page_alloc.c 230.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269
int watermark_boost_factor __read_mostly = 15000;
270
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
271

272 273 274
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
275

T
Tejun Heo 已提交
276
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 278
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
279
static unsigned long required_kernelcore __initdata;
280
static unsigned long required_kernelcore_percent __initdata;
281
static unsigned long required_movablecore __initdata;
282
static unsigned long required_movablecore_percent __initdata;
283
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
284
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
285 286 287 288 289

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
290

M
Miklos Szeredi 已提交
291 292
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
293
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
294
EXPORT_SYMBOL(nr_node_ids);
295
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
296 297
#endif

298 299
int page_group_by_mobility_disabled __read_mostly;

300
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

327
/* Returns true if the struct page for the pfn is uninitialised */
328
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329
{
330 331 332
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
333 334 335 336 337 338
		return true;

	return false;
}

/*
339
 * Returns true when the remaining initialisation should be deferred until
340 341
 * later in the boot cycle when it can be parallelised.
 */
342 343
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344
{
345 346 347 348 349 350 351 352 353 354 355
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

356
	/* Always populate low zones for address-constrained allocations */
357
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
358
		return false;
359 360 361 362 363

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
364
	nr_initialised++;
365
	if ((nr_initialised > PAGES_PER_SECTION) &&
366 367 368
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
369
	}
370
	return false;
371 372
}
#else
373 374
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

375 376 377 378 379
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

380
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
381
{
382
	return false;
383 384 385
}
#endif

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
466
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
487

488
void set_pageblock_migratetype(struct page *page, int migratetype)
489
{
490 491
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
492 493
		migratetype = MIGRATE_UNMOVABLE;

494 495 496 497
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
498
#ifdef CONFIG_DEBUG_VM
499
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
500
{
501 502 503
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
504
	unsigned long sp, start_pfn;
505

506 507
	do {
		seq = zone_span_seqbegin(zone);
508 509
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
510
		if (!zone_spans_pfn(zone, pfn))
511 512 513
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

514
	if (ret)
515 516 517
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
518

519
	return ret;
520 521 522 523
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
524
	if (!pfn_valid_within(page_to_pfn(page)))
525
		return 0;
L
Linus Torvalds 已提交
526
	if (zone != page_zone(page))
527 528 529 530 531 532 533
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
534
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 536
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
537
		return 1;
538 539 540
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
541 542
	return 0;
}
N
Nick Piggin 已提交
543
#else
544
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
545 546 547 548 549
{
	return 0;
}
#endif

550 551
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
552
{
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
567
			pr_alert(
568
			      "BUG: Bad page state: %lu messages suppressed\n",
569 570 571 572 573 574 575 576
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

577
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578
		current->comm, page_to_pfn(page));
579 580 581 582 583
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
584
	dump_page_owner(page);
585

586
	print_modules();
L
Linus Torvalds 已提交
587
	dump_stack();
588
out:
589
	/* Leave bad fields for debug, except PageBuddy could make trouble */
590
	page_mapcount_reset(page); /* remove PageBuddy */
591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
592 593 594 595 596
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
597
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
598
 *
599 600
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
601
 *
602 603
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
604
 *
605
 * The first tail page's ->compound_order holds the order of allocation.
606
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
607
 */
608

609
void free_compound_page(struct page *page)
610
{
611
	__free_pages_ok(page, compound_order(page));
612 613
}

614
void prep_compound_page(struct page *page, unsigned int order)
615 616 617 618
{
	int i;
	int nr_pages = 1 << order;

619
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 621 622 623
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
624
		set_page_count(p, 0);
625
		p->mapping = TAIL_MAPPING;
626
		set_compound_head(p, page);
627
	}
628
	atomic_set(compound_mapcount_ptr(page), -1);
629 630
}

631 632
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
633 634
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635
EXPORT_SYMBOL(_debug_pagealloc_enabled);
636 637
bool _debug_guardpage_enabled __read_mostly;

638 639 640 641
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
642
	return kstrtobool(buf, &_debug_pagealloc_enabled);
643 644 645
}
early_param("debug_pagealloc", early_debug_pagealloc);

646 647
static bool need_debug_guardpage(void)
{
648 649 650 651
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

652 653 654
	if (!debug_guardpage_minorder())
		return false;

655 656 657 658 659
	return true;
}

static void init_debug_guardpage(void)
{
660 661 662
	if (!debug_pagealloc_enabled())
		return;

663 664 665
	if (!debug_guardpage_minorder())
		return;

666 667 668 669 670 671 672
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
673 674 675 676 677 678

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
679
		pr_err("Bad debug_guardpage_minorder value\n");
680 681 682
		return 0;
	}
	_debug_guardpage_minorder = res;
683
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 685
	return 0;
}
686
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687

688
static inline bool set_page_guard(struct zone *zone, struct page *page,
689
				unsigned int order, int migratetype)
690
{
691 692 693
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
694 695 696 697
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
698 699

	page_ext = lookup_page_ext(page);
700
	if (unlikely(!page_ext))
701
		return false;
702

703 704
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

705 706 707 708
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
709 710

	return true;
711 712
}

713 714
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
715
{
716 717 718 719 720 721
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
722 723 724
	if (unlikely(!page_ext))
		return;

725 726
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

727 728 729
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
730 731
}
#else
732
struct page_ext_operations debug_guardpage_ops;
733 734
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
735 736
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
737 738
#endif

739
static inline void set_page_order(struct page *page, unsigned int order)
740
{
H
Hugh Dickins 已提交
741
	set_page_private(page, order);
742
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
743 744 745 746
}

static inline void rmv_page_order(struct page *page)
{
747
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
748
	set_page_private(page, 0);
L
Linus Torvalds 已提交
749 750 751 752
}

/*
 * This function checks whether a page is free && is the buddy
753
 * we can coalesce a page and its buddy if
754
 * (a) the buddy is not in a hole (check before calling!) &&
755
 * (b) the buddy is in the buddy system &&
756 757
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
758
 *
759 760
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
761
 *
762
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
763
 */
764
static inline int page_is_buddy(struct page *page, struct page *buddy,
765
							unsigned int order)
L
Linus Torvalds 已提交
766
{
767
	if (page_is_guard(buddy) && page_order(buddy) == order) {
768 769 770
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

771 772
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

773 774 775
		return 1;
	}

776
	if (PageBuddy(buddy) && page_order(buddy) == order) {
777 778 779 780 781 782 783 784
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

785 786
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

787
		return 1;
788
	}
789
	return 0;
L
Linus Torvalds 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
805 806
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
807
 * So when we are allocating or freeing one, we can derive the state of the
808 809
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
810
 * If a block is freed, and its buddy is also free, then this
811
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
812
 *
813
 * -- nyc
L
Linus Torvalds 已提交
814 815
 */

N
Nick Piggin 已提交
816
static inline void __free_one_page(struct page *page,
817
		unsigned long pfn,
818 819
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
820
{
821 822
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
823
	struct page *buddy;
824 825 826
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
827

828
	VM_BUG_ON(!zone_is_initialized(zone));
829
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
830

831
	VM_BUG_ON(migratetype == -1);
832
	if (likely(!is_migrate_isolate(migratetype)))
833
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
834

835
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
836
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
837

838
continue_merging:
839
	while (order < max_order - 1) {
840 841
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
842 843 844

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
845
		if (!page_is_buddy(page, buddy, order))
846
			goto done_merging;
847 848 849 850 851
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
852
			clear_page_guard(zone, buddy, order, migratetype);
853 854 855 856 857
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
858 859 860
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
861 862
		order++;
	}
863 864 865 866 867 868 869 870 871 872 873 874
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

875 876
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
877 878 879 880 881 882 883 884 885 886 887 888
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
889
	set_page_order(page, order);
890 891 892 893 894 895 896 897 898

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
899
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
900
		struct page *higher_page, *higher_buddy;
901 902 903 904
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
905 906
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
907 908 909 910 911 912 913 914
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
915 916 917
	zone->free_area[order].nr_free++;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

940
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
941
{
942 943 944 945 946
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
947

948
	if (unlikely(atomic_read(&page->_mapcount) != -1))
949 950 951
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
952
	if (unlikely(page_ref_count(page) != 0))
953
		bad_reason = "nonzero _refcount";
954 955 956 957
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
958 959 960 961
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
962
	bad_page(page, bad_reason, bad_flags);
963 964 965 966
}

static inline int free_pages_check(struct page *page)
{
967
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
968 969 970 971
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
972
	return 1;
L
Linus Torvalds 已提交
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
991
		/* the first tail page: ->mapping may be compound_mapcount() */
992 993 994 995 996 997 998 999
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1000
		 * deferred_list.next -- ignore value.
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1025 1026
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1027
{
1028
	int bad = 0;
1029 1030 1031

	VM_BUG_ON_PAGE(PageTail(page), page);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1043

1044 1045
		if (compound)
			ClearPageDoubleMap(page);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1056
	if (PageMappingFlags(page))
1057
		page->mapping = NULL;
1058
	if (memcg_kmem_enabled() && PageKmemcg(page))
1059
		memcg_kmem_uncharge(page, order);
1060 1061 1062 1063
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1064

1065 1066 1067
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1068 1069 1070

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1071
					   PAGE_SIZE << order);
1072
		debug_check_no_obj_freed(page_address(page),
1073
					   PAGE_SIZE << order);
1074
	}
1075 1076 1077
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1078
	kasan_free_nondeferred_pages(page, order);
1079 1080 1081 1082

	return true;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1099 1100 1101 1102 1103 1104
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1105 1106 1107 1108 1109 1110 1111 1112 1113
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1114
/*
1115
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1116
 * Assumes all pages on list are in same zone, and of same order.
1117
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1118 1119 1120 1121 1122 1123 1124
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1125 1126
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1127
{
1128
	int migratetype = 0;
1129
	int batch_free = 0;
1130
	int prefetch_nr = 0;
1131
	bool isolated_pageblocks;
1132 1133
	struct page *page, *tmp;
	LIST_HEAD(head);
1134

1135
	while (count) {
1136 1137 1138
		struct list_head *list;

		/*
1139 1140 1141 1142 1143
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1144 1145
		 */
		do {
1146
			batch_free++;
1147 1148 1149 1150
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1151

1152 1153
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1154
			batch_free = count;
1155

1156
		do {
1157
			page = list_last_entry(list, struct page, lru);
1158
			/* must delete to avoid corrupting pcp list */
1159
			list_del(&page->lru);
1160
			pcp->count--;
1161

1162 1163 1164
			if (bulkfree_pcp_prepare(page))
				continue;

1165
			list_add_tail(&page->lru, &head);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1178
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1179
	}
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1199
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1200 1201
}

1202 1203
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1204
				unsigned int order,
1205
				int migratetype)
L
Linus Torvalds 已提交
1206
{
1207
	spin_lock(&zone->lock);
1208 1209 1210 1211
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1212
	__free_one_page(page, pfn, zone, order, migratetype);
1213
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1214 1215
}

1216
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1217
				unsigned long zone, int nid)
1218
{
1219
	mm_zero_struct_page(page);
1220 1221 1222 1223
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1224
	page_kasan_tag_reset(page);
1225 1226 1227 1228 1229 1230 1231 1232 1233

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1234
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1235
static void __meminit init_reserved_page(unsigned long pfn)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1252
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1253 1254 1255 1256 1257 1258 1259
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1260 1261 1262 1263 1264 1265
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1266
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1267 1268 1269 1270
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1271 1272 1273 1274 1275
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1276 1277 1278 1279

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1280 1281 1282 1283 1284 1285
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1286 1287
		}
	}
1288 1289
}

1290 1291
static void __free_pages_ok(struct page *page, unsigned int order)
{
1292
	unsigned long flags;
M
Minchan Kim 已提交
1293
	int migratetype;
1294
	unsigned long pfn = page_to_pfn(page);
1295

1296
	if (!free_pages_prepare(page, order, true))
1297 1298
		return;

1299
	migratetype = get_pfnblock_migratetype(page, pfn);
1300 1301
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1302
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1303
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1304 1305
}

1306
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1307
{
1308
	unsigned int nr_pages = 1 << order;
1309
	struct page *p = page;
1310
	unsigned int loop;
1311

1312 1313 1314
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1315 1316
		__ClearPageReserved(p);
		set_page_count(p, 0);
1317
	}
1318 1319
	__ClearPageReserved(p);
	set_page_count(p, 0);
1320

1321
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1322 1323
	set_page_refcounted(page);
	__free_pages(page, order);
1324 1325
}

1326 1327
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1328

1329 1330 1331 1332
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1333
	static DEFINE_SPINLOCK(early_pfn_lock);
1334 1335
	int nid;

1336
	spin_lock(&early_pfn_lock);
1337
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1338
	if (nid < 0)
1339
		nid = first_online_node;
1340 1341 1342
	spin_unlock(&early_pfn_lock);

	return nid;
1343 1344 1345 1346
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1347 1348 1349
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1371 1372 1373
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1374 1375 1376 1377 1378 1379
{
	return true;
}
#endif


1380
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1381 1382 1383 1384
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1385
	return __free_pages_boot_core(page, order);
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1417 1418 1419
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1459
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1460 1461
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1462
{
1463 1464
	struct page *page;
	unsigned long i;
1465

1466
	if (!nr_pages)
1467 1468
		return;

1469 1470
	page = pfn_to_page(pfn);

1471
	/* Free a large naturally-aligned chunk if possible */
1472 1473
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1474
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1475
		__free_pages_boot_core(page, pageblock_order);
1476 1477 1478
		return;
	}

1479 1480 1481
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1482
		__free_pages_boot_core(page, 0);
1483
	}
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1495

1496
/*
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1509
 */
1510 1511 1512
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1513
{
1514 1515 1516 1517 1518 1519 1520 1521
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1533

1534 1535 1536 1537 1538 1539 1540
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1541
			touch_nmi_watchdog();
1542 1543 1544 1545 1546 1547
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1558 1559 1560 1561 1562 1563
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1564 1565 1566
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1567
			continue;
1568
		} else if (!page || !(pfn & nr_pgmask)) {
1569
			page = pfn_to_page(pfn);
1570
			touch_nmi_watchdog();
1571 1572
		} else {
			page++;
1573
		}
1574
		__init_single_page(page, pfn, zid, nid);
1575
		nr_pages++;
1576
	}
1577
	return (nr_pages);
1578 1579
}

1580
/* Initialise remaining memory on a node */
1581
static int __init deferred_init_memmap(void *data)
1582
{
1583 1584
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1585 1586
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1587
	unsigned long spfn, epfn, first_init_pfn, flags;
1588 1589
	phys_addr_t spa, epa;
	int zid;
1590
	struct zone *zone;
1591
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1592
	u64 i;
1593

1594 1595 1596 1597 1598 1599
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1600
	if (first_init_pfn == ULONG_MAX) {
1601
		pgdat_resize_unlock(pgdat, &flags);
1602
		pgdat_init_report_one_done();
1603 1604 1605
		return 0;
	}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1617
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1630 1631 1632
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1633
		deferred_free_pages(nid, zid, spfn, epfn);
1634
	}
1635
	pgdat_resize_unlock(pgdat, &flags);
1636 1637 1638 1639

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1640
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1641
					jiffies_to_msecs(jiffies - start));
1642 1643

	pgdat_init_report_one_done();
1644 1645
	return 0;
}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1750
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1751 1752 1753

void __init page_alloc_init_late(void)
{
1754 1755 1756
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1757 1758
	int nid;

1759 1760
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1761 1762 1763 1764 1765
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1766
	wait_for_completion(&pgdat_init_all_done_comp);
1767

1768 1769 1770 1771 1772 1773
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1774 1775
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1776
#endif
P
Pavel Tatashin 已提交
1777 1778 1779 1780
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1781 1782 1783

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1784 1785
}

1786
#ifdef CONFIG_CMA
1787
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1788 1789 1790 1791 1792 1793 1794 1795
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1796
	} while (++p, --i);
1797 1798

	set_pageblock_migratetype(page, MIGRATE_CMA);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1813
	adjust_managed_page_count(page, pageblock_nr_pages);
1814 1815
}
#endif
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1829
 * -- nyc
L
Linus Torvalds 已提交
1830
 */
N
Nick Piggin 已提交
1831
static inline void expand(struct zone *zone, struct page *page,
1832 1833
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839 1840
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1841
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1842

1843 1844 1845 1846 1847 1848 1849
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1850
			continue;
1851

1852
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1858
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1859
{
1860 1861
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1862

1863
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1864 1865 1866
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1867
	if (unlikely(page_ref_count(page) != 0))
1868
		bad_reason = "nonzero _count";
1869 1870 1871
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1872 1873 1874
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1875
	}
1876 1877 1878 1879
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1880 1881 1882 1883
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1898 1899
}

1900
static inline bool free_pages_prezeroed(void)
1901 1902
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1903
		page_poisoning_enabled();
1904 1905
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1940 1941 1942 1943 1944 1945 1946 1947 1948
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
1949
	kernel_poison_pages(page, 1 << order, 1);
1950 1951 1952
	set_page_owner(page, order, gfp_flags);
}

1953
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1954
							unsigned int alloc_flags)
1955 1956
{
	int i;
1957

1958
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1959

1960
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1961 1962
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1963 1964 1965 1966

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1967
	/*
1968
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1969 1970 1971 1972
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1973 1974 1975 1976
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1977 1978
}

1979 1980 1981 1982
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1983
static __always_inline
1984
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1985 1986 1987
						int migratetype)
{
	unsigned int current_order;
1988
	struct free_area *area;
1989 1990 1991 1992 1993
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1994
		page = list_first_entry_or_null(&area->free_list[migratetype],
1995
							struct page, lru);
1996 1997
		if (!page)
			continue;
1998 1999 2000 2001
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2002
		set_pcppage_migratetype(page, migratetype);
2003 2004 2005 2006 2007 2008 2009
		return page;
	}

	return NULL;
}


2010 2011 2012 2013
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2014
static int fallbacks[MIGRATE_TYPES][4] = {
2015 2016
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2017
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2018
#ifdef CONFIG_CMA
2019
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2020
#endif
2021
#ifdef CONFIG_MEMORY_ISOLATION
2022
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2023
#endif
2024 2025
};

2026
#ifdef CONFIG_CMA
2027
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2028 2029 2030 2031 2032 2033 2034 2035 2036
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2037 2038
/*
 * Move the free pages in a range to the free lists of the requested type.
2039
 * Note that start_page and end_pages are not aligned on a pageblock
2040 2041
 * boundary. If alignment is required, use move_freepages_block()
 */
2042
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2043
			  struct page *start_page, struct page *end_page,
2044
			  int migratetype, int *num_movable)
2045 2046
{
	struct page *page;
2047
	unsigned int order;
2048
	int pages_moved = 0;
2049 2050 2051 2052 2053 2054 2055

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2056
	 * grouping pages by mobility
2057
	 */
2058 2059 2060
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2061 2062 2063 2064 2065 2066 2067
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2068 2069 2070
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2071
		if (!PageBuddy(page)) {
2072 2073 2074 2075 2076 2077 2078 2079 2080
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2081 2082 2083 2084 2085
			page++;
			continue;
		}

		order = page_order(page);
2086 2087
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2088
		page += 1 << order;
2089
		pages_moved += 1 << order;
2090 2091
	}

2092
	return pages_moved;
2093 2094
}

2095
int move_freepages_block(struct zone *zone, struct page *page,
2096
				int migratetype, int *num_movable)
2097 2098 2099 2100
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2101 2102 2103
	if (num_movable)
		*num_movable = 0;

2104
	start_pfn = page_to_pfn(page);
2105
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2106
	start_page = pfn_to_page(start_pfn);
2107 2108
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2109 2110

	/* Do not cross zone boundaries */
2111
	if (!zone_spans_pfn(zone, start_pfn))
2112
		start_page = page;
2113
	if (!zone_spans_pfn(zone, end_pfn))
2114 2115
		return 0;

2116 2117
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2118 2119
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2131
/*
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2142
 */
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2164 2165 2166 2167 2168 2169 2170 2171 2172
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2185 2186 2187 2188 2189 2190
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2191 2192 2193
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2194 2195 2196 2197
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2198 2199
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2200
		unsigned int alloc_flags, int start_type, bool whole_block)
2201
{
2202
	unsigned int current_order = page_order(page);
2203
	struct free_area *area;
2204 2205 2206 2207
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2208

2209 2210 2211 2212
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2213
	if (is_migrate_highatomic(old_block_type))
2214 2215
		goto single_page;

2216 2217 2218
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2219
		goto single_page;
2220 2221
	}

2222 2223 2224 2225 2226 2227 2228
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2229
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2230

2231 2232 2233 2234
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2259
	/* moving whole block can fail due to zone boundary conditions */
2260
	if (!free_pages)
2261
		goto single_page;
2262

2263 2264 2265 2266 2267
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2268 2269
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2270 2271 2272 2273 2274 2275

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2276 2277
}

2278 2279 2280 2281 2282 2283 2284 2285
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2296
		if (fallback_mt == MIGRATE_TYPES)
2297 2298 2299 2300
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2301

2302 2303 2304
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2305 2306 2307 2308 2309
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2310
	}
2311 2312

	return -1;
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2329
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2341 2342
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2343 2344
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2345
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2357 2358 2359
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2360
 */
2361 2362
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2363 2364 2365 2366 2367 2368 2369
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2370
	bool ret;
2371 2372 2373

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2374 2375 2376 2377 2378 2379
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2380 2381 2382 2383 2384 2385
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2386 2387 2388 2389
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2390 2391 2392
				continue;

			/*
2393 2394 2395 2396 2397
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2398
			 */
2399
			if (is_migrate_highatomic_page(page)) {
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2422 2423
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2424 2425 2426 2427
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2428 2429 2430
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2431 2432

	return false;
2433 2434
}

2435 2436 2437 2438 2439
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2440 2441 2442 2443
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2444
 */
2445
static __always_inline bool
2446 2447
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2448
{
2449
	struct free_area *area;
2450
	int current_order;
2451
	int min_order = order;
2452
	struct page *page;
2453 2454
	int fallback_mt;
	bool can_steal;
2455

2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2464 2465 2466 2467 2468
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2469
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2470
				--current_order) {
2471 2472
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2473
				start_migratetype, false, &can_steal);
2474 2475
		if (fallback_mt == -1)
			continue;
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2488

2489 2490
		goto do_steal;
	}
2491

2492
	return false;
2493

2494 2495 2496 2497 2498 2499 2500 2501
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2502 2503
	}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2514 2515
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2516 2517 2518 2519 2520 2521

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2522 2523
}

2524
/*
L
Linus Torvalds 已提交
2525 2526 2527
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2528
static __always_inline struct page *
2529 2530
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2531 2532 2533
{
	struct page *page;

2534
retry:
2535
	page = __rmqueue_smallest(zone, order, migratetype);
2536
	if (unlikely(!page)) {
2537 2538 2539
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2540 2541
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2542
			goto retry;
2543 2544
	}

2545
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2546
	return page;
L
Linus Torvalds 已提交
2547 2548
}

2549
/*
L
Linus Torvalds 已提交
2550 2551 2552 2553
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2554
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2555
			unsigned long count, struct list_head *list,
2556
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2557
{
2558
	int i, alloced = 0;
2559

2560
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2561
	for (i = 0; i < count; ++i) {
2562 2563
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2564
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2565
			break;
2566

2567 2568 2569
		if (unlikely(check_pcp_refill(page)))
			continue;

2570
		/*
2571 2572 2573 2574 2575 2576 2577 2578
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2579
		 */
2580
		list_add_tail(&page->lru, list);
2581
		alloced++;
2582
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2583 2584
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2585
	}
2586 2587 2588 2589 2590 2591 2592

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2593
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2594
	spin_unlock(&zone->lock);
2595
	return alloced;
L
Linus Torvalds 已提交
2596 2597
}

2598
#ifdef CONFIG_NUMA
2599
/*
2600 2601 2602 2603
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2604 2605
 * Note that this function must be called with the thread pinned to
 * a single processor.
2606
 */
2607
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2608 2609
{
	unsigned long flags;
2610
	int to_drain, batch;
2611

2612
	local_irq_save(flags);
2613
	batch = READ_ONCE(pcp->batch);
2614
	to_drain = min(pcp->count, batch);
2615
	if (to_drain > 0)
2616
		free_pcppages_bulk(zone, to_drain, pcp);
2617
	local_irq_restore(flags);
2618 2619 2620
}
#endif

2621
/*
2622
 * Drain pcplists of the indicated processor and zone.
2623 2624 2625 2626 2627
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2628
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2629
{
N
Nick Piggin 已提交
2630
	unsigned long flags;
2631 2632
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2633

2634 2635
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2636

2637
	pcp = &pset->pcp;
2638
	if (pcp->count)
2639 2640 2641
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2642

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2656 2657 2658
	}
}

2659 2660
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2661 2662 2663
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2664
 */
2665
void drain_local_pages(struct zone *zone)
2666
{
2667 2668 2669 2670 2671 2672
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2673 2674
}

2675 2676
static void drain_local_pages_wq(struct work_struct *work)
{
2677 2678 2679 2680
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2681 2682 2683 2684 2685 2686 2687 2688
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2689
	drain_local_pages(drain->zone);
2690
	preempt_enable();
2691 2692
}

2693
/*
2694 2695
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2696 2697
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2698
 * Note that this can be extremely slow as the draining happens in a workqueue.
2699
 */
2700
void drain_all_pages(struct zone *zone)
2701
{
2702 2703 2704 2705 2706 2707 2708 2709
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2710 2711 2712 2713 2714 2715 2716
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2727

2728 2729 2730 2731 2732 2733 2734
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2735 2736
		struct per_cpu_pageset *pcp;
		struct zone *z;
2737
		bool has_pcps = false;
2738 2739

		if (zone) {
2740
			pcp = per_cpu_ptr(zone->pageset, cpu);
2741
			if (pcp->pcp.count)
2742
				has_pcps = true;
2743 2744 2745 2746 2747 2748 2749
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2750 2751
			}
		}
2752

2753 2754 2755 2756 2757
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2758

2759
	for_each_cpu(cpu, &cpus_with_pcps) {
2760 2761 2762 2763 2764
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2765
	}
2766
	for_each_cpu(cpu, &cpus_with_pcps)
2767
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2768 2769

	mutex_unlock(&pcpu_drain_mutex);
2770 2771
}

2772
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2773

2774 2775 2776 2777 2778
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2779 2780
void mark_free_pages(struct zone *zone)
{
2781
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2782
	unsigned long flags;
2783
	unsigned int order, t;
2784
	struct page *page;
L
Linus Torvalds 已提交
2785

2786
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2787 2788 2789
		return;

	spin_lock_irqsave(&zone->lock, flags);
2790

2791
	max_zone_pfn = zone_end_pfn(zone);
2792 2793
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2794
			page = pfn_to_page(pfn);
2795

2796 2797 2798 2799 2800
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2801 2802 2803
			if (page_zone(page) != zone)
				continue;

2804 2805
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2806
		}
L
Linus Torvalds 已提交
2807

2808
	for_each_migratetype_order(order, t) {
2809 2810
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2811
			unsigned long i;
L
Linus Torvalds 已提交
2812

2813
			pfn = page_to_pfn(page);
2814 2815 2816 2817 2818
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2819
				swsusp_set_page_free(pfn_to_page(pfn + i));
2820
			}
2821
		}
2822
	}
L
Linus Torvalds 已提交
2823 2824
	spin_unlock_irqrestore(&zone->lock, flags);
}
2825
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2826

2827
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2828
{
2829
	int migratetype;
L
Linus Torvalds 已提交
2830

2831
	if (!free_pcp_prepare(page))
2832
		return false;
2833

2834
	migratetype = get_pfnblock_migratetype(page, pfn);
2835
	set_pcppage_migratetype(page, migratetype);
2836 2837 2838
	return true;
}

2839
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2840 2841 2842 2843 2844 2845
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2846
	__count_vm_event(PGFREE);
2847

2848 2849 2850
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2851
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2852 2853 2854 2855
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2856
		if (unlikely(is_migrate_isolate(migratetype))) {
2857
			free_one_page(zone, page, pfn, 0, migratetype);
2858
			return;
2859 2860 2861 2862
		}
		migratetype = MIGRATE_MOVABLE;
	}

2863
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2864
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2865
	pcp->count++;
N
Nick Piggin 已提交
2866
	if (pcp->count >= pcp->high) {
2867
		unsigned long batch = READ_ONCE(pcp->batch);
2868
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2869
	}
2870
}
2871

2872 2873 2874
/*
 * Free a 0-order page
 */
2875
void free_unref_page(struct page *page)
2876 2877 2878 2879
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2880
	if (!free_unref_page_prepare(page, pfn))
2881 2882 2883
		return;

	local_irq_save(flags);
2884
	free_unref_page_commit(page, pfn);
2885
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2886 2887
}

2888 2889 2890
/*
 * Free a list of 0-order pages
 */
2891
void free_unref_page_list(struct list_head *list)
2892 2893
{
	struct page *page, *next;
2894
	unsigned long flags, pfn;
2895
	int batch_count = 0;
2896 2897 2898 2899

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2900
		if (!free_unref_page_prepare(page, pfn))
2901 2902 2903
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2904

2905
	local_irq_save(flags);
2906
	list_for_each_entry_safe(page, next, list, lru) {
2907 2908 2909
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2910 2911
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2922
	}
2923
	local_irq_restore(flags);
2924 2925
}

N
Nick Piggin 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2938 2939
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2940

2941
	for (i = 1; i < (1 << order); i++)
2942
		set_page_refcounted(page + i);
2943
	split_page_owner(page, order);
N
Nick Piggin 已提交
2944
}
K
K. Y. Srinivasan 已提交
2945
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2946

2947
int __isolate_free_page(struct page *page, unsigned int order)
2948 2949 2950
{
	unsigned long watermark;
	struct zone *zone;
2951
	int mt;
2952 2953 2954 2955

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2956
	mt = get_pageblock_migratetype(page);
2957

2958
	if (!is_migrate_isolate(mt)) {
2959 2960 2961 2962 2963 2964 2965
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2966
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2967 2968
			return 0;

2969
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2970
	}
2971 2972 2973 2974 2975

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2976

2977 2978 2979 2980
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2981 2982
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2983 2984
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2985
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2986
			    && !is_migrate_highatomic(mt))
2987 2988 2989
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2990 2991
	}

2992

2993
	return 1UL << order;
2994 2995
}

2996 2997 2998 2999 3000
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3001
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3002 3003
{
#ifdef CONFIG_NUMA
3004
	enum numa_stat_item local_stat = NUMA_LOCAL;
3005

3006 3007 3008 3009
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3010
	if (zone_to_nid(z) != numa_node_id())
3011 3012
		local_stat = NUMA_OTHER;

3013
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3014
		__inc_numa_state(z, NUMA_HIT);
3015
	else {
3016 3017
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3018
	}
3019
	__inc_numa_state(z, local_stat);
3020 3021 3022
#endif
}

3023 3024
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3025
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3026
			struct per_cpu_pages *pcp,
3027 3028 3029 3030 3031 3032 3033 3034
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3035
					migratetype, alloc_flags);
3036 3037 3038 3039
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3040
		page = list_first_entry(list, struct page, lru);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3051 3052
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3053 3054 3055 3056
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3057
	unsigned long flags;
3058

3059
	local_irq_save(flags);
3060 3061
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3062
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3063 3064 3065 3066
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3067
	local_irq_restore(flags);
3068 3069 3070
	return page;
}

L
Linus Torvalds 已提交
3071
/*
3072
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3073
 */
3074
static inline
3075
struct page *rmqueue(struct zone *preferred_zone,
3076
			struct zone *zone, unsigned int order,
3077 3078
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3079 3080
{
	unsigned long flags;
3081
	struct page *page;
L
Linus Torvalds 已提交
3082

3083
	if (likely(order == 0)) {
3084
		page = rmqueue_pcplist(preferred_zone, zone, order,
3085
				gfp_flags, migratetype, alloc_flags);
3086 3087
		goto out;
	}
3088

3089 3090 3091 3092 3093 3094
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3095

3096 3097 3098 3099 3100 3101 3102
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3103
		if (!page)
3104
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3105 3106 3107 3108 3109 3110
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3111

3112
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3113
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3114
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3115

3116
out:
3117 3118 3119 3120 3121 3122
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3123
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3124
	return page;
N
Nick Piggin 已提交
3125 3126 3127 3128

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3129 3130
}

3131 3132
#ifdef CONFIG_FAIL_PAGE_ALLOC

3133
static struct {
3134 3135
	struct fault_attr attr;

3136
	bool ignore_gfp_highmem;
3137
	bool ignore_gfp_reclaim;
3138
	u32 min_order;
3139 3140
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3141
	.ignore_gfp_reclaim = true,
3142
	.ignore_gfp_highmem = true,
3143
	.min_order = 1,
3144 3145 3146 3147 3148 3149 3150 3151
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3152
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3153
{
3154
	if (order < fail_page_alloc.min_order)
3155
		return false;
3156
	if (gfp_mask & __GFP_NOFAIL)
3157
		return false;
3158
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3159
		return false;
3160 3161
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3162
		return false;
3163 3164 3165 3166 3167 3168 3169 3170

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3171
	umode_t mode = S_IFREG | 0600;
3172 3173
	struct dentry *dir;

3174 3175 3176 3177
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3178

3179
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3180
				&fail_page_alloc.ignore_gfp_reclaim))
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3191
	debugfs_remove_recursive(dir);
3192

3193
	return -ENOMEM;
3194 3195 3196 3197 3198 3199 3200 3201
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3202
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3203
{
3204
	return false;
3205 3206 3207 3208
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3209 3210 3211 3212 3213 3214
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3215
/*
3216 3217 3218 3219
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3220
 */
3221 3222 3223
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3224
{
3225
	long min = mark;
L
Linus Torvalds 已提交
3226
	int o;
3227
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3228

3229
	/* free_pages may go negative - that's OK */
3230
	free_pages -= (1 << order) - 1;
3231

R
Rohit Seth 已提交
3232
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3233
		min -= min / 2;
3234 3235 3236 3237 3238 3239

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3240
	if (likely(!alloc_harder)) {
3241
		free_pages -= z->nr_reserved_highatomic;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3255

3256 3257 3258 3259 3260 3261
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3262 3263 3264 3265 3266 3267
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3268
		return false;
L
Linus Torvalds 已提交
3269

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3288 3289
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3290
			return true;
3291
		}
3292
#endif
3293 3294 3295
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3296
	}
3297
	return false;
3298 3299
}

3300
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3301
		      int classzone_idx, unsigned int alloc_flags)
3302 3303 3304 3305 3306
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3307 3308 3309 3310
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3311 3312 3313 3314 3315 3316 3317
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3318 3319 3320 3321 3322 3323 3324 3325

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3326
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3327 3328 3329 3330 3331 3332
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3333
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3334
			unsigned long mark, int classzone_idx)
3335 3336 3337 3338 3339 3340
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3341
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3342
								free_pages);
L
Linus Torvalds 已提交
3343 3344
}

3345
#ifdef CONFIG_NUMA
3346 3347
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3348
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3349
				RECLAIM_DISTANCE;
3350
}
3351
#else	/* CONFIG_NUMA */
3352 3353 3354 3355
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3356 3357
#endif	/* CONFIG_NUMA */

3358 3359 3360 3361 3362 3363 3364 3365 3366
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3367
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3368
{
3369 3370 3371 3372 3373 3374
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3375
	if (zone_idx(zone) != ZONE_NORMAL)
3376
		goto out;
3377 3378 3379 3380 3381 3382 3383 3384

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3385
		goto out;
3386

3387 3388 3389
out:
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3390 3391
}

R
Rohit Seth 已提交
3392
/*
3393
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3394 3395 3396
 * a page.
 */
static struct page *
3397 3398
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3399
{
3400
	struct zoneref *z;
3401
	struct zone *zone;
3402
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3403
	bool no_fallback;
3404

3405
retry:
R
Rohit Seth 已提交
3406
	/*
3407
	 * Scan zonelist, looking for a zone with enough free.
3408
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3409
	 */
3410 3411
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3412
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3413
								ac->nodemask) {
3414
		struct page *page;
3415 3416
		unsigned long mark;

3417 3418
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3419
			!__cpuset_zone_allowed(zone, gfp_mask))
3420
				continue;
3421 3422
		/*
		 * When allocating a page cache page for writing, we
3423 3424
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3425
		 * proportional share of globally allowed dirty pages.
3426
		 * The dirty limits take into account the node's
3427 3428 3429 3430 3431
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3432
		 * exceed the per-node dirty limit in the slowpath
3433
		 * (spread_dirty_pages unset) before going into reclaim,
3434
		 * which is important when on a NUMA setup the allowed
3435
		 * nodes are together not big enough to reach the
3436
		 * global limit.  The proper fix for these situations
3437
		 * will require awareness of nodes in the
3438 3439
		 * dirty-throttling and the flusher threads.
		 */
3440 3441 3442 3443 3444 3445 3446 3447 3448
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3466
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3467
		if (!zone_watermark_fast(zone, order, mark,
3468
				       ac_classzone_idx(ac), alloc_flags)) {
3469 3470
			int ret;

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3481 3482 3483 3484 3485
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3486
			if (node_reclaim_mode == 0 ||
3487
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3488 3489
				continue;

3490
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3491
			switch (ret) {
3492
			case NODE_RECLAIM_NOSCAN:
3493
				/* did not scan */
3494
				continue;
3495
			case NODE_RECLAIM_FULL:
3496
				/* scanned but unreclaimable */
3497
				continue;
3498 3499
			default:
				/* did we reclaim enough */
3500
				if (zone_watermark_ok(zone, order, mark,
3501
						ac_classzone_idx(ac), alloc_flags))
3502 3503 3504
					goto try_this_zone;

				continue;
3505
			}
R
Rohit Seth 已提交
3506 3507
		}

3508
try_this_zone:
3509
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3510
				gfp_mask, alloc_flags, ac->migratetype);
3511
		if (page) {
3512
			prep_new_page(page, order, gfp_mask, alloc_flags);
3513 3514 3515 3516 3517 3518 3519 3520

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3521
			return page;
3522 3523 3524 3525 3526 3527 3528 3529
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3530
		}
3531
	}
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3542
	return NULL;
M
Martin Hicks 已提交
3543 3544
}

3545
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3546 3547
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3548
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3549

3550
	if (!__ratelimit(&show_mem_rs))
3551 3552 3553 3554 3555 3556 3557 3558
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3559
		if (tsk_is_oom_victim(current) ||
3560 3561
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3562
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3563 3564
		filter &= ~SHOW_MEM_FILTER_NODES;

3565
	show_mem(filter, nodemask);
3566 3567
}

3568
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3569 3570 3571 3572 3573 3574
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3575
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3576 3577
		return;

3578 3579 3580
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3581
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3582 3583
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3584
	va_end(args);
J
Joe Perches 已提交
3585

3586
	cpuset_print_current_mems_allowed();
3587
	pr_cont("\n");
3588
	dump_stack();
3589
	warn_alloc_show_mem(gfp_mask, nodemask);
3590 3591
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3612 3613
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3614
	const struct alloc_context *ac, unsigned long *did_some_progress)
3615
{
3616 3617 3618
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3619
		.memcg = NULL,
3620 3621 3622
		.gfp_mask = gfp_mask,
		.order = order,
	};
3623 3624
	struct page *page;

3625 3626 3627
	*did_some_progress = 0;

	/*
3628 3629
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3630
	 */
3631
	if (!mutex_trylock(&oom_lock)) {
3632
		*did_some_progress = 1;
3633
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3634 3635
		return NULL;
	}
3636

3637 3638 3639
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3640 3641 3642
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3643
	 */
3644 3645 3646
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3647
	if (page)
3648 3649
		goto out;

3650 3651 3652 3653 3654 3655
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3656 3657 3658 3659 3660 3661 3662 3663
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3682

3683
	/* Exhausted what can be done so it's blame time */
3684
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3685
		*did_some_progress = 1;
3686

3687 3688 3689 3690 3691 3692
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3693 3694
					ALLOC_NO_WATERMARKS, ac);
	}
3695
out:
3696
	mutex_unlock(&oom_lock);
3697 3698 3699
	return page;
}

3700 3701 3702 3703 3704 3705
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3706 3707 3708 3709
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3710
		unsigned int alloc_flags, const struct alloc_context *ac,
3711
		enum compact_priority prio, enum compact_result *compact_result)
3712
{
3713
	struct page *page;
3714
	unsigned long pflags;
3715
	unsigned int noreclaim_flag;
3716 3717

	if (!order)
3718 3719
		return NULL;

3720
	psi_memstall_enter(&pflags);
3721
	noreclaim_flag = memalloc_noreclaim_save();
3722

3723
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3724
									prio);
3725

3726
	memalloc_noreclaim_restore(noreclaim_flag);
3727
	psi_memstall_leave(&pflags);
3728

3729
	if (*compact_result <= COMPACT_INACTIVE)
3730
		return NULL;
3731

3732 3733 3734 3735 3736
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3737

3738
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3739

3740 3741
	if (page) {
		struct zone *zone = page_zone(page);
3742

3743 3744 3745 3746 3747
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3748

3749 3750 3751 3752 3753
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3754

3755
	cond_resched();
3756 3757 3758

	return NULL;
}
3759

3760 3761 3762 3763
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3764
		     int *compaction_retries)
3765 3766
{
	int max_retries = MAX_COMPACT_RETRIES;
3767
	int min_priority;
3768 3769 3770
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3771 3772 3773 3774

	if (!order)
		return false;

3775 3776 3777
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3778 3779 3780 3781 3782
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3783 3784
	if (compaction_failed(compact_result))
		goto check_priority;
3785 3786 3787 3788 3789 3790 3791

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3792 3793 3794 3795
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3796 3797

	/*
3798
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3799 3800 3801 3802 3803 3804 3805 3806
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3807 3808 3809 3810
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3811

3812 3813 3814 3815 3816
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3817 3818
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3819

3820
	if (*compact_priority > min_priority) {
3821 3822
		(*compact_priority)--;
		*compaction_retries = 0;
3823
		ret = true;
3824
	}
3825 3826 3827
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3828
}
3829 3830 3831
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3832
		unsigned int alloc_flags, const struct alloc_context *ac,
3833
		enum compact_priority prio, enum compact_result *compact_result)
3834
{
3835
	*compact_result = COMPACT_SKIPPED;
3836 3837
	return NULL;
}
3838 3839

static inline bool
3840 3841
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3842
		     enum compact_priority *compact_priority,
3843
		     int *compaction_retries)
3844
{
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3863 3864
	return false;
}
3865
#endif /* CONFIG_COMPACTION */
3866

3867
#ifdef CONFIG_LOCKDEP
3868
static struct lockdep_map __fs_reclaim_map =
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3880
	if (current->flags & PF_MEMALLOC)
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3903 3904 3905
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3906
		__fs_reclaim_acquire();
3907 3908 3909 3910 3911 3912
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3913
		__fs_reclaim_release();
3914 3915 3916 3917
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3918 3919
/* Perform direct synchronous page reclaim */
static int
3920 3921
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3922 3923
{
	struct reclaim_state reclaim_state;
3924
	int progress;
3925
	unsigned int noreclaim_flag;
3926
	unsigned long pflags;
3927 3928 3929 3930 3931

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3932
	psi_memstall_enter(&pflags);
3933
	fs_reclaim_acquire(gfp_mask);
3934
	noreclaim_flag = memalloc_noreclaim_save();
3935
	reclaim_state.reclaimed_slab = 0;
3936
	current->reclaim_state = &reclaim_state;
3937

3938 3939
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3940

3941
	current->reclaim_state = NULL;
3942
	memalloc_noreclaim_restore(noreclaim_flag);
3943
	fs_reclaim_release(gfp_mask);
3944
	psi_memstall_leave(&pflags);
3945 3946 3947

	cond_resched();

3948 3949 3950 3951 3952 3953
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3954
		unsigned int alloc_flags, const struct alloc_context *ac,
3955
		unsigned long *did_some_progress)
3956 3957 3958 3959
{
	struct page *page = NULL;
	bool drained = false;

3960
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3961 3962
	if (unlikely(!(*did_some_progress)))
		return NULL;
3963

3964
retry:
3965
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3966 3967 3968

	/*
	 * If an allocation failed after direct reclaim, it could be because
3969 3970
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3971 3972
	 */
	if (!page && !drained) {
3973
		unreserve_highatomic_pageblock(ac, false);
3974
		drain_all_pages(NULL);
3975 3976 3977 3978
		drained = true;
		goto retry;
	}

3979 3980 3981
	return page;
}

3982 3983
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3984 3985 3986
{
	struct zoneref *z;
	struct zone *zone;
3987
	pg_data_t *last_pgdat = NULL;
3988
	enum zone_type high_zoneidx = ac->high_zoneidx;
3989

3990 3991
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3992
		if (last_pgdat != zone->zone_pgdat)
3993
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3994 3995
		last_pgdat = zone->zone_pgdat;
	}
3996 3997
}

3998
static inline unsigned int
3999 4000
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4001
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4002

4003
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4004
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4005

4006 4007 4008 4009
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4010
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4011
	 */
4012
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4013

4014
	if (gfp_mask & __GFP_ATOMIC) {
4015
		/*
4016 4017
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4018
		 */
4019
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4020
			alloc_flags |= ALLOC_HARDER;
4021
		/*
4022
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4023
		 * comment for __cpuset_node_allowed().
4024
		 */
4025
		alloc_flags &= ~ALLOC_CPUSET;
4026
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4027 4028
		alloc_flags |= ALLOC_HARDER;

4029 4030 4031
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4032 4033 4034 4035
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4036 4037 4038
	return alloc_flags;
}

4039
static bool oom_reserves_allowed(struct task_struct *tsk)
4040
{
4041 4042 4043 4044 4045 4046 4047 4048
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4049 4050
		return false;

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4062
	if (gfp_mask & __GFP_MEMALLOC)
4063
		return ALLOC_NO_WATERMARKS;
4064
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4065 4066 4067 4068 4069 4070 4071
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4072

4073 4074 4075 4076 4077 4078
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4079 4080
}

M
Michal Hocko 已提交
4081 4082 4083
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4084 4085 4086 4087
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4088 4089 4090 4091 4092 4093
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4094
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4095 4096 4097
{
	struct zone *zone;
	struct zoneref *z;
4098
	bool ret = false;
M
Michal Hocko 已提交
4099

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4110 4111 4112 4113
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4114 4115
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4116
		return unreserve_highatomic_pageblock(ac, true);
4117
	}
M
Michal Hocko 已提交
4118

4119 4120 4121 4122 4123
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4124 4125 4126 4127
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4128
		unsigned long reclaimable;
4129 4130
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4131

4132 4133
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4134 4135

		/*
4136 4137
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4138
		 */
4139 4140 4141 4142 4143
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4144 4145 4146 4147 4148 4149 4150
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4151
				unsigned long write_pending;
4152

4153 4154
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4155

4156
				if (2 * write_pending > reclaimable) {
4157 4158 4159 4160
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4161

4162 4163
			ret = true;
			goto out;
M
Michal Hocko 已提交
4164 4165 4166
		}
	}

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4180 4181
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4215 4216
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4217
						struct alloc_context *ac)
4218
{
4219
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4220
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4221
	struct page *page = NULL;
4222
	unsigned int alloc_flags;
4223
	unsigned long did_some_progress;
4224
	enum compact_priority compact_priority;
4225
	enum compact_result compact_result;
4226 4227 4228
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4229
	int reserve_flags;
L
Linus Torvalds 已提交
4230

4231 4232 4233 4234 4235 4236 4237 4238
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4239 4240 4241 4242 4243
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4244 4245 4246 4247 4248 4249 4250 4251

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4263
	if (alloc_flags & ALLOC_KSWAPD)
4264
		wake_all_kswapds(order, gfp_mask, ac);
4265 4266 4267 4268 4269 4270 4271 4272 4273

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4274 4275
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4276 4277 4278 4279 4280 4281
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4282
	 */
4283 4284 4285 4286
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4287 4288
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4289
						INIT_COMPACT_PRIORITY,
4290 4291 4292 4293
						&compact_result);
		if (page)
			goto got_pg;

4294 4295 4296 4297
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4298
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4311 4312
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4313
			 * using async compaction.
4314
			 */
4315
			compact_priority = INIT_COMPACT_PRIORITY;
4316 4317
		}
	}
4318

4319
retry:
4320
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4321
	if (alloc_flags & ALLOC_KSWAPD)
4322
		wake_all_kswapds(order, gfp_mask, ac);
4323

4324 4325 4326
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4327

4328
	/*
4329 4330 4331
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4332
	 */
4333
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4334
		ac->nodemask = NULL;
4335 4336 4337 4338
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4339
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4340
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4341 4342
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4343

4344
	/* Caller is not willing to reclaim, we can't balance anything */
4345
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4346 4347
		goto nopage;

4348 4349
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4350 4351
		goto nopage;

4352 4353 4354 4355 4356 4357 4358
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4359
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4360
					compact_priority, &compact_result);
4361 4362
	if (page)
		goto got_pg;
4363

4364 4365
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4366
		goto nopage;
4367

M
Michal Hocko 已提交
4368 4369
	/*
	 * Do not retry costly high order allocations unless they are
4370
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4371
	 */
4372
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4373
		goto nopage;
M
Michal Hocko 已提交
4374 4375

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4376
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4377 4378
		goto retry;

4379 4380 4381 4382 4383 4384 4385
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4386
			should_compact_retry(ac, order, alloc_flags,
4387
				compact_result, &compact_priority,
4388
				&compaction_retries))
4389 4390
		goto retry;

4391 4392 4393

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4394 4395
		goto retry_cpuset;

4396 4397 4398 4399 4400
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4401
	/* Avoid allocations with no watermarks from looping endlessly */
4402 4403
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4404
	     (gfp_mask & __GFP_NOMEMALLOC)))
4405 4406
		goto nopage;

4407
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4408 4409
	if (did_some_progress) {
		no_progress_loops = 0;
4410
		goto retry;
M
Michal Hocko 已提交
4411
	}
4412

L
Linus Torvalds 已提交
4413
nopage:
4414 4415
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4416 4417
		goto retry_cpuset;

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4455 4456 4457 4458
		cond_resched();
		goto retry;
	}
fail:
4459
	warn_alloc(gfp_mask, ac->nodemask,
4460
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4461
got_pg:
4462
	return page;
L
Linus Torvalds 已提交
4463
}
4464

4465
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4466
		int preferred_nid, nodemask_t *nodemask,
4467 4468
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4469
{
4470
	ac->high_zoneidx = gfp_zone(gfp_mask);
4471
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4472 4473
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4474

4475
	if (cpusets_enabled()) {
4476 4477 4478
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4479 4480
		else
			*alloc_flags |= ALLOC_CPUSET;
4481 4482
	}

4483 4484
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4485

4486
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4487 4488

	if (should_fail_alloc_page(gfp_mask, order))
4489
		return false;
4490

4491 4492 4493
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4494 4495
	return true;
}
4496

4497
/* Determine whether to spread dirty pages and what the first usable zone */
4498
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4499
{
4500
	/* Dirty zone balancing only done in the fast path */
4501
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4502

4503 4504 4505 4506 4507
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4508 4509 4510 4511 4512 4513 4514 4515
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4516 4517
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4518 4519 4520
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4521
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4522 4523
	struct alloc_context ac = { };

4524 4525 4526 4527 4528 4529 4530 4531 4532
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4533
	gfp_mask &= gfp_allowed_mask;
4534
	alloc_mask = gfp_mask;
4535
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4536 4537
		return NULL;

4538
	finalise_ac(gfp_mask, &ac);
4539

4540 4541 4542 4543
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4544
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4545

4546
	/* First allocation attempt */
4547
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4548 4549
	if (likely(page))
		goto out;
4550

4551
	/*
4552 4553 4554 4555
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4556
	 */
4557
	alloc_mask = current_gfp_context(gfp_mask);
4558
	ac.spread_dirty_pages = false;
4559

4560 4561 4562 4563
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4564
	if (unlikely(ac.nodemask != nodemask))
4565
		ac.nodemask = nodemask;
4566

4567
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4568

4569
out:
4570 4571 4572 4573
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4574 4575
	}

4576 4577
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4578
	return page;
L
Linus Torvalds 已提交
4579
}
4580
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4581 4582

/*
4583 4584 4585
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4586
 */
H
Harvey Harrison 已提交
4587
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4588
{
4589 4590
	struct page *page;

4591
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4598
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4599
{
4600
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4601 4602 4603
}
EXPORT_SYMBOL(get_zeroed_page);

4604
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4605
{
4606 4607 4608 4609
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4610 4611
}

4612 4613 4614 4615 4616
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4617 4618
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4619
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4620 4621
{
	if (addr != 0) {
N
Nick Piggin 已提交
4622
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4640 4641
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4661
void __page_frag_cache_drain(struct page *page, unsigned int count)
4662 4663 4664
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4665 4666
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4667
}
4668
EXPORT_SYMBOL(__page_frag_cache_drain);
4669

4670 4671
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4672 4673 4674 4675 4676 4677 4678
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4679
		page = __page_frag_cache_refill(nc, gfp_mask);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4690
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4691 4692

		/* reset page count bias and offset to start of new frag */
4693
		nc->pfmemalloc = page_is_pfmemalloc(page);
4694
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4695 4696 4697 4698 4699 4700 4701
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4702
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4703 4704 4705 4706 4707 4708 4709
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4710
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4711 4712

		/* reset page count bias and offset to start of new frag */
4713
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4714 4715 4716 4717 4718 4719 4720 4721
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4722
EXPORT_SYMBOL(page_frag_alloc);
4723 4724 4725 4726

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4727
void page_frag_free(void *addr)
4728 4729 4730
{
	struct page *page = virt_to_head_page(addr);

4731 4732
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4733
}
4734
EXPORT_SYMBOL(page_frag_free);
4735

4736 4737
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4771
	return make_alloc_exact(addr, order, size);
4772 4773 4774
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4775 4776 4777
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4778
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4779 4780 4781 4782 4783 4784
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4785
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4786
{
4787
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4788 4789 4790 4791 4792 4793
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4813 4814 4815 4816 4817 4818 4819
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4820 4821
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4822
 */
4823
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4824
{
4825
	struct zoneref *z;
4826 4827
	struct zone *zone;

4828
	/* Just pick one node, since fallback list is circular */
4829
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4830

4831
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4832

4833
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4834
		unsigned long size = zone_managed_pages(zone);
4835
		unsigned long high = high_wmark_pages(zone);
4836 4837
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842
	}

	return sum;
}

4843 4844 4845 4846 4847
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4848
 */
4849
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4850
{
A
Al Viro 已提交
4851
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4852
}
4853
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4854

4855 4856 4857 4858 4859
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4860
 */
4861
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4862
{
M
Mel Gorman 已提交
4863
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4864
}
4865 4866

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4867
{
4868
	if (IS_ENABLED(CONFIG_NUMA))
4869
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4870 4871
}

4872 4873 4874 4875 4876 4877
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4878
	unsigned long reclaimable;
4879 4880 4881 4882
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4883
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4884 4885

	for_each_zone(zone)
4886
		wmark_low += low_wmark_pages(zone);
4887 4888 4889 4890 4891

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4892
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4904 4905 4906
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4907
	 */
4908 4909 4910
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4911

4912 4913 4914 4915 4916 4917
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4918 4919
void si_meminfo(struct sysinfo *val)
{
4920
	val->totalram = totalram_pages();
4921
	val->sharedram = global_node_page_state(NR_SHMEM);
4922
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4923
	val->bufferram = nr_blockdev_pages();
4924
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
4925 4926 4927 4928 4929 4930 4931 4932 4933
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4934 4935
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4936 4937
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4938 4939
	pg_data_t *pgdat = NODE_DATA(nid);

4940
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4941
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4942
	val->totalram = managed_pages;
4943
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4944
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4945
#ifdef CONFIG_HIGHMEM
4946 4947 4948 4949
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
4950
			managed_highpages += zone_managed_pages(zone);
4951 4952 4953 4954 4955
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4956
#else
4957 4958
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4959
#endif
L
Linus Torvalds 已提交
4960 4961 4962 4963
	val->mem_unit = PAGE_SIZE;
}
#endif

4964
/*
4965 4966
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4967
 */
4968
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4969 4970
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4971
		return false;
4972

4973 4974 4975 4976 4977 4978 4979 4980 4981
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4982 4983
}

L
Linus Torvalds 已提交
4984 4985
#define K(x) ((x) << (PAGE_SHIFT-10))

4986 4987 4988 4989 4990
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4991 4992
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4993 4994 4995
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4996
#ifdef CONFIG_MEMORY_ISOLATION
4997
		[MIGRATE_ISOLATE]	= 'I',
4998
#endif
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5010
	printk(KERN_CONT "(%s) ", tmp);
5011 5012
}

L
Linus Torvalds 已提交
5013 5014 5015 5016
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5017 5018 5019 5020
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5021
 */
5022
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5023
{
5024
	unsigned long free_pcp = 0;
5025
	int cpu;
L
Linus Torvalds 已提交
5026
	struct zone *zone;
M
Mel Gorman 已提交
5027
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5028

5029
	for_each_populated_zone(zone) {
5030
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5031
			continue;
5032

5033 5034
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5035 5036
	}

K
KOSAKI Motohiro 已提交
5037 5038
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5039 5040
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5041
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5042
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5043 5044 5045 5046 5047 5048 5049
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5050 5051 5052
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5053 5054
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5055
		global_node_page_state(NR_FILE_MAPPED),
5056
		global_node_page_state(NR_SHMEM),
5057 5058 5059
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5060
		free_pcp,
5061
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5062

M
Mel Gorman 已提交
5063
	for_each_online_pgdat(pgdat) {
5064
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5065 5066
			continue;

M
Mel Gorman 已提交
5067 5068 5069 5070 5071 5072 5073 5074
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5075
			" mapped:%lukB"
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5096
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5097 5098
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5099
			K(node_page_state(pgdat, NR_SHMEM)),
5100 5101 5102 5103 5104 5105 5106 5107
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5108 5109
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5110 5111
	}

5112
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5113 5114
		int i;

5115
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5116
			continue;
5117 5118 5119 5120 5121

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5122
		show_node(zone);
5123 5124
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5125 5126 5127 5128
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5129 5130 5131 5132 5133
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5134
			" writepending:%lukB"
L
Linus Torvalds 已提交
5135
			" present:%lukB"
5136
			" managed:%lukB"
5137
			" mlocked:%lukB"
5138
			" kernel_stack:%lukB"
5139 5140
			" pagetables:%lukB"
			" bounce:%lukB"
5141 5142
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5143
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5144 5145
			"\n",
			zone->name,
5146
			K(zone_page_state(zone, NR_FREE_PAGES)),
5147 5148 5149
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5150 5151 5152 5153 5154
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5155
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5156
			K(zone->present_pages),
5157
			K(zone_managed_pages(zone)),
5158
			K(zone_page_state(zone, NR_MLOCK)),
5159
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5160 5161
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5162 5163
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5164
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5165 5166
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5167 5168
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5169 5170
	}

5171
	for_each_populated_zone(zone) {
5172 5173
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5174
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5175

5176
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5177
			continue;
L
Linus Torvalds 已提交
5178
		show_node(zone);
5179
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5180 5181 5182

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5183 5184 5185 5186
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5187
			total += nr[order] << order;
5188 5189 5190 5191 5192 5193

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5194 5195
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5196
		for (order = 0; order < MAX_ORDER; order++) {
5197 5198
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5199 5200 5201
			if (nr[order])
				show_migration_types(types[order]);
		}
5202
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5203 5204
	}

5205 5206
	hugetlb_show_meminfo();

5207
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5208

L
Linus Torvalds 已提交
5209 5210 5211
	show_swap_cache_info();
}

5212 5213 5214 5215 5216 5217
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5218 5219
/*
 * Builds allocation fallback zone lists.
5220 5221
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5222
 */
5223
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5224
{
5225
	struct zone *zone;
5226
	enum zone_type zone_type = MAX_NR_ZONES;
5227
	int nr_zones = 0;
5228 5229

	do {
5230
		zone_type--;
5231
		zone = pgdat->node_zones + zone_type;
5232
		if (managed_zone(zone)) {
5233
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5234
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5235
		}
5236
	} while (zone_type);
5237

5238
	return nr_zones;
L
Linus Torvalds 已提交
5239 5240 5241
}

#ifdef CONFIG_NUMA
5242 5243 5244

static int __parse_numa_zonelist_order(char *s)
{
5245 5246 5247 5248 5249 5250 5251 5252
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5253 5254 5255 5256 5257 5258 5259
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5260 5261 5262
	if (!s)
		return 0;

5263
	return __parse_numa_zonelist_order(s);
5264 5265 5266
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5267 5268
char numa_zonelist_order[] = "Node";

5269 5270 5271
/*
 * sysctl handler for numa_zonelist_order
 */
5272
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5273
		void __user *buffer, size_t *length,
5274 5275
		loff_t *ppos)
{
5276
	char *str;
5277 5278
	int ret;

5279 5280 5281 5282 5283
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5284

5285 5286
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5287
	return ret;
5288 5289 5290
}


5291
#define MAX_NODE_LOAD (nr_online_nodes)
5292 5293
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5294
/**
5295
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5308
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5309
{
5310
	int n, val;
L
Linus Torvalds 已提交
5311
	int min_val = INT_MAX;
D
David Rientjes 已提交
5312
	int best_node = NUMA_NO_NODE;
5313
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5314

5315 5316 5317 5318 5319
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5320

5321
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5330 5331 5332
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5333
		/* Give preference to headless and unused nodes */
5334 5335
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5354 5355 5356 5357 5358 5359

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5360 5361
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5362
{
5363 5364 5365 5366 5367 5368 5369 5370 5371
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5372

5373 5374 5375 5376 5377
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5378 5379
}

5380 5381 5382 5383 5384
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5385 5386
	struct zoneref *zonerefs;
	int nr_zones;
5387

5388 5389 5390 5391 5392
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5393 5394
}

5395 5396 5397 5398 5399 5400 5401 5402 5403
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5404 5405
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5406
	nodemask_t used_mask;
5407
	int local_node, prev_node;
L
Linus Torvalds 已提交
5408 5409 5410

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5411
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5412 5413
	prev_node = local_node;
	nodes_clear(used_mask);
5414 5415

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5422 5423
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5424 5425
			node_load[node] = load;

5426
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5427 5428 5429
		prev_node = node;
		load--;
	}
5430

5431
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5432
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5433 5434
}

5435 5436 5437 5438 5439 5440 5441 5442 5443
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5444
	struct zoneref *z;
5445

5446
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5447
				   gfp_zone(GFP_KERNEL),
5448
				   NULL);
5449
	return zone_to_nid(z->zone);
5450 5451
}
#endif
5452

5453 5454
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5455 5456
#else	/* CONFIG_NUMA */

5457
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5458
{
5459
	int node, local_node;
5460 5461
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5462 5463 5464

	local_node = pgdat->node_id;

5465 5466 5467
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5468

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5480 5481
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5482
	}
5483 5484 5485
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5486 5487
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5488 5489
	}

5490 5491
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5492 5493 5494 5495
}

#endif	/* CONFIG_NUMA */

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5513
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5514

5515
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5516
{
5517
	int nid;
5518
	int __maybe_unused cpu;
5519
	pg_data_t *self = data;
5520 5521 5522
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5523

5524 5525 5526
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5527

5528 5529 5530 5531
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5532 5533
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5534 5535 5536
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5537

5538 5539
			build_zonelists(pgdat);
		}
5540

5541 5542 5543 5544 5545 5546 5547 5548 5549
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5550
		for_each_online_cpu(cpu)
5551
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5552
#endif
5553
	}
5554 5555

	spin_unlock(&lock);
5556 5557
}

5558 5559 5560
static noinline void __init
build_all_zonelists_init(void)
{
5561 5562
	int cpu;

5563
	__build_all_zonelists(NULL);
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5581 5582 5583 5584
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5585 5586
/*
 * unless system_state == SYSTEM_BOOTING.
5587
 *
5588
 * __ref due to call of __init annotated helper build_all_zonelists_init
5589
 * [protected by SYSTEM_BOOTING].
5590
 */
5591
void __ref build_all_zonelists(pg_data_t *pgdat)
5592 5593
{
	if (system_state == SYSTEM_BOOTING) {
5594
		build_all_zonelists_init();
5595
	} else {
5596
		__build_all_zonelists(pgdat);
5597 5598
		/* cpuset refresh routine should be here */
	}
5599
	vm_total_pages = nr_free_pagecache_pages();
5600 5601 5602 5603 5604 5605 5606
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5607
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5608 5609 5610 5611
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5612
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5613 5614 5615
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5616
#ifdef CONFIG_NUMA
5617
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5618
#endif
L
Linus Torvalds 已提交
5619 5620
}

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5645 5646
/*
 * Initially all pages are reserved - free ones are freed
5647
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5648 5649
 * done. Non-atomic initialization, single-pass.
 */
5650
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5651 5652
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5653
{
5654
	unsigned long pfn, end_pfn = start_pfn + size;
5655
	struct page *page;
L
Linus Torvalds 已提交
5656

5657 5658 5659
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5660
#ifdef CONFIG_ZONE_DEVICE
5661 5662
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5663 5664 5665 5666
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5667
	 */
5668 5669 5670 5671 5672 5673 5674 5675 5676
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5677

5678
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5679
		/*
5680 5681
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5682
		 */
5683 5684
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5685
				continue;
5686 5687 5688 5689 5690 5691
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5692
		}
5693

5694 5695 5696
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5697
			__SetPageReserved(page);
5698

5699 5700 5701 5702 5703
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5704
		 * kernel allocations are made.
5705 5706 5707 5708 5709 5710 5711 5712
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5713
			cond_resched();
5714
		}
L
Linus Torvalds 已提交
5715 5716 5717
	}
}

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5793
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5794
{
5795
	unsigned int order, t;
5796 5797
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5798 5799 5800 5801
		zone->free_area[order].nr_free = 0;
	}
}

5802 5803 5804 5805 5806
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5807

5808
static int zone_batchsize(struct zone *zone)
5809
{
5810
#ifdef CONFIG_MMU
5811 5812 5813 5814
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5815
	 * size of the zone.
5816
	 */
5817
	batch = zone_managed_pages(zone) / 1024;
5818 5819 5820
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5821 5822 5823 5824 5825
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5826 5827 5828
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5829
	 *
5830 5831 5832 5833
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5834
	 */
5835
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5836

5837
	return batch;
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5855 5856
}

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5884
/* a companion to pageset_set_high() */
5885 5886
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5887
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5888 5889
}

5890
static void pageset_init(struct per_cpu_pageset *p)
5891 5892
{
	struct per_cpu_pages *pcp;
5893
	int migratetype;
5894

5895 5896
	memset(p, 0, sizeof(*p));

5897
	pcp = &p->pcp;
5898 5899
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5900 5901
}

5902 5903 5904 5905 5906 5907
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5908
/*
5909
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5910 5911
 * to the value high for the pageset p.
 */
5912
static void pageset_set_high(struct per_cpu_pageset *p,
5913 5914
				unsigned long high)
{
5915 5916 5917
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5918

5919
	pageset_update(&p->pcp, high, batch);
5920 5921
}

5922 5923
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5924 5925
{
	if (percpu_pagelist_fraction)
5926
		pageset_set_high(pcp,
5927
			(zone_managed_pages(zone) /
5928 5929 5930 5931 5932
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5933 5934 5935 5936 5937 5938 5939 5940
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5941
void __meminit setup_zone_pageset(struct zone *zone)
5942 5943 5944
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5945 5946
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5947 5948
}

5949
/*
5950 5951
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5952
 */
5953
void __init setup_per_cpu_pageset(void)
5954
{
5955
	struct pglist_data *pgdat;
5956
	struct zone *zone;
5957

5958 5959
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5960 5961 5962 5963

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5964 5965
}

5966
static __meminit void zone_pcp_init(struct zone *zone)
5967
{
5968 5969 5970 5971 5972 5973
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5974

5975
	if (populated_zone(zone))
5976 5977 5978
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5979 5980
}

5981
void __meminit init_currently_empty_zone(struct zone *zone,
5982
					unsigned long zone_start_pfn,
5983
					unsigned long size)
5984 5985
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5986
	int zone_idx = zone_idx(zone) + 1;
5987

5988 5989
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5990 5991 5992

	zone->zone_start_pfn = zone_start_pfn;

5993 5994 5995 5996 5997 5998
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5999
	zone_init_free_lists(zone);
6000
	zone->initialized = 1;
6001 6002
}

T
Tejun Heo 已提交
6003
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6004
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6005

6006 6007 6008
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6009 6010
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6011
{
6012
	unsigned long start_pfn, end_pfn;
6013
	int nid;
6014

6015 6016
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6017

6018 6019
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
6020 6021 6022
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6023 6024 6025
	}

	return nid;
6026 6027 6028 6029
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6030
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6031
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6032
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6033
 *
6034 6035 6036
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6037
 */
6038
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6039
{
6040 6041
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6042

6043 6044 6045
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6046

6047
		if (start_pfn < end_pfn)
6048 6049 6050
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6051 6052 6053
	}
}

6054 6055
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6056
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6057
 *
6058 6059
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6060 6061 6062
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6063 6064
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6065

6066 6067
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6068 6069 6070 6071
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6072 6073 6074
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6075 6076
 *
 * It returns the start and end page frame of a node based on information
6077
 * provided by memblock_set_node(). If called for a node
6078
 * with no available memory, a warning is printed and the start and end
6079
 * PFNs will be 0.
6080
 */
6081
void __init get_pfn_range_for_nid(unsigned int nid,
6082 6083
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6084
	unsigned long this_start_pfn, this_end_pfn;
6085
	int i;
6086

6087 6088 6089
	*start_pfn = -1UL;
	*end_pfn = 0;

6090 6091 6092
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6093 6094
	}

6095
	if (*start_pfn == -1UL)
6096 6097 6098
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6099 6100 6101 6102 6103
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6104
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6122
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6123 6124 6125 6126 6127 6128 6129
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6130
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6145 6146 6147 6148 6149 6150
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6151 6152 6153 6154 6155 6156
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6157 6158 6159 6160
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6161
static unsigned long __init zone_spanned_pages_in_node(int nid,
6162
					unsigned long zone_type,
6163 6164
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6165 6166
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6167 6168
					unsigned long *ignored)
{
6169
	/* When hotadd a new node from cpu_up(), the node should be empty */
6170 6171 6172
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6173
	/* Get the start and end of the zone */
6174 6175
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6176 6177
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6178
				zone_start_pfn, zone_end_pfn);
6179 6180

	/* Check that this node has pages within the zone's required range */
6181
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6182 6183 6184
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6185 6186
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6187 6188

	/* Return the spanned pages */
6189
	return *zone_end_pfn - *zone_start_pfn;
6190 6191 6192 6193
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6194
 * then all holes in the requested range will be accounted for.
6195
 */
6196
unsigned long __init __absent_pages_in_range(int nid,
6197 6198 6199
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6200 6201 6202
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6203

6204 6205 6206 6207
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6208
	}
6209
	return nr_absent;
6210 6211 6212 6213 6214 6215 6216
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6217
 * It returns the number of pages frames in memory holes within a range.
6218 6219 6220 6221 6222 6223 6224 6225
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6226
static unsigned long __init zone_absent_pages_in_node(int nid,
6227
					unsigned long zone_type,
6228 6229
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6230 6231
					unsigned long *ignored)
{
6232 6233
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6234
	unsigned long zone_start_pfn, zone_end_pfn;
6235
	unsigned long nr_absent;
6236

6237
	/* When hotadd a new node from cpu_up(), the node should be empty */
6238 6239 6240
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6241 6242
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6243

M
Mel Gorman 已提交
6244 6245 6246
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6247 6248 6249 6250 6251 6252 6253
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6271 6272 6273 6274
		}
	}

	return nr_absent;
6275
}
6276

T
Tejun Heo 已提交
6277
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6278
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6279
					unsigned long zone_type,
6280 6281
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6282 6283
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6284 6285
					unsigned long *zones_size)
{
6286 6287 6288 6289 6290 6291 6292 6293
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6294 6295 6296
	return zones_size[zone_type];
}

6297
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6298
						unsigned long zone_type,
6299 6300
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6301 6302 6303 6304 6305 6306 6307
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6308

T
Tejun Heo 已提交
6309
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6310

6311
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6312 6313 6314 6315
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6316
{
6317
	unsigned long realtotalpages = 0, totalpages = 0;
6318 6319
	enum zone_type i;

6320 6321
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6322
		unsigned long zone_start_pfn, zone_end_pfn;
6323
		unsigned long size, real_size;
6324

6325 6326 6327
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6328 6329
						  &zone_start_pfn,
						  &zone_end_pfn,
6330 6331
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6332 6333
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6334 6335 6336 6337
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6338 6339 6340 6341 6342 6343 6344 6345
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6346 6347 6348 6349 6350
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6351 6352 6353
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6354 6355
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6356 6357 6358
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6359
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6360 6361 6362
{
	unsigned long usemapsize;

6363
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6364 6365
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6366 6367 6368 6369 6370 6371
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6372
static void __ref setup_usemap(struct pglist_data *pgdat,
6373 6374 6375
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6376
{
6377
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6378
	zone->pageblock_flags = NULL;
6379
	if (usemapsize)
6380
		zone->pageblock_flags =
6381
			memblock_alloc_node_nopanic(usemapsize,
6382
							 pgdat->node_id);
6383 6384
}
#else
6385 6386
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6387 6388
#endif /* CONFIG_SPARSEMEM */

6389
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6390

6391
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6392
void __init set_pageblock_order(void)
6393
{
6394 6395
	unsigned int order;

6396 6397 6398 6399
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6400 6401 6402 6403 6404
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6405 6406
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6407 6408
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6409 6410 6411 6412 6413
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6414 6415
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6416 6417 6418
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6419
 */
6420
void __init set_pageblock_order(void)
6421 6422
{
}
6423 6424 6425

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6426
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6427
						unsigned long present_pages)
6428 6429 6430 6431 6432 6433 6434 6435
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6436
	 * populated regions may not be naturally aligned on page boundary.
6437 6438 6439 6440 6441 6442 6443 6444 6445
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6466
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6467
{
6468
	pgdat_resize_init(pgdat);
6469 6470 6471 6472

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6473
	init_waitqueue_head(&pgdat->kswapd_wait);
6474
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6475

6476
	pgdat_page_ext_init(pgdat);
6477
	spin_lock_init(&pgdat->lru_lock);
6478
	lruvec_init(node_lruvec(pgdat));
6479 6480 6481 6482 6483
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6484
	atomic_long_set(&zone->managed_pages, remaining_pages);
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6525

6526
	pgdat_init_internals(pgdat);
6527 6528
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6529 6530
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6531
		unsigned long size, freesize, memmap_pages;
6532
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6533

6534
		size = zone->spanned_pages;
6535
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6536

6537
		/*
6538
		 * Adjust freesize so that it accounts for how much memory
6539 6540 6541
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6542
		memmap_pages = calc_memmap_size(size, freesize);
6543 6544 6545 6546 6547 6548 6549 6550
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6551
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6552 6553
					zone_names[j], memmap_pages, freesize);
		}
6554

6555
		/* Account for reserved pages */
6556 6557
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6558
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6559
					zone_names[0], dma_reserve);
6560 6561
		}

6562
		if (!is_highmem_idx(j))
6563
			nr_kernel_pages += freesize;
6564 6565 6566
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6567
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6568

6569 6570 6571 6572 6573
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6574
		zone_init_internals(zone, j, nid, freesize);
6575

6576
		if (!size)
L
Linus Torvalds 已提交
6577 6578
			continue;

6579
		set_pageblock_order();
6580 6581
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6582
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6583 6584 6585
	}
}

6586
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6587
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6588
{
6589
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6590 6591
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6592 6593 6594 6595
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6596 6597
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6598 6599
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6600
		unsigned long size, end;
A
Andy Whitcroft 已提交
6601 6602
		struct page *map;

6603 6604 6605 6606 6607
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6608
		end = pgdat_end_pfn(pgdat);
6609 6610
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6611
		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6612
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6613
	}
6614 6615 6616
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6617
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6618 6619 6620
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6621
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6622
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6623
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6624
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6625
			mem_map -= offset;
T
Tejun Heo 已提交
6626
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6627
	}
L
Linus Torvalds 已提交
6628 6629
#endif
}
6630 6631 6632
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6633

6634 6635 6636 6637 6638 6639 6640 6641 6642
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6643
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6644 6645
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6646
{
6647
	pg_data_t *pgdat = NODE_DATA(nid);
6648 6649
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6650

6651
	/* pg_data_t should be reset to zero when it's allocated */
6652
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6653

L
Linus Torvalds 已提交
6654 6655
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6656
	pgdat->per_cpu_nodestats = NULL;
6657 6658
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6659
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6660 6661
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6662 6663
#else
	start_pfn = node_start_pfn;
6664 6665 6666
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6667 6668

	alloc_node_mem_map(pgdat);
6669
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6670

6671
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6672 6673
}

M
Mike Rapoport 已提交
6674
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6697 6698 6699 6700 6701 6702
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6703 6704 6705 6706 6707
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6708
 */
6709
void __init zero_resv_unavail(void)
6710 6711 6712
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6713
	phys_addr_t next = 0;
6714 6715

	/*
6716
	 * Loop through unavailable ranges not covered by memblock.memory.
6717 6718
	 */
	pgcnt = 0;
6719 6720
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6721 6722
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6723 6724
		next = end;
	}
6725
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6726

6727 6728 6729 6730 6731
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6732
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6733
}
M
Mike Rapoport 已提交
6734
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6735

T
Tejun Heo 已提交
6736
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6737 6738 6739 6740 6741

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6742
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6743
{
6744
	unsigned int highest;
M
Miklos Szeredi 已提交
6745

6746
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6747 6748 6749 6750
	nr_node_ids = highest + 1;
}
#endif

6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6773
	unsigned long start, end, mask;
6774
	int last_nid = -1;
6775
	int i, nid;
6776

6777
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6801
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6802
static unsigned long __init find_min_pfn_for_node(int nid)
6803
{
6804
	unsigned long min_pfn = ULONG_MAX;
6805 6806
	unsigned long start_pfn;
	int i;
6807

6808 6809
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6810

6811
	if (min_pfn == ULONG_MAX) {
6812
		pr_warn("Could not find start_pfn for node %d\n", nid);
6813 6814 6815 6816
		return 0;
	}

	return min_pfn;
6817 6818 6819 6820 6821 6822
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6823
 * memblock_set_node().
6824 6825 6826 6827 6828 6829
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6830 6831 6832
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6833
 * Populate N_MEMORY for calculating usable_nodes.
6834
 */
A
Adrian Bunk 已提交
6835
static unsigned long __init early_calculate_totalpages(void)
6836 6837
{
	unsigned long totalpages = 0;
6838 6839 6840 6841 6842
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6843

6844 6845
		totalpages += pages;
		if (pages)
6846
			node_set_state(nid, N_MEMORY);
6847
	}
6848
	return totalpages;
6849 6850
}

M
Mel Gorman 已提交
6851 6852 6853 6854 6855 6856
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6857
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6858 6859 6860 6861
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6862
	/* save the state before borrow the nodemask */
6863
	nodemask_t saved_node_state = node_states[N_MEMORY];
6864
	unsigned long totalpages = early_calculate_totalpages();
6865
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6866
	struct memblock_region *r;
6867 6868 6869 6870 6871 6872 6873 6874 6875

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6876 6877
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6878 6879
				continue;

E
Emil Medve 已提交
6880
			nid = r->nid;
6881

E
Emil Medve 已提交
6882
			usable_startpfn = PFN_DOWN(r->base);
6883 6884 6885 6886 6887 6888 6889
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6890

6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6921
	/*
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6949
		required_movablecore = min(totalpages, required_movablecore);
6950 6951 6952 6953 6954
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6955 6956 6957 6958 6959
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6960
		goto out;
M
Mel Gorman 已提交
6961 6962 6963 6964 6965 6966 6967

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6968
	for_each_node_state(nid, N_MEMORY) {
6969 6970
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6987
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6988 6989
			unsigned long size_pages;

6990
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7033
			 * satisfied
M
Mel Gorman 已提交
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7047
	 * satisfied
M
Mel Gorman 已提交
7048 7049 7050 7051 7052
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7053
out2:
M
Mel Gorman 已提交
7054 7055 7056 7057
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7058

7059
out:
7060
	/* restore the node_state */
7061
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7062 7063
}

7064 7065
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7066 7067 7068
{
	enum zone_type zone_type;

7069
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7070
		struct zone *zone = &pgdat->node_zones[zone_type];
7071
		if (populated_zone(zone)) {
7072 7073 7074
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7075
				node_set_state(nid, N_NORMAL_MEMORY);
7076 7077
			break;
		}
7078 7079 7080
	}
}

7081 7082
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7083
 * @max_zone_pfn: an array of max PFNs for each zone
7084 7085
 *
 * This will call free_area_init_node() for each active node in the system.
7086
 * Using the page ranges provided by memblock_set_node(), the size of each
7087 7088 7089 7090 7091 7092 7093 7094 7095
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7096 7097
	unsigned long start_pfn, end_pfn;
	int i, nid;
7098

7099 7100 7101 7102 7103
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7104 7105 7106 7107

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7108 7109
		if (i == ZONE_MOVABLE)
			continue;
7110 7111 7112 7113 7114 7115

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7116
	}
M
Mel Gorman 已提交
7117 7118 7119

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7120
	find_zone_movable_pfns_for_nodes();
7121 7122

	/* Print out the zone ranges */
7123
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7124 7125 7126
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7127
		pr_info("  %-8s ", zone_names[i]);
7128 7129
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7130
			pr_cont("empty\n");
7131
		else
7132 7133 7134 7135
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7136
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7137 7138 7139
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7140
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7141 7142
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7143 7144
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7145
	}
7146

7147
	/* Print out the early node map */
7148
	pr_info("Early memory node ranges\n");
7149
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7150 7151 7152
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7153 7154

	/* Initialise every node */
7155
	mminit_verify_pageflags_layout();
7156
	setup_nr_node_ids();
7157
	zero_resv_unavail();
7158 7159
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7160
		free_area_init_node(nid, NULL,
7161
				find_min_pfn_for_node(nid), NULL);
7162 7163 7164

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7165 7166
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7167 7168
	}
}
M
Mel Gorman 已提交
7169

7170 7171
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7172 7173
{
	unsigned long long coremem;
7174 7175
	char *endptr;

M
Mel Gorman 已提交
7176 7177 7178
	if (!p)
		return -EINVAL;

7179 7180 7181 7182 7183
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7184

7185 7186 7187 7188 7189
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7190

7191 7192 7193
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7194 7195
	return 0;
}
M
Mel Gorman 已提交
7196

7197 7198 7199 7200 7201 7202
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7203 7204 7205 7206 7207 7208
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7209 7210
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7211 7212 7213 7214 7215 7216 7217 7218
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7219 7220
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7221 7222
}

M
Mel Gorman 已提交
7223
early_param("kernelcore", cmdline_parse_kernelcore);
7224
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7225

T
Tejun Heo 已提交
7226
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7227

7228 7229
void adjust_managed_page_count(struct page *page, long count)
{
7230
	atomic_long_add(count, &page_zone(page)->managed_pages);
7231
	totalram_pages_add(count);
7232 7233
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7234
		totalhigh_pages_add(count);
7235
#endif
7236
}
7237
EXPORT_SYMBOL(adjust_managed_page_count);
7238

7239
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7240
{
7241 7242
	void *pos;
	unsigned long pages = 0;
7243

7244 7245 7246
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7258
		if ((unsigned int)poison <= 0xFF)
7259 7260 7261
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7262 7263 7264
	}

	if (pages && s)
7265 7266
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7267 7268 7269

	return pages;
}
7270
EXPORT_SYMBOL(free_reserved_area);
7271

7272 7273 7274 7275
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7276
	totalram_pages_inc();
7277
	atomic_long_inc(&page_zone(page)->managed_pages);
7278
	totalhigh_pages_inc();
7279 7280 7281
}
#endif

7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7304 7305 7306 7307
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7318
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7319
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7320
		", %luK highmem"
7321
#endif
J
Joe Perches 已提交
7322 7323 7324 7325 7326
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7327
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7328
		totalcma_pages << (PAGE_SHIFT - 10),
7329
#ifdef	CONFIG_HIGHMEM
7330
		totalhigh_pages() << (PAGE_SHIFT - 10),
7331
#endif
J
Joe Perches 已提交
7332
		str ? ", " : "", str ? str : "");
7333 7334
}

7335
/**
7336 7337
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7338
 *
7339
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7340 7341
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7342 7343 7344
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7345 7346 7347 7348 7349 7350
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7351 7352
void __init free_area_init(unsigned long *zones_size)
{
7353
	zero_resv_unavail();
7354
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7355 7356 7357
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7358
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7359 7360
{

7361 7362
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7363

7364 7365 7366 7367 7368 7369 7370
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7371

7372 7373 7374 7375 7376 7377 7378 7379 7380
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7381 7382 7383 7384
}

void __init page_alloc_init(void)
{
7385 7386 7387 7388 7389 7390
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7391 7392
}

7393
/*
7394
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7395 7396 7397 7398 7399 7400
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7401
	enum zone_type i, j;
7402 7403

	for_each_online_pgdat(pgdat) {
7404 7405 7406

		pgdat->totalreserve_pages = 0;

7407 7408
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7409
			long max = 0;
7410
			unsigned long managed_pages = zone_managed_pages(zone);
7411 7412 7413 7414 7415 7416 7417

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7418 7419
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7420

7421 7422
			if (max > managed_pages)
				max = managed_pages;
7423

7424
			pgdat->totalreserve_pages += max;
7425

7426 7427 7428 7429 7430 7431
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7432 7433
/*
 * setup_per_zone_lowmem_reserve - called whenever
7434
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7435 7436 7437 7438 7439 7440
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7441
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7442

7443
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7444 7445
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7446
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7447 7448 7449

			zone->lowmem_reserve[j] = 0;

7450 7451
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7452 7453
				struct zone *lower_zone;

7454
				idx--;
L
Linus Torvalds 已提交
7455
				lower_zone = pgdat->node_zones + idx;
7456 7457 7458 7459 7460 7461 7462 7463

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7464
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7465 7466 7467
			}
		}
	}
7468 7469 7470

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7471 7472
}

7473
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7483
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7484 7485 7486
	}

	for_each_zone(zone) {
7487 7488
		u64 tmp;

7489
		spin_lock_irqsave(&zone->lock, flags);
7490
		tmp = (u64)pages_min * zone_managed_pages(zone);
7491
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7492 7493
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7494 7495 7496 7497
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7498
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7499
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7500
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7501
			 */
7502
			unsigned long min_pages;
L
Linus Torvalds 已提交
7503

7504
			min_pages = zone_managed_pages(zone) / 1024;
7505
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7506
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7507
		} else {
N
Nick Piggin 已提交
7508 7509
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7510 7511
			 * proportionate to the zone's size.
			 */
7512
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7513 7514
		}

7515 7516 7517 7518 7519 7520
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7521
			    mult_frac(zone_managed_pages(zone),
7522 7523
				      watermark_scale_factor, 10000));

7524 7525
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7526
		zone->watermark_boost = 0;
7527

7528
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7529
	}
7530 7531 7532

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7533 7534
}

7535 7536 7537 7538 7539 7540 7541 7542 7543
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7544 7545 7546
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7547
	__setup_per_zone_wmarks();
7548
	spin_unlock(&lock);
7549 7550
}

L
Linus Torvalds 已提交
7551 7552 7553 7554 7555 7556 7557
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7558
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7575
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7576 7577
{
	unsigned long lowmem_kbytes;
7578
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7579 7580

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7593
	setup_per_zone_wmarks();
7594
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7595
	setup_per_zone_lowmem_reserve();
7596 7597 7598 7599 7600 7601

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7602 7603
	return 0;
}
7604
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7605 7606

/*
7607
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7608 7609 7610
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7611
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7612
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7613
{
7614 7615 7616 7617 7618 7619
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7620 7621
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7622
		setup_per_zone_wmarks();
7623
	}
L
Linus Torvalds 已提交
7624 7625 7626
	return 0;
}

7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7654
#ifdef CONFIG_NUMA
7655
static void setup_min_unmapped_ratio(void)
7656
{
7657
	pg_data_t *pgdat;
7658 7659
	struct zone *zone;

7660
	for_each_online_pgdat(pgdat)
7661
		pgdat->min_unmapped_pages = 0;
7662

7663
	for_each_zone(zone)
7664 7665
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7666
}
7667

7668 7669

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7670
	void __user *buffer, size_t *length, loff_t *ppos)
7671 7672 7673
{
	int rc;

7674
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7675 7676 7677
	if (rc)
		return rc;

7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7688 7689 7690
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7691
	for_each_zone(zone)
7692 7693
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7707 7708
	return 0;
}
7709 7710
#endif

L
Linus Torvalds 已提交
7711 7712 7713 7714 7715 7716
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7717
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7718 7719
 * if in function of the boot time zone sizes.
 */
7720
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7721
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7722
{
7723
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7724 7725 7726 7727
	setup_per_zone_lowmem_reserve();
	return 0;
}

7728 7729
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7730 7731
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7732
 */
7733
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7734
	void __user *buffer, size_t *length, loff_t *ppos)
7735 7736
{
	struct zone *zone;
7737
	int old_percpu_pagelist_fraction;
7738 7739
	int ret;

7740 7741 7742
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7743
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7758

7759
	for_each_populated_zone(zone) {
7760 7761
		unsigned int cpu;

7762
		for_each_possible_cpu(cpu)
7763 7764
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7765
	}
7766
out:
7767
	mutex_unlock(&pcp_batch_high_lock);
7768
	return ret;
7769 7770
}

7771
#ifdef CONFIG_NUMA
7772
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7823 7824
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7825
{
7826
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7827 7828
	unsigned long log2qty, size;
	void *table = NULL;
7829
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7830 7831 7832 7833

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7834
		numentries = nr_kernel_pages;
7835
		numentries -= arch_reserved_kernel_pages();
7836 7837 7838 7839

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7840

P
Pavel Tatashin 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7851 7852 7853 7854 7855
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7856 7857

		/* Make sure we've got at least a 0-order allocation.. */
7858 7859 7860 7861 7862 7863 7864 7865
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7866
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7867
	}
7868
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7869 7870 7871 7872 7873 7874

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7875
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7876

7877 7878
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7879 7880 7881
	if (numentries > max)
		numentries = max;

7882
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7883

7884
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7885 7886
	do {
		size = bucketsize << log2qty;
7887 7888
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7889 7890
				table = memblock_alloc_nopanic(size,
							       SMP_CACHE_BYTES);
7891
			else
7892 7893
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7894
		} else if (hashdist) {
7895
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7896
		} else {
7897 7898
			/*
			 * If bucketsize is not a power-of-two, we may free
7899 7900
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7901
			 */
7902
			if (get_order(size) < MAX_ORDER) {
7903 7904
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7905
			}
L
Linus Torvalds 已提交
7906 7907 7908 7909 7910 7911
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7912 7913
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7914 7915 7916 7917 7918 7919 7920 7921

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7922

K
KAMEZAWA Hiroyuki 已提交
7923
/*
7924 7925 7926
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7927
 * PageLRU check without isolation or lru_lock could race so that
7928 7929 7930
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7931
 */
7932
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7933
			 int migratetype, int flags)
7934 7935
{
	unsigned long pfn, iter, found;
7936

7937
	/*
7938 7939 7940 7941 7942
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7943 7944
	 */

7945 7946 7947 7948 7949 7950 7951 7952 7953
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7954 7955 7956 7957
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7958
		if (!pfn_valid_within(check))
7959
			continue;
7960

7961
		page = pfn_to_page(check);
7962

7963
		if (PageReserved(page))
7964
			goto unmovable;
7965

7966 7967 7968 7969 7970 7971 7972 7973
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7974 7975 7976 7977 7978 7979
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7980 7981
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7982

7983
			if (!hugepage_migration_supported(page_hstate(head)))
7984 7985
				goto unmovable;

7986 7987
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7988 7989 7990
			continue;
		}

7991 7992 7993 7994
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7995
		 * because their page->_refcount is zero at all time.
7996
		 */
7997
		if (!page_ref_count(page)) {
7998 7999 8000 8001
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8002

8003 8004 8005 8006
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8007
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8008 8009
			continue;

8010 8011 8012
		if (__PageMovable(page))
			continue;

8013 8014 8015
		if (!PageLRU(page))
			found++;
		/*
8016 8017 8018
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8029
			goto unmovable;
8030
	}
8031
	return false;
8032 8033
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8034 8035
	if (flags & REPORT_FAILURE)
		dump_page(pfn_to_page(pfn+iter), "unmovable page");
8036
	return true;
8037 8038
}

8039
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8054 8055
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8056 8057
{
	/* This function is based on compact_zone() from compaction.c. */
8058
	unsigned long nr_reclaimed;
8059 8060 8061 8062
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8063
	migrate_prep();
8064

8065
	while (pfn < end || !list_empty(&cc->migratepages)) {
8066 8067 8068 8069 8070
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8071 8072
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8073
			pfn = isolate_migratepages_range(cc, pfn, end);
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8084 8085 8086
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8087

8088
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8089
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8090
	}
8091 8092 8093 8094 8095
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8096 8097 8098 8099 8100 8101
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8102 8103 8104 8105
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8106
 * @gfp_mask:	GFP mask to use during compaction
8107 8108
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8109
 * aligned.  The PFN range must belong to a single zone.
8110
 *
8111 8112 8113
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8114 8115 8116 8117 8118
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8119
int alloc_contig_range(unsigned long start, unsigned long end,
8120
		       unsigned migratetype, gfp_t gfp_mask)
8121 8122
{
	unsigned long outer_start, outer_end;
8123 8124
	unsigned int order;
	int ret = 0;
8125

8126 8127 8128 8129
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8130
		.mode = MIGRATE_SYNC,
8131
		.ignore_skip_hint = true,
8132
		.no_set_skip_hint = true,
8133
		.gfp_mask = current_gfp_context(gfp_mask),
8134 8135 8136
	};
	INIT_LIST_HEAD(&cc.migratepages);

8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8162
				       pfn_max_align_up(end), migratetype, 0);
8163
	if (ret)
8164
		return ret;
8165

8166 8167
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8168 8169 8170 8171 8172 8173 8174
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8175
	 */
8176
	ret = __alloc_contig_migrate_range(&cc, start, end);
8177
	if (ret && ret != -EBUSY)
8178
		goto done;
8179
	ret =0;
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8199
	drain_all_pages(cc.zone);
8200 8201 8202 8203 8204

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8205 8206
			outer_start = start;
			break;
8207 8208 8209 8210
		}
		outer_start &= ~0UL << order;
	}

8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8224
	/* Make sure the range is really isolated. */
8225
	if (test_pages_isolated(outer_start, end, false)) {
8226
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8227
			__func__, outer_start, end);
8228 8229 8230 8231
		ret = -EBUSY;
		goto done;
	}

8232
	/* Grab isolated pages from freelists. */
8233
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8247
				pfn_max_align_up(end), migratetype);
8248 8249 8250 8251 8252
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8253 8254 8255 8256 8257 8258 8259 8260 8261
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8262 8263 8264
}
#endif

8265
#ifdef CONFIG_MEMORY_HOTPLUG
8266 8267 8268 8269
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8270 8271
void __meminit zone_pcp_update(struct zone *zone)
{
8272
	unsigned cpu;
8273
	mutex_lock(&pcp_batch_high_lock);
8274
	for_each_possible_cpu(cpu)
8275 8276
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8277
	mutex_unlock(&pcp_batch_high_lock);
8278 8279 8280
}
#endif

8281 8282 8283
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8284 8285
	int cpu;
	struct per_cpu_pageset *pset;
8286 8287 8288 8289

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8290 8291 8292 8293
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8294 8295 8296 8297 8298 8299
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8300
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8301
/*
8302 8303
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8304 8305 8306 8307 8308 8309
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8310
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8311 8312 8313 8314 8315 8316 8317 8318
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8319
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8320 8321 8322 8323 8324 8325 8326 8327 8328
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8339 8340 8341 8342
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8343 8344
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8356 8357 8358 8359 8360 8361

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8362
	unsigned int order;
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif