page_alloc.c 233.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269 270 271 272 273 274 275 276 277 278 279 280
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
281
int watermark_boost_factor __read_mostly = 15000;
282
#endif
283
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
284

285 286 287
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
288

T
Tejun Heo 已提交
289
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292
static unsigned long required_kernelcore __initdata;
293
static unsigned long required_kernelcore_percent __initdata;
294
static unsigned long required_movablecore __initdata;
295
static unsigned long required_movablecore_percent __initdata;
296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
298 299 300 301 302

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303

M
Miklos Szeredi 已提交
304
#if MAX_NUMNODES > 1
305
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
307
EXPORT_SYMBOL(nr_node_ids);
308
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
309 310
#endif

311 312
int page_group_by_mobility_disabled __read_mostly;

313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351
		return true;

	return false;
}

/*
352
 * Returns true when the remaining initialisation should be deferred until
353 354
 * later in the boot cycle when it can be parallelised.
 */
355 356
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357
{
358 359 360 361 362 363 364 365 366 367 368
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

369
	/* Always populate low zones for address-constrained allocations */
370
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371
		return false;
372 373 374 375 376

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
377
	nr_initialised++;
378
	if ((nr_initialised > PAGES_PER_SECTION) &&
379 380 381
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
382
	}
383
	return false;
384 385
}
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

393
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394
{
395
	return false;
396 397 398
}
#endif

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
500

501
void set_pageblock_migratetype(struct page *page, int migratetype)
502
{
503 504
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
505 506
		migratetype = MIGRATE_UNMOVABLE;

507 508 509 510
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
511
#ifdef CONFIG_DEBUG_VM
512
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
513
{
514 515 516
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
517
	unsigned long sp, start_pfn;
518

519 520
	do {
		seq = zone_span_seqbegin(zone);
521 522
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
523
		if (!zone_spans_pfn(zone, pfn))
524 525 526
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

527
	if (ret)
528 529 530
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
531

532
	return ret;
533 534 535 536
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
537
	if (!pfn_valid_within(page_to_pfn(page)))
538
		return 0;
L
Linus Torvalds 已提交
539
	if (zone != page_zone(page))
540 541 542 543 544 545 546
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
547
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 549
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
550
		return 1;
551 552 553
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
554 555
	return 0;
}
N
Nick Piggin 已提交
556
#else
557
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
558 559 560 561 562
{
	return 0;
}
#endif

563 564
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
580
			pr_alert(
581
			      "BUG: Bad page state: %lu messages suppressed\n",
582 583 584 585 586 587 588 589
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

590
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591
		current->comm, page_to_pfn(page));
592 593 594 595 596
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
597
	dump_page_owner(page);
598

599
	print_modules();
L
Linus Torvalds 已提交
600
	dump_stack();
601
out:
602
	/* Leave bad fields for debug, except PageBuddy could make trouble */
603
	page_mapcount_reset(page); /* remove PageBuddy */
604
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
605 606 607 608 609
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
610
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
611
 *
612 613
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
614
 *
615 616
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
617
 *
618
 * The first tail page's ->compound_order holds the order of allocation.
619
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
620
 */
621

622
void free_compound_page(struct page *page)
623
{
624
	__free_pages_ok(page, compound_order(page));
625 626
}

627
void prep_compound_page(struct page *page, unsigned int order)
628 629 630 631
{
	int i;
	int nr_pages = 1 << order;

632
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 634 635 636
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
637
		set_page_count(p, 0);
638
		p->mapping = TAIL_MAPPING;
639
		set_compound_head(p, page);
640
	}
641
	atomic_set(compound_mapcount_ptr(page), -1);
642 643
}

644 645
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
646 647
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
648
EXPORT_SYMBOL(_debug_pagealloc_enabled);
649 650
bool _debug_guardpage_enabled __read_mostly;

651 652 653 654
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
655
	return kstrtobool(buf, &_debug_pagealloc_enabled);
656 657 658
}
early_param("debug_pagealloc", early_debug_pagealloc);

659 660
static bool need_debug_guardpage(void)
{
661 662 663 664
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

665 666 667
	if (!debug_guardpage_minorder())
		return false;

668 669 670 671 672
	return true;
}

static void init_debug_guardpage(void)
{
673 674 675
	if (!debug_pagealloc_enabled())
		return;

676 677 678
	if (!debug_guardpage_minorder())
		return;

679 680 681 682 683 684 685
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
686 687 688 689 690 691

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
692
		pr_err("Bad debug_guardpage_minorder value\n");
693 694 695
		return 0;
	}
	_debug_guardpage_minorder = res;
696
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
697 698
	return 0;
}
699
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
700

701
static inline bool set_page_guard(struct zone *zone, struct page *page,
702
				unsigned int order, int migratetype)
703
{
704 705 706
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
707 708 709 710
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
711 712

	page_ext = lookup_page_ext(page);
713
	if (unlikely(!page_ext))
714
		return false;
715

716 717
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

718 719 720 721
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
722 723

	return true;
724 725
}

726 727
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
728
{
729 730 731 732 733 734
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
735 736 737
	if (unlikely(!page_ext))
		return;

738 739
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

740 741 742
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
743 744
}
#else
745
struct page_ext_operations debug_guardpage_ops;
746 747
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
748 749
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
750 751
#endif

752
static inline void set_page_order(struct page *page, unsigned int order)
753
{
H
Hugh Dickins 已提交
754
	set_page_private(page, order);
755
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
756 757 758 759
}

static inline void rmv_page_order(struct page *page)
{
760
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
761
	set_page_private(page, 0);
L
Linus Torvalds 已提交
762 763 764 765
}

/*
 * This function checks whether a page is free && is the buddy
766
 * we can coalesce a page and its buddy if
767
 * (a) the buddy is not in a hole (check before calling!) &&
768
 * (b) the buddy is in the buddy system &&
769 770
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
771
 *
772 773
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
774
 *
775
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
776
 */
777
static inline int page_is_buddy(struct page *page, struct page *buddy,
778
							unsigned int order)
L
Linus Torvalds 已提交
779
{
780
	if (page_is_guard(buddy) && page_order(buddy) == order) {
781 782 783
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

784 785
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

786 787 788
		return 1;
	}

789
	if (PageBuddy(buddy) && page_order(buddy) == order) {
790 791 792 793 794 795 796 797
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

798 799
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

800
		return 1;
801
	}
802
	return 0;
L
Linus Torvalds 已提交
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
869 870
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
871
 * So when we are allocating or freeing one, we can derive the state of the
872 873
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
874
 * If a block is freed, and its buddy is also free, then this
875
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
876
 *
877
 * -- nyc
L
Linus Torvalds 已提交
878 879
 */

N
Nick Piggin 已提交
880
static inline void __free_one_page(struct page *page,
881
		unsigned long pfn,
882 883
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
884
{
885 886
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
887
	struct page *buddy;
888
	unsigned int max_order;
889
	struct capture_control *capc = task_capc(zone);
890 891

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
892

893
	VM_BUG_ON(!zone_is_initialized(zone));
894
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
895

896
	VM_BUG_ON(migratetype == -1);
897
	if (likely(!is_migrate_isolate(migratetype)))
898
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
899

900
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
901
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
902

903
continue_merging:
904
	while (order < max_order - 1) {
905 906 907 908 909
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
910 911
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
912 913 914

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
915
		if (!page_is_buddy(page, buddy, order))
916
			goto done_merging;
917 918 919 920 921
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
922
			clear_page_guard(zone, buddy, order, migratetype);
923 924 925 926 927
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
928 929 930
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
931 932
		order++;
	}
933 934 935 936 937 938 939 940 941 942 943 944
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

945 946
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
947 948 949 950 951 952 953 954 955 956 957 958
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
959
	set_page_order(page, order);
960 961 962 963 964 965 966 967 968

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
969
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
970
		struct page *higher_page, *higher_buddy;
971 972 973 974
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
975 976
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
977 978 979 980 981 982 983 984
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
985 986 987
	zone->free_area[order].nr_free++;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1010
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1011
{
1012 1013 1014 1015 1016
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1017

1018
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1019 1020 1021
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1022
	if (unlikely(page_ref_count(page) != 0))
1023
		bad_reason = "nonzero _refcount";
1024 1025 1026 1027
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1028 1029 1030 1031
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1032
	bad_page(page, bad_reason, bad_flags);
1033 1034 1035 1036
}

static inline int free_pages_check(struct page *page)
{
1037
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1038 1039 1040 1041
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1042
	return 1;
L
Linus Torvalds 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1061
		/* the first tail page: ->mapping may be compound_mapcount() */
1062 1063 1064 1065 1066 1067 1068 1069
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1070
		 * deferred_list.next -- ignore value.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1095 1096
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1097
{
1098
	int bad = 0;
1099 1100 1101

	VM_BUG_ON_PAGE(PageTail(page), page);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113

1114 1115
		if (compound)
			ClearPageDoubleMap(page);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1126
	if (PageMappingFlags(page))
1127
		page->mapping = NULL;
1128
	if (memcg_kmem_enabled() && PageKmemcg(page))
1129
		__memcg_kmem_uncharge(page, order);
1130 1131 1132 1133
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1134

1135 1136 1137
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1138 1139 1140

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1141
					   PAGE_SIZE << order);
1142
		debug_check_no_obj_freed(page_address(page),
1143
					   PAGE_SIZE << order);
1144
	}
1145 1146 1147
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1148
	kasan_free_nondeferred_pages(page, order);
1149 1150 1151 1152

	return true;
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1169 1170 1171 1172 1173 1174
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1175 1176 1177 1178 1179 1180 1181 1182 1183
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1184
/*
1185
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1186
 * Assumes all pages on list are in same zone, and of same order.
1187
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193 1194
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1195 1196
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1197
{
1198
	int migratetype = 0;
1199
	int batch_free = 0;
1200
	int prefetch_nr = 0;
1201
	bool isolated_pageblocks;
1202 1203
	struct page *page, *tmp;
	LIST_HEAD(head);
1204

1205
	while (count) {
1206 1207 1208
		struct list_head *list;

		/*
1209 1210 1211 1212 1213
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1214 1215
		 */
		do {
1216
			batch_free++;
1217 1218 1219 1220
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1221

1222 1223
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1224
			batch_free = count;
1225

1226
		do {
1227
			page = list_last_entry(list, struct page, lru);
1228
			/* must delete to avoid corrupting pcp list */
1229
			list_del(&page->lru);
1230
			pcp->count--;
1231

1232 1233 1234
			if (bulkfree_pcp_prepare(page))
				continue;

1235
			list_add_tail(&page->lru, &head);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1248
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1249
	}
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1269
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1270 1271
}

1272 1273
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1274
				unsigned int order,
1275
				int migratetype)
L
Linus Torvalds 已提交
1276
{
1277
	spin_lock(&zone->lock);
1278 1279 1280 1281
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1282
	__free_one_page(page, pfn, zone, order, migratetype);
1283
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1284 1285
}

1286
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287
				unsigned long zone, int nid)
1288
{
1289
	mm_zero_struct_page(page);
1290 1291 1292 1293
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1294
	page_kasan_tag_reset(page);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1304
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305
static void __meminit init_reserved_page(unsigned long pfn)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1322
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323 1324 1325 1326 1327 1328 1329
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1330 1331 1332 1333 1334 1335
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1336
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337 1338 1339 1340
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1341 1342 1343 1344 1345
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1346 1347 1348 1349

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1350 1351 1352 1353 1354 1355
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1356 1357
		}
	}
1358 1359
}

1360 1361
static void __free_pages_ok(struct page *page, unsigned int order)
{
1362
	unsigned long flags;
M
Minchan Kim 已提交
1363
	int migratetype;
1364
	unsigned long pfn = page_to_pfn(page);
1365

1366
	if (!free_pages_prepare(page, order, true))
1367 1368
		return;

1369
	migratetype = get_pfnblock_migratetype(page, pfn);
1370 1371
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1372
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1373
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1374 1375
}

1376
void __free_pages_core(struct page *page, unsigned int order)
1377
{
1378
	unsigned int nr_pages = 1 << order;
1379
	struct page *p = page;
1380
	unsigned int loop;
1381

1382 1383 1384
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1385 1386
		__ClearPageReserved(p);
		set_page_count(p, 0);
1387
	}
1388 1389
	__ClearPageReserved(p);
	set_page_count(p, 0);
1390

1391
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 1393
	set_page_refcounted(page);
	__free_pages(page, order);
1394 1395
}

1396 1397
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398

1399 1400 1401 1402
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1403
	static DEFINE_SPINLOCK(early_pfn_lock);
1404 1405
	int nid;

1406
	spin_lock(&early_pfn_lock);
1407
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408
	if (nid < 0)
1409
		nid = first_online_node;
1410 1411 1412
	spin_unlock(&early_pfn_lock);

	return nid;
1413 1414 1415 1416
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417 1418 1419
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1441 1442 1443
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1444 1445 1446 1447 1448 1449
{
	return true;
}
#endif


1450
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1451 1452 1453 1454
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1455
	__free_pages_core(page, order);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1487 1488 1489
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1529
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1530 1531
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1532
{
1533 1534
	struct page *page;
	unsigned long i;
1535

1536
	if (!nr_pages)
1537 1538
		return;

1539 1540
	page = pfn_to_page(pfn);

1541
	/* Free a large naturally-aligned chunk if possible */
1542 1543
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1544
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1545
		__free_pages_core(page, pageblock_order);
1546 1547 1548
		return;
	}

1549 1550 1551
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1552
		__free_pages_core(page, 0);
1553
	}
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1565

1566
/*
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1579
 */
1580 1581 1582
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1583
{
1584 1585 1586 1587 1588 1589 1590 1591
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1603

1604 1605 1606 1607 1608 1609 1610
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1611
			touch_nmi_watchdog();
1612 1613 1614 1615 1616 1617
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1618 1619
}

1620 1621 1622 1623 1624 1625 1626 1627
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1628 1629 1630 1631 1632 1633
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1634 1635 1636
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1637
			continue;
1638
		} else if (!page || !(pfn & nr_pgmask)) {
1639
			page = pfn_to_page(pfn);
1640
			touch_nmi_watchdog();
1641 1642
		} else {
			page++;
1643
		}
1644
		__init_single_page(page, pfn, zid, nid);
1645
		nr_pages++;
1646
	}
1647
	return (nr_pages);
1648 1649
}

1650
/* Initialise remaining memory on a node */
1651
static int __init deferred_init_memmap(void *data)
1652
{
1653 1654
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1655 1656
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1657
	unsigned long spfn, epfn, first_init_pfn, flags;
1658 1659
	phys_addr_t spa, epa;
	int zid;
1660
	struct zone *zone;
1661
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1662
	u64 i;
1663

1664 1665 1666 1667 1668 1669
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1670
	if (first_init_pfn == ULONG_MAX) {
1671
		pgdat_resize_unlock(pgdat, &flags);
1672
		pgdat_init_report_one_done();
1673 1674 1675
		return 0;
	}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1687
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1700 1701 1702
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1703
		deferred_free_pages(nid, zid, spfn, epfn);
1704
	}
1705
	pgdat_resize_unlock(pgdat, &flags);
1706 1707 1708 1709

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1710
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1711
					jiffies_to_msecs(jiffies - start));
1712 1713

	pgdat_init_report_one_done();
1714 1715
	return 0;
}
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1820
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1821 1822 1823

void __init page_alloc_init_late(void)
{
1824 1825 1826
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827 1828
	int nid;

1829 1830
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1831 1832 1833 1834 1835
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1836
	wait_for_completion(&pgdat_init_all_done_comp);
1837

1838 1839 1840 1841 1842 1843
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1844 1845
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1846
#endif
P
Pavel Tatashin 已提交
1847 1848 1849 1850
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1851 1852 1853

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1854 1855
}

1856
#ifdef CONFIG_CMA
1857
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1858 1859 1860 1861 1862 1863 1864 1865
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1866
	} while (++p, --i);
1867 1868

	set_pageblock_migratetype(page, MIGRATE_CMA);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1883
	adjust_managed_page_count(page, pageblock_nr_pages);
1884 1885
}
#endif
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1899
 * -- nyc
L
Linus Torvalds 已提交
1900
 */
N
Nick Piggin 已提交
1901
static inline void expand(struct zone *zone, struct page *page,
1902 1903
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1911
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1912

1913 1914 1915 1916 1917 1918 1919
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1920
			continue;
1921

1922
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1928
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1929
{
1930 1931
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1932

1933
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1934 1935 1936
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1937
	if (unlikely(page_ref_count(page) != 0))
1938
		bad_reason = "nonzero _count";
1939 1940 1941
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1942 1943 1944
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1945
	}
1946 1947 1948 1949
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1950 1951 1952 1953
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1968 1969
}

1970
static inline bool free_pages_prezeroed(void)
1971 1972
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1973
		page_poisoning_enabled();
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2010 2011 2012 2013 2014 2015 2016 2017 2018
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2019
	kernel_poison_pages(page, 1 << order, 1);
2020 2021 2022
	set_page_owner(page, order, gfp_flags);
}

2023
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2024
							unsigned int alloc_flags)
2025 2026
{
	int i;
2027

2028
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2029

2030
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2031 2032
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2033 2034 2035 2036

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2037
	/*
2038
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2039 2040 2041 2042
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2043 2044 2045 2046
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2047 2048
}

2049 2050 2051 2052
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2053
static __always_inline
2054
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2055 2056 2057
						int migratetype)
{
	unsigned int current_order;
2058
	struct free_area *area;
2059 2060 2061 2062 2063
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2064
		page = list_first_entry_or_null(&area->free_list[migratetype],
2065
							struct page, lru);
2066 2067
		if (!page)
			continue;
2068 2069 2070 2071
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2072
		set_pcppage_migratetype(page, migratetype);
2073 2074 2075 2076 2077 2078 2079
		return page;
	}

	return NULL;
}


2080 2081 2082 2083
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2084
static int fallbacks[MIGRATE_TYPES][4] = {
2085 2086
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2087
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2088
#ifdef CONFIG_CMA
2089
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2090
#endif
2091
#ifdef CONFIG_MEMORY_ISOLATION
2092
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2093
#endif
2094 2095
};

2096
#ifdef CONFIG_CMA
2097
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2098 2099 2100 2101 2102 2103 2104 2105 2106
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2107 2108
/*
 * Move the free pages in a range to the free lists of the requested type.
2109
 * Note that start_page and end_pages are not aligned on a pageblock
2110 2111
 * boundary. If alignment is required, use move_freepages_block()
 */
2112
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2113
			  struct page *start_page, struct page *end_page,
2114
			  int migratetype, int *num_movable)
2115 2116
{
	struct page *page;
2117
	unsigned int order;
2118
	int pages_moved = 0;
2119 2120 2121 2122 2123 2124 2125

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2126
	 * grouping pages by mobility
2127
	 */
2128 2129 2130
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2131 2132 2133 2134 2135 2136 2137
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2138 2139 2140
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2141
		if (!PageBuddy(page)) {
2142 2143 2144 2145 2146 2147 2148 2149 2150
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2151 2152 2153 2154 2155
			page++;
			continue;
		}

		order = page_order(page);
2156 2157
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2158
		page += 1 << order;
2159
		pages_moved += 1 << order;
2160 2161
	}

2162
	return pages_moved;
2163 2164
}

2165
int move_freepages_block(struct zone *zone, struct page *page,
2166
				int migratetype, int *num_movable)
2167 2168 2169 2170
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2171 2172 2173
	if (num_movable)
		*num_movable = 0;

2174
	start_pfn = page_to_pfn(page);
2175
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2176
	start_page = pfn_to_page(start_pfn);
2177 2178
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2179 2180

	/* Do not cross zone boundaries */
2181
	if (!zone_spans_pfn(zone, start_pfn))
2182
		start_page = page;
2183
	if (!zone_spans_pfn(zone, end_pfn))
2184 2185
		return 0;

2186 2187
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2201
/*
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2212
 */
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2255 2256 2257 2258 2259 2260
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2261 2262 2263
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2264 2265 2266 2267
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2268 2269
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2270
		unsigned int alloc_flags, int start_type, bool whole_block)
2271
{
2272
	unsigned int current_order = page_order(page);
2273
	struct free_area *area;
2274 2275 2276 2277
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2278

2279 2280 2281 2282
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2283
	if (is_migrate_highatomic(old_block_type))
2284 2285
		goto single_page;

2286 2287 2288
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2289
		goto single_page;
2290 2291
	}

2292 2293 2294 2295 2296 2297 2298
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2299
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2300

2301 2302 2303 2304
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2329
	/* moving whole block can fail due to zone boundary conditions */
2330
	if (!free_pages)
2331
		goto single_page;
2332

2333 2334 2335 2336 2337
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2338 2339
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2340 2341 2342 2343 2344 2345

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2366
		if (fallback_mt == MIGRATE_TYPES)
2367 2368 2369 2370
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2371

2372 2373 2374
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2375 2376 2377 2378 2379
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2380
	}
2381 2382

	return -1;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2399
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2411 2412
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2413 2414
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2415
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2427 2428 2429
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2430
 */
2431 2432
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2433 2434 2435 2436 2437 2438 2439
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2440
	bool ret;
2441 2442 2443

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2444 2445 2446 2447 2448 2449
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2450 2451 2452 2453 2454 2455
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2456 2457 2458 2459
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2460 2461 2462
				continue;

			/*
2463 2464 2465 2466 2467
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2468
			 */
2469
			if (is_migrate_highatomic_page(page)) {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2492 2493
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2494 2495 2496 2497
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2498 2499 2500
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2501 2502

	return false;
2503 2504
}

2505 2506 2507 2508 2509
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2510 2511 2512 2513
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2514
 */
2515
static __always_inline bool
2516 2517
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2518
{
2519
	struct free_area *area;
2520
	int current_order;
2521
	int min_order = order;
2522
	struct page *page;
2523 2524
	int fallback_mt;
	bool can_steal;
2525

2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2534 2535 2536 2537 2538
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2539
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2540
				--current_order) {
2541 2542
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2543
				start_migratetype, false, &can_steal);
2544 2545
		if (fallback_mt == -1)
			continue;
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2558

2559 2560
		goto do_steal;
	}
2561

2562
	return false;
2563

2564 2565 2566 2567 2568 2569 2570 2571
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2572 2573
	}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2584 2585
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2586 2587 2588 2589 2590 2591

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2592 2593
}

2594
/*
L
Linus Torvalds 已提交
2595 2596 2597
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2598
static __always_inline struct page *
2599 2600
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2601 2602 2603
{
	struct page *page;

2604
retry:
2605
	page = __rmqueue_smallest(zone, order, migratetype);
2606
	if (unlikely(!page)) {
2607 2608 2609
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2610 2611
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2612
			goto retry;
2613 2614
	}

2615
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2616
	return page;
L
Linus Torvalds 已提交
2617 2618
}

2619
/*
L
Linus Torvalds 已提交
2620 2621 2622 2623
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2624
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2625
			unsigned long count, struct list_head *list,
2626
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2627
{
2628
	int i, alloced = 0;
2629

2630
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2631
	for (i = 0; i < count; ++i) {
2632 2633
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2634
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2635
			break;
2636

2637 2638 2639
		if (unlikely(check_pcp_refill(page)))
			continue;

2640
		/*
2641 2642 2643 2644 2645 2646 2647 2648
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2649
		 */
2650
		list_add_tail(&page->lru, list);
2651
		alloced++;
2652
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2653 2654
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2655
	}
2656 2657 2658 2659 2660 2661 2662

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2663
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2664
	spin_unlock(&zone->lock);
2665
	return alloced;
L
Linus Torvalds 已提交
2666 2667
}

2668
#ifdef CONFIG_NUMA
2669
/*
2670 2671 2672 2673
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2674 2675
 * Note that this function must be called with the thread pinned to
 * a single processor.
2676
 */
2677
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2678 2679
{
	unsigned long flags;
2680
	int to_drain, batch;
2681

2682
	local_irq_save(flags);
2683
	batch = READ_ONCE(pcp->batch);
2684
	to_drain = min(pcp->count, batch);
2685
	if (to_drain > 0)
2686
		free_pcppages_bulk(zone, to_drain, pcp);
2687
	local_irq_restore(flags);
2688 2689 2690
}
#endif

2691
/*
2692
 * Drain pcplists of the indicated processor and zone.
2693 2694 2695 2696 2697
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2698
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2699
{
N
Nick Piggin 已提交
2700
	unsigned long flags;
2701 2702
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2703

2704 2705
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2706

2707
	pcp = &pset->pcp;
2708
	if (pcp->count)
2709 2710 2711
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2726 2727 2728
	}
}

2729 2730
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2731 2732 2733
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2734
 */
2735
void drain_local_pages(struct zone *zone)
2736
{
2737 2738 2739 2740 2741 2742
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2743 2744
}

2745 2746
static void drain_local_pages_wq(struct work_struct *work)
{
2747 2748 2749 2750
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2751 2752 2753 2754 2755 2756 2757 2758
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2759
	drain_local_pages(drain->zone);
2760
	preempt_enable();
2761 2762
}

2763
/*
2764 2765
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2766 2767
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2768
 * Note that this can be extremely slow as the draining happens in a workqueue.
2769
 */
2770
void drain_all_pages(struct zone *zone)
2771
{
2772 2773 2774 2775 2776 2777 2778 2779
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2780 2781 2782 2783 2784 2785 2786
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2797

2798 2799 2800 2801 2802 2803 2804
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2805 2806
		struct per_cpu_pageset *pcp;
		struct zone *z;
2807
		bool has_pcps = false;
2808 2809

		if (zone) {
2810
			pcp = per_cpu_ptr(zone->pageset, cpu);
2811
			if (pcp->pcp.count)
2812
				has_pcps = true;
2813 2814 2815 2816 2817 2818 2819
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2820 2821
			}
		}
2822

2823 2824 2825 2826 2827
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2828

2829
	for_each_cpu(cpu, &cpus_with_pcps) {
2830 2831 2832 2833 2834
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2835
	}
2836
	for_each_cpu(cpu, &cpus_with_pcps)
2837
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2838 2839

	mutex_unlock(&pcpu_drain_mutex);
2840 2841
}

2842
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2843

2844 2845 2846 2847 2848
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2849 2850
void mark_free_pages(struct zone *zone)
{
2851
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2852
	unsigned long flags;
2853
	unsigned int order, t;
2854
	struct page *page;
L
Linus Torvalds 已提交
2855

2856
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2857 2858 2859
		return;

	spin_lock_irqsave(&zone->lock, flags);
2860

2861
	max_zone_pfn = zone_end_pfn(zone);
2862 2863
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2864
			page = pfn_to_page(pfn);
2865

2866 2867 2868 2869 2870
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2871 2872 2873
			if (page_zone(page) != zone)
				continue;

2874 2875
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2876
		}
L
Linus Torvalds 已提交
2877

2878
	for_each_migratetype_order(order, t) {
2879 2880
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2881
			unsigned long i;
L
Linus Torvalds 已提交
2882

2883
			pfn = page_to_pfn(page);
2884 2885 2886 2887 2888
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2889
				swsusp_set_page_free(pfn_to_page(pfn + i));
2890
			}
2891
		}
2892
	}
L
Linus Torvalds 已提交
2893 2894
	spin_unlock_irqrestore(&zone->lock, flags);
}
2895
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2896

2897
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2898
{
2899
	int migratetype;
L
Linus Torvalds 已提交
2900

2901
	if (!free_pcp_prepare(page))
2902
		return false;
2903

2904
	migratetype = get_pfnblock_migratetype(page, pfn);
2905
	set_pcppage_migratetype(page, migratetype);
2906 2907 2908
	return true;
}

2909
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2910 2911 2912 2913 2914 2915
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2916
	__count_vm_event(PGFREE);
2917

2918 2919 2920
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2921
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2922 2923 2924 2925
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2926
		if (unlikely(is_migrate_isolate(migratetype))) {
2927
			free_one_page(zone, page, pfn, 0, migratetype);
2928
			return;
2929 2930 2931 2932
		}
		migratetype = MIGRATE_MOVABLE;
	}

2933
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2934
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2935
	pcp->count++;
N
Nick Piggin 已提交
2936
	if (pcp->count >= pcp->high) {
2937
		unsigned long batch = READ_ONCE(pcp->batch);
2938
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2939
	}
2940
}
2941

2942 2943 2944
/*
 * Free a 0-order page
 */
2945
void free_unref_page(struct page *page)
2946 2947 2948 2949
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2950
	if (!free_unref_page_prepare(page, pfn))
2951 2952 2953
		return;

	local_irq_save(flags);
2954
	free_unref_page_commit(page, pfn);
2955
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2956 2957
}

2958 2959 2960
/*
 * Free a list of 0-order pages
 */
2961
void free_unref_page_list(struct list_head *list)
2962 2963
{
	struct page *page, *next;
2964
	unsigned long flags, pfn;
2965
	int batch_count = 0;
2966 2967 2968 2969

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2970
		if (!free_unref_page_prepare(page, pfn))
2971 2972 2973
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2974

2975
	local_irq_save(flags);
2976
	list_for_each_entry_safe(page, next, list, lru) {
2977 2978 2979
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2980 2981
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2992
	}
2993
	local_irq_restore(flags);
2994 2995
}

N
Nick Piggin 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3008 3009
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3010

3011
	for (i = 1; i < (1 << order); i++)
3012
		set_page_refcounted(page + i);
3013
	split_page_owner(page, order);
N
Nick Piggin 已提交
3014
}
K
K. Y. Srinivasan 已提交
3015
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3016

3017
int __isolate_free_page(struct page *page, unsigned int order)
3018 3019 3020
{
	unsigned long watermark;
	struct zone *zone;
3021
	int mt;
3022 3023 3024 3025

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3026
	mt = get_pageblock_migratetype(page);
3027

3028
	if (!is_migrate_isolate(mt)) {
3029 3030 3031 3032 3033 3034
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3035
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3036
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3037 3038
			return 0;

3039
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3040
	}
3041 3042 3043 3044 3045

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
3046

3047 3048 3049 3050
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3051 3052
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3053 3054
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3055
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3056
			    && !is_migrate_highatomic(mt))
3057 3058 3059
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3060 3061
	}

3062

3063
	return 1UL << order;
3064 3065
}

3066 3067 3068 3069 3070
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3071
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3072 3073
{
#ifdef CONFIG_NUMA
3074
	enum numa_stat_item local_stat = NUMA_LOCAL;
3075

3076 3077 3078 3079
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3080
	if (zone_to_nid(z) != numa_node_id())
3081 3082
		local_stat = NUMA_OTHER;

3083
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3084
		__inc_numa_state(z, NUMA_HIT);
3085
	else {
3086 3087
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3088
	}
3089
	__inc_numa_state(z, local_stat);
3090 3091 3092
#endif
}

3093 3094
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3095
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3096
			struct per_cpu_pages *pcp,
3097 3098 3099 3100 3101 3102 3103 3104
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3105
					migratetype, alloc_flags);
3106 3107 3108 3109
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3110
		page = list_first_entry(list, struct page, lru);
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3121 3122
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3123 3124 3125 3126
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3127
	unsigned long flags;
3128

3129
	local_irq_save(flags);
3130 3131
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3132
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3133 3134 3135 3136
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3137
	local_irq_restore(flags);
3138 3139 3140
	return page;
}

L
Linus Torvalds 已提交
3141
/*
3142
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3143
 */
3144
static inline
3145
struct page *rmqueue(struct zone *preferred_zone,
3146
			struct zone *zone, unsigned int order,
3147 3148
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3149 3150
{
	unsigned long flags;
3151
	struct page *page;
L
Linus Torvalds 已提交
3152

3153
	if (likely(order == 0)) {
3154
		page = rmqueue_pcplist(preferred_zone, zone, order,
3155
				gfp_flags, migratetype, alloc_flags);
3156 3157
		goto out;
	}
3158

3159 3160 3161 3162 3163 3164
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3165

3166 3167 3168 3169 3170 3171 3172
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3173
		if (!page)
3174
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3175 3176 3177 3178 3179 3180
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3181

3182
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3183
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3184
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3185

3186
out:
3187 3188 3189 3190 3191 3192
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3193
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3194
	return page;
N
Nick Piggin 已提交
3195 3196 3197 3198

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3199 3200
}

3201 3202
#ifdef CONFIG_FAIL_PAGE_ALLOC

3203
static struct {
3204 3205
	struct fault_attr attr;

3206
	bool ignore_gfp_highmem;
3207
	bool ignore_gfp_reclaim;
3208
	u32 min_order;
3209 3210
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3211
	.ignore_gfp_reclaim = true,
3212
	.ignore_gfp_highmem = true,
3213
	.min_order = 1,
3214 3215 3216 3217 3218 3219 3220 3221
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3222
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3223
{
3224
	if (order < fail_page_alloc.min_order)
3225
		return false;
3226
	if (gfp_mask & __GFP_NOFAIL)
3227
		return false;
3228
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3229
		return false;
3230 3231
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3232
		return false;
3233 3234 3235 3236 3237 3238 3239 3240

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3241
	umode_t mode = S_IFREG | 0600;
3242 3243
	struct dentry *dir;

3244 3245
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3246

3247 3248 3249 3250 3251
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3252

3253
	return 0;
3254 3255 3256 3257 3258 3259 3260 3261
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3262
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3263
{
3264
	return false;
3265 3266 3267 3268
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3269 3270 3271 3272 3273 3274
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3275
/*
3276 3277 3278 3279
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3280
 */
3281 3282 3283
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3284
{
3285
	long min = mark;
L
Linus Torvalds 已提交
3286
	int o;
3287
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3288

3289
	/* free_pages may go negative - that's OK */
3290
	free_pages -= (1 << order) - 1;
3291

R
Rohit Seth 已提交
3292
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3293
		min -= min / 2;
3294 3295 3296 3297 3298 3299

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3300
	if (likely(!alloc_harder)) {
3301
		free_pages -= z->nr_reserved_highatomic;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3315

3316 3317 3318 3319 3320 3321
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3322 3323 3324 3325 3326 3327
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3328
		return false;
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3348 3349
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3350
			return true;
3351
		}
3352
#endif
3353 3354 3355
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3356
	}
3357
	return false;
3358 3359
}

3360
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3361
		      int classzone_idx, unsigned int alloc_flags)
3362 3363 3364 3365 3366
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3367 3368 3369 3370
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3371 3372 3373 3374 3375 3376 3377
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3378 3379 3380 3381 3382 3383 3384 3385

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3386
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3387 3388 3389 3390 3391 3392
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3393
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3394
			unsigned long mark, int classzone_idx)
3395 3396 3397 3398 3399 3400
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3401
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3402
								free_pages);
L
Linus Torvalds 已提交
3403 3404
}

3405
#ifdef CONFIG_NUMA
3406 3407
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3408
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3409
				RECLAIM_DISTANCE;
3410
}
3411
#else	/* CONFIG_NUMA */
3412 3413 3414 3415
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3416 3417
#endif	/* CONFIG_NUMA */

3418 3419 3420 3421 3422 3423 3424 3425 3426
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3427
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3428
{
3429 3430 3431 3432 3433 3434
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3435
	if (zone_idx(zone) != ZONE_NORMAL)
3436
		goto out;
3437 3438 3439 3440 3441 3442 3443 3444

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3445
		goto out;
3446

3447 3448 3449
out:
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3450 3451
}

R
Rohit Seth 已提交
3452
/*
3453
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3454 3455 3456
 * a page.
 */
static struct page *
3457 3458
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3459
{
3460
	struct zoneref *z;
3461
	struct zone *zone;
3462
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3463
	bool no_fallback;
3464

3465
retry:
R
Rohit Seth 已提交
3466
	/*
3467
	 * Scan zonelist, looking for a zone with enough free.
3468
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3469
	 */
3470 3471
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3472
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3473
								ac->nodemask) {
3474
		struct page *page;
3475 3476
		unsigned long mark;

3477 3478
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3479
			!__cpuset_zone_allowed(zone, gfp_mask))
3480
				continue;
3481 3482
		/*
		 * When allocating a page cache page for writing, we
3483 3484
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3485
		 * proportional share of globally allowed dirty pages.
3486
		 * The dirty limits take into account the node's
3487 3488 3489 3490 3491
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3492
		 * exceed the per-node dirty limit in the slowpath
3493
		 * (spread_dirty_pages unset) before going into reclaim,
3494
		 * which is important when on a NUMA setup the allowed
3495
		 * nodes are together not big enough to reach the
3496
		 * global limit.  The proper fix for these situations
3497
		 * will require awareness of nodes in the
3498 3499
		 * dirty-throttling and the flusher threads.
		 */
3500 3501 3502 3503 3504 3505 3506 3507 3508
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3526
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3527
		if (!zone_watermark_fast(zone, order, mark,
3528
				       ac_classzone_idx(ac), alloc_flags)) {
3529 3530
			int ret;

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3541 3542 3543 3544 3545
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3546
			if (node_reclaim_mode == 0 ||
3547
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3548 3549
				continue;

3550
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3551
			switch (ret) {
3552
			case NODE_RECLAIM_NOSCAN:
3553
				/* did not scan */
3554
				continue;
3555
			case NODE_RECLAIM_FULL:
3556
				/* scanned but unreclaimable */
3557
				continue;
3558 3559
			default:
				/* did we reclaim enough */
3560
				if (zone_watermark_ok(zone, order, mark,
3561
						ac_classzone_idx(ac), alloc_flags))
3562 3563 3564
					goto try_this_zone;

				continue;
3565
			}
R
Rohit Seth 已提交
3566 3567
		}

3568
try_this_zone:
3569
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3570
				gfp_mask, alloc_flags, ac->migratetype);
3571
		if (page) {
3572
			prep_new_page(page, order, gfp_mask, alloc_flags);
3573 3574 3575 3576 3577 3578 3579 3580

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3581
			return page;
3582 3583 3584 3585 3586 3587 3588 3589
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3590
		}
3591
	}
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3602
	return NULL;
M
Martin Hicks 已提交
3603 3604
}

3605
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3606 3607
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3608
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3609

3610
	if (!__ratelimit(&show_mem_rs))
3611 3612 3613 3614 3615 3616 3617 3618
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3619
		if (tsk_is_oom_victim(current) ||
3620 3621
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3622
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3623 3624
		filter &= ~SHOW_MEM_FILTER_NODES;

3625
	show_mem(filter, nodemask);
3626 3627
}

3628
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3629 3630 3631 3632 3633 3634
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3635
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3636 3637
		return;

3638 3639 3640
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3641
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3642 3643
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3644
	va_end(args);
J
Joe Perches 已提交
3645

3646
	cpuset_print_current_mems_allowed();
3647
	pr_cont("\n");
3648
	dump_stack();
3649
	warn_alloc_show_mem(gfp_mask, nodemask);
3650 3651
}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3672 3673
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3674
	const struct alloc_context *ac, unsigned long *did_some_progress)
3675
{
3676 3677 3678
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3679
		.memcg = NULL,
3680 3681 3682
		.gfp_mask = gfp_mask,
		.order = order,
	};
3683 3684
	struct page *page;

3685 3686 3687
	*did_some_progress = 0;

	/*
3688 3689
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3690
	 */
3691
	if (!mutex_trylock(&oom_lock)) {
3692
		*did_some_progress = 1;
3693
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3694 3695
		return NULL;
	}
3696

3697 3698 3699
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3700 3701 3702
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3703
	 */
3704 3705 3706
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3707
	if (page)
3708 3709
		goto out;

3710 3711 3712 3713 3714 3715
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3716 3717 3718 3719 3720 3721 3722 3723
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3742

3743
	/* Exhausted what can be done so it's blame time */
3744
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3745
		*did_some_progress = 1;
3746

3747 3748 3749 3750 3751 3752
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3753 3754
					ALLOC_NO_WATERMARKS, ac);
	}
3755
out:
3756
	mutex_unlock(&oom_lock);
3757 3758 3759
	return page;
}

3760 3761 3762 3763 3764 3765
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3766 3767 3768 3769
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3770
		unsigned int alloc_flags, const struct alloc_context *ac,
3771
		enum compact_priority prio, enum compact_result *compact_result)
3772
{
3773
	struct page *page = NULL;
3774
	unsigned long pflags;
3775
	unsigned int noreclaim_flag;
3776 3777

	if (!order)
3778 3779
		return NULL;

3780
	psi_memstall_enter(&pflags);
3781
	noreclaim_flag = memalloc_noreclaim_save();
3782

3783
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3784
								prio, &page);
3785

3786
	memalloc_noreclaim_restore(noreclaim_flag);
3787
	psi_memstall_leave(&pflags);
3788

3789 3790 3791 3792 3793
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3794

3795 3796 3797 3798 3799 3800 3801
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802

3803 3804
	if (page) {
		struct zone *zone = page_zone(page);
3805

3806 3807 3808 3809 3810
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3811

3812 3813 3814 3815 3816
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3817

3818
	cond_resched();
3819 3820 3821

	return NULL;
}
3822

3823 3824 3825 3826
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3827
		     int *compaction_retries)
3828 3829
{
	int max_retries = MAX_COMPACT_RETRIES;
3830
	int min_priority;
3831 3832 3833
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3834 3835 3836 3837

	if (!order)
		return false;

3838 3839 3840
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3841 3842 3843 3844 3845
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3846 3847
	if (compaction_failed(compact_result))
		goto check_priority;
3848 3849 3850 3851 3852 3853 3854

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3855 3856 3857 3858
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3859 3860

	/*
3861
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3862 3863 3864 3865 3866 3867 3868 3869
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3870 3871 3872 3873
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3874

3875 3876 3877 3878 3879
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3880 3881
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3882

3883
	if (*compact_priority > min_priority) {
3884 3885
		(*compact_priority)--;
		*compaction_retries = 0;
3886
		ret = true;
3887
	}
3888 3889 3890
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3891
}
3892 3893 3894
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3895
		unsigned int alloc_flags, const struct alloc_context *ac,
3896
		enum compact_priority prio, enum compact_result *compact_result)
3897
{
3898
	*compact_result = COMPACT_SKIPPED;
3899 3900
	return NULL;
}
3901 3902

static inline bool
3903 3904
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3905
		     enum compact_priority *compact_priority,
3906
		     int *compaction_retries)
3907
{
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3926 3927
	return false;
}
3928
#endif /* CONFIG_COMPACTION */
3929

3930
#ifdef CONFIG_LOCKDEP
3931
static struct lockdep_map __fs_reclaim_map =
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3943
	if (current->flags & PF_MEMALLOC)
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3966 3967 3968
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3969
		__fs_reclaim_acquire();
3970 3971 3972 3973 3974 3975
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3976
		__fs_reclaim_release();
3977 3978 3979 3980
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3981 3982
/* Perform direct synchronous page reclaim */
static int
3983 3984
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3985 3986
{
	struct reclaim_state reclaim_state;
3987
	int progress;
3988
	unsigned int noreclaim_flag;
3989
	unsigned long pflags;
3990 3991 3992 3993 3994

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3995
	psi_memstall_enter(&pflags);
3996
	fs_reclaim_acquire(gfp_mask);
3997
	noreclaim_flag = memalloc_noreclaim_save();
3998
	reclaim_state.reclaimed_slab = 0;
3999
	current->reclaim_state = &reclaim_state;
4000

4001 4002
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4003

4004
	current->reclaim_state = NULL;
4005
	memalloc_noreclaim_restore(noreclaim_flag);
4006
	fs_reclaim_release(gfp_mask);
4007
	psi_memstall_leave(&pflags);
4008 4009 4010

	cond_resched();

4011 4012 4013 4014 4015 4016
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4017
		unsigned int alloc_flags, const struct alloc_context *ac,
4018
		unsigned long *did_some_progress)
4019 4020 4021 4022
{
	struct page *page = NULL;
	bool drained = false;

4023
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4024 4025
	if (unlikely(!(*did_some_progress)))
		return NULL;
4026

4027
retry:
4028
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4029 4030 4031

	/*
	 * If an allocation failed after direct reclaim, it could be because
4032 4033
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4034 4035
	 */
	if (!page && !drained) {
4036
		unreserve_highatomic_pageblock(ac, false);
4037
		drain_all_pages(NULL);
4038 4039 4040 4041
		drained = true;
		goto retry;
	}

4042 4043 4044
	return page;
}

4045 4046
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4047 4048 4049
{
	struct zoneref *z;
	struct zone *zone;
4050
	pg_data_t *last_pgdat = NULL;
4051
	enum zone_type high_zoneidx = ac->high_zoneidx;
4052

4053 4054
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4055
		if (last_pgdat != zone->zone_pgdat)
4056
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4057 4058
		last_pgdat = zone->zone_pgdat;
	}
4059 4060
}

4061
static inline unsigned int
4062 4063
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4064
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4065

4066
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4067
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4068

4069 4070 4071 4072
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4073
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4074
	 */
4075
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4076

4077
	if (gfp_mask & __GFP_ATOMIC) {
4078
		/*
4079 4080
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4081
		 */
4082
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4083
			alloc_flags |= ALLOC_HARDER;
4084
		/*
4085
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4086
		 * comment for __cpuset_node_allowed().
4087
		 */
4088
		alloc_flags &= ~ALLOC_CPUSET;
4089
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4090 4091
		alloc_flags |= ALLOC_HARDER;

4092 4093 4094
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4095 4096 4097 4098
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4099 4100 4101
	return alloc_flags;
}

4102
static bool oom_reserves_allowed(struct task_struct *tsk)
4103
{
4104 4105 4106 4107 4108 4109 4110 4111
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4112 4113
		return false;

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4125
	if (gfp_mask & __GFP_MEMALLOC)
4126
		return ALLOC_NO_WATERMARKS;
4127
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4128 4129 4130 4131 4132 4133 4134
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4135

4136 4137 4138 4139 4140 4141
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4142 4143
}

M
Michal Hocko 已提交
4144 4145 4146
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4147 4148 4149 4150
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4151 4152 4153 4154 4155 4156
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4157
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4158 4159 4160
{
	struct zone *zone;
	struct zoneref *z;
4161
	bool ret = false;
M
Michal Hocko 已提交
4162

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4173 4174 4175 4176
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4177 4178
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4179
		return unreserve_highatomic_pageblock(ac, true);
4180
	}
M
Michal Hocko 已提交
4181

4182 4183 4184 4185 4186
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4187 4188 4189 4190
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4191
		unsigned long reclaimable;
4192 4193
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4194

4195 4196
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4197 4198

		/*
4199 4200
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4201
		 */
4202 4203 4204 4205 4206
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4207 4208 4209 4210 4211 4212 4213
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4214
				unsigned long write_pending;
4215

4216 4217
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4218

4219
				if (2 * write_pending > reclaimable) {
4220 4221 4222 4223
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4224

4225 4226
			ret = true;
			goto out;
M
Michal Hocko 已提交
4227 4228 4229
		}
	}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4243 4244
}

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4278 4279
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4280
						struct alloc_context *ac)
4281
{
4282
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4283
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4284
	struct page *page = NULL;
4285
	unsigned int alloc_flags;
4286
	unsigned long did_some_progress;
4287
	enum compact_priority compact_priority;
4288
	enum compact_result compact_result;
4289 4290 4291
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4292
	int reserve_flags;
L
Linus Torvalds 已提交
4293

4294 4295 4296 4297 4298 4299 4300 4301
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4302 4303 4304 4305 4306
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4307 4308 4309 4310 4311 4312 4313 4314

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4326
	if (alloc_flags & ALLOC_KSWAPD)
4327
		wake_all_kswapds(order, gfp_mask, ac);
4328 4329 4330 4331 4332 4333 4334 4335 4336

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4337 4338
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4339 4340 4341 4342 4343 4344
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4345
	 */
4346 4347 4348 4349
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4350 4351
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4352
						INIT_COMPACT_PRIORITY,
4353 4354 4355 4356
						&compact_result);
		if (page)
			goto got_pg;

4357 4358 4359 4360
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4361
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4374 4375
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4376
			 * using async compaction.
4377
			 */
4378
			compact_priority = INIT_COMPACT_PRIORITY;
4379 4380
		}
	}
4381

4382
retry:
4383
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4384
	if (alloc_flags & ALLOC_KSWAPD)
4385
		wake_all_kswapds(order, gfp_mask, ac);
4386

4387 4388 4389
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4390

4391
	/*
4392 4393 4394
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4395
	 */
4396
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4397
		ac->nodemask = NULL;
4398 4399 4400 4401
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4402
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4403
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4404 4405
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4406

4407
	/* Caller is not willing to reclaim, we can't balance anything */
4408
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4409 4410
		goto nopage;

4411 4412
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4413 4414
		goto nopage;

4415 4416 4417 4418 4419 4420 4421
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4422
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4423
					compact_priority, &compact_result);
4424 4425
	if (page)
		goto got_pg;
4426

4427 4428
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4429
		goto nopage;
4430

M
Michal Hocko 已提交
4431 4432
	/*
	 * Do not retry costly high order allocations unless they are
4433
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4434
	 */
4435
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4436
		goto nopage;
M
Michal Hocko 已提交
4437 4438

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4439
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4440 4441
		goto retry;

4442 4443 4444 4445 4446 4447 4448
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4449
			should_compact_retry(ac, order, alloc_flags,
4450
				compact_result, &compact_priority,
4451
				&compaction_retries))
4452 4453
		goto retry;

4454 4455 4456

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4457 4458
		goto retry_cpuset;

4459 4460 4461 4462 4463
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4464
	/* Avoid allocations with no watermarks from looping endlessly */
4465 4466
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4467
	     (gfp_mask & __GFP_NOMEMALLOC)))
4468 4469
		goto nopage;

4470
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4471 4472
	if (did_some_progress) {
		no_progress_loops = 0;
4473
		goto retry;
M
Michal Hocko 已提交
4474
	}
4475

L
Linus Torvalds 已提交
4476
nopage:
4477 4478
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4479 4480
		goto retry_cpuset;

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4518 4519 4520 4521
		cond_resched();
		goto retry;
	}
fail:
4522
	warn_alloc(gfp_mask, ac->nodemask,
4523
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4524
got_pg:
4525
	return page;
L
Linus Torvalds 已提交
4526
}
4527

4528
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4529
		int preferred_nid, nodemask_t *nodemask,
4530 4531
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4532
{
4533
	ac->high_zoneidx = gfp_zone(gfp_mask);
4534
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4535 4536
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4537

4538
	if (cpusets_enabled()) {
4539 4540 4541
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4542 4543
		else
			*alloc_flags |= ALLOC_CPUSET;
4544 4545
	}

4546 4547
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4548

4549
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4550 4551

	if (should_fail_alloc_page(gfp_mask, order))
4552
		return false;
4553

4554 4555 4556
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4557 4558
	return true;
}
4559

4560
/* Determine whether to spread dirty pages and what the first usable zone */
4561
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4562
{
4563
	/* Dirty zone balancing only done in the fast path */
4564
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4565

4566 4567 4568 4569 4570
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4571 4572 4573 4574 4575 4576 4577 4578
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4579 4580
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4581 4582 4583
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4584
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4585 4586
	struct alloc_context ac = { };

4587 4588 4589 4590 4591 4592 4593 4594 4595
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4596
	gfp_mask &= gfp_allowed_mask;
4597
	alloc_mask = gfp_mask;
4598
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4599 4600
		return NULL;

4601
	finalise_ac(gfp_mask, &ac);
4602

4603 4604 4605 4606
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4607
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4608

4609
	/* First allocation attempt */
4610
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4611 4612
	if (likely(page))
		goto out;
4613

4614
	/*
4615 4616 4617 4618
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4619
	 */
4620
	alloc_mask = current_gfp_context(gfp_mask);
4621
	ac.spread_dirty_pages = false;
4622

4623 4624 4625 4626
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4627
	if (unlikely(ac.nodemask != nodemask))
4628
		ac.nodemask = nodemask;
4629

4630
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4631

4632
out:
4633
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4634
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4635 4636
		__free_pages(page, order);
		page = NULL;
4637 4638
	}

4639 4640
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4641
	return page;
L
Linus Torvalds 已提交
4642
}
4643
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4644 4645

/*
4646 4647 4648
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4649
 */
H
Harvey Harrison 已提交
4650
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4651
{
4652 4653
	struct page *page;

4654
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4661
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4662
{
4663
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4664 4665 4666
}
EXPORT_SYMBOL(get_zeroed_page);

4667
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4668
{
4669 4670 4671 4672
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4673 4674
}

4675 4676 4677 4678 4679
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4680 4681
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4682
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4683 4684
{
	if (addr != 0) {
N
Nick Piggin 已提交
4685
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4703 4704
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4724
void __page_frag_cache_drain(struct page *page, unsigned int count)
4725 4726 4727
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4728 4729
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4730
}
4731
EXPORT_SYMBOL(__page_frag_cache_drain);
4732

4733 4734
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4735 4736 4737 4738 4739 4740 4741
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4742
		page = __page_frag_cache_refill(nc, gfp_mask);
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4753
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4754 4755

		/* reset page count bias and offset to start of new frag */
4756
		nc->pfmemalloc = page_is_pfmemalloc(page);
4757
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4758 4759 4760 4761 4762 4763 4764
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4765
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4766 4767 4768 4769 4770 4771 4772
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4773
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4774 4775

		/* reset page count bias and offset to start of new frag */
4776
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4777 4778 4779 4780 4781 4782 4783 4784
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4785
EXPORT_SYMBOL(page_frag_alloc);
4786 4787 4788 4789

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4790
void page_frag_free(void *addr)
4791 4792 4793
{
	struct page *page = virt_to_head_page(addr);

4794 4795
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4796
}
4797
EXPORT_SYMBOL(page_frag_free);
4798

4799 4800
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4827 4828
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4829 4830 4831 4832 4833 4834 4835
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4836
	return make_alloc_exact(addr, order, size);
4837 4838 4839
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4840 4841 4842
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4843
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4844 4845 4846 4847 4848
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4849 4850
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4851
 */
4852
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4853
{
4854
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4855 4856 4857 4858 4859 4860
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4880 4881 4882 4883
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4884
 * nr_free_zone_pages() counts the number of pages which are beyond the
4885 4886
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4887 4888
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4889 4890
 *
 * Return: number of pages beyond high watermark.
4891
 */
4892
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4893
{
4894
	struct zoneref *z;
4895 4896
	struct zone *zone;

4897
	/* Just pick one node, since fallback list is circular */
4898
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4899

4900
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4901

4902
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4903
		unsigned long size = zone_managed_pages(zone);
4904
		unsigned long high = high_wmark_pages(zone);
4905 4906
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911
	}

	return sum;
}

4912 4913 4914 4915 4916
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4917 4918 4919
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4920
 */
4921
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4922
{
A
Al Viro 已提交
4923
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4924
}
4925
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4926

4927 4928 4929 4930 4931
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
4932 4933
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
4934
 */
4935
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4936
{
M
Mel Gorman 已提交
4937
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4938
}
4939 4940

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4941
{
4942
	if (IS_ENABLED(CONFIG_NUMA))
4943
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4944 4945
}

4946 4947 4948 4949 4950 4951
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4952
	unsigned long reclaimable;
4953 4954 4955 4956
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4957
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4958 4959

	for_each_zone(zone)
4960
		wmark_low += low_wmark_pages(zone);
4961 4962 4963 4964 4965

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4966
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4978 4979 4980
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4981
	 */
4982 4983 4984
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4985

4986 4987 4988 4989 4990 4991
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4992 4993
void si_meminfo(struct sysinfo *val)
{
4994
	val->totalram = totalram_pages();
4995
	val->sharedram = global_node_page_state(NR_SHMEM);
4996
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4997
	val->bufferram = nr_blockdev_pages();
4998
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5008 5009
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5010 5011
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5012 5013
	pg_data_t *pgdat = NODE_DATA(nid);

5014
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5015
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5016
	val->totalram = managed_pages;
5017
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5018
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5019
#ifdef CONFIG_HIGHMEM
5020 5021 5022 5023
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5024
			managed_highpages += zone_managed_pages(zone);
5025 5026 5027 5028 5029
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5030
#else
5031 5032
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5033
#endif
L
Linus Torvalds 已提交
5034 5035 5036 5037
	val->mem_unit = PAGE_SIZE;
}
#endif

5038
/*
5039 5040
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5041
 */
5042
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5043 5044
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5045
		return false;
5046

5047 5048 5049 5050 5051 5052 5053 5054 5055
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5056 5057
}

L
Linus Torvalds 已提交
5058 5059
#define K(x) ((x) << (PAGE_SHIFT-10))

5060 5061 5062 5063 5064
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5065 5066
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5067 5068 5069
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5070
#ifdef CONFIG_MEMORY_ISOLATION
5071
		[MIGRATE_ISOLATE]	= 'I',
5072
#endif
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5084
	printk(KERN_CONT "(%s) ", tmp);
5085 5086
}

L
Linus Torvalds 已提交
5087 5088 5089 5090
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5091 5092 5093 5094
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5095
 */
5096
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5097
{
5098
	unsigned long free_pcp = 0;
5099
	int cpu;
L
Linus Torvalds 已提交
5100
	struct zone *zone;
M
Mel Gorman 已提交
5101
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5102

5103
	for_each_populated_zone(zone) {
5104
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5105
			continue;
5106

5107 5108
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5109 5110
	}

K
KOSAKI Motohiro 已提交
5111 5112
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5113 5114
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5115
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5116
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5117 5118 5119 5120 5121 5122 5123
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5124 5125 5126
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5127 5128
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5129
		global_node_page_state(NR_FILE_MAPPED),
5130
		global_node_page_state(NR_SHMEM),
5131 5132 5133
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5134
		free_pcp,
5135
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5136

M
Mel Gorman 已提交
5137
	for_each_online_pgdat(pgdat) {
5138
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5139 5140
			continue;

M
Mel Gorman 已提交
5141 5142 5143 5144 5145 5146 5147 5148
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5149
			" mapped:%lukB"
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5170
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5171 5172
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5173
			K(node_page_state(pgdat, NR_SHMEM)),
5174 5175 5176 5177 5178 5179 5180 5181
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5182 5183
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5184 5185
	}

5186
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5187 5188
		int i;

5189
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5190
			continue;
5191 5192 5193 5194 5195

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5196
		show_node(zone);
5197 5198
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5199 5200 5201 5202
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5203 5204 5205 5206 5207
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5208
			" writepending:%lukB"
L
Linus Torvalds 已提交
5209
			" present:%lukB"
5210
			" managed:%lukB"
5211
			" mlocked:%lukB"
5212
			" kernel_stack:%lukB"
5213 5214
			" pagetables:%lukB"
			" bounce:%lukB"
5215 5216
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5217
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5218 5219
			"\n",
			zone->name,
5220
			K(zone_page_state(zone, NR_FREE_PAGES)),
5221 5222 5223
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5224 5225 5226 5227 5228
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5229
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5230
			K(zone->present_pages),
5231
			K(zone_managed_pages(zone)),
5232
			K(zone_page_state(zone, NR_MLOCK)),
5233
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5234 5235
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5236 5237
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5238
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5239 5240
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5241 5242
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5243 5244
	}

5245
	for_each_populated_zone(zone) {
5246 5247
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5248
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5249

5250
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5251
			continue;
L
Linus Torvalds 已提交
5252
		show_node(zone);
5253
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5254 5255 5256

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5257 5258 5259 5260
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5261
			total += nr[order] << order;
5262 5263 5264 5265 5266 5267

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5268 5269
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5270
		for (order = 0; order < MAX_ORDER; order++) {
5271 5272
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5273 5274 5275
			if (nr[order])
				show_migration_types(types[order]);
		}
5276
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5277 5278
	}

5279 5280
	hugetlb_show_meminfo();

5281
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5282

L
Linus Torvalds 已提交
5283 5284 5285
	show_swap_cache_info();
}

5286 5287 5288 5289 5290 5291
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5292 5293
/*
 * Builds allocation fallback zone lists.
5294 5295
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5296
 */
5297
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5298
{
5299
	struct zone *zone;
5300
	enum zone_type zone_type = MAX_NR_ZONES;
5301
	int nr_zones = 0;
5302 5303

	do {
5304
		zone_type--;
5305
		zone = pgdat->node_zones + zone_type;
5306
		if (managed_zone(zone)) {
5307
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5308
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5309
		}
5310
	} while (zone_type);
5311

5312
	return nr_zones;
L
Linus Torvalds 已提交
5313 5314 5315
}

#ifdef CONFIG_NUMA
5316 5317 5318

static int __parse_numa_zonelist_order(char *s)
{
5319 5320 5321 5322 5323 5324 5325 5326
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5327 5328 5329 5330 5331 5332 5333
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5334 5335 5336
	if (!s)
		return 0;

5337
	return __parse_numa_zonelist_order(s);
5338 5339 5340
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5341 5342
char numa_zonelist_order[] = "Node";

5343 5344 5345
/*
 * sysctl handler for numa_zonelist_order
 */
5346
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5347
		void __user *buffer, size_t *length,
5348 5349
		loff_t *ppos)
{
5350
	char *str;
5351 5352
	int ret;

5353 5354 5355 5356 5357
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5358

5359 5360
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5361
	return ret;
5362 5363 5364
}


5365
#define MAX_NODE_LOAD (nr_online_nodes)
5366 5367
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5368
/**
5369
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5380 5381
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5382
 */
5383
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5384
{
5385
	int n, val;
L
Linus Torvalds 已提交
5386
	int min_val = INT_MAX;
D
David Rientjes 已提交
5387
	int best_node = NUMA_NO_NODE;
5388
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5389

5390 5391 5392 5393 5394
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5395

5396
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5397 5398 5399 5400 5401 5402 5403 5404

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5405 5406 5407
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5408
		/* Give preference to headless and unused nodes */
5409 5410
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5429 5430 5431 5432 5433 5434

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5435 5436
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5437
{
5438 5439 5440 5441 5442 5443 5444 5445 5446
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5447

5448 5449 5450 5451 5452
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5453 5454
}

5455 5456 5457 5458 5459
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5460 5461
	struct zoneref *zonerefs;
	int nr_zones;
5462

5463 5464 5465 5466 5467
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5468 5469
}

5470 5471 5472 5473 5474 5475 5476 5477 5478
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5479 5480
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5481
	nodemask_t used_mask;
5482
	int local_node, prev_node;
L
Linus Torvalds 已提交
5483 5484 5485

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5486
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5487 5488
	prev_node = local_node;
	nodes_clear(used_mask);
5489 5490

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5497 5498
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5499 5500
			node_load[node] = load;

5501
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5502 5503 5504
		prev_node = node;
		load--;
	}
5505

5506
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5507
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5508 5509
}

5510 5511 5512 5513 5514 5515 5516 5517 5518
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5519
	struct zoneref *z;
5520

5521
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5522
				   gfp_zone(GFP_KERNEL),
5523
				   NULL);
5524
	return zone_to_nid(z->zone);
5525 5526
}
#endif
5527

5528 5529
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5530 5531
#else	/* CONFIG_NUMA */

5532
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5533
{
5534
	int node, local_node;
5535 5536
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5537 5538 5539

	local_node = pgdat->node_id;

5540 5541 5542
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5555 5556
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5557
	}
5558 5559 5560
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5561 5562
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5563 5564
	}

5565 5566
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5567 5568 5569 5570
}

#endif	/* CONFIG_NUMA */

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5588
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5589

5590
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5591
{
5592
	int nid;
5593
	int __maybe_unused cpu;
5594
	pg_data_t *self = data;
5595 5596 5597
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5598

5599 5600 5601
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5602

5603 5604 5605 5606
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5607 5608
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5609 5610 5611
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5612

5613 5614
			build_zonelists(pgdat);
		}
5615

5616 5617 5618 5619 5620 5621 5622 5623 5624
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5625
		for_each_online_cpu(cpu)
5626
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5627
#endif
5628
	}
5629 5630

	spin_unlock(&lock);
5631 5632
}

5633 5634 5635
static noinline void __init
build_all_zonelists_init(void)
{
5636 5637
	int cpu;

5638
	__build_all_zonelists(NULL);
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5656 5657 5658 5659
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5660 5661
/*
 * unless system_state == SYSTEM_BOOTING.
5662
 *
5663
 * __ref due to call of __init annotated helper build_all_zonelists_init
5664
 * [protected by SYSTEM_BOOTING].
5665
 */
5666
void __ref build_all_zonelists(pg_data_t *pgdat)
5667 5668
{
	if (system_state == SYSTEM_BOOTING) {
5669
		build_all_zonelists_init();
5670
	} else {
5671
		__build_all_zonelists(pgdat);
5672 5673
		/* cpuset refresh routine should be here */
	}
5674
	vm_total_pages = nr_free_pagecache_pages();
5675 5676 5677 5678 5679 5680 5681
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5682
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5683 5684 5685 5686
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5687
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5688 5689 5690
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5691
#ifdef CONFIG_NUMA
5692
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5693
#endif
L
Linus Torvalds 已提交
5694 5695
}

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5720 5721
/*
 * Initially all pages are reserved - free ones are freed
5722
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5723 5724
 * done. Non-atomic initialization, single-pass.
 */
5725
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5726 5727
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5728
{
5729
	unsigned long pfn, end_pfn = start_pfn + size;
5730
	struct page *page;
L
Linus Torvalds 已提交
5731

5732 5733 5734
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5735
#ifdef CONFIG_ZONE_DEVICE
5736 5737
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5738 5739 5740 5741
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5742
	 */
5743 5744 5745 5746 5747 5748 5749 5750 5751
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5752

5753
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5754
		/*
5755 5756
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5757
		 */
5758 5759
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5760
				continue;
5761 5762 5763 5764 5765 5766
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5767
		}
5768

5769 5770 5771
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5772
			__SetPageReserved(page);
5773

5774 5775 5776 5777 5778
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5779
		 * kernel allocations are made.
5780 5781 5782 5783 5784 5785 5786 5787
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5788
			cond_resched();
5789
		}
L
Linus Torvalds 已提交
5790 5791 5792
	}
}

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5868
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5869
{
5870
	unsigned int order, t;
5871 5872
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5873 5874 5875 5876
		zone->free_area[order].nr_free = 0;
	}
}

5877 5878 5879 5880 5881
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5882

5883
static int zone_batchsize(struct zone *zone)
5884
{
5885
#ifdef CONFIG_MMU
5886 5887 5888 5889
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5890
	 * size of the zone.
5891
	 */
5892
	batch = zone_managed_pages(zone) / 1024;
5893 5894 5895
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5896 5897 5898 5899 5900
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5901 5902 5903
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5904
	 *
5905 5906 5907 5908
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5909
	 */
5910
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5911

5912
	return batch;
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5930 5931
}

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5959
/* a companion to pageset_set_high() */
5960 5961
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5962
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5963 5964
}

5965
static void pageset_init(struct per_cpu_pageset *p)
5966 5967
{
	struct per_cpu_pages *pcp;
5968
	int migratetype;
5969

5970 5971
	memset(p, 0, sizeof(*p));

5972
	pcp = &p->pcp;
5973 5974
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5975 5976
}

5977 5978 5979 5980 5981 5982
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5983
/*
5984
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5985 5986
 * to the value high for the pageset p.
 */
5987
static void pageset_set_high(struct per_cpu_pageset *p,
5988 5989
				unsigned long high)
{
5990 5991 5992
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5993

5994
	pageset_update(&p->pcp, high, batch);
5995 5996
}

5997 5998
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5999 6000
{
	if (percpu_pagelist_fraction)
6001
		pageset_set_high(pcp,
6002
			(zone_managed_pages(zone) /
6003 6004 6005 6006 6007
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6008 6009 6010 6011 6012 6013 6014 6015
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6016
void __meminit setup_zone_pageset(struct zone *zone)
6017 6018 6019
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6020 6021
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6022 6023
}

6024
/*
6025 6026
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6027
 */
6028
void __init setup_per_cpu_pageset(void)
6029
{
6030
	struct pglist_data *pgdat;
6031
	struct zone *zone;
6032

6033 6034
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6035 6036 6037 6038

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6039 6040
}

6041
static __meminit void zone_pcp_init(struct zone *zone)
6042
{
6043 6044 6045 6046 6047 6048
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6049

6050
	if (populated_zone(zone))
6051 6052 6053
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6054 6055
}

6056
void __meminit init_currently_empty_zone(struct zone *zone,
6057
					unsigned long zone_start_pfn,
6058
					unsigned long size)
6059 6060
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6061
	int zone_idx = zone_idx(zone) + 1;
6062

6063 6064
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6065 6066 6067

	zone->zone_start_pfn = zone_start_pfn;

6068 6069 6070 6071 6072 6073
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6074
	zone_init_free_lists(zone);
6075
	zone->initialized = 1;
6076 6077
}

T
Tejun Heo 已提交
6078
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6079
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6080

6081 6082 6083
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6084 6085
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6086
{
6087
	unsigned long start_pfn, end_pfn;
6088
	int nid;
6089

6090 6091
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6092

6093
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6094
	if (nid != NUMA_NO_NODE) {
6095 6096 6097
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6098 6099 6100
	}

	return nid;
6101 6102 6103 6104
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6105
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6106
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6107
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6108
 *
6109 6110 6111
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6112
 */
6113
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6114
{
6115 6116
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6117

6118 6119 6120
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6121

6122
		if (start_pfn < end_pfn)
6123 6124 6125
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6126 6127 6128
	}
}

6129 6130
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6131
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6132
 *
6133 6134
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6135 6136 6137
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6138 6139
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6140

6141 6142
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6143 6144 6145 6146
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6147 6148 6149
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6150 6151
 *
 * It returns the start and end page frame of a node based on information
6152
 * provided by memblock_set_node(). If called for a node
6153
 * with no available memory, a warning is printed and the start and end
6154
 * PFNs will be 0.
6155
 */
6156
void __init get_pfn_range_for_nid(unsigned int nid,
6157 6158
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6159
	unsigned long this_start_pfn, this_end_pfn;
6160
	int i;
6161

6162 6163 6164
	*start_pfn = -1UL;
	*end_pfn = 0;

6165 6166 6167
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6168 6169
	}

6170
	if (*start_pfn == -1UL)
6171 6172 6173
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6174 6175 6176 6177 6178
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6179
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6197
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6198 6199 6200 6201 6202 6203 6204
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6205
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6220 6221 6222 6223 6224 6225
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6226 6227 6228 6229 6230 6231
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6232 6233 6234 6235
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6236
static unsigned long __init zone_spanned_pages_in_node(int nid,
6237
					unsigned long zone_type,
6238 6239
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6240 6241
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6242 6243
					unsigned long *ignored)
{
6244
	/* When hotadd a new node from cpu_up(), the node should be empty */
6245 6246 6247
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6248
	/* Get the start and end of the zone */
6249 6250
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6251 6252
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6253
				zone_start_pfn, zone_end_pfn);
6254 6255

	/* Check that this node has pages within the zone's required range */
6256
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6257 6258 6259
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6260 6261
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6262 6263

	/* Return the spanned pages */
6264
	return *zone_end_pfn - *zone_start_pfn;
6265 6266 6267 6268
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6269
 * then all holes in the requested range will be accounted for.
6270
 */
6271
unsigned long __init __absent_pages_in_range(int nid,
6272 6273 6274
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6275 6276 6277
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6278

6279 6280 6281 6282
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6283
	}
6284
	return nr_absent;
6285 6286 6287 6288 6289 6290 6291
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6292
 * Return: the number of pages frames in memory holes within a range.
6293 6294 6295 6296 6297 6298 6299 6300
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6301
static unsigned long __init zone_absent_pages_in_node(int nid,
6302
					unsigned long zone_type,
6303 6304
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6305 6306
					unsigned long *ignored)
{
6307 6308
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6309
	unsigned long zone_start_pfn, zone_end_pfn;
6310
	unsigned long nr_absent;
6311

6312
	/* When hotadd a new node from cpu_up(), the node should be empty */
6313 6314 6315
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6316 6317
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6318

M
Mel Gorman 已提交
6319 6320 6321
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6322 6323 6324 6325 6326 6327 6328
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6346 6347 6348 6349
		}
	}

	return nr_absent;
6350
}
6351

T
Tejun Heo 已提交
6352
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6353
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6354
					unsigned long zone_type,
6355 6356
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6357 6358
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6359 6360
					unsigned long *zones_size)
{
6361 6362 6363 6364 6365 6366 6367 6368
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6369 6370 6371
	return zones_size[zone_type];
}

6372
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6373
						unsigned long zone_type,
6374 6375
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6376 6377 6378 6379 6380 6381 6382
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6383

T
Tejun Heo 已提交
6384
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6385

6386
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6387 6388 6389 6390
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6391
{
6392
	unsigned long realtotalpages = 0, totalpages = 0;
6393 6394
	enum zone_type i;

6395 6396
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6397
		unsigned long zone_start_pfn, zone_end_pfn;
6398
		unsigned long size, real_size;
6399

6400 6401 6402
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6403 6404
						  &zone_start_pfn,
						  &zone_end_pfn,
6405 6406
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6407 6408
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6409 6410 6411 6412
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6413 6414 6415 6416 6417 6418 6419 6420
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6421 6422 6423 6424 6425
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6426 6427 6428
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6429 6430
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6431 6432 6433
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6434
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6435 6436 6437
{
	unsigned long usemapsize;

6438
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6439 6440
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6441 6442 6443 6444 6445 6446
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6447
static void __ref setup_usemap(struct pglist_data *pgdat,
6448 6449 6450
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6451
{
6452
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6453
	zone->pageblock_flags = NULL;
6454
	if (usemapsize) {
6455
		zone->pageblock_flags =
6456 6457
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6458 6459 6460 6461
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6462 6463
}
#else
6464 6465
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6466 6467
#endif /* CONFIG_SPARSEMEM */

6468
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6469

6470
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6471
void __init set_pageblock_order(void)
6472
{
6473 6474
	unsigned int order;

6475 6476 6477 6478
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6479 6480 6481 6482 6483
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6484 6485
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6486 6487
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6488 6489 6490 6491 6492
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6493 6494
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6495 6496 6497
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6498
 */
6499
void __init set_pageblock_order(void)
6500 6501
{
}
6502 6503 6504

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6505
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6506
						unsigned long present_pages)
6507 6508 6509 6510 6511 6512 6513 6514
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6515
	 * populated regions may not be naturally aligned on page boundary.
6516 6517 6518 6519 6520 6521 6522 6523 6524
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6545
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6546
{
6547
	pgdat_resize_init(pgdat);
6548 6549 6550 6551

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6552
	init_waitqueue_head(&pgdat->kswapd_wait);
6553
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6554

6555
	pgdat_page_ext_init(pgdat);
6556
	spin_lock_init(&pgdat->lru_lock);
6557
	lruvec_init(node_lruvec(pgdat));
6558 6559 6560 6561 6562
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6563
	atomic_long_set(&zone->managed_pages, remaining_pages);
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6604

6605
	pgdat_init_internals(pgdat);
6606 6607
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6608 6609
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6610
		unsigned long size, freesize, memmap_pages;
6611
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6612

6613
		size = zone->spanned_pages;
6614
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6615

6616
		/*
6617
		 * Adjust freesize so that it accounts for how much memory
6618 6619 6620
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6621
		memmap_pages = calc_memmap_size(size, freesize);
6622 6623 6624 6625 6626 6627 6628 6629
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6630
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6631 6632
					zone_names[j], memmap_pages, freesize);
		}
6633

6634
		/* Account for reserved pages */
6635 6636
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6637
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6638
					zone_names[0], dma_reserve);
6639 6640
		}

6641
		if (!is_highmem_idx(j))
6642
			nr_kernel_pages += freesize;
6643 6644 6645
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6646
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6647

6648 6649 6650 6651 6652
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6653
		zone_init_internals(zone, j, nid, freesize);
6654

6655
		if (!size)
L
Linus Torvalds 已提交
6656 6657
			continue;

6658
		set_pageblock_order();
6659 6660
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6661
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6662 6663 6664
	}
}

6665
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6666
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6667
{
6668
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6669 6670
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6671 6672 6673 6674
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6675 6676
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6677 6678
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6679
		unsigned long size, end;
A
Andy Whitcroft 已提交
6680 6681
		struct page *map;

6682 6683 6684 6685 6686
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6687
		end = pgdat_end_pfn(pgdat);
6688 6689
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6690 6691
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6692 6693 6694
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6695
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6696
	}
6697 6698 6699
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6700
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6701 6702 6703
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6704
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6705
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6706
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6707
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6708
			mem_map -= offset;
T
Tejun Heo 已提交
6709
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6710
	}
L
Linus Torvalds 已提交
6711 6712
#endif
}
6713 6714 6715
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6716

6717 6718 6719 6720 6721 6722 6723 6724 6725
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6726
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6727 6728
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6729
{
6730
	pg_data_t *pgdat = NODE_DATA(nid);
6731 6732
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6733

6734
	/* pg_data_t should be reset to zero when it's allocated */
6735
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6736

L
Linus Torvalds 已提交
6737 6738
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6739
	pgdat->per_cpu_nodestats = NULL;
6740 6741
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6742
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6743 6744
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6745 6746
#else
	start_pfn = node_start_pfn;
6747 6748 6749
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6750 6751

	alloc_node_mem_map(pgdat);
6752
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6753

6754
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6755 6756
}

M
Mike Rapoport 已提交
6757
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6780 6781 6782 6783 6784 6785
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6786 6787 6788 6789 6790
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6791
 */
6792
void __init zero_resv_unavail(void)
6793 6794 6795
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6796
	phys_addr_t next = 0;
6797 6798

	/*
6799
	 * Loop through unavailable ranges not covered by memblock.memory.
6800 6801
	 */
	pgcnt = 0;
6802 6803
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6804 6805
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6806 6807
		next = end;
	}
6808
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6809

6810 6811 6812 6813 6814
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6815
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6816
}
M
Mike Rapoport 已提交
6817
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6818

T
Tejun Heo 已提交
6819
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6820 6821 6822 6823 6824

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6825
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6826
{
6827
	unsigned int highest;
M
Miklos Szeredi 已提交
6828

6829
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6830 6831 6832 6833
	nr_node_ids = highest + 1;
}
#endif

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6850
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6851 6852 6853 6854 6855
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6856
	unsigned long start, end, mask;
6857
	int last_nid = NUMA_NO_NODE;
6858
	int i, nid;
6859

6860
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6884
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6885
static unsigned long __init find_min_pfn_for_node(int nid)
6886
{
6887
	unsigned long min_pfn = ULONG_MAX;
6888 6889
	unsigned long start_pfn;
	int i;
6890

6891 6892
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6893

6894
	if (min_pfn == ULONG_MAX) {
6895
		pr_warn("Could not find start_pfn for node %d\n", nid);
6896 6897 6898 6899
		return 0;
	}

	return min_pfn;
6900 6901 6902 6903 6904
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6905
 * Return: the minimum PFN based on information provided via
6906
 * memblock_set_node().
6907 6908 6909 6910 6911 6912
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6913 6914 6915
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6916
 * Populate N_MEMORY for calculating usable_nodes.
6917
 */
A
Adrian Bunk 已提交
6918
static unsigned long __init early_calculate_totalpages(void)
6919 6920
{
	unsigned long totalpages = 0;
6921 6922 6923 6924 6925
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6926

6927 6928
		totalpages += pages;
		if (pages)
6929
			node_set_state(nid, N_MEMORY);
6930
	}
6931
	return totalpages;
6932 6933
}

M
Mel Gorman 已提交
6934 6935 6936 6937 6938 6939
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6940
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6941 6942 6943 6944
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6945
	/* save the state before borrow the nodemask */
6946
	nodemask_t saved_node_state = node_states[N_MEMORY];
6947
	unsigned long totalpages = early_calculate_totalpages();
6948
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6949
	struct memblock_region *r;
6950 6951 6952 6953 6954 6955 6956 6957 6958

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6959 6960
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6961 6962
				continue;

E
Emil Medve 已提交
6963
			nid = r->nid;
6964

E
Emil Medve 已提交
6965
			usable_startpfn = PFN_DOWN(r->base);
6966 6967 6968 6969 6970 6971 6972
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6973

6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7004
	/*
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7032
		required_movablecore = min(totalpages, required_movablecore);
7033 7034 7035 7036 7037
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7038 7039 7040 7041 7042
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7043
		goto out;
M
Mel Gorman 已提交
7044 7045 7046 7047 7048 7049 7050

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7051
	for_each_node_state(nid, N_MEMORY) {
7052 7053
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7070
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7071 7072
			unsigned long size_pages;

7073
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7116
			 * satisfied
M
Mel Gorman 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7130
	 * satisfied
M
Mel Gorman 已提交
7131 7132 7133 7134 7135
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7136
out2:
M
Mel Gorman 已提交
7137 7138 7139 7140
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7141

7142
out:
7143
	/* restore the node_state */
7144
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7145 7146
}

7147 7148
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7149 7150 7151
{
	enum zone_type zone_type;

7152
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7153
		struct zone *zone = &pgdat->node_zones[zone_type];
7154
		if (populated_zone(zone)) {
7155 7156 7157
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7158
				node_set_state(nid, N_NORMAL_MEMORY);
7159 7160
			break;
		}
7161 7162 7163
	}
}

7164 7165
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7166
 * @max_zone_pfn: an array of max PFNs for each zone
7167 7168
 *
 * This will call free_area_init_node() for each active node in the system.
7169
 * Using the page ranges provided by memblock_set_node(), the size of each
7170 7171 7172 7173 7174 7175 7176 7177 7178
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7179 7180
	unsigned long start_pfn, end_pfn;
	int i, nid;
7181

7182 7183 7184 7185 7186
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7187 7188 7189 7190

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7191 7192
		if (i == ZONE_MOVABLE)
			continue;
7193 7194 7195 7196 7197 7198

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7199
	}
M
Mel Gorman 已提交
7200 7201 7202

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7203
	find_zone_movable_pfns_for_nodes();
7204 7205

	/* Print out the zone ranges */
7206
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7207 7208 7209
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7210
		pr_info("  %-8s ", zone_names[i]);
7211 7212
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7213
			pr_cont("empty\n");
7214
		else
7215 7216 7217 7218
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7219
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7220 7221 7222
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7223
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7224 7225
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7226 7227
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7228
	}
7229

7230
	/* Print out the early node map */
7231
	pr_info("Early memory node ranges\n");
7232
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7233 7234 7235
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7236 7237

	/* Initialise every node */
7238
	mminit_verify_pageflags_layout();
7239
	setup_nr_node_ids();
7240
	zero_resv_unavail();
7241 7242
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7243
		free_area_init_node(nid, NULL,
7244
				find_min_pfn_for_node(nid), NULL);
7245 7246 7247

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7248 7249
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7250 7251
	}
}
M
Mel Gorman 已提交
7252

7253 7254
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7255 7256
{
	unsigned long long coremem;
7257 7258
	char *endptr;

M
Mel Gorman 已提交
7259 7260 7261
	if (!p)
		return -EINVAL;

7262 7263 7264 7265 7266
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7267

7268 7269 7270 7271 7272
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7273

7274 7275 7276
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7277 7278
	return 0;
}
M
Mel Gorman 已提交
7279

7280 7281 7282 7283 7284 7285
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7286 7287 7288 7289 7290 7291
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7292 7293
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7294 7295 7296 7297 7298 7299 7300 7301
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7302 7303
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7304 7305
}

M
Mel Gorman 已提交
7306
early_param("kernelcore", cmdline_parse_kernelcore);
7307
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7308

T
Tejun Heo 已提交
7309
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7310

7311 7312
void adjust_managed_page_count(struct page *page, long count)
{
7313
	atomic_long_add(count, &page_zone(page)->managed_pages);
7314
	totalram_pages_add(count);
7315 7316
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7317
		totalhigh_pages_add(count);
7318
#endif
7319
}
7320
EXPORT_SYMBOL(adjust_managed_page_count);
7321

7322
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7323
{
7324 7325
	void *pos;
	unsigned long pages = 0;
7326

7327 7328 7329
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7341
		if ((unsigned int)poison <= 0xFF)
7342 7343 7344
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7345 7346 7347
	}

	if (pages && s)
7348 7349
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7350 7351 7352 7353

	return pages;
}

7354 7355 7356 7357
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7358
	totalram_pages_inc();
7359
	atomic_long_inc(&page_zone(page)->managed_pages);
7360
	totalhigh_pages_inc();
7361 7362 7363
}
#endif

7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7386 7387 7388 7389
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7400
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7401
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7402
		", %luK highmem"
7403
#endif
J
Joe Perches 已提交
7404 7405 7406 7407 7408
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7409
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7410
		totalcma_pages << (PAGE_SHIFT - 10),
7411
#ifdef	CONFIG_HIGHMEM
7412
		totalhigh_pages() << (PAGE_SHIFT - 10),
7413
#endif
J
Joe Perches 已提交
7414
		str ? ", " : "", str ? str : "");
7415 7416
}

7417
/**
7418 7419
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7420
 *
7421
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7422 7423
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7424 7425 7426
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7427 7428 7429 7430 7431 7432
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7433 7434
void __init free_area_init(unsigned long *zones_size)
{
7435
	zero_resv_unavail();
7436
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7437 7438 7439
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7440
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7441 7442
{

7443 7444
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7445

7446 7447 7448 7449 7450 7451 7452
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7453

7454 7455 7456 7457 7458 7459 7460 7461 7462
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7463 7464 7465 7466
}

void __init page_alloc_init(void)
{
7467 7468 7469 7470 7471 7472
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7473 7474
}

7475
/*
7476
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7477 7478 7479 7480 7481 7482
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7483
	enum zone_type i, j;
7484 7485

	for_each_online_pgdat(pgdat) {
7486 7487 7488

		pgdat->totalreserve_pages = 0;

7489 7490
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7491
			long max = 0;
7492
			unsigned long managed_pages = zone_managed_pages(zone);
7493 7494 7495 7496 7497 7498 7499

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7500 7501
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7502

7503 7504
			if (max > managed_pages)
				max = managed_pages;
7505

7506
			pgdat->totalreserve_pages += max;
7507

7508 7509 7510 7511 7512 7513
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7514 7515
/*
 * setup_per_zone_lowmem_reserve - called whenever
7516
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7517 7518 7519 7520 7521 7522
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7523
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7524

7525
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7526 7527
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7528
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7529 7530 7531

			zone->lowmem_reserve[j] = 0;

7532 7533
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7534 7535
				struct zone *lower_zone;

7536
				idx--;
L
Linus Torvalds 已提交
7537
				lower_zone = pgdat->node_zones + idx;
7538 7539 7540 7541 7542 7543 7544 7545

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7546
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7547 7548 7549
			}
		}
	}
7550 7551 7552

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7553 7554
}

7555
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7556 7557 7558 7559 7560 7561 7562 7563 7564
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7565
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7566 7567 7568
	}

	for_each_zone(zone) {
7569 7570
		u64 tmp;

7571
		spin_lock_irqsave(&zone->lock, flags);
7572
		tmp = (u64)pages_min * zone_managed_pages(zone);
7573
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7574 7575
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7576 7577 7578 7579
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7580
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7581
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7582
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7583
			 */
7584
			unsigned long min_pages;
L
Linus Torvalds 已提交
7585

7586
			min_pages = zone_managed_pages(zone) / 1024;
7587
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7588
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7589
		} else {
N
Nick Piggin 已提交
7590 7591
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7592 7593
			 * proportionate to the zone's size.
			 */
7594
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7595 7596
		}

7597 7598 7599 7600 7601 7602
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7603
			    mult_frac(zone_managed_pages(zone),
7604 7605
				      watermark_scale_factor, 10000));

7606 7607
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7608
		zone->watermark_boost = 0;
7609

7610
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7611
	}
7612 7613 7614

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7615 7616
}

7617 7618 7619 7620 7621 7622 7623 7624 7625
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7626 7627 7628
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7629
	__setup_per_zone_wmarks();
7630
	spin_unlock(&lock);
7631 7632
}

L
Linus Torvalds 已提交
7633 7634 7635 7636 7637 7638 7639
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7640
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7657
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7658 7659
{
	unsigned long lowmem_kbytes;
7660
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7661 7662

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7675
	setup_per_zone_wmarks();
7676
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7677
	setup_per_zone_lowmem_reserve();
7678 7679 7680 7681 7682 7683

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7684 7685
	return 0;
}
7686
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7687 7688

/*
7689
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7690 7691 7692
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7693
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7694
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7695
{
7696 7697 7698 7699 7700 7701
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7702 7703
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7704
		setup_per_zone_wmarks();
7705
	}
L
Linus Torvalds 已提交
7706 7707 7708
	return 0;
}

7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7736
#ifdef CONFIG_NUMA
7737
static void setup_min_unmapped_ratio(void)
7738
{
7739
	pg_data_t *pgdat;
7740 7741
	struct zone *zone;

7742
	for_each_online_pgdat(pgdat)
7743
		pgdat->min_unmapped_pages = 0;
7744

7745
	for_each_zone(zone)
7746 7747
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7748
}
7749

7750 7751

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7752
	void __user *buffer, size_t *length, loff_t *ppos)
7753 7754 7755
{
	int rc;

7756
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7757 7758 7759
	if (rc)
		return rc;

7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7770 7771 7772
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7773
	for_each_zone(zone)
7774 7775
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7789 7790
	return 0;
}
7791 7792
#endif

L
Linus Torvalds 已提交
7793 7794 7795 7796 7797 7798
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7799
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7800 7801
 * if in function of the boot time zone sizes.
 */
7802
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7803
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7804
{
7805
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7806 7807 7808 7809
	setup_per_zone_lowmem_reserve();
	return 0;
}

7810 7811
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7812 7813
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7814
 */
7815
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7816
	void __user *buffer, size_t *length, loff_t *ppos)
7817 7818
{
	struct zone *zone;
7819
	int old_percpu_pagelist_fraction;
7820 7821
	int ret;

7822 7823 7824
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7825
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7840

7841
	for_each_populated_zone(zone) {
7842 7843
		unsigned int cpu;

7844
		for_each_possible_cpu(cpu)
7845 7846
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7847
	}
7848
out:
7849
	mutex_unlock(&pcp_batch_high_lock);
7850
	return ret;
7851 7852
}

7853
#ifdef CONFIG_NUMA
7854
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7905 7906
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7907
{
7908
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7909 7910
	unsigned long log2qty, size;
	void *table = NULL;
7911
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7912 7913 7914 7915

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7916
		numentries = nr_kernel_pages;
7917
		numentries -= arch_reserved_kernel_pages();
7918 7919 7920 7921

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7922

P
Pavel Tatashin 已提交
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7933 7934 7935 7936 7937
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7938 7939

		/* Make sure we've got at least a 0-order allocation.. */
7940 7941 7942 7943 7944 7945 7946 7947
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7948
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7949
	}
7950
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7951 7952 7953 7954 7955 7956

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7957
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7958

7959 7960
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7961 7962 7963
	if (numentries > max)
		numentries = max;

7964
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7965

7966
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7967 7968
	do {
		size = bucketsize << log2qty;
7969 7970
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7971
				table = memblock_alloc(size, SMP_CACHE_BYTES);
7972
			else
7973 7974
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7975
		} else if (hashdist) {
7976
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7977
		} else {
7978 7979
			/*
			 * If bucketsize is not a power-of-two, we may free
7980 7981
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7982
			 */
7983
			if (get_order(size) < MAX_ORDER) {
7984 7985
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7986
			}
L
Linus Torvalds 已提交
7987 7988 7989 7990 7991 7992
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7993 7994
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7995 7996 7997 7998 7999 8000 8001 8002

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8003

K
KAMEZAWA Hiroyuki 已提交
8004
/*
8005 8006 8007
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8008
 * PageLRU check without isolation or lru_lock could race so that
8009 8010 8011
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8012
 */
8013
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8014
			 int migratetype, int flags)
8015
{
8016 8017 8018 8019
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8020

8021
	/*
8022 8023 8024 8025 8026
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8027 8028
	 */

8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8041

8042
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8043 8044
		unsigned long check = pfn + iter;

8045
		if (!pfn_valid_within(check))
8046
			continue;
8047

8048
		page = pfn_to_page(check);
8049

8050
		if (PageReserved(page))
8051
			goto unmovable;
8052

8053 8054 8055 8056 8057 8058 8059 8060
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8061 8062
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8063
		 * We need not scan over tail pages because we don't
8064 8065 8066
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8067 8068
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8069

8070
			if (!hugepage_migration_supported(page_hstate(head)))
8071 8072
				goto unmovable;

8073 8074
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8075 8076 8077
			continue;
		}

8078 8079 8080 8081
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8082
		 * because their page->_refcount is zero at all time.
8083
		 */
8084
		if (!page_ref_count(page)) {
8085 8086 8087 8088
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8089

8090 8091 8092 8093
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8094
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8095 8096
			continue;

8097 8098 8099
		if (__PageMovable(page))
			continue;

8100 8101 8102
		if (!PageLRU(page))
			found++;
		/*
8103 8104 8105
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8116
			goto unmovable;
8117
	}
8118
	return false;
8119 8120
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8121
	if (flags & REPORT_FAILURE)
8122
		dump_page(pfn_to_page(pfn + iter), reason);
8123
	return true;
8124 8125
}

8126
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8141 8142
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8143 8144
{
	/* This function is based on compact_zone() from compaction.c. */
8145
	unsigned long nr_reclaimed;
8146 8147 8148 8149
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8150
	migrate_prep();
8151

8152
	while (pfn < end || !list_empty(&cc->migratepages)) {
8153 8154 8155 8156 8157
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8158 8159
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8160
			pfn = isolate_migratepages_range(cc, pfn, end);
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8171 8172 8173
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8174

8175
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8176
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8177
	}
8178 8179 8180 8181 8182
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8183 8184 8185 8186 8187 8188
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8189 8190 8191 8192
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8193
 * @gfp_mask:	GFP mask to use during compaction
8194 8195
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8196
 * aligned.  The PFN range must belong to a single zone.
8197
 *
8198 8199 8200
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8201
 *
8202
 * Return: zero on success or negative error code.  On success all
8203 8204 8205
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8206
int alloc_contig_range(unsigned long start, unsigned long end,
8207
		       unsigned migratetype, gfp_t gfp_mask)
8208 8209
{
	unsigned long outer_start, outer_end;
8210 8211
	unsigned int order;
	int ret = 0;
8212

8213 8214 8215 8216
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8217
		.mode = MIGRATE_SYNC,
8218
		.ignore_skip_hint = true,
8219
		.no_set_skip_hint = true,
8220
		.gfp_mask = current_gfp_context(gfp_mask),
8221 8222 8223
	};
	INIT_LIST_HEAD(&cc.migratepages);

8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8249
				       pfn_max_align_up(end), migratetype, 0);
8250
	if (ret < 0)
8251
		return ret;
8252

8253 8254
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8255 8256 8257 8258 8259 8260 8261
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8262
	 */
8263
	ret = __alloc_contig_migrate_range(&cc, start, end);
8264
	if (ret && ret != -EBUSY)
8265
		goto done;
8266
	ret =0;
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8291 8292
			outer_start = start;
			break;
8293 8294 8295 8296
		}
		outer_start &= ~0UL << order;
	}

8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8310
	/* Make sure the range is really isolated. */
8311
	if (test_pages_isolated(outer_start, end, false)) {
8312
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8313
			__func__, outer_start, end);
8314 8315 8316 8317
		ret = -EBUSY;
		goto done;
	}

8318
	/* Grab isolated pages from freelists. */
8319
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8333
				pfn_max_align_up(end), migratetype);
8334 8335 8336 8337 8338
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8339 8340 8341 8342 8343 8344 8345 8346 8347
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8348 8349 8350
}
#endif

8351
#ifdef CONFIG_MEMORY_HOTPLUG
8352 8353 8354 8355
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8356 8357
void __meminit zone_pcp_update(struct zone *zone)
{
8358
	unsigned cpu;
8359
	mutex_lock(&pcp_batch_high_lock);
8360
	for_each_possible_cpu(cpu)
8361 8362
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8363
	mutex_unlock(&pcp_batch_high_lock);
8364 8365 8366
}
#endif

8367 8368 8369
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8370 8371
	int cpu;
	struct per_cpu_pageset *pset;
8372 8373 8374 8375

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8376 8377 8378 8379
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8380 8381 8382 8383 8384 8385
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8386
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8387
/*
8388 8389
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8390 8391 8392 8393 8394 8395
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8396
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8397 8398 8399 8400 8401 8402 8403 8404
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8405
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8406 8407 8408 8409 8410 8411 8412 8413 8414
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8425 8426 8427 8428
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8429 8430
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8442 8443 8444 8445 8446 8447

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8448
	unsigned int order;
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif