&zone->lock);
1170 1171 1172 1173
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1174
	__free_one_page(page, pfn, zone, order, migratetype);
1175
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1176 1177
}

1178
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179
				unsigned long zone, int nid)
1180
{
1181
	mm_zero_struct_page(page);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1195
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196
static void __meminit init_reserved_page(unsigned long pfn)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1213
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214 1215 1216 1217 1218 1219 1220
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1221 1222 1223 1224 1225 1226
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1227
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228 1229 1230 1231
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1232 1233 1234 1235 1236
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1237 1238 1239 1240

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1241 1242 1243 1244 1245 1246
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1247 1248
		}
	}
1249 1250
}

1251 1252
static void __free_pages_ok(struct page *page, unsigned int order)
{
1253
	unsigned long flags;
M
Minchan Kim 已提交
1254
	int migratetype;
1255
	unsigned long pfn = page_to_pfn(page);
1256

1257
	if (!free_pages_prepare(page, order, true))
1258 1259
		return;

1260
	migratetype = get_pfnblock_migratetype(page, pfn);
1261 1262
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1263
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1264
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1265 1266
}

1267
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268
{
1269
	unsigned int nr_pages = 1 << order;
1270
	struct page *p = page;
1271
	unsigned int loop;
1272

1273 1274 1275
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1276 1277
		__ClearPageReserved(p);
		set_page_count(p, 0);
1278
	}
1279 1280
	__ClearPageReserved(p);
	set_page_count(p, 0);
1281

1282
	page_zone(page)->managed_pages += nr_pages;
1283 1284
	set_page_refcounted(page);
	__free_pages(page, order);
1285 1286
}

1287 1288
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289

1290 1291 1292 1293
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1294
	static DEFINE_SPINLOCK(early_pfn_lock);
1295 1296
	int nid;

1297
	spin_lock(&early_pfn_lock);
1298
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299
	if (nid < 0)
1300
		nid = first_online_node;
1301 1302 1303
	spin_unlock(&early_pfn_lock);

	return nid;
1304 1305 1306 1307
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 1309 1310
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1332 1333 1334
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1335 1336 1337 1338 1339 1340
{
	return true;
}
#endif


1341
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 1343 1344 1345
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1346
	return __free_pages_boot_core(page, order);
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1378 1379 1380
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1420
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 1422
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1423
{
1424 1425
	struct page *page;
	unsigned long i;
1426

1427
	if (!nr_pages)
1428 1429
		return;

1430 1431
	page = pfn_to_page(pfn);

1432
	/* Free a large naturally-aligned chunk if possible */
1433 1434
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1435
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436
		__free_pages_boot_core(page, pageblock_order);
1437 1438 1439
		return;
	}

1440 1441 1442
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443
		__free_pages_boot_core(page, 0);
1444
	}
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1456

1457
/*
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1470
 */
1471 1472 1473
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1474
{
1475 1476 1477 1478 1479 1480 1481 1482
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1494

1495 1496 1497 1498 1499 1500 1501
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1502
			touch_nmi_watchdog();
1503 1504 1505 1506 1507 1508
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1519 1520 1521 1522 1523 1524
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1525 1526 1527
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1528
			continue;
1529
		} else if (!page || !(pfn & nr_pgmask)) {
1530
			page = pfn_to_page(pfn);
1531
			touch_nmi_watchdog();
1532 1533
		} else {
			page++;
1534
		}
1535
		__init_single_page(page, pfn, zid, nid);
1536
		nr_pages++;
1537
	}
1538
	return (nr_pages);
1539 1540
}

1541
/* Initialise remaining memory on a node */
1542
static int __init deferred_init_memmap(void *data)
1543
{
1544 1545
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1546 1547
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1548
	unsigned long spfn, epfn, first_init_pfn, flags;
1549 1550
	phys_addr_t spa, epa;
	int zid;
1551
	struct zone *zone;
1552
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553
	u64 i;
1554

1555 1556 1557 1558 1559 1560
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1561
	if (first_init_pfn == ULONG_MAX) {
1562
		pgdat_resize_unlock(pgdat, &flags);
1563
		pgdat_init_report_one_done();
1564 1565 1566
		return 0;
	}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1578
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1591 1592 1593
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594
		deferred_free_pages(nid, zid, spfn, epfn);
1595
	}
1596
	pgdat_resize_unlock(pgdat, &flags);
1597 1598 1599 1600

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1601
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602
					jiffies_to_msecs(jiffies - start));
1603 1604

	pgdat_init_report_one_done();
1605 1606
	return 0;
}
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1718
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719 1720 1721

void __init page_alloc_init_late(void)
{
1722 1723 1724
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 1726
	int nid;

1727 1728
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 1730 1731 1732 1733
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1734
	wait_for_completion(&pgdat_init_all_done_comp);
1735

1736 1737 1738 1739 1740 1741
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1742 1743
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1744
#endif
P
Pavel Tatashin 已提交
1745 1746 1747 1748
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1749 1750 1751

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1752 1753
}

1754
#ifdef CONFIG_CMA
1755
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756 1757 1758 1759 1760 1761 1762 1763
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1764
	} while (++p, --i);
1765 1766

	set_pageblock_migratetype(page, MIGRATE_CMA);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1781
	adjust_managed_page_count(page, pageblock_nr_pages);
1782 1783
}
#endif
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1797
 * -- nyc
L
Linus Torvalds 已提交
1798
 */
N
Nick Piggin 已提交
1799
static inline void expand(struct zone *zone, struct page *page,
1800 1801
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1809
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810

1811 1812 1813 1814 1815 1816 1817
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1818
			continue;
1819

1820
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1826
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1827
{
1828 1829
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1830

1831
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 1833 1834
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1835
	if (unlikely(page_ref_count(page) != 0))
1836
		bad_reason = "nonzero _count";
1837 1838 1839
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1840 1841 1842
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1843
	}
1844 1845 1846 1847
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1848 1849 1850 1851
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1866 1867
}

1868
static inline bool free_pages_prezeroed(void)
1869 1870
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871
		page_poisoning_enabled();
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1921
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922
							unsigned int alloc_flags)
1923 1924
{
	int i;
1925

1926
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1927

1928
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 1930
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1931 1932 1933 1934

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1935
	/*
1936
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 1938 1939 1940
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1941 1942 1943 1944
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1945 1946
}

1947 1948 1949 1950
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1951
static __always_inline
1952
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 1954 1955
						int migratetype)
{
	unsigned int current_order;
1956
	struct free_area *area;
1957 1958 1959 1960 1961
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1962
		page = list_first_entry_or_null(&area->free_list[migratetype],
1963
							struct page, lru);
1964 1965
		if (!page)
			continue;
1966 1967 1968 1969
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1970
		set_pcppage_migratetype(page, migratetype);
1971 1972 1973 1974 1975 1976 1977
		return page;
	}

	return NULL;
}


1978 1979 1980 1981
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1982
static int fallbacks[MIGRATE_TYPES][4] = {
1983 1984 1985
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1986
#ifdef CONFIG_CMA
1987
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1988
#endif
1989
#ifdef CONFIG_MEMORY_ISOLATION
1990
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1991
#endif
1992 1993
};

1994
#ifdef CONFIG_CMA
1995
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 1997 1998 1999 2000 2001 2002 2003 2004
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2005 2006
/*
 * Move the free pages in a range to the free lists of the requested type.
2007
 * Note that start_page and end_pages are not aligned on a pageblock
2008 2009
 * boundary. If alignment is required, use move_freepages_block()
 */
2010
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2011
			  struct page *start_page, struct page *end_page,
2012
			  int migratetype, int *num_movable)
2013 2014
{
	struct page *page;
2015
	unsigned int order;
2016
	int pages_moved = 0;
2017 2018 2019 2020 2021 2022 2023

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2024
	 * grouping pages by mobility
2025
	 */
2026 2027 2028
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2029 2030 2031 2032 2033 2034 2035
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2036 2037 2038
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2039
		if (!PageBuddy(page)) {
2040 2041 2042 2043 2044 2045 2046 2047 2048
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2049 2050 2051 2052 2053
			page++;
			continue;
		}

		order = page_order(page);
2054 2055
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2056
		page += 1 << order;
2057
		pages_moved += 1 << order;
2058 2059
	}

2060
	return pages_moved;
2061 2062
}

2063
int move_freepages_block(struct zone *zone, struct page *page,
2064
				int migratetype, int *num_movable)
2065 2066 2067 2068
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2069 2070 2071
	if (num_movable)
		*num_movable = 0;

2072
	start_pfn = page_to_pfn(page);
2073
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074
	start_page = pfn_to_page(start_pfn);
2075 2076
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2077 2078

	/* Do not cross zone boundaries */
2079
	if (!zone_spans_pfn(zone, start_pfn))
2080
		start_page = page;
2081
	if (!zone_spans_pfn(zone, end_pfn))
2082 2083
		return 0;

2084 2085
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2099
/*
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2110
 */
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2135 2136 2137 2138
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2139 2140
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141
					int start_type, bool whole_block)
2142
{
2143
	unsigned int current_order = page_order(page);
2144
	struct free_area *area;
2145 2146 2147 2148
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2149

2150 2151 2152 2153
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2154
	if (is_migrate_highatomic(old_block_type))
2155 2156
		goto single_page;

2157 2158 2159
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2160
		goto single_page;
2161 2162
	}

2163 2164 2165 2166
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2191
	/* moving whole block can fail due to zone boundary conditions */
2192
	if (!free_pages)
2193
		goto single_page;
2194

2195 2196 2197 2198 2199
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 2201
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2202 2203 2204 2205 2206 2207

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2228
		if (fallback_mt == MIGRATE_TYPES)
2229 2230 2231 2232
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2233

2234 2235 2236
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2237 2238 2239 2240 2241
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2242
	}
2243 2244

	return -1;
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2273 2274
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2275 2276
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2289 2290 2291
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2292
 */
2293 2294
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2295 2296 2297 2298 2299 2300 2301
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2302
	bool ret;
2303 2304 2305

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2306 2307 2308 2309 2310 2311
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2312 2313 2314 2315 2316 2317
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2318 2319 2320 2321
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2322 2323 2324
				continue;

			/*
2325 2326 2327 2328 2329
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2330
			 */
2331
			if (is_migrate_highatomic_page(page)) {
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2354 2355
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2356 2357 2358 2359
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2360 2361 2362
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2363 2364

	return false;
2365 2366
}

2367 2368 2369 2370 2371
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2372 2373 2374 2375
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2376
 */
2377
static __always_inline bool
2378
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2379
{
2380
	struct free_area *area;
2381
	int current_order;
2382
	struct page *page;
2383 2384
	int fallback_mt;
	bool can_steal;
2385

2386 2387 2388 2389 2390
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2391
	for (current_order = MAX_ORDER - 1; current_order >= order;
2392
				--current_order) {
2393 2394
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2395
				start_migratetype, false, &can_steal);
2396 2397
		if (fallback_mt == -1)
			continue;
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2410

2411 2412
		goto do_steal;
	}
2413

2414
	return false;
2415

2416 2417 2418 2419 2420 2421 2422 2423
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2424 2425
	}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2443 2444
}

2445
/*
L
Linus Torvalds 已提交
2446 2447 2448
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2449 2450
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2451 2452 2453
{
	struct page *page;

2454
retry:
2455
	page = __rmqueue_smallest(zone, order, migratetype);
2456
	if (unlikely(!page)) {
2457 2458 2459
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2460 2461
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2462 2463
	}

2464
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2465
	return page;
L
Linus Torvalds 已提交
2466 2467
}

2468
/*
L
Linus Torvalds 已提交
2469 2470 2471 2472
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2473
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2474
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2475
			int migratetype)
L
Linus Torvalds 已提交
2476
{
2477
	int i, alloced = 0;
2478

2479
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2480
	for (i = 0; i < count; ++i) {
2481
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2482
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2483
			break;
2484

2485 2486 2487
		if (unlikely(check_pcp_refill(page)))
			continue;

2488
		/*
2489 2490 2491 2492 2493 2494 2495 2496
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2497
		 */
2498
		list_add_tail(&page->lru, list);
2499
		alloced++;
2500
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2501 2502
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2503
	}
2504 2505 2506 2507 2508 2509 2510

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2511
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2512
	spin_unlock(&zone->lock);
2513
	return alloced;
L
Linus Torvalds 已提交
2514 2515
}

2516
#ifdef CONFIG_NUMA
2517
/*
2518 2519 2520 2521
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2522 2523
 * Note that this function must be called with the thread pinned to
 * a single processor.
2524
 */
2525
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2526 2527
{
	unsigned long flags;
2528
	int to_drain, batch;
2529

2530
	local_irq_save(flags);
2531
	batch = READ_ONCE(pcp->batch);
2532
	to_drain = min(pcp->count, batch);
2533
	if (to_drain > 0)
2534
		free_pcppages_bulk(zone, to_drain, pcp);
2535
	local_irq_restore(flags);
2536 2537 2538
}
#endif

2539
/*
2540
 * Drain pcplists of the indicated processor and zone.
2541 2542 2543 2544 2545
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2546
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2547
{
N
Nick Piggin 已提交
2548
	unsigned long flags;
2549 2550
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2551

2552 2553
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2554

2555
	pcp = &pset->pcp;
2556
	if (pcp->count)
2557 2558 2559
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2574 2575 2576
	}
}

2577 2578
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2579 2580 2581
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2582
 */
2583
void drain_local_pages(struct zone *zone)
2584
{
2585 2586 2587 2588 2589 2590
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2591 2592
}

2593 2594
static void drain_local_pages_wq(struct work_struct *work)
{
2595 2596 2597 2598 2599 2600 2601 2602
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2603
	drain_local_pages(NULL);
2604
	preempt_enable();
2605 2606
}

2607
/*
2608 2609
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2610 2611
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2612
 * Note that this can be extremely slow as the draining happens in a workqueue.
2613
 */
2614
void drain_all_pages(struct zone *zone)
2615
{
2616 2617 2618 2619 2620 2621 2622 2623
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2624 2625 2626 2627 2628 2629 2630
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2641

2642 2643 2644 2645 2646 2647 2648
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2649 2650
		struct per_cpu_pageset *pcp;
		struct zone *z;
2651
		bool has_pcps = false;
2652 2653

		if (zone) {
2654
			pcp = per_cpu_ptr(zone->pageset, cpu);
2655
			if (pcp->pcp.count)
2656
				has_pcps = true;
2657 2658 2659 2660 2661 2662 2663
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2664 2665
			}
		}
2666

2667 2668 2669 2670 2671
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2672

2673 2674 2675
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2676
		queue_work_on(cpu, mm_percpu_wq, work);
2677
	}
2678 2679 2680 2681
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2682 2683
}

2684
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2685

2686 2687 2688 2689 2690
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2691 2692
void mark_free_pages(struct zone *zone)
{
2693
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2694
	unsigned long flags;
2695
	unsigned int order, t;
2696
	struct page *page;
L
Linus Torvalds 已提交
2697

2698
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2699 2700 2701
		return;

	spin_lock_irqsave(&zone->lock, flags);
2702

2703
	max_zone_pfn = zone_end_pfn(zone);
2704 2705
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2706
			page = pfn_to_page(pfn);
2707

2708 2709 2710 2711 2712
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2713 2714 2715
			if (page_zone(page) != zone)
				continue;

2716 2717
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2718
		}
L
Linus Torvalds 已提交
2719

2720
	for_each_migratetype_order(order, t) {
2721 2722
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2723
			unsigned long i;
L
Linus Torvalds 已提交
2724

2725
			pfn = page_to_pfn(page);
2726 2727 2728 2729 2730
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2731
				swsusp_set_page_free(pfn_to_page(pfn + i));
2732
			}
2733
		}
2734
	}
L
Linus Torvalds 已提交
2735 2736
	spin_unlock_irqrestore(&zone->lock, flags);
}
2737
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2738

2739
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2740
{
2741
	int migratetype;
L
Linus Torvalds 已提交
2742

2743
	if (!free_pcp_prepare(page))
2744
		return false;
2745

2746
	migratetype = get_pfnblock_migratetype(page, pfn);
2747
	set_pcppage_migratetype(page, migratetype);
2748 2749 2750
	return true;
}

2751
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2752 2753 2754 2755 2756 2757
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2758
	__count_vm_event(PGFREE);
2759

2760 2761 2762
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2763
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2764 2765 2766 2767
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2768
		if (unlikely(is_migrate_isolate(migratetype))) {
2769
			free_one_page(zone, page, pfn, 0, migratetype);
2770
			return;
2771 2772 2773 2774
		}
		migratetype = MIGRATE_MOVABLE;
	}

2775
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2777
	pcp->count++;
N
Nick Piggin 已提交
2778
	if (pcp->count >= pcp->high) {
2779
		unsigned long batch = READ_ONCE(pcp->batch);
2780
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2781
	}
2782
}
2783

2784 2785 2786
/*
 * Free a 0-order page
 */
2787
void free_unref_page(struct page *page)
2788 2789 2790 2791
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2792
	if (!free_unref_page_prepare(page, pfn))
2793 2794 2795
		return;

	local_irq_save(flags);
2796
	free_unref_page_commit(page, pfn);
2797
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2798 2799
}

2800 2801 2802
/*
 * Free a list of 0-order pages
 */
2803
void free_unref_page_list(struct list_head *list)
2804 2805
{
	struct page *page, *next;
2806
	unsigned long flags, pfn;
2807
	int batch_count = 0;
2808 2809 2810 2811

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2812
		if (!free_unref_page_prepare(page, pfn))
2813 2814 2815
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2816

2817
	local_irq_save(flags);
2818
	list_for_each_entry_safe(page, next, list, lru) {
2819 2820 2821
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2822 2823
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2834
	}
2835
	local_irq_restore(flags);
2836 2837
}

N
Nick Piggin 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2850 2851
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2852

2853
	for (i = 1; i < (1 << order); i++)
2854
		set_page_refcounted(page + i);
2855
	split_page_owner(page, order);
N
Nick Piggin 已提交
2856
}
K
K. Y. Srinivasan 已提交
2857
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2858

2859
int __isolate_free_page(struct page *page, unsigned int order)
2860 2861 2862
{
	unsigned long watermark;
	struct zone *zone;
2863
	int mt;
2864 2865 2866 2867

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2868
	mt = get_pageblock_migratetype(page);
2869

2870
	if (!is_migrate_isolate(mt)) {
2871 2872 2873 2874 2875 2876 2877
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2878
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2879 2880
			return 0;

2881
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2882
	}
2883 2884 2885 2886 2887

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2888

2889 2890 2891 2892
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2893 2894
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2895 2896
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2897
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2898
			    && !is_migrate_highatomic(mt))
2899 2900 2901
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2902 2903
	}

2904

2905
	return 1UL << order;
2906 2907
}

2908 2909 2910 2911 2912
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2913
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2914 2915
{
#ifdef CONFIG_NUMA
2916
	enum numa_stat_item local_stat = NUMA_LOCAL;
2917

2918 2919 2920 2921
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2922
	if (zone_to_nid(z) != numa_node_id())
2923 2924
		local_stat = NUMA_OTHER;

2925
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2926
		__inc_numa_state(z, NUMA_HIT);
2927
	else {
2928 2929
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2930
	}
2931
	__inc_numa_state(z, local_stat);
2932 2933 2934
#endif
}

2935 2936
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2937
			struct per_cpu_pages *pcp,
2938 2939 2940 2941 2942 2943 2944 2945
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2946
					migratetype);
2947 2948 2949 2950
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2951
		page = list_first_entry(list, struct page, lru);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2967
	unsigned long flags;
2968

2969
	local_irq_save(flags);
2970 2971
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2972
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2973 2974 2975 2976
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2977
	local_irq_restore(flags);
2978 2979 2980
	return page;
}

L
Linus Torvalds 已提交
2981
/*
2982
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2983
 */
2984
static inline
2985
struct page *rmqueue(struct zone *preferred_zone,
2986
			struct zone *zone, unsigned int order,
2987 2988
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2989 2990
{
	unsigned long flags;
2991
	struct page *page;
L
Linus Torvalds 已提交
2992

2993
	if (likely(order == 0)) {
2994 2995 2996 2997
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2998

2999 3000 3001 3002 3003 3004
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3005

3006 3007 3008 3009 3010 3011 3012
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3013
		if (!page)
3014 3015 3016 3017 3018 3019 3020
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3021

3022
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3023
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3024
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3025

3026 3027
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3028
	return page;
N
Nick Piggin 已提交
3029 3030 3031 3032

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3033 3034
}

3035 3036
#ifdef CONFIG_FAIL_PAGE_ALLOC

3037
static struct {
3038 3039
	struct fault_attr attr;

3040
	bool ignore_gfp_highmem;
3041
	bool ignore_gfp_reclaim;
3042
	u32 min_order;
3043 3044
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3045
	.ignore_gfp_reclaim = true,
3046
	.ignore_gfp_highmem = true,
3047
	.min_order = 1,
3048 3049 3050 3051 3052 3053 3054 3055
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3056
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3057
{
3058
	if (order < fail_page_alloc.min_order)
3059
		return false;
3060
	if (gfp_mask & __GFP_NOFAIL)
3061
		return false;
3062
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3063
		return false;
3064 3065
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3066
		return false;
3067 3068 3069 3070 3071 3072 3073 3074

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3075
	umode_t mode = S_IFREG | 0600;
3076 3077
	struct dentry *dir;

3078 3079 3080 3081
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3082

3083
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3084
				&fail_page_alloc.ignore_gfp_reclaim))
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3095
	debugfs_remove_recursive(dir);
3096

3097
	return -ENOMEM;
3098 3099 3100 3101 3102 3103 3104 3105
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3106
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3107
{
3108
	return false;
3109 3110 3111 3112
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3113
/*
3114 3115 3116 3117
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3118
 */
3119 3120 3121
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3122
{
3123
	long min = mark;
L
Linus Torvalds 已提交
3124
	int o;
3125
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3126

3127
	/* free_pages may go negative - that's OK */
3128
	free_pages -= (1 << order) - 1;
3129

R
Rohit Seth 已提交
3130
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3131
		min -= min / 2;
3132 3133 3134 3135 3136 3137

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3138
	if (likely(!alloc_harder)) {
3139
		free_pages -= z->nr_reserved_highatomic;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3153

3154 3155 3156 3157 3158 3159
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3160 3161 3162 3163 3164 3165
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3166
		return false;
L
Linus Torvalds 已提交
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3186 3187
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3188
			return true;
3189
		}
3190
#endif
3191 3192 3193
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3194
	}
3195
	return false;
3196 3197
}

3198
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3199
		      int classzone_idx, unsigned int alloc_flags)
3200 3201 3202 3203 3204
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3205 3206 3207 3208
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3209 3210 3211 3212 3213 3214 3215
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3216 3217 3218 3219 3220 3221 3222 3223

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3224
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3225 3226 3227 3228 3229 3230
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3231
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232
			unsigned long mark, int classzone_idx)
3233 3234 3235 3236 3237 3238
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3239
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3240
								free_pages);
L
Linus Torvalds 已提交
3241 3242
}

3243
#ifdef CONFIG_NUMA
3244 3245
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3246
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3247
				RECLAIM_DISTANCE;
3248
}
3249
#else	/* CONFIG_NUMA */
3250 3251 3252 3253
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3254 3255
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3256
/*
3257
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3258 3259 3260
 * a page.
 */
static struct page *
3261 3262
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3263
{
3264
	struct zoneref *z = ac->preferred_zoneref;
3265
	struct zone *zone;
3266 3267
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3268
	/*
3269
	 * Scan zonelist, looking for a zone with enough free.
3270
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3271
	 */
3272
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3273
								ac->nodemask) {
3274
		struct page *page;
3275 3276
		unsigned long mark;

3277 3278
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3279
			!__cpuset_zone_allowed(zone, gfp_mask))
3280
				continue;
3281 3282
		/*
		 * When allocating a page cache page for writing, we
3283 3284
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3285
		 * proportional share of globally allowed dirty pages.
3286
		 * The dirty limits take into account the node's
3287 3288 3289 3290 3291
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3292
		 * exceed the per-node dirty limit in the slowpath
3293
		 * (spread_dirty_pages unset) before going into reclaim,
3294
		 * which is important when on a NUMA setup the allowed
3295
		 * nodes are together not big enough to reach the
3296
		 * global limit.  The proper fix for these situations
3297
		 * will require awareness of nodes in the
3298 3299
		 * dirty-throttling and the flusher threads.
		 */
3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3309

3310
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3311
		if (!zone_watermark_fast(zone, order, mark,
3312
				       ac_classzone_idx(ac), alloc_flags)) {
3313 3314
			int ret;

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3325 3326 3327 3328 3329
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3330
			if (node_reclaim_mode == 0 ||
3331
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3332 3333
				continue;

3334
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3335
			switch (ret) {
3336
			case NODE_RECLAIM_NOSCAN:
3337
				/* did not scan */
3338
				continue;
3339
			case NODE_RECLAIM_FULL:
3340
				/* scanned but unreclaimable */
3341
				continue;
3342 3343
			default:
				/* did we reclaim enough */
3344
				if (zone_watermark_ok(zone, order, mark,
3345
						ac_classzone_idx(ac), alloc_flags))
3346 3347 3348
					goto try_this_zone;

				continue;
3349
			}
R
Rohit Seth 已提交
3350 3351
		}

3352
try_this_zone:
3353
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3354
				gfp_mask, alloc_flags, ac->migratetype);
3355
		if (page) {
3356
			prep_new_page(page, order, gfp_mask, alloc_flags);
3357 3358 3359 3360 3361 3362 3363 3364

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3365
			return page;
3366 3367 3368 3369 3370 3371 3372 3373
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3374
		}
3375
	}
3376

3377
	return NULL;
M
Martin Hicks 已提交
3378 3379
}

3380
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3381 3382
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3383
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3384

3385
	if (!__ratelimit(&show_mem_rs))
3386 3387 3388 3389 3390 3391 3392 3393
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3394
		if (tsk_is_oom_victim(current) ||
3395 3396
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3397
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3398 3399
		filter &= ~SHOW_MEM_FILTER_NODES;

3400
	show_mem(filter, nodemask);
3401 3402
}

3403
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3404 3405 3406 3407 3408 3409
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3410
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3411 3412
		return;

3413 3414 3415
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3416 3417 3418
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3419
	va_end(args);
J
Joe Perches 已提交
3420

3421
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3422

3423
	dump_stack();
3424
	warn_alloc_show_mem(gfp_mask, nodemask);
3425 3426
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3447 3448
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3449
	const struct alloc_context *ac, unsigned long *did_some_progress)
3450
{
3451 3452 3453
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3454
		.memcg = NULL,
3455 3456 3457
		.gfp_mask = gfp_mask,
		.order = order,
	};
3458 3459
	struct page *page;

3460 3461 3462
	*did_some_progress = 0;

	/*
3463 3464
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3465
	 */
3466
	if (!mutex_trylock(&oom_lock)) {
3467
		*did_some_progress = 1;
3468
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3469 3470
		return NULL;
	}
3471

3472 3473 3474
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3475 3476 3477
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3478
	 */
3479 3480 3481
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3482
	if (page)
3483 3484
		goto out;

3485 3486 3487 3488 3489 3490
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3491 3492 3493 3494 3495 3496 3497 3498
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3517

3518
	/* Exhausted what can be done so it's blame time */
3519
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3520
		*did_some_progress = 1;
3521

3522 3523 3524 3525 3526 3527
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3528 3529
					ALLOC_NO_WATERMARKS, ac);
	}
3530
out:
3531
	mutex_unlock(&oom_lock);
3532 3533 3534
	return page;
}

3535 3536 3537 3538 3539 3540
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3541 3542 3543 3544
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545
		unsigned int alloc_flags, const struct alloc_context *ac,
3546
		enum compact_priority prio, enum compact_result *compact_result)
3547
{
3548
	struct page *page;
3549
	unsigned long pflags;
3550
	unsigned int noreclaim_flag;
3551 3552

	if (!order)
3553 3554
		return NULL;

3555
	psi_memstall_enter(&pflags);
3556
	noreclaim_flag = memalloc_noreclaim_save();
3557

3558
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559
									prio);
3560

3561
	memalloc_noreclaim_restore(noreclaim_flag);
3562
	psi_memstall_leave(&pflags);
3563

3564
	if (*compact_result <= COMPACT_INACTIVE)
3565
		return NULL;
3566

3567 3568 3569 3570 3571
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3572

3573
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574

3575 3576
	if (page) {
		struct zone *zone = page_zone(page);
3577

3578 3579 3580 3581 3582
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3583

3584 3585 3586 3587 3588
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3589

3590
	cond_resched();
3591 3592 3593

	return NULL;
}
3594

3595 3596 3597 3598
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3599
		     int *compaction_retries)
3600 3601
{
	int max_retries = MAX_COMPACT_RETRIES;
3602
	int min_priority;
3603 3604 3605
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3606 3607 3608 3609

	if (!order)
		return false;

3610 3611 3612
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3613 3614 3615 3616 3617
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3618 3619
	if (compaction_failed(compact_result))
		goto check_priority;
3620 3621 3622 3623 3624 3625 3626

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3627 3628 3629 3630
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3631 3632

	/*
3633
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3634 3635 3636 3637 3638 3639 3640 3641
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3642 3643 3644 3645
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3646

3647 3648 3649 3650 3651
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3652 3653
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3654

3655
	if (*compact_priority > min_priority) {
3656 3657
		(*compact_priority)--;
		*compaction_retries = 0;
3658
		ret = true;
3659
	}
3660 3661 3662
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3663
}
3664 3665 3666
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3667
		unsigned int alloc_flags, const struct alloc_context *ac,
3668
		enum compact_priority prio, enum compact_result *compact_result)
3669
{
3670
	*compact_result = COMPACT_SKIPPED;
3671 3672
	return NULL;
}
3673 3674

static inline bool
3675 3676
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3677
		     enum compact_priority *compact_priority,
3678
		     int *compaction_retries)
3679
{
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3698 3699
	return false;
}
3700
#endif /* CONFIG_COMPACTION */
3701

3702
#ifdef CONFIG_LOCKDEP
3703
static struct lockdep_map __fs_reclaim_map =
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3715
	if (current->flags & PF_MEMALLOC)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3738 3739 3740
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3741
		__fs_reclaim_acquire();
3742 3743 3744 3745 3746 3747
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3748
		__fs_reclaim_release();
3749 3750 3751 3752
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3753 3754
/* Perform direct synchronous page reclaim */
static int
3755 3756
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3757 3758
{
	struct reclaim_state reclaim_state;
3759
	int progress;
3760
	unsigned int noreclaim_flag;
3761
	unsigned long pflags;
3762 3763 3764 3765 3766

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3767
	psi_memstall_enter(&pflags);
3768
	fs_reclaim_acquire(gfp_mask);
3769
	noreclaim_flag = memalloc_noreclaim_save();
3770
	reclaim_state.reclaimed_slab = 0;
3771
	current->reclaim_state = &reclaim_state;
3772

3773 3774
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3775

3776
	current->reclaim_state = NULL;
3777
	memalloc_noreclaim_restore(noreclaim_flag);
3778
	fs_reclaim_release(gfp_mask);
3779
	psi_memstall_leave(&pflags);
3780 3781 3782

	cond_resched();

3783 3784 3785 3786 3787 3788
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3789
		unsigned int alloc_flags, const struct alloc_context *ac,
3790
		unsigned long *did_some_progress)
3791 3792 3793 3794
{
	struct page *page = NULL;
	bool drained = false;

3795
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3796 3797
	if (unlikely(!(*did_some_progress)))
		return NULL;
3798

3799
retry:
3800
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3801 3802 3803

	/*
	 * If an allocation failed after direct reclaim, it could be because
3804 3805
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3806 3807
	 */
	if (!page && !drained) {
3808
		unreserve_highatomic_pageblock(ac, false);
3809
		drain_all_pages(NULL);
3810 3811 3812 3813
		drained = true;
		goto retry;
	}

3814 3815 3816
	return page;
}

3817 3818
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3819 3820 3821
{
	struct zoneref *z;
	struct zone *zone;
3822
	pg_data_t *last_pgdat = NULL;
3823
	enum zone_type high_zoneidx = ac->high_zoneidx;
3824

3825 3826
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3827
		if (last_pgdat != zone->zone_pgdat)
3828
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3829 3830
		last_pgdat = zone->zone_pgdat;
	}
3831 3832
}

3833
static inline unsigned int
3834 3835
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3836
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3837

3838
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3839
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3840

3841 3842 3843 3844
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3845
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3846
	 */
3847
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3848

3849
	if (gfp_mask & __GFP_ATOMIC) {
3850
		/*
3851 3852
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3853
		 */
3854
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3855
			alloc_flags |= ALLOC_HARDER;
3856
		/*
3857
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3858
		 * comment for __cpuset_node_allowed().
3859
		 */
3860
		alloc_flags &= ~ALLOC_CPUSET;
3861
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3862 3863
		alloc_flags |= ALLOC_HARDER;

3864 3865 3866 3867
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3868 3869 3870
	return alloc_flags;
}

3871
static bool oom_reserves_allowed(struct task_struct *tsk)
3872
{
3873 3874 3875 3876 3877 3878 3879 3880
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3881 3882
		return false;

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3894
	if (gfp_mask & __GFP_MEMALLOC)
3895
		return ALLOC_NO_WATERMARKS;
3896
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3897 3898 3899 3900 3901 3902 3903
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3904

3905 3906 3907 3908 3909 3910
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3911 3912
}

M
Michal Hocko 已提交
3913 3914 3915
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3916 3917 3918 3919
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3920 3921 3922 3923 3924 3925
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3926
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3927 3928 3929
{
	struct zone *zone;
	struct zoneref *z;
3930
	bool ret = false;
M
Michal Hocko 已提交
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3942 3943 3944 3945
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3946 3947
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3948
		return unreserve_highatomic_pageblock(ac, true);
3949
	}
M
Michal Hocko 已提交
3950

3951 3952 3953 3954 3955
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3956 3957 3958 3959
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3960
		unsigned long reclaimable;
3961 3962
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3963

3964 3965
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3966 3967

		/*
3968 3969
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3970
		 */
3971 3972 3973 3974 3975
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3976 3977 3978 3979 3980 3981 3982
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3983
				unsigned long write_pending;
3984

3985 3986
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3987

3988
				if (2 * write_pending > reclaimable) {
3989 3990 3991 3992
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3993

3994 3995
			ret = true;
			goto out;
M
Michal Hocko 已提交
3996 3997 3998
		}
	}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4012 4013
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4047 4048
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049
						struct alloc_context *ac)
4050
{
4051
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053
	struct page *page = NULL;
4054
	unsigned int alloc_flags;
4055
	unsigned long did_some_progress;
4056
	enum compact_priority compact_priority;
4057
	enum compact_result compact_result;
4058 4059 4060
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4061
	int reserve_flags;
L
Linus Torvalds 已提交
4062

4063 4064 4065 4066 4067 4068
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4069 4070
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4071
		return NULL;
4072
	}
L
Linus Torvalds 已提交
4073

4074 4075 4076 4077 4078 4079 4080 4081
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4082 4083 4084 4085 4086
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4087 4088 4089 4090 4091 4092 4093 4094

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4106
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4107
		wake_all_kswapds(order, gfp_mask, ac);
4108 4109 4110 4111 4112 4113 4114 4115 4116

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4117 4118
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4119 4120 4121 4122 4123 4124
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4125
	 */
4126 4127 4128 4129
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4130 4131
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4132
						INIT_COMPACT_PRIORITY,
4133 4134 4135 4136
						&compact_result);
		if (page)
			goto got_pg;

4137 4138 4139 4140
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4141
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4154 4155
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4156
			 * using async compaction.
4157
			 */
4158
			compact_priority = INIT_COMPACT_PRIORITY;
4159 4160
		}
	}
4161

4162
retry:
4163
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4164
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4165
		wake_all_kswapds(order, gfp_mask, ac);
4166

4167 4168 4169
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4170

4171
	/*
4172 4173 4174
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4175
	 */
4176
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177
		ac->nodemask = NULL;
4178 4179 4180 4181
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4182
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4183
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4184 4185
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4186

4187
	/* Caller is not willing to reclaim, we can't balance anything */
4188
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4189 4190
		goto nopage;

4191 4192
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4193 4194
		goto nopage;

4195 4196 4197 4198 4199 4200 4201
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4202
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203
					compact_priority, &compact_result);
4204 4205
	if (page)
		goto got_pg;
4206

4207 4208
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4209
		goto nopage;
4210

M
Michal Hocko 已提交
4211 4212
	/*
	 * Do not retry costly high order allocations unless they are
4213
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4214
	 */
4215
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4216
		goto nopage;
M
Michal Hocko 已提交
4217 4218

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4219
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4220 4221
		goto retry;

4222 4223 4224 4225 4226 4227 4228
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4229
			should_compact_retry(ac, order, alloc_flags,
4230
				compact_result, &compact_priority,
4231
				&compaction_retries))
4232 4233
		goto retry;

4234 4235 4236

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4237 4238
		goto retry_cpuset;

4239 4240 4241 4242 4243
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4244
	/* Avoid allocations with no watermarks from looping endlessly */
4245 4246
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4247
	     (gfp_mask & __GFP_NOMEMALLOC)))
4248 4249
		goto nopage;

4250
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4251 4252
	if (did_some_progress) {
		no_progress_loops = 0;
4253
		goto retry;
M
Michal Hocko 已提交
4254
	}
4255

L
Linus Torvalds 已提交
4256
nopage:
4257 4258
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4259 4260
		goto retry_cpuset;

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4298 4299 4300 4301
		cond_resched();
		goto retry;
	}
fail:
4302
	warn_alloc(gfp_mask, ac->nodemask,
4303
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4304
got_pg:
4305
	return page;
L
Linus Torvalds 已提交
4306
}
4307

4308
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4309
		int preferred_nid, nodemask_t *nodemask,
4310 4311
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4312
{
4313
	ac->high_zoneidx = gfp_zone(gfp_mask);
4314
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4315 4316
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4317

4318
	if (cpusets_enabled()) {
4319 4320 4321
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4322 4323
		else
			*alloc_flags |= ALLOC_CPUSET;
4324 4325
	}

4326 4327
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4328

4329
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4330 4331

	if (should_fail_alloc_page(gfp_mask, order))
4332
		return false;
4333

4334 4335 4336
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4337 4338
	return true;
}
4339

4340
/* Determine whether to spread dirty pages and what the first usable zone */
4341
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4342
{
4343
	/* Dirty zone balancing only done in the fast path */
4344
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4345

4346 4347 4348 4349 4350
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4351 4352 4353 4354 4355 4356 4357 4358
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4359 4360
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4361 4362 4363
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4364
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4365 4366 4367
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4368
	alloc_mask = gfp_mask;
4369
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4370 4371
		return NULL;

4372
	finalise_ac(gfp_mask, &ac);
4373

4374
	/* First allocation attempt */
4375
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4376 4377
	if (likely(page))
		goto out;
4378

4379
	/*
4380 4381 4382 4383
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4384
	 */
4385
	alloc_mask = current_gfp_context(gfp_mask);
4386
	ac.spread_dirty_pages = false;
4387

4388 4389 4390 4391
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4392
	if (unlikely(ac.nodemask != nodemask))
4393
		ac.nodemask = nodemask;
4394

4395
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4396

4397
out:
4398 4399 4400 4401
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4402 4403
	}

4404 4405
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4406
	return page;
L
Linus Torvalds 已提交
4407
}
4408
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4409 4410

/*
4411 4412 4413
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4414
 */
H
Harvey Harrison 已提交
4415
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4416
{
4417 4418
	struct page *page;

4419
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4426
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4427
{
4428
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4429 4430 4431
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4432
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4433
{
N
Nick Piggin 已提交
4434
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4435
		if (order == 0)
4436
			free_unref_page(page);
L
Linus Torvalds 已提交
4437 4438 4439 4440 4441 4442 4443
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4444
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4445 4446
{
	if (addr != 0) {
N
Nick Piggin 已提交
4447
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4465 4466
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4486
void __page_frag_cache_drain(struct page *page, unsigned int count)
4487 4488 4489 4490
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4491 4492
		unsigned int order = compound_order(page);

4493
		if (order == 0)
4494
			free_unref_page(page);
4495 4496 4497 4498
		else
			__free_pages_ok(page, order);
	}
}
4499
EXPORT_SYMBOL(__page_frag_cache_drain);
4500

4501 4502
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4503 4504 4505 4506 4507 4508 4509
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4510
		page = __page_frag_cache_refill(nc, gfp_mask);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4521
		page_ref_add(page, size - 1);
4522 4523

		/* reset page count bias and offset to start of new frag */
4524
		nc->pfmemalloc = page_is_pfmemalloc(page);
4525 4526 4527 4528 4529 4530 4531 4532
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4533
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4534 4535 4536 4537 4538 4539 4540
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4541
		set_page_count(page, size);
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4553
EXPORT_SYMBOL(page_frag_alloc);
4554 4555 4556 4557

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4558
void page_frag_free(void *addr)
4559 4560 4561 4562 4563 4564
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4565
EXPORT_SYMBOL(page_frag_free);
4566

4567 4568
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4602
	return make_alloc_exact(addr, order, size);
4603 4604 4605
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4606 4607 4608
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4609
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4610 4611 4612 4613 4614 4615
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4616
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4617
{
4618
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4619 4620 4621 4622 4623 4624
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4644 4645 4646 4647 4648 4649 4650
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4651 4652
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4653
 */
4654
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4655
{
4656
	struct zoneref *z;
4657 4658
	struct zone *zone;

4659
	/* Just pick one node, since fallback list is circular */
4660
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4661

4662
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4663

4664
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4665
		unsigned long size = zone->managed_pages;
4666
		unsigned long high = high_wmark_pages(zone);
4667 4668
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4669 4670 4671 4672 4673
	}

	return sum;
}

4674 4675 4676 4677 4678
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4679
 */
4680
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4681
{
A
Al Viro 已提交
4682
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4683
}
4684
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4685

4686 4687 4688 4689 4690
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4691
 */
4692
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4693
{
M
Mel Gorman 已提交
4694
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4695
}
4696 4697

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4698
{
4699
	if (IS_ENABLED(CONFIG_NUMA))
4700
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4701 4702
}

4703 4704 4705 4706 4707 4708
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4709
	unsigned long reclaimable;
4710 4711 4712 4713
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4714
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4715 4716 4717 4718 4719 4720 4721 4722

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4723
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4735 4736 4737
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4738
	 */
4739 4740 4741
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4742

4743 4744 4745 4746 4747 4748
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4749 4750 4751
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4752
	val->sharedram = global_node_page_state(NR_SHMEM);
4753
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4765 4766
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4767 4768
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4769 4770
	pg_data_t *pgdat = NODE_DATA(nid);

4771 4772 4773
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4774
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776
#ifdef CONFIG_HIGHMEM
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4787
#else
4788 4789
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4790
#endif
L
Linus Torvalds 已提交
4791 4792 4793 4794
	val->mem_unit = PAGE_SIZE;
}
#endif

4795
/*
4796 4797
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798
 */
4799
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800 4801
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4802
		return false;
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4813 4814
}

L
Linus Torvalds 已提交
4815 4816
#define K(x) ((x) << (PAGE_SHIFT-10))

4817 4818 4819 4820 4821
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4822 4823
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4824 4825 4826
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4827
#ifdef CONFIG_MEMORY_ISOLATION
4828
		[MIGRATE_ISOLATE]	= 'I',
4829
#endif
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4841
	printk(KERN_CONT "(%s) ", tmp);
4842 4843
}

L
Linus Torvalds 已提交
4844 4845 4846 4847
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4848 4849 4850 4851
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4852
 */
4853
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4854
{
4855
	unsigned long free_pcp = 0;
4856
	int cpu;
L
Linus Torvalds 已提交
4857
	struct zone *zone;
M
Mel Gorman 已提交
4858
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4859

4860
	for_each_populated_zone(zone) {
4861
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862
			continue;
4863

4864 4865
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4866 4867
	}

K
KOSAKI Motohiro 已提交
4868 4869
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 4871
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4874 4875 4876 4877 4878 4879 4880
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4881 4882 4883
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4884 4885
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886
		global_node_page_state(NR_FILE_MAPPED),
4887
		global_node_page_state(NR_SHMEM),
4888 4889 4890
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4891
		free_pcp,
4892
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4893

M
Mel Gorman 已提交
4894
	for_each_online_pgdat(pgdat) {
4895
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896 4897
			continue;

M
Mel Gorman 已提交
4898 4899 4900 4901 4902 4903 4904 4905
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4906
			" mapped:%lukB"
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928 4929
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4930
			K(node_page_state(pgdat, NR_SHMEM)),
4931 4932 4933 4934 4935 4936 4937 4938
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939 4940
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4941 4942
	}

4943
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4944 4945
		int i;

4946
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947
			continue;
4948 4949 4950 4951 4952

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4953
		show_node(zone);
4954 4955
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4956 4957 4958 4959
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4960 4961 4962 4963 4964
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4965
			" writepending:%lukB"
L
Linus Torvalds 已提交
4966
			" present:%lukB"
4967
			" managed:%lukB"
4968
			" mlocked:%lukB"
4969
			" kernel_stack:%lukB"
4970 4971
			" pagetables:%lukB"
			" bounce:%lukB"
4972 4973
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4974
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4975 4976
			"\n",
			zone->name,
4977
			K(zone_page_state(zone, NR_FREE_PAGES)),
4978 4979 4980
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4981 4982 4983 4984 4985
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4987
			K(zone->present_pages),
4988
			K(zone->managed_pages),
4989
			K(zone_page_state(zone, NR_MLOCK)),
4990
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4991 4992
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4993 4994
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4995
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4996 4997
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4998 4999
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5000 5001
	}

5002
	for_each_populated_zone(zone) {
5003 5004
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5005
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5006

5007
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008
			continue;
L
Linus Torvalds 已提交
5009
		show_node(zone);
5010
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5011 5012 5013

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5014 5015 5016 5017
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5018
			total += nr[order] << order;
5019 5020 5021 5022 5023 5024

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5025 5026
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5027
		for (order = 0; order < MAX_ORDER; order++) {
5028 5029
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5030 5031 5032
			if (nr[order])
				show_migration_types(types[order]);
		}
5033
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5034 5035
	}

5036 5037
	hugetlb_show_meminfo();

5038
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039

L
Linus Torvalds 已提交
5040 5041 5042
	show_swap_cache_info();
}

5043 5044 5045 5046 5047 5048
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5049 5050
/*
 * Builds allocation fallback zone lists.
5051 5052
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5053
 */
5054
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5055
{
5056
	struct zone *zone;
5057
	enum zone_type zone_type = MAX_NR_ZONES;
5058
	int nr_zones = 0;
5059 5060

	do {
5061
		zone_type--;
5062
		zone = pgdat->node_zones + zone_type;
5063
		if (managed_zone(zone)) {
5064
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5066
		}
5067
	} while (zone_type);
5068

5069
	return nr_zones;
L
Linus Torvalds 已提交
5070 5071 5072
}

#ifdef CONFIG_NUMA
5073 5074 5075

static int __parse_numa_zonelist_order(char *s)
{
5076 5077 5078 5079 5080 5081 5082 5083
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5084 5085 5086 5087 5088 5089 5090
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5091 5092 5093
	if (!s)
		return 0;

5094
	return __parse_numa_zonelist_order(s);
5095 5096 5097
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5098 5099
char numa_zonelist_order[] = "Node";

5100 5101 5102
/*
 * sysctl handler for numa_zonelist_order
 */
5103
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104
		void __user *buffer, size_t *length,
5105 5106
		loff_t *ppos)
{
5107
	char *str;
5108 5109
	int ret;

5110 5111 5112 5113 5114
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5115

5116 5117
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5118
	return ret;
5119 5120 5121
}


5122
#define MAX_NODE_LOAD (nr_online_nodes)
5123 5124
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5125
/**
5126
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5139
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5140
{
5141
	int n, val;
L
Linus Torvalds 已提交
5142
	int min_val = INT_MAX;
D
David Rientjes 已提交
5143
	int best_node = NUMA_NO_NODE;
5144
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5145

5146 5147 5148 5149 5150
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5151

5152
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5161 5162 5163
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5164
		/* Give preference to headless and unused nodes */
5165 5166
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5185 5186 5187 5188 5189 5190

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5191 5192
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5193
{
5194 5195 5196 5197 5198 5199 5200 5201 5202
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5203

5204 5205 5206 5207 5208
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5209 5210
}

5211 5212 5213 5214 5215
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5216 5217
	struct zoneref *zonerefs;
	int nr_zones;
5218

5219 5220 5221 5222 5223
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5224 5225
}

5226 5227 5228 5229 5230 5231 5232 5233 5234
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5235 5236
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5237
	nodemask_t used_mask;
5238
	int local_node, prev_node;
L
Linus Torvalds 已提交
5239 5240 5241

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5242
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5243 5244
	prev_node = local_node;
	nodes_clear(used_mask);
5245 5246

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5253 5254
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5255 5256
			node_load[node] = load;

5257
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5258 5259 5260
		prev_node = node;
		load--;
	}
5261

5262
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5264 5265
}

5266 5267 5268 5269 5270 5271 5272 5273 5274
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5275
	struct zoneref *z;
5276

5277
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278
				   gfp_zone(GFP_KERNEL),
5279
				   NULL);
5280
	return zone_to_nid(z->zone);
5281 5282
}
#endif
5283

5284 5285
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5286 5287
#else	/* CONFIG_NUMA */

5288
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5289
{
5290
	int node, local_node;
5291 5292
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5293 5294 5295

	local_node = pgdat->node_id;

5296 5297 5298
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5299

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5311 5312
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5313
	}
5314 5315 5316
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5317 5318
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5319 5320
	}

5321 5322
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5323 5324 5325 5326
}

#endif	/* CONFIG_NUMA */

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345

5346
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5347
{
5348
	int nid;
5349
	int __maybe_unused cpu;
5350
	pg_data_t *self = data;
5351 5352 5353
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5354

5355 5356 5357
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5358

5359 5360 5361 5362
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5363 5364
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5365 5366 5367
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5368

5369 5370
			build_zonelists(pgdat);
		}
5371

5372 5373 5374 5375 5376 5377 5378 5379 5380
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5381
		for_each_online_cpu(cpu)
5382
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383
#endif
5384
	}
5385 5386

	spin_unlock(&lock);
5387 5388
}

5389 5390 5391
static noinline void __init
build_all_zonelists_init(void)
{
5392 5393
	int cpu;

5394
	__build_all_zonelists(NULL);
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5412 5413 5414 5415
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5416 5417
/*
 * unless system_state == SYSTEM_BOOTING.
5418
 *
5419
 * __ref due to call of __init annotated helper build_all_zonelists_init
5420
 * [protected by SYSTEM_BOOTING].
5421
 */
5422
void __ref build_all_zonelists(pg_data_t *pgdat)
5423 5424
{
	if (system_state == SYSTEM_BOOTING) {
5425
		build_all_zonelists_init();
5426
	} else {
5427
		__build_all_zonelists(pgdat);
5428 5429
		/* cpuset refresh routine should be here */
	}
5430
	vm_total_pages = nr_free_pagecache_pages();
5431 5432 5433 5434 5435 5436 5437
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5438
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439 5440 5441 5442
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5443
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5444 5445 5446
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5447
#ifdef CONFIG_NUMA
5448
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449
#endif
L
Linus Torvalds 已提交
5450 5451
}

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5476 5477
/*
 * Initially all pages are reserved - free ones are freed
5478
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5479 5480
 * done. Non-atomic initialization, single-pass.
 */
5481
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5482 5483
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5484
{
5485
	unsigned long pfn, end_pfn = start_pfn + size;
5486
	struct page *page;
L
Linus Torvalds 已提交
5487

5488 5489 5490
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5491
#ifdef CONFIG_ZONE_DEVICE
5492 5493
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5494 5495 5496 5497
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5498
	 */
5499 5500 5501 5502 5503 5504 5505 5506 5507
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5508

5509
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5510
		/*
5511 5512
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5513
		 */
5514 5515
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5516
				continue;
5517 5518 5519 5520 5521 5522
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5523
		}
5524

5525 5526 5527
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5528
			__SetPageReserved(page);
5529

5530 5531 5532 5533 5534
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5535
		 * kernel allocations are made.
5536 5537 5538 5539 5540 5541 5542 5543
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5544
			cond_resched();
5545
		}
L
Linus Torvalds 已提交
5546 5547 5548
	}
}

5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5624
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5625
{
5626
	unsigned int order, t;
5627 5628
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5629 5630 5631 5632
		zone->free_area[order].nr_free = 0;
	}
}

5633 5634 5635 5636 5637
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5638

5639
static int zone_batchsize(struct zone *zone)
5640
{
5641
#ifdef CONFIG_MMU
5642 5643 5644 5645
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5646
	 * size of the zone.
5647
	 */
5648
	batch = zone->managed_pages / 1024;
5649 5650 5651
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5652 5653 5654 5655 5656
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5657 5658 5659
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5660
	 *
5661 5662 5663 5664
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5665
	 */
5666
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5667

5668
	return batch;
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5686 5687
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5715
/* a companion to pageset_set_high() */
5716 5717
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5718
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5719 5720
}

5721
static void pageset_init(struct per_cpu_pageset *p)
5722 5723
{
	struct per_cpu_pages *pcp;
5724
	int migratetype;
5725

5726 5727
	memset(p, 0, sizeof(*p));

5728
	pcp = &p->pcp;
5729
	pcp->count = 0;
5730 5731
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5732 5733
}

5734 5735 5736 5737 5738 5739
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5740
/*
5741
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5742 5743
 * to the value high for the pageset p.
 */
5744
static void pageset_set_high(struct per_cpu_pageset *p,
5745 5746
				unsigned long high)
{
5747 5748 5749
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5750

5751
	pageset_update(&p->pcp, high, batch);
5752 5753
}

5754 5755
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5756 5757
{
	if (percpu_pagelist_fraction)
5758
		pageset_set_high(pcp,
5759 5760 5761 5762 5763 5764
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5765 5766 5767 5768 5769 5770 5771 5772
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5773
void __meminit setup_zone_pageset(struct zone *zone)
5774 5775 5776
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5777 5778
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5779 5780
}

5781
/*
5782 5783
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5784
 */
5785
void __init setup_per_cpu_pageset(void)
5786
{
5787
	struct pglist_data *pgdat;
5788
	struct zone *zone;
5789

5790 5791
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5792 5793 5794 5795

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5796 5797
}

5798
static __meminit void zone_pcp_init(struct zone *zone)
5799
{
5800 5801 5802 5803 5804 5805
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5806

5807
	if (populated_zone(zone))
5808 5809 5810
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5811 5812
}

5813
void __meminit init_currently_empty_zone(struct zone *zone,
5814
					unsigned long zone_start_pfn,
5815
					unsigned long size)
5816 5817
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5818

5819 5820 5821 5822
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5823 5824 5825 5826 5827 5828
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5829
	zone_init_free_lists(zone);
5830
	zone->initialized = 1;
5831 5832
}

T
Tejun Heo 已提交
5833
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5834
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5835

5836 5837 5838
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5839 5840
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5841
{
5842
	unsigned long start_pfn, end_pfn;
5843
	int nid;
5844

5845 5846
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5847

5848 5849
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5850 5851 5852
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5853 5854 5855
	}

	return nid;
5856 5857 5858 5859
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5860
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5861
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5862
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5863
 *
5864 5865 5866
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5867
 */
5868
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5869
{
5870 5871
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5872

5873 5874 5875
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5876

5877
		if (start_pfn < end_pfn)
5878 5879 5880
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5881 5882 5883
	}
}

5884 5885
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5886
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5887
 *
5888 5889
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5890 5891 5892
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5893 5894
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5895

5896 5897
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5898 5899 5900 5901
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5902 5903 5904
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5905 5906
 *
 * It returns the start and end page frame of a node based on information
5907
 * provided by memblock_set_node(). If called for a node
5908
 * with no available memory, a warning is printed and the start and end
5909
 * PFNs will be 0.
5910
 */
5911
void __meminit get_pfn_range_for_nid(unsigned int nid,
5912 5913
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5914
	unsigned long this_start_pfn, this_end_pfn;
5915
	int i;
5916

5917 5918 5919
	*start_pfn = -1UL;
	*end_pfn = 0;

5920 5921 5922
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5923 5924
	}

5925
	if (*start_pfn == -1UL)
5926 5927 5928
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5929 5930 5931 5932 5933
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5934
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5952
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5953 5954 5955 5956 5957 5958 5959
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5960
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5975 5976 5977 5978 5979 5980
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5981 5982 5983 5984 5985 5986
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5987 5988 5989 5990
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5991
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5992
					unsigned long zone_type,
5993 5994
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5995 5996
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5997 5998
					unsigned long *ignored)
{
5999
	/* When hotadd a new node from cpu_up(), the node should be empty */
6000 6001 6002
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6003
	/* Get the start and end of the zone */
6004 6005
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6006 6007
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6008
				zone_start_pfn, zone_end_pfn);
6009 6010

	/* Check that this node has pages within the zone's required range */
6011
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6012 6013 6014
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6015 6016
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6017 6018

	/* Return the spanned pages */
6019
	return *zone_end_pfn - *zone_start_pfn;
6020 6021 6022 6023
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6024
 * then all holes in the requested range will be accounted for.
6025
 */
6026
unsigned long __meminit __absent_pages_in_range(int nid,
6027 6028 6029
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6030 6031 6032
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6033

6034 6035 6036 6037
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6038
	}
6039
	return nr_absent;
6040 6041 6042 6043 6044 6045 6046
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6047
 * It returns the number of pages frames in memory holes within a range.
6048 6049 6050 6051 6052 6053 6054 6055
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6056
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6057
					unsigned long zone_type,
6058 6059
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6060 6061
					unsigned long *ignored)
{
6062 6063
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6064
	unsigned long zone_start_pfn, zone_end_pfn;
6065
	unsigned long nr_absent;
6066

6067
	/* When hotadd a new node from cpu_up(), the node should be empty */
6068 6069 6070
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6071 6072
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6073

M
Mel Gorman 已提交
6074 6075 6076
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6077 6078 6079 6080 6081 6082 6083
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6101 6102 6103 6104
		}
	}

	return nr_absent;
6105
}
6106

T
Tejun Heo 已提交
6107
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6108
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6109
					unsigned long zone_type,
6110 6111
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6112 6113
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6114 6115
					unsigned long *zones_size)
{
6116 6117 6118 6119 6120 6121 6122 6123
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6124 6125 6126
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6127
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6128
						unsigned long zone_type,
6129 6130
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6131 6132 6133 6134 6135 6136 6137
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6138

T
Tejun Heo 已提交
6139
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6140

6141
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6142 6143 6144 6145
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6146
{
6147
	unsigned long realtotalpages = 0, totalpages = 0;
6148 6149
	enum zone_type i;

6150 6151
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6152
		unsigned long zone_start_pfn, zone_end_pfn;
6153
		unsigned long size, real_size;
6154

6155 6156 6157
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6158 6159
						  &zone_start_pfn,
						  &zone_end_pfn,
6160 6161
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6162 6163
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6164 6165 6166 6167
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6168 6169 6170 6171 6172 6173 6174 6175
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6176 6177 6178 6179 6180
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6181 6182 6183
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6184 6185
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6186 6187 6188
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6189
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6190 6191 6192
{
	unsigned long usemapsize;

6193
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6194 6195
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6196 6197 6198 6199 6200 6201
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6202
static void __ref setup_usemap(struct pglist_data *pgdat,
6203 6204 6205
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6206
{
6207
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6208
	zone->pageblock_flags = NULL;
6209
	if (usemapsize)
6210
		zone->pageblock_flags =
6211
			memblock_alloc_node_nopanic(usemapsize,
6212
							 pgdat->node_id);
6213 6214
}
#else
6215 6216
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6217 6218
#endif /* CONFIG_SPARSEMEM */

6219
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6220

6221
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6222
void __init set_pageblock_order(void)
6223
{
6224 6225
	unsigned int order;

6226 6227 6228 6229
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6230 6231 6232 6233 6234
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6235 6236
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6237 6238
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6239 6240 6241 6242 6243
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6244 6245
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6246 6247 6248
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6249
 */
6250
void __init set_pageblock_order(void)
6251 6252
{
}
6253 6254 6255

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6256
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6257
						unsigned long present_pages)
6258 6259 6260 6261 6262 6263 6264 6265
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6266
	 * populated regions may not be naturally aligned on page boundary.
6267 6268 6269 6270 6271 6272 6273 6274 6275
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6296
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6297
{
6298
	pgdat_resize_init(pgdat);
6299 6300 6301 6302

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6303
	init_waitqueue_head(&pgdat->kswapd_wait);
6304
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6305

6306
	pgdat_page_ext_init(pgdat);
6307
	spin_lock_init(&pgdat->lru_lock);
6308
	lruvec_init(node_lruvec(pgdat));
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6355

6356
	pgdat_init_internals(pgdat);
6357 6358
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6359 6360
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6361
		unsigned long size, freesize, memmap_pages;
6362
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6363

6364
		size = zone->spanned_pages;
6365
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6366

6367
		/*
6368
		 * Adjust freesize so that it accounts for how much memory
6369 6370 6371
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6372
		memmap_pages = calc_memmap_size(size, freesize);
6373 6374 6375 6376 6377 6378 6379 6380
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6381
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6382 6383
					zone_names[j], memmap_pages, freesize);
		}
6384

6385
		/* Account for reserved pages */
6386 6387
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6388
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6389
					zone_names[0], dma_reserve);
6390 6391
		}

6392
		if (!is_highmem_idx(j))
6393
			nr_kernel_pages += freesize;
6394 6395 6396
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6397
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6398

6399 6400 6401 6402 6403
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6404
		zone_init_internals(zone, j, nid, freesize);
6405

6406
		if (!size)
L
Linus Torvalds 已提交
6407 6408
			continue;

6409
		set_pageblock_order();
6410 6411
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6412
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6413 6414 6415
	}
}

6416
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6417
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6418
{
6419
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6420 6421
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6422 6423 6424 6425
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6426 6427
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6428 6429
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6430
		unsigned long size, end;
A
Andy Whitcroft 已提交
6431 6432
		struct page *map;

6433 6434 6435 6436 6437
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6438
		end = pgdat_end_pfn(pgdat);
6439 6440
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6441
		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6442
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6443
	}
6444 6445 6446
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6447
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6448 6449 6450
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6451
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6452
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6453
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6454
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6455
			mem_map -= offset;
T
Tejun Heo 已提交
6456
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457
	}
L
Linus Torvalds 已提交
6458 6459
#endif
}
6460 6461 6462
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6463

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6479
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6480 6481
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6482
{
6483
	pg_data_t *pgdat = NODE_DATA(nid);
6484 6485
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6486

6487
	/* pg_data_t should be reset to zero when it's allocated */
6488
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6489

L
Linus Torvalds 已提交
6490 6491
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6492
	pgdat->per_cpu_nodestats = NULL;
6493 6494
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6495
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6496 6497
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6498 6499
#else
	start_pfn = node_start_pfn;
6500 6501 6502
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6503 6504

	alloc_node_mem_map(pgdat);
6505
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6506

6507
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6508 6509
}

M
Mike Rapoport 已提交
6510
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6533 6534 6535 6536 6537 6538
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6539 6540 6541 6542 6543
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6544
 */
6545
void __init zero_resv_unavail(void)
6546 6547 6548
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6549
	phys_addr_t next = 0;
6550 6551

	/*
6552
	 * Loop through unavailable ranges not covered by memblock.memory.
6553 6554
	 */
	pgcnt = 0;
6555 6556
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6557 6558
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6559 6560
		next = end;
	}
6561
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6562

6563 6564 6565 6566 6567
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6568
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6569
}
M
Mike Rapoport 已提交
6570
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6571

T
Tejun Heo 已提交
6572
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6573 6574 6575 6576 6577

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6578
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6579
{
6580
	unsigned int highest;
M
Miklos Szeredi 已提交
6581

6582
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6583 6584 6585 6586
	nr_node_ids = highest + 1;
}
#endif

6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6609
	unsigned long start, end, mask;
6610
	int last_nid = -1;
6611
	int i, nid;
6612

6613
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6637
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6638
static unsigned long __init find_min_pfn_for_node(int nid)
6639
{
6640
	unsigned long min_pfn = ULONG_MAX;
6641 6642
	unsigned long start_pfn;
	int i;
6643

6644 6645
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6646

6647
	if (min_pfn == ULONG_MAX) {
6648
		pr_warn("Could not find start_pfn for node %d\n", nid);
6649 6650 6651 6652
		return 0;
	}

	return min_pfn;
6653 6654 6655 6656 6657 6658
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6659
 * memblock_set_node().
6660 6661 6662 6663 6664 6665
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6666 6667 6668
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6669
 * Populate N_MEMORY for calculating usable_nodes.
6670
 */
A
Adrian Bunk 已提交
6671
static unsigned long __init early_calculate_totalpages(void)
6672 6673
{
	unsigned long totalpages = 0;
6674 6675 6676 6677 6678
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6679

6680 6681
		totalpages += pages;
		if (pages)
6682
			node_set_state(nid, N_MEMORY);
6683
	}
6684
	return totalpages;
6685 6686
}

M
Mel Gorman 已提交
6687 6688 6689 6690 6691 6692
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6693
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6694 6695 6696 6697
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6698
	/* save the state before borrow the nodemask */
6699
	nodemask_t saved_node_state = node_states[N_MEMORY];
6700
	unsigned long totalpages = early_calculate_totalpages();
6701
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6702
	struct memblock_region *r;
6703 6704 6705 6706 6707 6708 6709 6710 6711

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6712 6713
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6714 6715
				continue;

E
Emil Medve 已提交
6716
			nid = r->nid;
6717

E
Emil Medve 已提交
6718
			usable_startpfn = PFN_DOWN(r->base);
6719 6720 6721 6722 6723 6724 6725
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6726

6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6757
	/*
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6785
		required_movablecore = min(totalpages, required_movablecore);
6786 6787 6788 6789 6790
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6791 6792 6793 6794 6795
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6796
		goto out;
M
Mel Gorman 已提交
6797 6798 6799 6800 6801 6802 6803

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6804
	for_each_node_state(nid, N_MEMORY) {
6805 6806
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6823
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6824 6825
			unsigned long size_pages;

6826
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6869
			 * satisfied
M
Mel Gorman 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6883
	 * satisfied
M
Mel Gorman 已提交
6884 6885 6886 6887 6888
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6889
out2:
M
Mel Gorman 已提交
6890 6891 6892 6893
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6894

6895
out:
6896
	/* restore the node_state */
6897
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6898 6899
}

6900 6901
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6902 6903 6904
{
	enum zone_type zone_type;

6905
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6906
		struct zone *zone = &pgdat->node_zones[zone_type];
6907
		if (populated_zone(zone)) {
6908 6909 6910
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
6911
				node_set_state(nid, N_NORMAL_MEMORY);
6912 6913
			break;
		}
6914 6915 6916
	}
}

6917 6918
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6919
 * @max_zone_pfn: an array of max PFNs for each zone
6920 6921
 *
 * This will call free_area_init_node() for each active node in the system.
6922
 * Using the page ranges provided by memblock_set_node(), the size of each
6923 6924 6925 6926 6927 6928 6929 6930 6931
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6932 6933
	unsigned long start_pfn, end_pfn;
	int i, nid;
6934

6935 6936 6937 6938 6939
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6940 6941 6942 6943

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6944 6945
		if (i == ZONE_MOVABLE)
			continue;
6946 6947 6948 6949 6950 6951

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6952
	}
M
Mel Gorman 已提交
6953 6954 6955

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6956
	find_zone_movable_pfns_for_nodes();
6957 6958

	/* Print out the zone ranges */
6959
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6960 6961 6962
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6963
		pr_info("  %-8s ", zone_names[i]);
6964 6965
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6966
			pr_cont("empty\n");
6967
		else
6968 6969 6970 6971
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6972
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6973 6974 6975
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6976
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6977 6978
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6979 6980
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6981
	}
6982

6983
	/* Print out the early node map */
6984
	pr_info("Early memory node ranges\n");
6985
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6986 6987 6988
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6989 6990

	/* Initialise every node */
6991
	mminit_verify_pageflags_layout();
6992
	setup_nr_node_ids();
6993
	zero_resv_unavail();
6994 6995
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6996
		free_area_init_node(nid, NULL,
6997
				find_min_pfn_for_node(nid), NULL);
6998 6999 7000

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7001 7002
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7003 7004
	}
}
M
Mel Gorman 已提交
7005

7006 7007
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7008 7009
{
	unsigned long long coremem;
7010 7011
	char *endptr;

M
Mel Gorman 已提交
7012 7013 7014
	if (!p)
		return -EINVAL;

7015 7016 7017 7018 7019
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7020

7021 7022 7023 7024 7025
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7026

7027 7028 7029
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7030 7031
	return 0;
}
M
Mel Gorman 已提交
7032

7033 7034 7035 7036 7037 7038
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7039 7040 7041 7042 7043 7044
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7045 7046
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7047 7048 7049 7050 7051 7052 7053 7054
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7055 7056
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7057 7058
}

M
Mel Gorman 已提交
7059
early_param("kernelcore", cmdline_parse_kernelcore);
7060
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7061

T
Tejun Heo 已提交
7062
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7063

7064 7065 7066 7067 7068
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7069 7070 7071 7072
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7073 7074
	spin_unlock(&managed_page_count_lock);
}
7075
EXPORT_SYMBOL(adjust_managed_page_count);
7076

7077
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7078
{
7079 7080
	void *pos;
	unsigned long pages = 0;
7081

7082 7083 7084
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7096
		if ((unsigned int)poison <= 0xFF)
7097 7098 7099
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7100 7101 7102
	}

	if (pages && s)
7103 7104
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7105 7106 7107

	return pages;
}
7108
EXPORT_SYMBOL(free_reserved_area);
7109

7110 7111 7112 7113 7114
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7115
	page_zone(page)->managed_pages++;
7116 7117 7118 7119
	totalhigh_pages++;
}
#endif

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7142 7143 7144 7145
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7156
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7157
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7158
		", %luK highmem"
7159
#endif
J
Joe Perches 已提交
7160 7161 7162 7163 7164 7165 7166
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7167
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7168
		totalhigh_pages << (PAGE_SHIFT - 10),
7169
#endif
J
Joe Perches 已提交
7170
		str ? ", " : "", str ? str : "");
7171 7172
}

7173
/**
7174 7175
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7176
 *
7177
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7178 7179
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7180 7181 7182
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7183 7184 7185 7186 7187 7188
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7189 7190
void __init free_area_init(unsigned long *zones_size)
{
7191
	zero_resv_unavail();
7192
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7193 7194 7195
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7196
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7197 7198
{

7199 7200
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7201

7202 7203 7204 7205 7206 7207 7208
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7209

7210 7211 7212 7213 7214 7215 7216 7217 7218
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7219 7220 7221 7222
}

void __init page_alloc_init(void)
{
7223 7224 7225 7226 7227 7228
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7229 7230
}

7231
/*
7232
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7233 7234 7235 7236 7237 7238
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7239
	enum zone_type i, j;
7240 7241

	for_each_online_pgdat(pgdat) {
7242 7243 7244

		pgdat->totalreserve_pages = 0;

7245 7246
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7247
			long max = 0;
7248 7249 7250 7251 7252 7253 7254

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7255 7256
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7257

7258 7259
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7260

7261
			pgdat->totalreserve_pages += max;
7262

7263 7264 7265 7266 7267 7268
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7269 7270
/*
 * setup_per_zone_lowmem_reserve - called whenever
7271
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7272 7273 7274 7275 7276 7277
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7278
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7279

7280
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7281 7282
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7283
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7284 7285 7286

			zone->lowmem_reserve[j] = 0;

7287 7288
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7289 7290
				struct zone *lower_zone;

7291
				idx--;
L
Linus Torvalds 已提交
7292
				lower_zone = pgdat->node_zones + idx;
7293 7294 7295 7296 7297 7298 7299 7300

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7301
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7302 7303 7304
			}
		}
	}
7305 7306 7307

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7308 7309
}

7310
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7320
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7321 7322 7323
	}

	for_each_zone(zone) {
7324 7325
		u64 tmp;

7326
		spin_lock_irqsave(&zone->lock, flags);
7327
		tmp = (u64)pages_min * zone->managed_pages;
7328
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7329 7330
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7331 7332 7333 7334
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7335
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7336
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7337
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7338
			 */
7339
			unsigned long min_pages;
L
Linus Torvalds 已提交
7340

7341
			min_pages = zone->managed_pages / 1024;
7342
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7343
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7344
		} else {
N
Nick Piggin 已提交
7345 7346
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7347 7348
			 * proportionate to the zone's size.
			 */
7349
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7350 7351
		}

7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7363

7364
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7365
	}
7366 7367 7368

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7369 7370
}

7371 7372 7373 7374 7375 7376 7377 7378 7379
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7380 7381 7382
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7383
	__setup_per_zone_wmarks();
7384
	spin_unlock(&lock);
7385 7386
}

L
Linus Torvalds 已提交
7387 7388 7389 7390 7391 7392 7393
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7394
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7411
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7412 7413
{
	unsigned long lowmem_kbytes;
7414
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7415 7416

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7429
	setup_per_zone_wmarks();
7430
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7431
	setup_per_zone_lowmem_reserve();
7432 7433 7434 7435 7436 7437

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7438 7439
	return 0;
}
7440
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7441 7442

/*
7443
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7444 7445 7446
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7447
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7448
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7449
{
7450 7451 7452 7453 7454 7455
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7456 7457
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7458
		setup_per_zone_wmarks();
7459
	}
L
Linus Torvalds 已提交
7460 7461 7462
	return 0;
}

7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7478
#ifdef CONFIG_NUMA
7479
static void setup_min_unmapped_ratio(void)
7480
{
7481
	pg_data_t *pgdat;
7482 7483
	struct zone *zone;

7484
	for_each_online_pgdat(pgdat)
7485
		pgdat->min_unmapped_pages = 0;
7486

7487
	for_each_zone(zone)
7488
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7489 7490
				sysctl_min_unmapped_ratio) / 100;
}
7491

7492 7493

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7494
	void __user *buffer, size_t *length, loff_t *ppos)
7495 7496 7497
{
	int rc;

7498
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7499 7500 7501
	if (rc)
		return rc;

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7512 7513 7514
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7515
	for_each_zone(zone)
7516
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7517
				sysctl_min_slab_ratio) / 100;
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7531 7532
	return 0;
}
7533 7534
#endif

L
Linus Torvalds 已提交
7535 7536 7537 7538 7539 7540
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7541
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7542 7543
 * if in function of the boot time zone sizes.
 */
7544
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7545
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7546
{
7547
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7548 7549 7550 7551
	setup_per_zone_lowmem_reserve();
	return 0;
}

7552 7553
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7554 7555
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7556
 */
7557
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7558
	void __user *buffer, size_t *length, loff_t *ppos)
7559 7560
{
	struct zone *zone;
7561
	int old_percpu_pagelist_fraction;
7562 7563
	int ret;

7564 7565 7566
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7567
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7582

7583
	for_each_populated_zone(zone) {
7584 7585
		unsigned int cpu;

7586
		for_each_possible_cpu(cpu)
7587 7588
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7589
	}
7590
out:
7591
	mutex_unlock(&pcp_batch_high_lock);
7592
	return ret;
7593 7594
}

7595
#ifdef CONFIG_NUMA
7596
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7647 7648
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7649
{
7650
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7651 7652
	unsigned long log2qty, size;
	void *table = NULL;
7653
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7654 7655 7656 7657

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7658
		numentries = nr_kernel_pages;
7659
		numentries -= arch_reserved_kernel_pages();
7660 7661 7662 7663

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7664

P
Pavel Tatashin 已提交
7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7675 7676 7677 7678 7679
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7680 7681

		/* Make sure we've got at least a 0-order allocation.. */
7682 7683 7684 7685 7686 7687 7688 7689
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7690
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7691
	}
7692
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7693 7694 7695 7696 7697 7698

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7699
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7700

7701 7702
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7703 7704 7705
	if (numentries > max)
		numentries = max;

7706
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7707

7708
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7709 7710
	do {
		size = bucketsize << log2qty;
7711 7712
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7713
				table = memblock_alloc_nopanic(size, 0);
7714
			else
7715
				table = memblock_alloc_raw(size, 0);
7716
		} else if (hashdist) {
7717
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7718
		} else {
7719 7720
			/*
			 * If bucketsize is not a power-of-two, we may free
7721 7722
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7723
			 */
7724
			if (get_order(size) < MAX_ORDER) {
7725 7726
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7727
			}
L
Linus Torvalds 已提交
7728 7729 7730 7731 7732 7733
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7734 7735
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7736 7737 7738 7739 7740 7741 7742 7743

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7744

K
KAMEZAWA Hiroyuki 已提交
7745
/*
7746 7747 7748
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7749
 * PageLRU check without isolation or lru_lock could race so that
7750 7751 7752
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7753
 */
7754
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7755
			 int migratetype,
7756
			 bool skip_hwpoisoned_pages)
7757 7758
{
	unsigned long pfn, iter, found;
7759

7760
	/*
7761 7762 7763 7764 7765
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7766 7767
	 */

7768 7769 7770 7771 7772 7773 7774 7775 7776
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7777 7778 7779 7780
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7781
		if (!pfn_valid_within(check))
7782
			continue;
7783

7784
		page = pfn_to_page(check);
7785

7786
		if (PageReserved(page))
7787
			goto unmovable;
7788

7789 7790 7791 7792 7793 7794
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7795 7796 7797 7798

			if (!hugepage_migration_supported(page_hstate(page)))
				goto unmovable;

7799 7800 7801 7802
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7803 7804 7805 7806
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7807
		 * because their page->_refcount is zero at all time.
7808
		 */
7809
		if (!page_ref_count(page)) {
7810 7811 7812 7813
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7814

7815 7816 7817 7818 7819 7820 7821
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7822 7823 7824
		if (__PageMovable(page))
			continue;

7825 7826 7827
		if (!PageLRU(page))
			found++;
		/*
7828 7829 7830
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7841
			goto unmovable;
7842
	}
7843
	return false;
7844 7845 7846
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7847 7848
}

7849
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7864 7865
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7866 7867
{
	/* This function is based on compact_zone() from compaction.c. */
7868
	unsigned long nr_reclaimed;
7869 7870 7871 7872
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7873
	migrate_prep();
7874

7875
	while (pfn < end || !list_empty(&cc->migratepages)) {
7876 7877 7878 7879 7880
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7881 7882
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7883
			pfn = isolate_migratepages_range(cc, pfn, end);
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7894 7895 7896
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7897

7898
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7899
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7900
	}
7901 7902 7903 7904 7905
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7906 7907 7908 7909 7910 7911
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7912 7913 7914 7915
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7916
 * @gfp_mask:	GFP mask to use during compaction
7917 7918
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7919
 * aligned.  The PFN range must belong to a single zone.
7920
 *
7921 7922 7923
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7924 7925 7926 7927 7928
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7929
int alloc_contig_range(unsigned long start, unsigned long end,
7930
		       unsigned migratetype, gfp_t gfp_mask)
7931 7932
{
	unsigned long outer_start, outer_end;
7933 7934
	unsigned int order;
	int ret = 0;
7935

7936 7937 7938 7939
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7940
		.mode = MIGRATE_SYNC,
7941
		.ignore_skip_hint = true,
7942
		.no_set_skip_hint = true,
7943
		.gfp_mask = current_gfp_context(gfp_mask),
7944 7945 7946
	};
	INIT_LIST_HEAD(&cc.migratepages);

7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7972 7973
				       pfn_max_align_up(end), migratetype,
				       false);
7974
	if (ret)
7975
		return ret;
7976

7977 7978
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7979 7980 7981 7982 7983 7984 7985
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7986
	 */
7987
	ret = __alloc_contig_migrate_range(&cc, start, end);
7988
	if (ret && ret != -EBUSY)
7989
		goto done;
7990
	ret =0;
7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8010
	drain_all_pages(cc.zone);
8011 8012 8013 8014 8015

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8016 8017
			outer_start = start;
			break;
8018 8019 8020 8021
		}
		outer_start &= ~0UL << order;
	}

8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8035
	/* Make sure the range is really isolated. */
8036
	if (test_pages_isolated(outer_start, end, false)) {
8037
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8038
			__func__, outer_start, end);
8039 8040 8041 8042
		ret = -EBUSY;
		goto done;
	}

8043
	/* Grab isolated pages from freelists. */
8044
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8058
				pfn_max_align_up(end), migratetype);
8059 8060 8061 8062 8063
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8064 8065 8066 8067 8068 8069 8070 8071 8072
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8073 8074 8075
}
#endif

8076
#ifdef CONFIG_MEMORY_HOTPLUG
8077 8078 8079 8080
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8081 8082
void __meminit zone_pcp_update(struct zone *zone)
{
8083
	unsigned cpu;
8084
	mutex_lock(&pcp_batch_high_lock);
8085
	for_each_possible_cpu(cpu)
8086 8087
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8088
	mutex_unlock(&pcp_batch_high_lock);
8089 8090 8091
}
#endif

8092 8093 8094
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8095 8096
	int cpu;
	struct per_cpu_pageset *pset;
8097 8098 8099 8100

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8101 8102 8103 8104
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8105 8106 8107 8108 8109 8110
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8111
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8112
/*
8113 8114
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8115 8116 8117 8118 8119 8120
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8121
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8122 8123 8124 8125 8126 8127 8128 8129
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8130
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8131 8132 8133 8134 8135 8136 8137 8138 8139
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8150 8151 8152 8153
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8154 8155
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8167 8168 8169 8170 8171 8172

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8173
	unsigned int order;
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif