page_alloc.c 225.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
127
unsigned long totalreserve_pages __read_mostly;
128
unsigned long totalcma_pages __read_mostly;
129

130
int percpu_pagelist_fraction;
131
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

151 152 153 154 155
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
156 157 158 159
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
160
 */
161 162 163 164

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
165
{
166
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
167 168 169 170
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
171 172
}

173
void pm_restrict_gfp_mask(void)
174
{
175
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
176 177
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
178
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179
}
180 181 182

bool pm_suspended_storage(void)
{
183
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 185 186
		return false;
	return true;
}
187 188
#endif /* CONFIG_PM_SLEEP */

189
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190
unsigned int pageblock_order __read_mostly;
191 192
#endif

193
static void __free_pages_ok(struct page *page, unsigned int order);
194

L
Linus Torvalds 已提交
195 196 197 198 199 200
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
201
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
202 203 204
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
205
 */
206
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
207
#ifdef CONFIG_ZONE_DMA
208
	[ZONE_DMA] = 256,
209
#endif
210
#ifdef CONFIG_ZONE_DMA32
211
	[ZONE_DMA32] = 256,
212
#endif
213
	[ZONE_NORMAL] = 32,
214
#ifdef CONFIG_HIGHMEM
215
	[ZONE_HIGHMEM] = 0,
216
#endif
217
	[ZONE_MOVABLE] = 0,
218
};
L
Linus Torvalds 已提交
219 220 221

EXPORT_SYMBOL(totalram_pages);

222
static char * const zone_names[MAX_NR_ZONES] = {
223
#ifdef CONFIG_ZONE_DMA
224
	 "DMA",
225
#endif
226
#ifdef CONFIG_ZONE_DMA32
227
	 "DMA32",
228
#endif
229
	 "Normal",
230
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
231
	 "HighMem",
232
#endif
M
Mel Gorman 已提交
233
	 "Movable",
234 235 236
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
237 238
};

239 240 241 242 243 244 245 246 247 248 249 250 251
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

252 253 254 255 256 257
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
258 259 260
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
261 262
};

L
Linus Torvalds 已提交
263
int min_free_kbytes = 1024;
264
int user_min_free_kbytes = -1;
265
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
266

267 268 269
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
270

T
Tejun Heo 已提交
271
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 273 274
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
275
static unsigned long required_kernelcore_percent __initdata;
276
static unsigned long required_movablecore __initdata;
277
static unsigned long required_movablecore_percent __initdata;
278 279
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
280 281 282 283 284

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285

M
Miklos Szeredi 已提交
286 287
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
288
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
289
EXPORT_SYMBOL(nr_node_ids);
290
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
291 292
#endif

293 294
int page_group_by_mobility_disabled __read_mostly;

295 296
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
297
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
298
{
299 300 301
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
302 303 304 305 306 307
		return true;

	return false;
}

/*
308
 * Returns true when the remaining initialisation should be deferred until
309 310
 * later in the boot cycle when it can be parallelised.
 */
311 312
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
313
{
314 315 316 317 318 319 320 321 322 323 324
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

325
	/* Always populate low zones for address-constrained allocations */
326
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
327
		return false;
328 329 330 331 332
	nr_initialised++;
	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
333
	}
334
	return false;
335 336 337 338 339 340 341
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

342
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
343
{
344
	return false;
345 346 347
}
#endif

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
448

449
void set_pageblock_migratetype(struct page *page, int migratetype)
450
{
451 452
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
453 454
		migratetype = MIGRATE_UNMOVABLE;

455 456 457 458
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
459
#ifdef CONFIG_DEBUG_VM
460
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
461
{
462 463 464
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
465
	unsigned long sp, start_pfn;
466

467 468
	do {
		seq = zone_span_seqbegin(zone);
469 470
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
471
		if (!zone_spans_pfn(zone, pfn))
472 473 474
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

475
	if (ret)
476 477 478
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
479

480
	return ret;
481 482 483 484
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
485
	if (!pfn_valid_within(page_to_pfn(page)))
486
		return 0;
L
Linus Torvalds 已提交
487
	if (zone != page_zone(page))
488 489 490 491 492 493 494
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
495
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
496 497
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
498
		return 1;
499 500 501
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
502 503
	return 0;
}
N
Nick Piggin 已提交
504
#else
505
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
506 507 508 509 510
{
	return 0;
}
#endif

511 512
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
513
{
514 515 516 517 518 519 520 521 522 523 524 525 526 527
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
528
			pr_alert(
529
			      "BUG: Bad page state: %lu messages suppressed\n",
530 531 532 533 534 535 536 537
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

538
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
539
		current->comm, page_to_pfn(page));
540 541 542 543 544
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
545
	dump_page_owner(page);
546

547
	print_modules();
L
Linus Torvalds 已提交
548
	dump_stack();
549
out:
550
	/* Leave bad fields for debug, except PageBuddy could make trouble */
551
	page_mapcount_reset(page); /* remove PageBuddy */
552
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
553 554 555 556 557
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
558
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
559
 *
560 561
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
562
 *
563 564
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
565
 *
566
 * The first tail page's ->compound_order holds the order of allocation.
567
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
568
 */
569

570
void free_compound_page(struct page *page)
571
{
572
	__free_pages_ok(page, compound_order(page));
573 574
}

575
void prep_compound_page(struct page *page, unsigned int order)
576 577 578 579
{
	int i;
	int nr_pages = 1 << order;

580
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
581 582 583 584
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
585
		set_page_count(p, 0);
586
		p->mapping = TAIL_MAPPING;
587
		set_compound_head(p, page);
588
	}
589
	atomic_set(compound_mapcount_ptr(page), -1);
590 591
}

592 593
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
594 595
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
596
EXPORT_SYMBOL(_debug_pagealloc_enabled);
597 598
bool _debug_guardpage_enabled __read_mostly;

599 600 601 602
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
603
	return kstrtobool(buf, &_debug_pagealloc_enabled);
604 605 606
}
early_param("debug_pagealloc", early_debug_pagealloc);

607 608
static bool need_debug_guardpage(void)
{
609 610 611 612
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

613 614 615
	if (!debug_guardpage_minorder())
		return false;

616 617 618 619 620
	return true;
}

static void init_debug_guardpage(void)
{
621 622 623
	if (!debug_pagealloc_enabled())
		return;

624 625 626
	if (!debug_guardpage_minorder())
		return;

627 628 629 630 631 632 633
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
634 635 636 637 638 639

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
640
		pr_err("Bad debug_guardpage_minorder value\n");
641 642 643
		return 0;
	}
	_debug_guardpage_minorder = res;
644
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
645 646
	return 0;
}
647
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
648

649
static inline bool set_page_guard(struct zone *zone, struct page *page,
650
				unsigned int order, int migratetype)
651
{
652 653 654
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
655 656 657 658
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
659 660

	page_ext = lookup_page_ext(page);
661
	if (unlikely(!page_ext))
662
		return false;
663

664 665
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

666 667 668 669
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
670 671

	return true;
672 673
}

674 675
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
676
{
677 678 679 680 681 682
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
683 684 685
	if (unlikely(!page_ext))
		return;

686 687
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

688 689 690
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
691 692
}
#else
693
struct page_ext_operations debug_guardpage_ops;
694 695
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
696 697
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
698 699
#endif

700
static inline void set_page_order(struct page *page, unsigned int order)
701
{
H
Hugh Dickins 已提交
702
	set_page_private(page, order);
703
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
704 705 706 707
}

static inline void rmv_page_order(struct page *page)
{
708
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
709
	set_page_private(page, 0);
L
Linus Torvalds 已提交
710 711 712 713
}

/*
 * This function checks whether a page is free && is the buddy
714
 * we can coalesce a page and its buddy if
715
 * (a) the buddy is not in a hole (check before calling!) &&
716
 * (b) the buddy is in the buddy system &&
717 718
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
719
 *
720 721
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
722
 *
723
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
724
 */
725
static inline int page_is_buddy(struct page *page, struct page *buddy,
726
							unsigned int order)
L
Linus Torvalds 已提交
727
{
728
	if (page_is_guard(buddy) && page_order(buddy) == order) {
729 730 731
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

732 733
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

734 735 736
		return 1;
	}

737
	if (PageBuddy(buddy) && page_order(buddy) == order) {
738 739 740 741 742 743 744 745
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

746 747
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

748
		return 1;
749
	}
750
	return 0;
L
Linus Torvalds 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
766 767
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
768
 * So when we are allocating or freeing one, we can derive the state of the
769 770
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
771
 * If a block is freed, and its buddy is also free, then this
772
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
773
 *
774
 * -- nyc
L
Linus Torvalds 已提交
775 776
 */

N
Nick Piggin 已提交
777
static inline void __free_one_page(struct page *page,
778
		unsigned long pfn,
779 780
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
781
{
782 783
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
784
	struct page *buddy;
785 786 787
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
788

789
	VM_BUG_ON(!zone_is_initialized(zone));
790
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
791

792
	VM_BUG_ON(migratetype == -1);
793
	if (likely(!is_migrate_isolate(migratetype)))
794
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
795

796
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
797
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
798

799
continue_merging:
800
	while (order < max_order - 1) {
801 802
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
803 804 805

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
806
		if (!page_is_buddy(page, buddy, order))
807
			goto done_merging;
808 809 810 811 812
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
813
			clear_page_guard(zone, buddy, order, migratetype);
814 815 816 817 818
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
819 820 821
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
822 823
		order++;
	}
824 825 826 827 828 829 830 831 832 833 834 835
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

836 837
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
838 839 840 841 842 843 844 845 846 847 848 849
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
850
	set_page_order(page, order);
851 852 853 854 855 856 857 858 859

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
860
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
861
		struct page *higher_page, *higher_buddy;
862 863 864 865
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
866 867
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
868 869 870 871 872 873 874 875
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
876 877 878
	zone->free_area[order].nr_free++;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

901
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
902
{
903 904 905 906 907
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
908

909
	if (unlikely(atomic_read(&page->_mapcount) != -1))
910 911 912
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
913
	if (unlikely(page_ref_count(page) != 0))
914
		bad_reason = "nonzero _refcount";
915 916 917 918
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
919 920 921 922
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
923
	bad_page(page, bad_reason, bad_flags);
924 925 926 927
}

static inline int free_pages_check(struct page *page)
{
928
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
929 930 931 932
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
933
	return 1;
L
Linus Torvalds 已提交
934 935
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
952
		/* the first tail page: ->mapping may be compound_mapcount() */
953 954 955 956 957 958 959 960
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
961
		 * deferred_list.next -- ignore value.
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

986 987
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
988
{
989
	int bad = 0;
990 991 992

	VM_BUG_ON_PAGE(PageTail(page), page);

993 994 995 996 997 998 999 1000 1001 1002 1003
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1004

1005 1006
		if (compound)
			ClearPageDoubleMap(page);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1017
	if (PageMappingFlags(page))
1018
		page->mapping = NULL;
1019
	if (memcg_kmem_enabled() && PageKmemcg(page))
1020
		memcg_kmem_uncharge(page, order);
1021 1022 1023 1024
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1025

1026 1027 1028
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1029 1030 1031

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1032
					   PAGE_SIZE << order);
1033
		debug_check_no_obj_freed(page_address(page),
1034
					   PAGE_SIZE << order);
1035
	}
1036 1037 1038
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1039
	kasan_free_pages(page, order);
1040 1041 1042 1043

	return true;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1060 1061 1062 1063 1064 1065
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1066 1067 1068 1069 1070 1071 1072 1073 1074
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1075
/*
1076
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1077
 * Assumes all pages on list are in same zone, and of same order.
1078
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1086 1087
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1088
{
1089
	int migratetype = 0;
1090
	int batch_free = 0;
1091
	int prefetch_nr = 0;
1092
	bool isolated_pageblocks;
1093 1094
	struct page *page, *tmp;
	LIST_HEAD(head);
1095

1096
	while (count) {
1097 1098 1099
		struct list_head *list;

		/*
1100 1101 1102 1103 1104
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1105 1106
		 */
		do {
1107
			batch_free++;
1108 1109 1110 1111
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1112

1113 1114
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1115
			batch_free = count;
1116

1117
		do {
1118
			page = list_last_entry(list, struct page, lru);
1119
			/* must delete to avoid corrupting pcp list */
1120
			list_del(&page->lru);
1121
			pcp->count--;
1122

1123 1124 1125
			if (bulkfree_pcp_prepare(page))
				continue;

1126
			list_add_tail(&page->lru, &head);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1139
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1140
	}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1160
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1161 1162
}

1163 1164
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1165
				unsigned int order,
1166
				int migratetype)
L
Linus Torvalds 已提交
1167
{
1168
	spin_lock(&zone->lock);
1169 1170 1171 1172
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1173
	__free_one_page(page, pfn, zone, order, migratetype);
1174
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1175 1176
}

1177
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178
				unsigned long zone, int nid)
1179
{
1180
	mm_zero_struct_page(page);
1181 1182 1183 1184
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1185
	page_kasan_tag_reset(page);
1186 1187 1188 1189 1190 1191 1192 1193 1194

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1195
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196
static void __meminit init_reserved_page(unsigned long pfn)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1213
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214 1215 1216 1217 1218 1219 1220
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1221 1222 1223 1224 1225 1226
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1227
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228 1229 1230 1231
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1232 1233 1234 1235 1236
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1237 1238 1239 1240

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1241 1242 1243 1244 1245 1246
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1247 1248
		}
	}
1249 1250
}

1251 1252
static void __free_pages_ok(struct page *page, unsigned int order)
{
1253
	unsigned long flags;
M
Minchan Kim 已提交
1254
	int migratetype;
1255
	unsigned long pfn = page_to_pfn(page);
1256

1257
	if (!free_pages_prepare(page, order, true))
1258 1259
		return;

1260
	migratetype = get_pfnblock_migratetype(page, pfn);
1261 1262
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1263
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1264
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1265 1266
}

1267
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268
{
1269
	unsigned int nr_pages = 1 << order;
1270
	struct page *p = page;
1271
	unsigned int loop;
1272

1273 1274 1275
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1276 1277
		__ClearPageReserved(p);
		set_page_count(p, 0);
1278
	}
1279 1280
	__ClearPageReserved(p);
	set_page_count(p, 0);
1281

1282
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1283 1284
	set_page_refcounted(page);
	__free_pages(page, order);
1285 1286
}

1287 1288
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289

1290 1291 1292 1293
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1294
	static DEFINE_SPINLOCK(early_pfn_lock);
1295 1296
	int nid;

1297
	spin_lock(&early_pfn_lock);
1298
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299
	if (nid < 0)
1300
		nid = first_online_node;
1301 1302 1303
	spin_unlock(&early_pfn_lock);

	return nid;
1304 1305 1306 1307
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 1309 1310
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1332 1333 1334
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1335 1336 1337 1338 1339 1340
{
	return true;
}
#endif


1341
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 1343 1344 1345
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1346
	return __free_pages_boot_core(page, order);
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1378 1379 1380
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1420
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 1422
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1423
{
1424 1425
	struct page *page;
	unsigned long i;
1426

1427
	if (!nr_pages)
1428 1429
		return;

1430 1431
	page = pfn_to_page(pfn);

1432
	/* Free a large naturally-aligned chunk if possible */
1433 1434
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1435
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436
		__free_pages_boot_core(page, pageblock_order);
1437 1438 1439
		return;
	}

1440 1441 1442
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443
		__free_pages_boot_core(page, 0);
1444
	}
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1456

1457
/*
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1470
 */
1471 1472 1473
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1474
{
1475 1476 1477 1478 1479 1480 1481 1482
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1494

1495 1496 1497 1498 1499 1500 1501
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1502
			touch_nmi_watchdog();
1503 1504 1505 1506 1507 1508
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1519 1520 1521 1522 1523 1524
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1525 1526 1527
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1528
			continue;
1529
		} else if (!page || !(pfn & nr_pgmask)) {
1530
			page = pfn_to_page(pfn);
1531
			touch_nmi_watchdog();
1532 1533
		} else {
			page++;
1534
		}
1535
		__init_single_page(page, pfn, zid, nid);
1536
		nr_pages++;
1537
	}
1538
	return (nr_pages);
1539 1540
}

1541
/* Initialise remaining memory on a node */
1542
static int __init deferred_init_memmap(void *data)
1543
{
1544 1545
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1546 1547
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1548
	unsigned long spfn, epfn, first_init_pfn, flags;
1549 1550
	phys_addr_t spa, epa;
	int zid;
1551
	struct zone *zone;
1552
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553
	u64 i;
1554

1555 1556 1557 1558 1559 1560
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1561
	if (first_init_pfn == ULONG_MAX) {
1562
		pgdat_resize_unlock(pgdat, &flags);
1563
		pgdat_init_report_one_done();
1564 1565 1566
		return 0;
	}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1578
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1591 1592 1593
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594
		deferred_free_pages(nid, zid, spfn, epfn);
1595
	}
1596
	pgdat_resize_unlock(pgdat, &flags);
1597 1598 1599 1600

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1601
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602
					jiffies_to_msecs(jiffies - start));
1603 1604

	pgdat_init_report_one_done();
1605 1606
	return 0;
}
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1718
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719 1720 1721

void __init page_alloc_init_late(void)
{
1722 1723 1724
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 1726
	int nid;

1727 1728
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 1730 1731 1732 1733
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1734
	wait_for_completion(&pgdat_init_all_done_comp);
1735

1736 1737 1738 1739 1740 1741
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1742 1743
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1744
#endif
P
Pavel Tatashin 已提交
1745 1746 1747 1748
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1749 1750 1751

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1752 1753
}

1754
#ifdef CONFIG_CMA
1755
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756 1757 1758 1759 1760 1761 1762 1763
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1764
	} while (++p, --i);
1765 1766

	set_pageblock_migratetype(page, MIGRATE_CMA);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1781
	adjust_managed_page_count(page, pageblock_nr_pages);
1782 1783
}
#endif
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1797
 * -- nyc
L
Linus Torvalds 已提交
1798
 */
N
Nick Piggin 已提交
1799
static inline void expand(struct zone *zone, struct page *page,
1800 1801
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1809
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810

1811 1812 1813 1814 1815 1816 1817
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1818
			continue;
1819

1820
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1826
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1827
{
1828 1829
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1830

1831
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 1833 1834
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1835
	if (unlikely(page_ref_count(page) != 0))
1836
		bad_reason = "nonzero _count";
1837 1838 1839
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1840 1841 1842
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1843
	}
1844 1845 1846 1847
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1848 1849 1850 1851
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1866 1867
}

1868
static inline bool free_pages_prezeroed(void)
1869 1870
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871
		page_poisoning_enabled();
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1921
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922
							unsigned int alloc_flags)
1923 1924
{
	int i;
1925

1926
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1927

1928
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 1930
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1931 1932 1933 1934

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1935
	/*
1936
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 1938 1939 1940
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1941 1942 1943 1944
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1945 1946
}

1947 1948 1949 1950
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1951
static __always_inline
1952
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 1954 1955
						int migratetype)
{
	unsigned int current_order;
1956
	struct free_area *area;
1957 1958 1959 1960 1961
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1962
		page = list_first_entry_or_null(&area->free_list[migratetype],
1963
							struct page, lru);
1964 1965
		if (!page)
			continue;
1966 1967 1968 1969
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1970
		set_pcppage_migratetype(page, migratetype);
1971 1972 1973 1974 1975 1976 1977
		return page;
	}

	return NULL;
}


1978 1979 1980 1981
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1982
static int fallbacks[MIGRATE_TYPES][4] = {
1983 1984
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1985
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1986
#ifdef CONFIG_CMA
1987
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1988
#endif
1989
#ifdef CONFIG_MEMORY_ISOLATION
1990
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1991
#endif
1992 1993
};

1994
#ifdef CONFIG_CMA
1995
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 1997 1998 1999 2000 2001 2002 2003 2004
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2005 2006
/*
 * Move the free pages in a range to the free lists of the requested type.
2007
 * Note that start_page and end_pages are not aligned on a pageblock
2008 2009
 * boundary. If alignment is required, use move_freepages_block()
 */
2010
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2011
			  struct page *start_page, struct page *end_page,
2012
			  int migratetype, int *num_movable)
2013 2014
{
	struct page *page;
2015
	unsigned int order;
2016
	int pages_moved = 0;
2017 2018 2019 2020 2021 2022 2023

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2024
	 * grouping pages by mobility
2025
	 */
2026 2027 2028
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2029 2030 2031 2032 2033 2034 2035
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2036 2037 2038
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2039
		if (!PageBuddy(page)) {
2040 2041 2042 2043 2044 2045 2046 2047 2048
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2049 2050 2051 2052 2053
			page++;
			continue;
		}

		order = page_order(page);
2054 2055
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2056
		page += 1 << order;
2057
		pages_moved += 1 << order;
2058 2059
	}

2060
	return pages_moved;
2061 2062
}

2063
int move_freepages_block(struct zone *zone, struct page *page,
2064
				int migratetype, int *num_movable)
2065 2066 2067 2068
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2069 2070 2071
	if (num_movable)
		*num_movable = 0;

2072
	start_pfn = page_to_pfn(page);
2073
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074
	start_page = pfn_to_page(start_pfn);
2075 2076
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2077 2078

	/* Do not cross zone boundaries */
2079
	if (!zone_spans_pfn(zone, start_pfn))
2080
		start_page = page;
2081
	if (!zone_spans_pfn(zone, end_pfn))
2082 2083
		return 0;

2084 2085
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2099
/*
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2110
 */
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2135 2136 2137 2138
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2139 2140
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141
					int start_type, bool whole_block)
2142
{
2143
	unsigned int current_order = page_order(page);
2144
	struct free_area *area;
2145 2146 2147 2148
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2149

2150 2151 2152 2153
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2154
	if (is_migrate_highatomic(old_block_type))
2155 2156
		goto single_page;

2157 2158 2159
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2160
		goto single_page;
2161 2162
	}

2163 2164 2165 2166
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2191
	/* moving whole block can fail due to zone boundary conditions */
2192
	if (!free_pages)
2193
		goto single_page;
2194

2195 2196 2197 2198 2199
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 2201
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2202 2203 2204 2205 2206 2207

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2228
		if (fallback_mt == MIGRATE_TYPES)
2229 2230 2231 2232
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2233

2234 2235 2236
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2237 2238 2239 2240 2241
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2242
	}
2243 2244

	return -1;
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2261
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2273 2274
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2275 2276
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2289 2290 2291
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2292
 */
2293 2294
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2295 2296 2297 2298 2299 2300 2301
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2302
	bool ret;
2303 2304 2305

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2306 2307 2308 2309 2310 2311
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2312 2313 2314 2315 2316 2317
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2318 2319 2320 2321
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2322 2323 2324
				continue;

			/*
2325 2326 2327 2328 2329
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2330
			 */
2331
			if (is_migrate_highatomic_page(page)) {
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2354 2355
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2356 2357 2358 2359
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2360 2361 2362
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2363 2364

	return false;
2365 2366
}

2367 2368 2369 2370 2371
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2372 2373 2374 2375
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2376
 */
2377
static __always_inline bool
2378
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2379
{
2380
	struct free_area *area;
2381
	int current_order;
2382
	struct page *page;
2383 2384
	int fallback_mt;
	bool can_steal;
2385

2386 2387 2388 2389 2390
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2391
	for (current_order = MAX_ORDER - 1; current_order >= order;
2392
				--current_order) {
2393 2394
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2395
				start_migratetype, false, &can_steal);
2396 2397
		if (fallback_mt == -1)
			continue;
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2410

2411 2412
		goto do_steal;
	}
2413

2414
	return false;
2415

2416 2417 2418 2419 2420 2421 2422 2423
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2424 2425
	}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2443 2444
}

2445
/*
L
Linus Torvalds 已提交
2446 2447 2448
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2449 2450
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2451 2452 2453
{
	struct page *page;

2454
retry:
2455
	page = __rmqueue_smallest(zone, order, migratetype);
2456
	if (unlikely(!page)) {
2457 2458 2459
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2460 2461
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2462 2463
	}

2464
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2465
	return page;
L
Linus Torvalds 已提交
2466 2467
}

2468
/*
L
Linus Torvalds 已提交
2469 2470 2471 2472
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2473
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2474
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2475
			int migratetype)
L
Linus Torvalds 已提交
2476
{
2477
	int i, alloced = 0;
2478

2479
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2480
	for (i = 0; i < count; ++i) {
2481
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2482
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2483
			break;
2484

2485 2486 2487
		if (unlikely(check_pcp_refill(page)))
			continue;

2488
		/*
2489 2490 2491 2492 2493 2494 2495 2496
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2497
		 */
2498
		list_add_tail(&page->lru, list);
2499
		alloced++;
2500
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2501 2502
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2503
	}
2504 2505 2506 2507 2508 2509 2510

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2511
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2512
	spin_unlock(&zone->lock);
2513
	return alloced;
L
Linus Torvalds 已提交
2514 2515
}

2516
#ifdef CONFIG_NUMA
2517
/*
2518 2519 2520 2521
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2522 2523
 * Note that this function must be called with the thread pinned to
 * a single processor.
2524
 */
2525
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2526 2527
{
	unsigned long flags;
2528
	int to_drain, batch;
2529

2530
	local_irq_save(flags);
2531
	batch = READ_ONCE(pcp->batch);
2532
	to_drain = min(pcp->count, batch);
2533
	if (to_drain > 0)
2534
		free_pcppages_bulk(zone, to_drain, pcp);
2535
	local_irq_restore(flags);
2536 2537 2538
}
#endif

2539
/*
2540
 * Drain pcplists of the indicated processor and zone.
2541 2542 2543 2544 2545
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2546
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2547
{
N
Nick Piggin 已提交
2548
	unsigned long flags;
2549 2550
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2551

2552 2553
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2554

2555
	pcp = &pset->pcp;
2556
	if (pcp->count)
2557 2558 2559
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2574 2575 2576
	}
}

2577 2578
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2579 2580 2581
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2582
 */
2583
void drain_local_pages(struct zone *zone)
2584
{
2585 2586 2587 2588 2589 2590
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2591 2592
}

2593 2594
static void drain_local_pages_wq(struct work_struct *work)
{
2595 2596 2597 2598 2599 2600 2601 2602
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2603
	drain_local_pages(NULL);
2604
	preempt_enable();
2605 2606
}

2607
/*
2608 2609
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2610 2611
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2612
 * Note that this can be extremely slow as the draining happens in a workqueue.
2613
 */
2614
void drain_all_pages(struct zone *zone)
2615
{
2616 2617 2618 2619 2620 2621 2622 2623
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2624 2625 2626 2627 2628 2629 2630
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2641

2642 2643 2644 2645 2646 2647 2648
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2649 2650
		struct per_cpu_pageset *pcp;
		struct zone *z;
2651
		bool has_pcps = false;
2652 2653

		if (zone) {
2654
			pcp = per_cpu_ptr(zone->pageset, cpu);
2655
			if (pcp->pcp.count)
2656
				has_pcps = true;
2657 2658 2659 2660 2661 2662 2663
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2664 2665
			}
		}
2666

2667 2668 2669 2670 2671
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2672

2673 2674 2675
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2676
		queue_work_on(cpu, mm_percpu_wq, work);
2677
	}
2678 2679 2680 2681
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2682 2683
}

2684
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2685

2686 2687 2688 2689 2690
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2691 2692
void mark_free_pages(struct zone *zone)
{
2693
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2694
	unsigned long flags;
2695
	unsigned int order, t;
2696
	struct page *page;
L
Linus Torvalds 已提交
2697

2698
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2699 2700 2701
		return;

	spin_lock_irqsave(&zone->lock, flags);
2702

2703
	max_zone_pfn = zone_end_pfn(zone);
2704 2705
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2706
			page = pfn_to_page(pfn);
2707

2708 2709 2710 2711 2712
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2713 2714 2715
			if (page_zone(page) != zone)
				continue;

2716 2717
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2718
		}
L
Linus Torvalds 已提交
2719

2720
	for_each_migratetype_order(order, t) {
2721 2722
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2723
			unsigned long i;
L
Linus Torvalds 已提交
2724

2725
			pfn = page_to_pfn(page);
2726 2727 2728 2729 2730
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2731
				swsusp_set_page_free(pfn_to_page(pfn + i));
2732
			}
2733
		}
2734
	}
L
Linus Torvalds 已提交
2735 2736
	spin_unlock_irqrestore(&zone->lock, flags);
}
2737
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2738

2739
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2740
{
2741
	int migratetype;
L
Linus Torvalds 已提交
2742

2743
	if (!free_pcp_prepare(page))
2744
		return false;
2745

2746
	migratetype = get_pfnblock_migratetype(page, pfn);
2747
	set_pcppage_migratetype(page, migratetype);
2748 2749 2750
	return true;
}

2751
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2752 2753 2754 2755 2756 2757
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2758
	__count_vm_event(PGFREE);
2759

2760 2761 2762
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2763
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2764 2765 2766 2767
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2768
		if (unlikely(is_migrate_isolate(migratetype))) {
2769
			free_one_page(zone, page, pfn, 0, migratetype);
2770
			return;
2771 2772 2773 2774
		}
		migratetype = MIGRATE_MOVABLE;
	}

2775
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2777
	pcp->count++;
N
Nick Piggin 已提交
2778
	if (pcp->count >= pcp->high) {
2779
		unsigned long batch = READ_ONCE(pcp->batch);
2780
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2781
	}
2782
}
2783

2784 2785 2786
/*
 * Free a 0-order page
 */
2787
void free_unref_page(struct page *page)
2788 2789 2790 2791
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2792
	if (!free_unref_page_prepare(page, pfn))
2793 2794 2795
		return;

	local_irq_save(flags);
2796
	free_unref_page_commit(page, pfn);
2797
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2798 2799
}

2800 2801 2802
/*
 * Free a list of 0-order pages
 */
2803
void free_unref_page_list(struct list_head *list)
2804 2805
{
	struct page *page, *next;
2806
	unsigned long flags, pfn;
2807
	int batch_count = 0;
2808 2809 2810 2811

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2812
		if (!free_unref_page_prepare(page, pfn))
2813 2814 2815
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2816

2817
	local_irq_save(flags);
2818
	list_for_each_entry_safe(page, next, list, lru) {
2819 2820 2821
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2822 2823
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2834
	}
2835
	local_irq_restore(flags);
2836 2837
}

N
Nick Piggin 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2850 2851
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2852

2853
	for (i = 1; i < (1 << order); i++)
2854
		set_page_refcounted(page + i);
2855
	split_page_owner(page, order);
N
Nick Piggin 已提交
2856
}
K
K. Y. Srinivasan 已提交
2857
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2858

2859
int __isolate_free_page(struct page *page, unsigned int order)
2860 2861 2862
{
	unsigned long watermark;
	struct zone *zone;
2863
	int mt;
2864 2865 2866 2867

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2868
	mt = get_pageblock_migratetype(page);
2869

2870
	if (!is_migrate_isolate(mt)) {
2871 2872 2873 2874 2875 2876 2877
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2878
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2879 2880
			return 0;

2881
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2882
	}
2883 2884 2885 2886 2887

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2888

2889 2890 2891 2892
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2893 2894
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2895 2896
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2897
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2898
			    && !is_migrate_highatomic(mt))
2899 2900 2901
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2902 2903
	}

2904

2905
	return 1UL << order;
2906 2907
}

2908 2909 2910 2911 2912
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2913
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2914 2915
{
#ifdef CONFIG_NUMA
2916
	enum numa_stat_item local_stat = NUMA_LOCAL;
2917

2918 2919 2920 2921
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2922
	if (zone_to_nid(z) != numa_node_id())
2923 2924
		local_stat = NUMA_OTHER;

2925
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2926
		__inc_numa_state(z, NUMA_HIT);
2927
	else {
2928 2929
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2930
	}
2931
	__inc_numa_state(z, local_stat);
2932 2933 2934
#endif
}

2935 2936
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2937
			struct per_cpu_pages *pcp,
2938 2939 2940 2941 2942 2943 2944 2945
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2946
					migratetype);
2947 2948 2949 2950
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2951
		page = list_first_entry(list, struct page, lru);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2967
	unsigned long flags;
2968

2969
	local_irq_save(flags);
2970 2971
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2972
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2973 2974 2975 2976
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2977
	local_irq_restore(flags);
2978 2979 2980
	return page;
}

L
Linus Torvalds 已提交
2981
/*
2982
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2983
 */
2984
static inline
2985
struct page *rmqueue(struct zone *preferred_zone,
2986
			struct zone *zone, unsigned int order,
2987 2988
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2989 2990
{
	unsigned long flags;
2991
	struct page *page;
L
Linus Torvalds 已提交
2992

2993
	if (likely(order == 0)) {
2994 2995 2996 2997
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2998

2999 3000 3001 3002 3003 3004
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3005

3006 3007 3008 3009 3010 3011 3012
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3013
		if (!page)
3014 3015 3016 3017 3018 3019 3020
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3021

3022
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3023
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3024
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3025

3026 3027
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3028
	return page;
N
Nick Piggin 已提交
3029 3030 3031 3032

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3033 3034
}

3035 3036
#ifdef CONFIG_FAIL_PAGE_ALLOC

3037
static struct {
3038 3039
	struct fault_attr attr;

3040
	bool ignore_gfp_highmem;
3041
	bool ignore_gfp_reclaim;
3042
	u32 min_order;
3043 3044
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3045
	.ignore_gfp_reclaim = true,
3046
	.ignore_gfp_highmem = true,
3047
	.min_order = 1,
3048 3049 3050 3051 3052 3053 3054 3055
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3056
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3057
{
3058
	if (order < fail_page_alloc.min_order)
3059
		return false;
3060
	if (gfp_mask & __GFP_NOFAIL)
3061
		return false;
3062
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3063
		return false;
3064 3065
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3066
		return false;
3067 3068 3069 3070 3071 3072 3073 3074

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3075
	umode_t mode = S_IFREG | 0600;
3076 3077
	struct dentry *dir;

3078 3079 3080 3081
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3082

3083
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3084
				&fail_page_alloc.ignore_gfp_reclaim))
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3095
	debugfs_remove_recursive(dir);
3096

3097
	return -ENOMEM;
3098 3099 3100 3101 3102 3103 3104 3105
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3106
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3107
{
3108
	return false;
3109 3110 3111 3112
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3113
/*
3114 3115 3116 3117
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3118
 */
3119 3120 3121
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3122
{
3123
	long min = mark;
L
Linus Torvalds 已提交
3124
	int o;
3125
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3126

3127
	/* free_pages may go negative - that's OK */
3128
	free_pages -= (1 << order) - 1;
3129

R
Rohit Seth 已提交
3130
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3131
		min -= min / 2;
3132 3133 3134 3135 3136 3137

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3138
	if (likely(!alloc_harder)) {
3139
		free_pages -= z->nr_reserved_highatomic;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3153

3154 3155 3156 3157 3158 3159
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3160 3161 3162 3163 3164 3165
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3166
		return false;
L
Linus Torvalds 已提交
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3186 3187
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3188
			return true;
3189
		}
3190
#endif
3191 3192 3193
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3194
	}
3195
	return false;
3196 3197
}

3198
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3199
		      int classzone_idx, unsigned int alloc_flags)
3200 3201 3202 3203 3204
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3205 3206 3207 3208
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3209 3210 3211 3212 3213 3214 3215
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3216 3217 3218 3219 3220 3221 3222 3223

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3224
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3225 3226 3227 3228 3229 3230
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3231
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232
			unsigned long mark, int classzone_idx)
3233 3234 3235 3236 3237 3238
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3239
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3240
								free_pages);
L
Linus Torvalds 已提交
3241 3242
}

3243
#ifdef CONFIG_NUMA
3244 3245
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3246
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3247
				RECLAIM_DISTANCE;
3248
}
3249
#else	/* CONFIG_NUMA */
3250 3251 3252 3253
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3254 3255
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3256
/*
3257
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3258 3259 3260
 * a page.
 */
static struct page *
3261 3262
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3263
{
3264
	struct zoneref *z = ac->preferred_zoneref;
3265
	struct zone *zone;
3266 3267
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3268
	/*
3269
	 * Scan zonelist, looking for a zone with enough free.
3270
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3271
	 */
3272
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3273
								ac->nodemask) {
3274
		struct page *page;
3275 3276
		unsigned long mark;

3277 3278
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3279
			!__cpuset_zone_allowed(zone, gfp_mask))
3280
				continue;
3281 3282
		/*
		 * When allocating a page cache page for writing, we
3283 3284
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3285
		 * proportional share of globally allowed dirty pages.
3286
		 * The dirty limits take into account the node's
3287 3288 3289 3290 3291
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3292
		 * exceed the per-node dirty limit in the slowpath
3293
		 * (spread_dirty_pages unset) before going into reclaim,
3294
		 * which is important when on a NUMA setup the allowed
3295
		 * nodes are together not big enough to reach the
3296
		 * global limit.  The proper fix for these situations
3297
		 * will require awareness of nodes in the
3298 3299
		 * dirty-throttling and the flusher threads.
		 */
3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3309

3310
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3311
		if (!zone_watermark_fast(zone, order, mark,
3312
				       ac_classzone_idx(ac), alloc_flags)) {
3313 3314
			int ret;

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3325 3326 3327 3328 3329
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3330
			if (node_reclaim_mode == 0 ||
3331
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3332 3333
				continue;

3334
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3335
			switch (ret) {
3336
			case NODE_RECLAIM_NOSCAN:
3337
				/* did not scan */
3338
				continue;
3339
			case NODE_RECLAIM_FULL:
3340
				/* scanned but unreclaimable */
3341
				continue;
3342 3343
			default:
				/* did we reclaim enough */
3344
				if (zone_watermark_ok(zone, order, mark,
3345
						ac_classzone_idx(ac), alloc_flags))
3346 3347 3348
					goto try_this_zone;

				continue;
3349
			}
R
Rohit Seth 已提交
3350 3351
		}

3352
try_this_zone:
3353
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3354
				gfp_mask, alloc_flags, ac->migratetype);
3355
		if (page) {
3356
			prep_new_page(page, order, gfp_mask, alloc_flags);
3357 3358 3359 3360 3361 3362 3363 3364

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3365
			return page;
3366 3367 3368 3369 3370 3371 3372 3373
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3374
		}
3375
	}
3376

3377
	return NULL;
M
Martin Hicks 已提交
3378 3379
}

3380
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3381 3382
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3383
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3384

3385
	if (!__ratelimit(&show_mem_rs))
3386 3387 3388 3389 3390 3391 3392 3393
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3394
		if (tsk_is_oom_victim(current) ||
3395 3396
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3397
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3398 3399
		filter &= ~SHOW_MEM_FILTER_NODES;

3400
	show_mem(filter, nodemask);
3401 3402
}

3403
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3404 3405 3406 3407 3408 3409
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3410
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3411 3412
		return;

3413 3414 3415
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3416 3417 3418
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3419
	va_end(args);
J
Joe Perches 已提交
3420

3421
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3422

3423
	dump_stack();
3424
	warn_alloc_show_mem(gfp_mask, nodemask);
3425 3426
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3447 3448
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3449
	const struct alloc_context *ac, unsigned long *did_some_progress)
3450
{
3451 3452 3453
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3454
		.memcg = NULL,
3455 3456 3457
		.gfp_mask = gfp_mask,
		.order = order,
	};
3458 3459
	struct page *page;

3460 3461 3462
	*did_some_progress = 0;

	/*
3463 3464
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3465
	 */
3466
	if (!mutex_trylock(&oom_lock)) {
3467
		*did_some_progress = 1;
3468
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3469 3470
		return NULL;
	}
3471

3472 3473 3474
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3475 3476 3477
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3478
	 */
3479 3480 3481
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3482
	if (page)
3483 3484
		goto out;

3485 3486 3487 3488 3489 3490
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3491 3492 3493 3494 3495 3496 3497 3498
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3517

3518
	/* Exhausted what can be done so it's blame time */
3519
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3520
		*did_some_progress = 1;
3521

3522 3523 3524 3525 3526 3527
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3528 3529
					ALLOC_NO_WATERMARKS, ac);
	}
3530
out:
3531
	mutex_unlock(&oom_lock);
3532 3533 3534
	return page;
}

3535 3536 3537 3538 3539 3540
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3541 3542 3543 3544
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545
		unsigned int alloc_flags, const struct alloc_context *ac,
3546
		enum compact_priority prio, enum compact_result *compact_result)
3547
{
3548
	struct page *page;
3549
	unsigned long pflags;
3550
	unsigned int noreclaim_flag;
3551 3552

	if (!order)
3553 3554
		return NULL;

3555
	psi_memstall_enter(&pflags);
3556
	noreclaim_flag = memalloc_noreclaim_save();
3557

3558
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559
									prio);
3560

3561
	memalloc_noreclaim_restore(noreclaim_flag);
3562
	psi_memstall_leave(&pflags);
3563

3564
	if (*compact_result <= COMPACT_INACTIVE)
3565
		return NULL;
3566

3567 3568 3569 3570 3571
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3572

3573
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574

3575 3576
	if (page) {
		struct zone *zone = page_zone(page);
3577

3578 3579 3580 3581 3582
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3583

3584 3585 3586 3587 3588
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3589

3590
	cond_resched();
3591 3592 3593

	return NULL;
}
3594

3595 3596 3597 3598
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3599
		     int *compaction_retries)
3600 3601
{
	int max_retries = MAX_COMPACT_RETRIES;
3602
	int min_priority;
3603 3604 3605
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3606 3607 3608 3609

	if (!order)
		return false;

3610 3611 3612
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3613 3614 3615 3616 3617
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3618 3619
	if (compaction_failed(compact_result))
		goto check_priority;
3620 3621 3622 3623 3624 3625 3626

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3627 3628 3629 3630
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3631 3632

	/*
3633
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3634 3635 3636 3637 3638 3639 3640 3641
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3642 3643 3644 3645
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3646

3647 3648 3649 3650 3651
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3652 3653
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3654

3655
	if (*compact_priority > min_priority) {
3656 3657
		(*compact_priority)--;
		*compaction_retries = 0;
3658
		ret = true;
3659
	}
3660 3661 3662
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3663
}
3664 3665 3666
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3667
		unsigned int alloc_flags, const struct alloc_context *ac,
3668
		enum compact_priority prio, enum compact_result *compact_result)
3669
{
3670
	*compact_result = COMPACT_SKIPPED;
3671 3672
	return NULL;
}
3673 3674

static inline bool
3675 3676
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3677
		     enum compact_priority *compact_priority,
3678
		     int *compaction_retries)
3679
{
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3698 3699
	return false;
}
3700
#endif /* CONFIG_COMPACTION */
3701

3702
#ifdef CONFIG_LOCKDEP
3703
static struct lockdep_map __fs_reclaim_map =
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3715
	if (current->flags & PF_MEMALLOC)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3738 3739 3740
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3741
		__fs_reclaim_acquire();
3742 3743 3744 3745 3746 3747
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3748
		__fs_reclaim_release();
3749 3750 3751 3752
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3753 3754
/* Perform direct synchronous page reclaim */
static int
3755 3756
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3757 3758
{
	struct reclaim_state reclaim_state;
3759
	int progress;
3760
	unsigned int noreclaim_flag;
3761
	unsigned long pflags;
3762 3763 3764 3765 3766

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3767
	psi_memstall_enter(&pflags);
3768
	fs_reclaim_acquire(gfp_mask);
3769
	noreclaim_flag = memalloc_noreclaim_save();
3770
	reclaim_state.reclaimed_slab = 0;
3771
	current->reclaim_state = &reclaim_state;
3772

3773 3774
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3775

3776
	current->reclaim_state = NULL;
3777
	memalloc_noreclaim_restore(noreclaim_flag);
3778
	fs_reclaim_release(gfp_mask);
3779
	psi_memstall_leave(&pflags);
3780 3781 3782

	cond_resched();

3783 3784 3785 3786 3787 3788
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3789
		unsigned int alloc_flags, const struct alloc_context *ac,
3790
		unsigned long *did_some_progress)
3791 3792 3793 3794
{
	struct page *page = NULL;
	bool drained = false;

3795
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3796 3797
	if (unlikely(!(*did_some_progress)))
		return NULL;
3798

3799
retry:
3800
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3801 3802 3803

	/*
	 * If an allocation failed after direct reclaim, it could be because
3804 3805
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3806 3807
	 */
	if (!page && !drained) {
3808
		unreserve_highatomic_pageblock(ac, false);
3809
		drain_all_pages(NULL);
3810 3811 3812 3813
		drained = true;
		goto retry;
	}

3814 3815 3816
	return page;
}

3817 3818
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3819 3820 3821
{
	struct zoneref *z;
	struct zone *zone;
3822
	pg_data_t *last_pgdat = NULL;
3823
	enum zone_type high_zoneidx = ac->high_zoneidx;
3824

3825 3826
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3827
		if (last_pgdat != zone->zone_pgdat)
3828
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3829 3830
		last_pgdat = zone->zone_pgdat;
	}
3831 3832
}

3833
static inline unsigned int
3834 3835
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3836
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3837

3838
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3839
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3840

3841 3842 3843 3844
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3845
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3846
	 */
3847
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3848

3849
	if (gfp_mask & __GFP_ATOMIC) {
3850
		/*
3851 3852
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3853
		 */
3854
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3855
			alloc_flags |= ALLOC_HARDER;
3856
		/*
3857
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3858
		 * comment for __cpuset_node_allowed().
3859
		 */
3860
		alloc_flags &= ~ALLOC_CPUSET;
3861
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3862 3863
		alloc_flags |= ALLOC_HARDER;

3864 3865 3866 3867
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3868 3869 3870
	return alloc_flags;
}

3871
static bool oom_reserves_allowed(struct task_struct *tsk)
3872
{
3873 3874 3875 3876 3877 3878 3879 3880
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3881 3882
		return false;

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3894
	if (gfp_mask & __GFP_MEMALLOC)
3895
		return ALLOC_NO_WATERMARKS;
3896
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3897 3898 3899 3900 3901 3902 3903
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3904

3905 3906 3907 3908 3909 3910
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3911 3912
}

M
Michal Hocko 已提交
3913 3914 3915
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3916 3917 3918 3919
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3920 3921 3922 3923 3924 3925
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3926
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3927 3928 3929
{
	struct zone *zone;
	struct zoneref *z;
3930
	bool ret = false;
M
Michal Hocko 已提交
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3942 3943 3944 3945
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3946 3947
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3948
		return unreserve_highatomic_pageblock(ac, true);
3949
	}
M
Michal Hocko 已提交
3950

3951 3952 3953 3954 3955
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3956 3957 3958 3959
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3960
		unsigned long reclaimable;
3961 3962
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3963

3964 3965
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3966 3967

		/*
3968 3969
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3970
		 */
3971 3972 3973 3974 3975
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3976 3977 3978 3979 3980 3981 3982
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3983
				unsigned long write_pending;
3984

3985 3986
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3987

3988
				if (2 * write_pending > reclaimable) {
3989 3990 3991 3992
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3993

3994 3995
			ret = true;
			goto out;
M
Michal Hocko 已提交
3996 3997 3998
		}
	}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4012 4013
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4047 4048
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049
						struct alloc_context *ac)
4050
{
4051
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053
	struct page *page = NULL;
4054
	unsigned int alloc_flags;
4055
	unsigned long did_some_progress;
4056
	enum compact_priority compact_priority;
4057
	enum compact_result compact_result;
4058 4059 4060
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4061
	int reserve_flags;
L
Linus Torvalds 已提交
4062

4063 4064 4065 4066 4067 4068 4069 4070
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4071 4072 4073 4074 4075
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4076 4077 4078 4079 4080 4081 4082 4083

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4095
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4096
		wake_all_kswapds(order, gfp_mask, ac);
4097 4098 4099 4100 4101 4102 4103 4104 4105

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4106 4107
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4108 4109 4110 4111 4112 4113
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114
	 */
4115 4116 4117 4118
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4119 4120
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4121
						INIT_COMPACT_PRIORITY,
4122 4123 4124 4125
						&compact_result);
		if (page)
			goto got_pg;

4126 4127 4128 4129
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4130
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4143 4144
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4145
			 * using async compaction.
4146
			 */
4147
			compact_priority = INIT_COMPACT_PRIORITY;
4148 4149
		}
	}
4150

4151
retry:
4152
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4153
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4154
		wake_all_kswapds(order, gfp_mask, ac);
4155

4156 4157 4158
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4159

4160
	/*
4161 4162 4163
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4164
	 */
4165
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4166
		ac->nodemask = NULL;
4167 4168 4169 4170
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4171
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4172
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4173 4174
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4175

4176
	/* Caller is not willing to reclaim, we can't balance anything */
4177
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4178 4179
		goto nopage;

4180 4181
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4182 4183
		goto nopage;

4184 4185 4186 4187 4188 4189 4190
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4191
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4192
					compact_priority, &compact_result);
4193 4194
	if (page)
		goto got_pg;
4195

4196 4197
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4198
		goto nopage;
4199

M
Michal Hocko 已提交
4200 4201
	/*
	 * Do not retry costly high order allocations unless they are
4202
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4203
	 */
4204
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4205
		goto nopage;
M
Michal Hocko 已提交
4206 4207

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4208
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4209 4210
		goto retry;

4211 4212 4213 4214 4215 4216 4217
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4218
			should_compact_retry(ac, order, alloc_flags,
4219
				compact_result, &compact_priority,
4220
				&compaction_retries))
4221 4222
		goto retry;

4223 4224 4225

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4226 4227
		goto retry_cpuset;

4228 4229 4230 4231 4232
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4233
	/* Avoid allocations with no watermarks from looping endlessly */
4234 4235
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4236
	     (gfp_mask & __GFP_NOMEMALLOC)))
4237 4238
		goto nopage;

4239
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4240 4241
	if (did_some_progress) {
		no_progress_loops = 0;
4242
		goto retry;
M
Michal Hocko 已提交
4243
	}
4244

L
Linus Torvalds 已提交
4245
nopage:
4246 4247
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4248 4249
		goto retry_cpuset;

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4287 4288 4289 4290
		cond_resched();
		goto retry;
	}
fail:
4291
	warn_alloc(gfp_mask, ac->nodemask,
4292
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4293
got_pg:
4294
	return page;
L
Linus Torvalds 已提交
4295
}
4296

4297
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4298
		int preferred_nid, nodemask_t *nodemask,
4299 4300
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4301
{
4302
	ac->high_zoneidx = gfp_zone(gfp_mask);
4303
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4304 4305
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4306

4307
	if (cpusets_enabled()) {
4308 4309 4310
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4311 4312
		else
			*alloc_flags |= ALLOC_CPUSET;
4313 4314
	}

4315 4316
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4317

4318
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4319 4320

	if (should_fail_alloc_page(gfp_mask, order))
4321
		return false;
4322

4323 4324 4325
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4326 4327
	return true;
}
4328

4329
/* Determine whether to spread dirty pages and what the first usable zone */
4330
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4331
{
4332
	/* Dirty zone balancing only done in the fast path */
4333
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334

4335 4336 4337 4338 4339
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4340 4341 4342 4343 4344 4345 4346 4347
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4348 4349
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4350 4351 4352
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354 4355
	struct alloc_context ac = { };

4356 4357 4358 4359 4360 4361 4362 4363 4364
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4365
	gfp_mask &= gfp_allowed_mask;
4366
	alloc_mask = gfp_mask;
4367
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4368 4369
		return NULL;

4370
	finalise_ac(gfp_mask, &ac);
4371

4372
	/* First allocation attempt */
4373
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4374 4375
	if (likely(page))
		goto out;
4376

4377
	/*
4378 4379 4380 4381
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4382
	 */
4383
	alloc_mask = current_gfp_context(gfp_mask);
4384
	ac.spread_dirty_pages = false;
4385

4386 4387 4388 4389
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4390
	if (unlikely(ac.nodemask != nodemask))
4391
		ac.nodemask = nodemask;
4392

4393
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4394

4395
out:
4396 4397 4398 4399
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4400 4401
	}

4402 4403
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4404
	return page;
L
Linus Torvalds 已提交
4405
}
4406
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4407 4408

/*
4409 4410 4411
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4412
 */
H
Harvey Harrison 已提交
4413
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4414
{
4415 4416
	struct page *page;

4417
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4424
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4425
{
4426
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4427 4428 4429
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4430
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4431
{
N
Nick Piggin 已提交
4432
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4433
		if (order == 0)
4434
			free_unref_page(page);
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4442
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4443 4444
{
	if (addr != 0) {
N
Nick Piggin 已提交
4445
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4463 4464
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4484
void __page_frag_cache_drain(struct page *page, unsigned int count)
4485 4486 4487 4488
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4489 4490
		unsigned int order = compound_order(page);

4491
		if (order == 0)
4492
			free_unref_page(page);
4493 4494 4495 4496
		else
			__free_pages_ok(page, order);
	}
}
4497
EXPORT_SYMBOL(__page_frag_cache_drain);
4498

4499 4500
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4501 4502 4503 4504 4505 4506 4507
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4508
		page = __page_frag_cache_refill(nc, gfp_mask);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4519
		page_ref_add(page, size - 1);
4520 4521

		/* reset page count bias and offset to start of new frag */
4522
		nc->pfmemalloc = page_is_pfmemalloc(page);
4523 4524 4525 4526 4527 4528 4529 4530
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4531
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4532 4533 4534 4535 4536 4537 4538
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4539
		set_page_count(page, size);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4551
EXPORT_SYMBOL(page_frag_alloc);
4552 4553 4554 4555

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4556
void page_frag_free(void *addr)
4557 4558 4559
{
	struct page *page = virt_to_head_page(addr);

4560 4561 4562 4563 4564 4565 4566 4567
	if (unlikely(put_page_testzero(page))) {
		unsigned int order = compound_order(page);

		if (order == 0)		/* Via pcp? */
			free_unref_page(page);
		else
			__free_pages_ok(page, order);
	}
4568
}
4569
EXPORT_SYMBOL(page_frag_free);
4570

4571 4572
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4606
	return make_alloc_exact(addr, order, size);
4607 4608 4609
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4610 4611 4612
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4613
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4614 4615 4616 4617 4618 4619
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4620
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4621
{
4622
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4623 4624 4625 4626 4627 4628
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4648 4649 4650 4651 4652 4653 4654
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4655 4656
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4657
 */
4658
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4659
{
4660
	struct zoneref *z;
4661 4662
	struct zone *zone;

4663
	/* Just pick one node, since fallback list is circular */
4664
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4665

4666
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4667

4668
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4669
		unsigned long size = zone_managed_pages(zone);
4670
		unsigned long high = high_wmark_pages(zone);
4671 4672
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677
	}

	return sum;
}

4678 4679 4680 4681 4682
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4683
 */
4684
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4685
{
A
Al Viro 已提交
4686
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4687
}
4688
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4689

4690 4691 4692 4693 4694
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4695
 */
4696
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4697
{
M
Mel Gorman 已提交
4698
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4699
}
4700 4701

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4702
{
4703
	if (IS_ENABLED(CONFIG_NUMA))
4704
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4705 4706
}

4707 4708 4709 4710 4711 4712
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4713
	unsigned long reclaimable;
4714 4715 4716 4717
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4718
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4719 4720 4721 4722 4723 4724 4725 4726

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4727
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4739 4740 4741
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4742
	 */
4743 4744 4745
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4746

4747 4748 4749 4750 4751 4752
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4753 4754
void si_meminfo(struct sysinfo *val)
{
4755
	val->totalram = totalram_pages();
4756
	val->sharedram = global_node_page_state(NR_SHMEM);
4757
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4758
	val->bufferram = nr_blockdev_pages();
4759
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4769 4770
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4771 4772
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4773 4774
	pg_data_t *pgdat = NODE_DATA(nid);

4775
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4776
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4777
	val->totalram = managed_pages;
4778
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4779
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4780
#ifdef CONFIG_HIGHMEM
4781 4782 4783 4784
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
4785
			managed_highpages += zone_managed_pages(zone);
4786 4787 4788 4789 4790
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4791
#else
4792 4793
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4794
#endif
L
Linus Torvalds 已提交
4795 4796 4797 4798
	val->mem_unit = PAGE_SIZE;
}
#endif

4799
/*
4800 4801
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4802
 */
4803
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4804 4805
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4806
		return false;
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4817 4818
}

L
Linus Torvalds 已提交
4819 4820
#define K(x) ((x) << (PAGE_SHIFT-10))

4821 4822 4823 4824 4825
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4826 4827
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4828 4829 4830
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4831
#ifdef CONFIG_MEMORY_ISOLATION
4832
		[MIGRATE_ISOLATE]	= 'I',
4833
#endif
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4845
	printk(KERN_CONT "(%s) ", tmp);
4846 4847
}

L
Linus Torvalds 已提交
4848 4849 4850 4851
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4852 4853 4854 4855
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4856
 */
4857
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4858
{
4859
	unsigned long free_pcp = 0;
4860
	int cpu;
L
Linus Torvalds 已提交
4861
	struct zone *zone;
M
Mel Gorman 已提交
4862
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4863

4864
	for_each_populated_zone(zone) {
4865
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4866
			continue;
4867

4868 4869
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4870 4871
	}

K
KOSAKI Motohiro 已提交
4872 4873
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4874 4875
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4876
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4877
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4878 4879 4880 4881 4882 4883 4884
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4885 4886 4887
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4888 4889
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4890
		global_node_page_state(NR_FILE_MAPPED),
4891
		global_node_page_state(NR_SHMEM),
4892 4893 4894
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4895
		free_pcp,
4896
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4897

M
Mel Gorman 已提交
4898
	for_each_online_pgdat(pgdat) {
4899
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4900 4901
			continue;

M
Mel Gorman 已提交
4902 4903 4904 4905 4906 4907 4908 4909
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4910
			" mapped:%lukB"
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4931
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4932 4933
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4934
			K(node_page_state(pgdat, NR_SHMEM)),
4935 4936 4937 4938 4939 4940 4941 4942
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4943 4944
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4945 4946
	}

4947
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4948 4949
		int i;

4950
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4951
			continue;
4952 4953 4954 4955 4956

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4957
		show_node(zone);
4958 4959
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4960 4961 4962 4963
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4964 4965 4966 4967 4968
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4969
			" writepending:%lukB"
L
Linus Torvalds 已提交
4970
			" present:%lukB"
4971
			" managed:%lukB"
4972
			" mlocked:%lukB"
4973
			" kernel_stack:%lukB"
4974 4975
			" pagetables:%lukB"
			" bounce:%lukB"
4976 4977
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4978
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4979 4980
			"\n",
			zone->name,
4981
			K(zone_page_state(zone, NR_FREE_PAGES)),
4982 4983 4984
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4985 4986 4987 4988 4989
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4990
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4991
			K(zone->present_pages),
4992
			K(zone_managed_pages(zone)),
4993
			K(zone_page_state(zone, NR_MLOCK)),
4994
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4995 4996
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4997 4998
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4999
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5000 5001
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5002 5003
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5004 5005
	}

5006
	for_each_populated_zone(zone) {
5007 5008
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5009
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5010

5011
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5012
			continue;
L
Linus Torvalds 已提交
5013
		show_node(zone);
5014
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5015 5016 5017

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5018 5019 5020 5021
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5022
			total += nr[order] << order;
5023 5024 5025 5026 5027 5028

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5029 5030
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5031
		for (order = 0; order < MAX_ORDER; order++) {
5032 5033
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5034 5035 5036
			if (nr[order])
				show_migration_types(types[order]);
		}
5037
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5038 5039
	}

5040 5041
	hugetlb_show_meminfo();

5042
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5043

L
Linus Torvalds 已提交
5044 5045 5046
	show_swap_cache_info();
}

5047 5048 5049 5050 5051 5052
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5053 5054
/*
 * Builds allocation fallback zone lists.
5055 5056
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5057
 */
5058
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5059
{
5060
	struct zone *zone;
5061
	enum zone_type zone_type = MAX_NR_ZONES;
5062
	int nr_zones = 0;
5063 5064

	do {
5065
		zone_type--;
5066
		zone = pgdat->node_zones + zone_type;
5067
		if (managed_zone(zone)) {
5068
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5069
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5070
		}
5071
	} while (zone_type);
5072

5073
	return nr_zones;
L
Linus Torvalds 已提交
5074 5075 5076
}

#ifdef CONFIG_NUMA
5077 5078 5079

static int __parse_numa_zonelist_order(char *s)
{
5080 5081 5082 5083 5084 5085 5086 5087
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5088 5089 5090 5091 5092 5093 5094
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5095 5096 5097
	if (!s)
		return 0;

5098
	return __parse_numa_zonelist_order(s);
5099 5100 5101
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5102 5103
char numa_zonelist_order[] = "Node";

5104 5105 5106
/*
 * sysctl handler for numa_zonelist_order
 */
5107
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5108
		void __user *buffer, size_t *length,
5109 5110
		loff_t *ppos)
{
5111
	char *str;
5112 5113
	int ret;

5114 5115 5116 5117 5118
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5119

5120 5121
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5122
	return ret;
5123 5124 5125
}


5126
#define MAX_NODE_LOAD (nr_online_nodes)
5127 5128
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5129
/**
5130
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5143
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5144
{
5145
	int n, val;
L
Linus Torvalds 已提交
5146
	int min_val = INT_MAX;
D
David Rientjes 已提交
5147
	int best_node = NUMA_NO_NODE;
5148
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5149

5150 5151 5152 5153 5154
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5155

5156
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5165 5166 5167
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5168
		/* Give preference to headless and unused nodes */
5169 5170
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5189 5190 5191 5192 5193 5194

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5195 5196
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5197
{
5198 5199 5200 5201 5202 5203 5204 5205 5206
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5207

5208 5209 5210 5211 5212
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5213 5214
}

5215 5216 5217 5218 5219
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5220 5221
	struct zoneref *zonerefs;
	int nr_zones;
5222

5223 5224 5225 5226 5227
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237 5238
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5239 5240
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5241
	nodemask_t used_mask;
5242
	int local_node, prev_node;
L
Linus Torvalds 已提交
5243 5244 5245

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5246
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5247 5248
	prev_node = local_node;
	nodes_clear(used_mask);
5249 5250

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5251 5252 5253 5254 5255 5256
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5257 5258
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5259 5260
			node_load[node] = load;

5261
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5262 5263 5264
		prev_node = node;
		load--;
	}
5265

5266
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5267
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5268 5269
}

5270 5271 5272 5273 5274 5275 5276 5277 5278
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5279
	struct zoneref *z;
5280

5281
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5282
				   gfp_zone(GFP_KERNEL),
5283
				   NULL);
5284
	return zone_to_nid(z->zone);
5285 5286
}
#endif
5287

5288 5289
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5290 5291
#else	/* CONFIG_NUMA */

5292
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5293
{
5294
	int node, local_node;
5295 5296
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5297 5298 5299

	local_node = pgdat->node_id;

5300 5301 5302
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5315 5316
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5317
	}
5318 5319 5320
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5321 5322
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5323 5324
	}

5325 5326
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5327 5328 5329 5330
}

#endif	/* CONFIG_NUMA */

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5348
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5349

5350
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5351
{
5352
	int nid;
5353
	int __maybe_unused cpu;
5354
	pg_data_t *self = data;
5355 5356 5357
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5358

5359 5360 5361
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5362

5363 5364 5365 5366
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5367 5368
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5369 5370 5371
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5372

5373 5374
			build_zonelists(pgdat);
		}
5375

5376 5377 5378 5379 5380 5381 5382 5383 5384
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5385
		for_each_online_cpu(cpu)
5386
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5387
#endif
5388
	}
5389 5390

	spin_unlock(&lock);
5391 5392
}

5393 5394 5395
static noinline void __init
build_all_zonelists_init(void)
{
5396 5397
	int cpu;

5398
	__build_all_zonelists(NULL);
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5416 5417 5418 5419
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5420 5421
/*
 * unless system_state == SYSTEM_BOOTING.
5422
 *
5423
 * __ref due to call of __init annotated helper build_all_zonelists_init
5424
 * [protected by SYSTEM_BOOTING].
5425
 */
5426
void __ref build_all_zonelists(pg_data_t *pgdat)
5427 5428
{
	if (system_state == SYSTEM_BOOTING) {
5429
		build_all_zonelists_init();
5430
	} else {
5431
		__build_all_zonelists(pgdat);
5432 5433
		/* cpuset refresh routine should be here */
	}
5434
	vm_total_pages = nr_free_pagecache_pages();
5435 5436 5437 5438 5439 5440 5441
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5442
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5443 5444 5445 5446
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5447
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5448 5449 5450
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5451
#ifdef CONFIG_NUMA
5452
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5453
#endif
L
Linus Torvalds 已提交
5454 5455
}

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5480 5481
/*
 * Initially all pages are reserved - free ones are freed
5482
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5483 5484
 * done. Non-atomic initialization, single-pass.
 */
5485
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5486 5487
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5488
{
5489
	unsigned long pfn, end_pfn = start_pfn + size;
5490
	struct page *page;
L
Linus Torvalds 已提交
5491

5492 5493 5494
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5495
#ifdef CONFIG_ZONE_DEVICE
5496 5497
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5498 5499 5500 5501
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5502
	 */
5503 5504 5505 5506 5507 5508 5509 5510 5511
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5512

5513
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5514
		/*
5515 5516
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5517
		 */
5518 5519
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5520
				continue;
5521 5522 5523 5524 5525 5526
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5527
		}
5528

5529 5530 5531
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5532
			__SetPageReserved(page);
5533

5534 5535 5536 5537 5538
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5539
		 * kernel allocations are made.
5540 5541 5542 5543 5544 5545 5546 5547
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5548
			cond_resched();
5549
		}
L
Linus Torvalds 已提交
5550
	}
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
#ifdef CONFIG_SPARSEMEM
	/*
	 * If the zone does not span the rest of the section then
	 * we should at least initialize those pages. Otherwise we
	 * could blow up on a poisoned page in some paths which depend
	 * on full sections being initialized (e.g. memory hotplug).
	 */
	while (end_pfn % PAGES_PER_SECTION) {
		__init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
		end_pfn++;
	}
#endif
L
Linus Torvalds 已提交
5563 5564
}

5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5640
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5641
{
5642
	unsigned int order, t;
5643 5644
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5645 5646 5647 5648
		zone->free_area[order].nr_free = 0;
	}
}

5649 5650 5651 5652 5653
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5654

5655
static int zone_batchsize(struct zone *zone)
5656
{
5657
#ifdef CONFIG_MMU
5658 5659 5660 5661
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5662
	 * size of the zone.
5663
	 */
5664
	batch = zone_managed_pages(zone) / 1024;
5665 5666 5667
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5668 5669 5670 5671 5672
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5673 5674 5675
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5676
	 *
5677 5678 5679 5680
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5681
	 */
5682
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5683

5684
	return batch;
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5702 5703
}

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5731
/* a companion to pageset_set_high() */
5732 5733
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5734
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5735 5736
}

5737
static void pageset_init(struct per_cpu_pageset *p)
5738 5739
{
	struct per_cpu_pages *pcp;
5740
	int migratetype;
5741

5742 5743
	memset(p, 0, sizeof(*p));

5744
	pcp = &p->pcp;
5745 5746
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5747 5748
}

5749 5750 5751 5752 5753 5754
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5755
/*
5756
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5757 5758
 * to the value high for the pageset p.
 */
5759
static void pageset_set_high(struct per_cpu_pageset *p,
5760 5761
				unsigned long high)
{
5762 5763 5764
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5765

5766
	pageset_update(&p->pcp, high, batch);
5767 5768
}

5769 5770
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5771 5772
{
	if (percpu_pagelist_fraction)
5773
		pageset_set_high(pcp,
5774
			(zone_managed_pages(zone) /
5775 5776 5777 5778 5779
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5780 5781 5782 5783 5784 5785 5786 5787
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5788
void __meminit setup_zone_pageset(struct zone *zone)
5789 5790 5791
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5792 5793
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5794 5795
}

5796
/*
5797 5798
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5799
 */
5800
void __init setup_per_cpu_pageset(void)
5801
{
5802
	struct pglist_data *pgdat;
5803
	struct zone *zone;
5804

5805 5806
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5807 5808 5809 5810

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5811 5812
}

5813
static __meminit void zone_pcp_init(struct zone *zone)
5814
{
5815 5816 5817 5818 5819 5820
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5821

5822
	if (populated_zone(zone))
5823 5824 5825
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5826 5827
}

5828
void __meminit init_currently_empty_zone(struct zone *zone,
5829
					unsigned long zone_start_pfn,
5830
					unsigned long size)
5831 5832
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5833
	int zone_idx = zone_idx(zone) + 1;
5834

5835 5836
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5837 5838 5839

	zone->zone_start_pfn = zone_start_pfn;

5840 5841 5842 5843 5844 5845
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5846
	zone_init_free_lists(zone);
5847
	zone->initialized = 1;
5848 5849
}

T
Tejun Heo 已提交
5850
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5851
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5852

5853 5854 5855
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5856 5857
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5858
{
5859
	unsigned long start_pfn, end_pfn;
5860
	int nid;
5861

5862 5863
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5864

5865 5866
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5867 5868 5869
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5870 5871 5872
	}

	return nid;
5873 5874 5875 5876
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5877
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5878
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5879
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5880
 *
5881 5882 5883
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5884
 */
5885
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5886
{
5887 5888
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5889

5890 5891 5892
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5893

5894
		if (start_pfn < end_pfn)
5895 5896 5897
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5898 5899 5900
	}
}

5901 5902
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5903
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5904
 *
5905 5906
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5907 5908 5909
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5910 5911
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5912

5913 5914
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5915 5916 5917 5918
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5919 5920 5921
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5922 5923
 *
 * It returns the start and end page frame of a node based on information
5924
 * provided by memblock_set_node(). If called for a node
5925
 * with no available memory, a warning is printed and the start and end
5926
 * PFNs will be 0.
5927
 */
5928
void __meminit get_pfn_range_for_nid(unsigned int nid,
5929 5930
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5931
	unsigned long this_start_pfn, this_end_pfn;
5932
	int i;
5933

5934 5935 5936
	*start_pfn = -1UL;
	*end_pfn = 0;

5937 5938 5939
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5940 5941
	}

5942
	if (*start_pfn == -1UL)
5943 5944 5945
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5946 5947 5948 5949 5950
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5951
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5969
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5970 5971 5972 5973 5974 5975 5976
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5977
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5992 5993 5994 5995 5996 5997
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5998 5999 6000 6001 6002 6003
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6004 6005 6006 6007
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6008
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6009
					unsigned long zone_type,
6010 6011
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6012 6013
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6014 6015
					unsigned long *ignored)
{
6016
	/* When hotadd a new node from cpu_up(), the node should be empty */
6017 6018 6019
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6020
	/* Get the start and end of the zone */
6021 6022
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6023 6024
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6025
				zone_start_pfn, zone_end_pfn);
6026 6027

	/* Check that this node has pages within the zone's required range */
6028
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6029 6030 6031
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6032 6033
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6034 6035

	/* Return the spanned pages */
6036
	return *zone_end_pfn - *zone_start_pfn;
6037 6038 6039 6040
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6041
 * then all holes in the requested range will be accounted for.
6042
 */
6043
unsigned long __meminit __absent_pages_in_range(int nid,
6044 6045 6046
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6047 6048 6049
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6050

6051 6052 6053 6054
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6055
	}
6056
	return nr_absent;
6057 6058 6059 6060 6061 6062 6063
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6064
 * It returns the number of pages frames in memory holes within a range.
6065 6066 6067 6068 6069 6070 6071 6072
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6073
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6074
					unsigned long zone_type,
6075 6076
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6077 6078
					unsigned long *ignored)
{
6079 6080
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6081
	unsigned long zone_start_pfn, zone_end_pfn;
6082
	unsigned long nr_absent;
6083

6084
	/* When hotadd a new node from cpu_up(), the node should be empty */
6085 6086 6087
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6088 6089
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6090

M
Mel Gorman 已提交
6091 6092 6093
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6094 6095 6096 6097 6098 6099 6100
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6118 6119 6120 6121
		}
	}

	return nr_absent;
6122
}
6123

T
Tejun Heo 已提交
6124
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6125
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6126
					unsigned long zone_type,
6127 6128
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6129 6130
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6131 6132
					unsigned long *zones_size)
{
6133 6134 6135 6136 6137 6138 6139 6140
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6141 6142 6143
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6144
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6145
						unsigned long zone_type,
6146 6147
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6148 6149 6150 6151 6152 6153 6154
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6155

T
Tejun Heo 已提交
6156
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6157

6158
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6159 6160 6161 6162
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6163
{
6164
	unsigned long realtotalpages = 0, totalpages = 0;
6165 6166
	enum zone_type i;

6167 6168
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6169
		unsigned long zone_start_pfn, zone_end_pfn;
6170
		unsigned long size, real_size;
6171

6172 6173 6174
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6175 6176
						  &zone_start_pfn,
						  &zone_end_pfn,
6177 6178
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6179 6180
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6181 6182 6183 6184
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6185 6186 6187 6188 6189 6190 6191 6192
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6193 6194 6195 6196 6197
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6198 6199 6200
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6201 6202
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6203 6204 6205
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6206
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6207 6208 6209
{
	unsigned long usemapsize;

6210
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6211 6212
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6213 6214 6215 6216 6217 6218
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6219
static void __ref setup_usemap(struct pglist_data *pgdat,
6220 6221 6222
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6223
{
6224
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6225
	zone->pageblock_flags = NULL;
6226
	if (usemapsize)
6227
		zone->pageblock_flags =
6228
			memblock_alloc_node_nopanic(usemapsize,
6229
							 pgdat->node_id);
6230 6231
}
#else
6232 6233
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6234 6235
#endif /* CONFIG_SPARSEMEM */

6236
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6237

6238
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6239
void __init set_pageblock_order(void)
6240
{
6241 6242
	unsigned int order;

6243 6244 6245 6246
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6247 6248 6249 6250 6251
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6252 6253
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6254 6255
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6256 6257 6258 6259 6260
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6261 6262
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6263 6264 6265
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6266
 */
6267
void __init set_pageblock_order(void)
6268 6269
{
}
6270 6271 6272

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6273
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6274
						unsigned long present_pages)
6275 6276 6277 6278 6279 6280 6281 6282
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6283
	 * populated regions may not be naturally aligned on page boundary.
6284 6285 6286 6287 6288 6289 6290 6291 6292
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6313
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6314
{
6315
	pgdat_resize_init(pgdat);
6316 6317 6318 6319

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6320
	init_waitqueue_head(&pgdat->kswapd_wait);
6321
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6322

6323
	pgdat_page_ext_init(pgdat);
6324
	spin_lock_init(&pgdat->lru_lock);
6325
	lruvec_init(node_lruvec(pgdat));
6326 6327 6328 6329 6330
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6331
	atomic_long_set(&zone->managed_pages, remaining_pages);
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6372

6373
	pgdat_init_internals(pgdat);
6374 6375
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6376 6377
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6378
		unsigned long size, freesize, memmap_pages;
6379
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6380

6381
		size = zone->spanned_pages;
6382
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6383

6384
		/*
6385
		 * Adjust freesize so that it accounts for how much memory
6386 6387 6388
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6389
		memmap_pages = calc_memmap_size(size, freesize);
6390 6391 6392 6393 6394 6395 6396 6397
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6398
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6399 6400
					zone_names[j], memmap_pages, freesize);
		}
6401

6402
		/* Account for reserved pages */
6403 6404
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6405
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6406
					zone_names[0], dma_reserve);
6407 6408
		}

6409
		if (!is_highmem_idx(j))
6410
			nr_kernel_pages += freesize;
6411 6412 6413
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6414
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6415

6416 6417 6418 6419 6420
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6421
		zone_init_internals(zone, j, nid, freesize);
6422

6423
		if (!size)
L
Linus Torvalds 已提交
6424 6425
			continue;

6426
		set_pageblock_order();
6427 6428
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6429
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6430 6431 6432
	}
}

6433
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6434
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6435
{
6436
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6437 6438
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6439 6440 6441 6442
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6443 6444
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6445 6446
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6447
		unsigned long size, end;
A
Andy Whitcroft 已提交
6448 6449
		struct page *map;

6450 6451 6452 6453 6454
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6455
		end = pgdat_end_pfn(pgdat);
6456 6457
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6458
		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6459
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6460
	}
6461 6462 6463
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6464
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6465 6466 6467
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6468
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6469
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6470
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6471
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6472
			mem_map -= offset;
T
Tejun Heo 已提交
6473
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6474
	}
L
Linus Torvalds 已提交
6475 6476
#endif
}
6477 6478 6479
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6480

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6496
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6497 6498
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6499
{
6500
	pg_data_t *pgdat = NODE_DATA(nid);
6501 6502
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6503

6504
	/* pg_data_t should be reset to zero when it's allocated */
6505
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6506

L
Linus Torvalds 已提交
6507 6508
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6509
	pgdat->per_cpu_nodestats = NULL;
6510 6511
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6512
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6513 6514
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6515 6516
#else
	start_pfn = node_start_pfn;
6517 6518 6519
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6520 6521

	alloc_node_mem_map(pgdat);
6522
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6523

6524
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6525 6526
}

M
Mike Rapoport 已提交
6527
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6550 6551 6552 6553 6554 6555
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6556 6557 6558 6559 6560
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6561
 */
6562
void __init zero_resv_unavail(void)
6563 6564 6565
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6566
	phys_addr_t next = 0;
6567 6568

	/*
6569
	 * Loop through unavailable ranges not covered by memblock.memory.
6570 6571
	 */
	pgcnt = 0;
6572 6573
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6574 6575
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6576 6577
		next = end;
	}
6578
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6579

6580 6581 6582 6583 6584
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6585
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6586
}
M
Mike Rapoport 已提交
6587
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6588

T
Tejun Heo 已提交
6589
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6590 6591 6592 6593 6594

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6595
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6596
{
6597
	unsigned int highest;
M
Miklos Szeredi 已提交
6598

6599
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6600 6601 6602 6603
	nr_node_ids = highest + 1;
}
#endif

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6626
	unsigned long start, end, mask;
6627
	int last_nid = -1;
6628
	int i, nid;
6629

6630
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6654
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6655
static unsigned long __init find_min_pfn_for_node(int nid)
6656
{
6657
	unsigned long min_pfn = ULONG_MAX;
6658 6659
	unsigned long start_pfn;
	int i;
6660

6661 6662
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6663

6664
	if (min_pfn == ULONG_MAX) {
6665
		pr_warn("Could not find start_pfn for node %d\n", nid);
6666 6667 6668 6669
		return 0;
	}

	return min_pfn;
6670 6671 6672 6673 6674 6675
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6676
 * memblock_set_node().
6677 6678 6679 6680 6681 6682
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6683 6684 6685
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6686
 * Populate N_MEMORY for calculating usable_nodes.
6687
 */
A
Adrian Bunk 已提交
6688
static unsigned long __init early_calculate_totalpages(void)
6689 6690
{
	unsigned long totalpages = 0;
6691 6692 6693 6694 6695
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6696

6697 6698
		totalpages += pages;
		if (pages)
6699
			node_set_state(nid, N_MEMORY);
6700
	}
6701
	return totalpages;
6702 6703
}

M
Mel Gorman 已提交
6704 6705 6706 6707 6708 6709
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6710
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6711 6712 6713 6714
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6715
	/* save the state before borrow the nodemask */
6716
	nodemask_t saved_node_state = node_states[N_MEMORY];
6717
	unsigned long totalpages = early_calculate_totalpages();
6718
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6719
	struct memblock_region *r;
6720 6721 6722 6723 6724 6725 6726 6727 6728

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6729 6730
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6731 6732
				continue;

E
Emil Medve 已提交
6733
			nid = r->nid;
6734

E
Emil Medve 已提交
6735
			usable_startpfn = PFN_DOWN(r->base);
6736 6737 6738 6739 6740 6741 6742
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6774
	/*
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6802
		required_movablecore = min(totalpages, required_movablecore);
6803 6804 6805 6806 6807
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6808 6809 6810 6811 6812
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6813
		goto out;
M
Mel Gorman 已提交
6814 6815 6816 6817 6818 6819 6820

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6821
	for_each_node_state(nid, N_MEMORY) {
6822 6823
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6840
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6841 6842
			unsigned long size_pages;

6843
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6886
			 * satisfied
M
Mel Gorman 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6900
	 * satisfied
M
Mel Gorman 已提交
6901 6902 6903 6904 6905
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6906
out2:
M
Mel Gorman 已提交
6907 6908 6909 6910
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6911

6912
out:
6913
	/* restore the node_state */
6914
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6915 6916
}

6917 6918
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6919 6920 6921
{
	enum zone_type zone_type;

6922
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6923
		struct zone *zone = &pgdat->node_zones[zone_type];
6924
		if (populated_zone(zone)) {
6925 6926 6927
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
6928
				node_set_state(nid, N_NORMAL_MEMORY);
6929 6930
			break;
		}
6931 6932 6933
	}
}

6934 6935
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6936
 * @max_zone_pfn: an array of max PFNs for each zone
6937 6938
 *
 * This will call free_area_init_node() for each active node in the system.
6939
 * Using the page ranges provided by memblock_set_node(), the size of each
6940 6941 6942 6943 6944 6945 6946 6947 6948
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6949 6950
	unsigned long start_pfn, end_pfn;
	int i, nid;
6951

6952 6953 6954 6955 6956
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6957 6958 6959 6960

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6961 6962
		if (i == ZONE_MOVABLE)
			continue;
6963 6964 6965 6966 6967 6968

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6969
	}
M
Mel Gorman 已提交
6970 6971 6972

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6973
	find_zone_movable_pfns_for_nodes();
6974 6975

	/* Print out the zone ranges */
6976
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6977 6978 6979
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6980
		pr_info("  %-8s ", zone_names[i]);
6981 6982
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6983
			pr_cont("empty\n");
6984
		else
6985 6986 6987 6988
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6989
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6990 6991 6992
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6993
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6994 6995
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6996 6997
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6998
	}
6999

7000
	/* Print out the early node map */
7001
	pr_info("Early memory node ranges\n");
7002
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7003 7004 7005
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7006 7007

	/* Initialise every node */
7008
	mminit_verify_pageflags_layout();
7009
	setup_nr_node_ids();
7010
	zero_resv_unavail();
7011 7012
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7013
		free_area_init_node(nid, NULL,
7014
				find_min_pfn_for_node(nid), NULL);
7015 7016 7017

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7018 7019
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7020 7021
	}
}
M
Mel Gorman 已提交
7022

7023 7024
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7025 7026
{
	unsigned long long coremem;
7027 7028
	char *endptr;

M
Mel Gorman 已提交
7029 7030 7031
	if (!p)
		return -EINVAL;

7032 7033 7034 7035 7036
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7037

7038 7039 7040 7041 7042
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7043

7044 7045 7046
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7047 7048
	return 0;
}
M
Mel Gorman 已提交
7049

7050 7051 7052 7053 7054 7055
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7056 7057 7058 7059 7060 7061
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7062 7063
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7064 7065 7066 7067 7068 7069 7070 7071
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7072 7073
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7074 7075
}

M
Mel Gorman 已提交
7076
early_param("kernelcore", cmdline_parse_kernelcore);
7077
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7078

T
Tejun Heo 已提交
7079
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7080

7081 7082
void adjust_managed_page_count(struct page *page, long count)
{
7083
	atomic_long_add(count, &page_zone(page)->managed_pages);
7084
	totalram_pages_add(count);
7085 7086
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7087
		totalhigh_pages_add(count);
7088
#endif
7089
}
7090
EXPORT_SYMBOL(adjust_managed_page_count);
7091

7092
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7093
{
7094 7095
	void *pos;
	unsigned long pages = 0;
7096

7097 7098 7099
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7111
		if ((unsigned int)poison <= 0xFF)
7112 7113 7114
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7115 7116 7117
	}

	if (pages && s)
7118 7119
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7120 7121 7122

	return pages;
}
7123
EXPORT_SYMBOL(free_reserved_area);
7124

7125 7126 7127 7128
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7129
	totalram_pages_inc();
7130
	atomic_long_inc(&page_zone(page)->managed_pages);
7131
	totalhigh_pages_inc();
7132 7133 7134
}
#endif

7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7157 7158 7159 7160
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7171
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7172
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7173
		", %luK highmem"
7174
#endif
J
Joe Perches 已提交
7175 7176 7177 7178 7179
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7180
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7181
		totalcma_pages << (PAGE_SHIFT - 10),
7182
#ifdef	CONFIG_HIGHMEM
7183
		totalhigh_pages() << (PAGE_SHIFT - 10),
7184
#endif
J
Joe Perches 已提交
7185
		str ? ", " : "", str ? str : "");
7186 7187
}

7188
/**
7189 7190
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7191
 *
7192
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7193 7194
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7195 7196 7197
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7198 7199 7200 7201 7202 7203
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7204 7205
void __init free_area_init(unsigned long *zones_size)
{
7206
	zero_resv_unavail();
7207
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7208 7209 7210
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7211
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7212 7213
{

7214 7215
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7216

7217 7218 7219 7220 7221 7222 7223
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7224

7225 7226 7227 7228 7229 7230 7231 7232 7233
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7234 7235 7236 7237
}

void __init page_alloc_init(void)
{
7238 7239 7240 7241 7242 7243
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7244 7245
}

7246
/*
7247
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7248 7249 7250 7251 7252 7253
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7254
	enum zone_type i, j;
7255 7256

	for_each_online_pgdat(pgdat) {
7257 7258 7259

		pgdat->totalreserve_pages = 0;

7260 7261
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7262
			long max = 0;
7263
			unsigned long managed_pages = zone_managed_pages(zone);
7264 7265 7266 7267 7268 7269 7270

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7271 7272
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7273

7274 7275
			if (max > managed_pages)
				max = managed_pages;
7276

7277
			pgdat->totalreserve_pages += max;
7278

7279 7280 7281 7282 7283 7284
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7285 7286
/*
 * setup_per_zone_lowmem_reserve - called whenever
7287
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7288 7289 7290 7291 7292 7293
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7294
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7295

7296
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7297 7298
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7299
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7300 7301 7302

			zone->lowmem_reserve[j] = 0;

7303 7304
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7305 7306
				struct zone *lower_zone;

7307
				idx--;
L
Linus Torvalds 已提交
7308
				lower_zone = pgdat->node_zones + idx;
7309 7310 7311 7312 7313 7314 7315 7316

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7317
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7318 7319 7320
			}
		}
	}
7321 7322 7323

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7324 7325
}

7326
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7336
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7337 7338 7339
	}

	for_each_zone(zone) {
7340 7341
		u64 tmp;

7342
		spin_lock_irqsave(&zone->lock, flags);
7343
		tmp = (u64)pages_min * zone_managed_pages(zone);
7344
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7345 7346
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7347 7348 7349 7350
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7351
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7352
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7353
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7354
			 */
7355
			unsigned long min_pages;
L
Linus Torvalds 已提交
7356

7357
			min_pages = zone_managed_pages(zone) / 1024;
7358
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7359
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7360
		} else {
N
Nick Piggin 已提交
7361 7362
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7363 7364
			 * proportionate to the zone's size.
			 */
7365
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7366 7367
		}

7368 7369 7370 7371 7372 7373
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7374
			    mult_frac(zone_managed_pages(zone),
7375 7376 7377 7378
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7379

7380
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7381
	}
7382 7383 7384

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7385 7386
}

7387 7388 7389 7390 7391 7392 7393 7394 7395
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7396 7397 7398
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7399
	__setup_per_zone_wmarks();
7400
	spin_unlock(&lock);
7401 7402
}

L
Linus Torvalds 已提交
7403 7404 7405 7406 7407 7408 7409
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7410
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7427
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7428 7429
{
	unsigned long lowmem_kbytes;
7430
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7431 7432

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7445
	setup_per_zone_wmarks();
7446
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7447
	setup_per_zone_lowmem_reserve();
7448 7449 7450 7451 7452 7453

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7454 7455
	return 0;
}
7456
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7457 7458

/*
7459
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7460 7461 7462
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7463
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7464
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7465
{
7466 7467 7468 7469 7470 7471
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7472 7473
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7474
		setup_per_zone_wmarks();
7475
	}
L
Linus Torvalds 已提交
7476 7477 7478
	return 0;
}

7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7494
#ifdef CONFIG_NUMA
7495
static void setup_min_unmapped_ratio(void)
7496
{
7497
	pg_data_t *pgdat;
7498 7499
	struct zone *zone;

7500
	for_each_online_pgdat(pgdat)
7501
		pgdat->min_unmapped_pages = 0;
7502

7503
	for_each_zone(zone)
7504 7505
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7506
}
7507

7508 7509

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7510
	void __user *buffer, size_t *length, loff_t *ppos)
7511 7512 7513
{
	int rc;

7514
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7515 7516 7517
	if (rc)
		return rc;

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7528 7529 7530
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7531
	for_each_zone(zone)
7532 7533
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7547 7548
	return 0;
}
7549 7550
#endif

L
Linus Torvalds 已提交
7551 7552 7553 7554 7555 7556
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7557
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7558 7559
 * if in function of the boot time zone sizes.
 */
7560
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7561
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7562
{
7563
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7564 7565 7566 7567
	setup_per_zone_lowmem_reserve();
	return 0;
}

7568 7569
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7570 7571
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7572
 */
7573
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7574
	void __user *buffer, size_t *length, loff_t *ppos)
7575 7576
{
	struct zone *zone;
7577
	int old_percpu_pagelist_fraction;
7578 7579
	int ret;

7580 7581 7582
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7583
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7598

7599
	for_each_populated_zone(zone) {
7600 7601
		unsigned int cpu;

7602
		for_each_possible_cpu(cpu)
7603 7604
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7605
	}
7606
out:
7607
	mutex_unlock(&pcp_batch_high_lock);
7608
	return ret;
7609 7610
}

7611
#ifdef CONFIG_NUMA
7612
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7663 7664
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7665
{
7666
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7667 7668
	unsigned long log2qty, size;
	void *table = NULL;
7669
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7670 7671 7672 7673

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7674
		numentries = nr_kernel_pages;
7675
		numentries -= arch_reserved_kernel_pages();
7676 7677 7678 7679

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7680

P
Pavel Tatashin 已提交
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7691 7692 7693 7694 7695
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7696 7697

		/* Make sure we've got at least a 0-order allocation.. */
7698 7699 7700 7701 7702 7703 7704 7705
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7706
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7707
	}
7708
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7709 7710 7711 7712 7713 7714

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7715
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7716

7717 7718
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7719 7720 7721
	if (numentries > max)
		numentries = max;

7722
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7723

7724
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7725 7726
	do {
		size = bucketsize << log2qty;
7727 7728
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7729 7730
				table = memblock_alloc_nopanic(size,
							       SMP_CACHE_BYTES);
7731
			else
7732 7733
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7734
		} else if (hashdist) {
7735
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7736
		} else {
7737 7738
			/*
			 * If bucketsize is not a power-of-two, we may free
7739 7740
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7741
			 */
7742
			if (get_order(size) < MAX_ORDER) {
7743 7744
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7745
			}
L
Linus Torvalds 已提交
7746 7747 7748 7749 7750 7751
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7752 7753
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7754 7755 7756 7757 7758 7759 7760 7761

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7762

K
KAMEZAWA Hiroyuki 已提交
7763
/*
7764 7765 7766
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7767
 * PageLRU check without isolation or lru_lock could race so that
7768 7769 7770
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7771
 */
7772
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7773
			 int migratetype, int flags)
7774 7775
{
	unsigned long pfn, iter, found;
7776

7777
	/*
7778 7779 7780 7781 7782
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7783 7784
	 */

7785 7786 7787 7788 7789 7790 7791 7792 7793
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7794 7795 7796 7797
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7798
		if (!pfn_valid_within(check))
7799
			continue;
7800

7801
		page = pfn_to_page(check);
7802

7803
		if (PageReserved(page))
7804
			goto unmovable;
7805

7806 7807 7808 7809 7810 7811 7812 7813
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7814 7815 7816 7817 7818 7819
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7820 7821
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7822

7823
			if (!hugepage_migration_supported(page_hstate(head)))
7824 7825
				goto unmovable;

7826 7827
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7828 7829 7830
			continue;
		}

7831 7832 7833 7834
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7835
		 * because their page->_refcount is zero at all time.
7836
		 */
7837
		if (!page_ref_count(page)) {
7838 7839 7840 7841
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7842

7843 7844 7845 7846
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
7847
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7848 7849
			continue;

7850 7851 7852
		if (__PageMovable(page))
			continue;

7853 7854 7855
		if (!PageLRU(page))
			found++;
		/*
7856 7857 7858
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7869
			goto unmovable;
7870
	}
7871
	return false;
7872 7873
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7874 7875
	if (flags & REPORT_FAILURE)
		dump_page(pfn_to_page(pfn+iter), "unmovable page");
7876
	return true;
7877 7878
}

7879
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7894 7895
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7896 7897
{
	/* This function is based on compact_zone() from compaction.c. */
7898
	unsigned long nr_reclaimed;
7899 7900 7901 7902
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7903
	migrate_prep();
7904

7905
	while (pfn < end || !list_empty(&cc->migratepages)) {
7906 7907 7908 7909 7910
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7911 7912
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7913
			pfn = isolate_migratepages_range(cc, pfn, end);
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7924 7925 7926
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7927

7928
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7929
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7930
	}
7931 7932 7933 7934 7935
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7936 7937 7938 7939 7940 7941
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7942 7943 7944 7945
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7946
 * @gfp_mask:	GFP mask to use during compaction
7947 7948
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7949
 * aligned.  The PFN range must belong to a single zone.
7950
 *
7951 7952 7953
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7954 7955 7956 7957 7958
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7959
int alloc_contig_range(unsigned long start, unsigned long end,
7960
		       unsigned migratetype, gfp_t gfp_mask)
7961 7962
{
	unsigned long outer_start, outer_end;
7963 7964
	unsigned int order;
	int ret = 0;
7965

7966 7967 7968 7969
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7970
		.mode = MIGRATE_SYNC,
7971
		.ignore_skip_hint = true,
7972
		.no_set_skip_hint = true,
7973
		.gfp_mask = current_gfp_context(gfp_mask),
7974 7975 7976
	};
	INIT_LIST_HEAD(&cc.migratepages);

7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8002
				       pfn_max_align_up(end), migratetype, 0);
8003
	if (ret)
8004
		return ret;
8005

8006 8007
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8008 8009 8010 8011 8012 8013 8014
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8015
	 */
8016
	ret = __alloc_contig_migrate_range(&cc, start, end);
8017
	if (ret && ret != -EBUSY)
8018
		goto done;
8019
	ret =0;
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8039
	drain_all_pages(cc.zone);
8040 8041 8042 8043 8044

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8045 8046
			outer_start = start;
			break;
8047 8048 8049 8050
		}
		outer_start &= ~0UL << order;
	}

8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8064
	/* Make sure the range is really isolated. */
8065
	if (test_pages_isolated(outer_start, end, false)) {
8066
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8067
			__func__, outer_start, end);
8068 8069 8070 8071
		ret = -EBUSY;
		goto done;
	}

8072
	/* Grab isolated pages from freelists. */
8073
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8087
				pfn_max_align_up(end), migratetype);
8088 8089 8090 8091 8092
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8093 8094 8095 8096 8097 8098 8099 8100 8101
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8102 8103 8104
}
#endif

8105
#ifdef CONFIG_MEMORY_HOTPLUG
8106 8107 8108 8109
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8110 8111
void __meminit zone_pcp_update(struct zone *zone)
{
8112
	unsigned cpu;
8113
	mutex_lock(&pcp_batch_high_lock);
8114
	for_each_possible_cpu(cpu)
8115 8116
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8117
	mutex_unlock(&pcp_batch_high_lock);
8118 8119 8120
}
#endif

8121 8122 8123
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8124 8125
	int cpu;
	struct per_cpu_pageset *pset;
8126 8127 8128 8129

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8130 8131 8132 8133
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8134 8135 8136 8137 8138 8139
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8140
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8141
/*
8142 8143
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8144 8145 8146 8147 8148 8149
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8150
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8151 8152 8153 8154 8155 8156 8157 8158
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8159
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8179 8180 8181 8182
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8183 8184
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8196 8197 8198 8199 8200 8201

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8202
	unsigned int order;
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif