page_alloc.c 233.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269 270 271 272 273 274 275 276 277 278 279 280
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
281
int watermark_boost_factor __read_mostly = 15000;
282
#endif
283
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
284

285 286 287
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
288

T
Tejun Heo 已提交
289
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292
static unsigned long required_kernelcore __initdata;
293
static unsigned long required_kernelcore_percent __initdata;
294
static unsigned long required_movablecore __initdata;
295
static unsigned long required_movablecore_percent __initdata;
296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
298 299 300 301 302

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303

M
Miklos Szeredi 已提交
304
#if MAX_NUMNODES > 1
305
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
307
EXPORT_SYMBOL(nr_node_ids);
308
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
309 310
#endif

311 312
int page_group_by_mobility_disabled __read_mostly;

313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351
		return true;

	return false;
}

/*
352
 * Returns true when the remaining initialisation should be deferred until
353 354
 * later in the boot cycle when it can be parallelised.
 */
355 356
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357
{
358 359 360 361 362 363 364 365 366 367 368
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

369
	/* Always populate low zones for address-constrained allocations */
370
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371
		return false;
372 373 374 375 376

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
377
	nr_initialised++;
378
	if ((nr_initialised > PAGES_PER_SECTION) &&
379 380 381
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
382
	}
383
	return false;
384 385
}
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

393
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394
{
395
	return false;
396 397 398
}
#endif

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
500

501
void set_pageblock_migratetype(struct page *page, int migratetype)
502
{
503 504
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
505 506
		migratetype = MIGRATE_UNMOVABLE;

507 508 509 510
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
511
#ifdef CONFIG_DEBUG_VM
512
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
513
{
514 515 516
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
517
	unsigned long sp, start_pfn;
518

519 520
	do {
		seq = zone_span_seqbegin(zone);
521 522
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
523
		if (!zone_spans_pfn(zone, pfn))
524 525 526
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

527
	if (ret)
528 529 530
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
531

532
	return ret;
533 534 535 536
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
537
	if (!pfn_valid_within(page_to_pfn(page)))
538
		return 0;
L
Linus Torvalds 已提交
539
	if (zone != page_zone(page))
540 541 542 543 544 545 546
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
547
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 549
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
550
		return 1;
551 552 553
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
554 555
	return 0;
}
N
Nick Piggin 已提交
556
#else
557
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
558 559 560 561 562
{
	return 0;
}
#endif

563 564
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
580
			pr_alert(
581
			      "BUG: Bad page state: %lu messages suppressed\n",
582 583 584 585 586 587 588 589
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

590
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591
		current->comm, page_to_pfn(page));
592 593 594 595 596
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
597
	dump_page_owner(page);
598

599
	print_modules();
L
Linus Torvalds 已提交
600
	dump_stack();
601
out:
602
	/* Leave bad fields for debug, except PageBuddy could make trouble */
603
	page_mapcount_reset(page); /* remove PageBuddy */
604
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
605 606 607 608 609
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
610
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
611
 *
612 613
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
614
 *
615 616
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
617
 *
618
 * The first tail page's ->compound_order holds the order of allocation.
619
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
620
 */
621

622
void free_compound_page(struct page *page)
623
{
624
	__free_pages_ok(page, compound_order(page));
625 626
}

627
void prep_compound_page(struct page *page, unsigned int order)
628 629 630 631
{
	int i;
	int nr_pages = 1 << order;

632
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 634 635 636
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
637
		set_page_count(p, 0);
638
		p->mapping = TAIL_MAPPING;
639
		set_compound_head(p, page);
640
	}
641
	atomic_set(compound_mapcount_ptr(page), -1);
642 643
}

644 645
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
646 647
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
648
EXPORT_SYMBOL(_debug_pagealloc_enabled);
649 650
bool _debug_guardpage_enabled __read_mostly;

651 652 653 654
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
655
	return kstrtobool(buf, &_debug_pagealloc_enabled);
656 657 658
}
early_param("debug_pagealloc", early_debug_pagealloc);

659 660
static bool need_debug_guardpage(void)
{
661 662 663 664
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

665 666 667
	if (!debug_guardpage_minorder())
		return false;

668 669 670 671 672
	return true;
}

static void init_debug_guardpage(void)
{
673 674 675
	if (!debug_pagealloc_enabled())
		return;

676 677 678
	if (!debug_guardpage_minorder())
		return;

679 680 681 682 683 684 685
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
686 687 688 689 690 691

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
692
		pr_err("Bad debug_guardpage_minorder value\n");
693 694 695
		return 0;
	}
	_debug_guardpage_minorder = res;
696
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
697 698
	return 0;
}
699
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
700

701
static inline bool set_page_guard(struct zone *zone, struct page *page,
702
				unsigned int order, int migratetype)
703
{
704 705 706
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
707 708 709 710
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
711 712

	page_ext = lookup_page_ext(page);
713
	if (unlikely(!page_ext))
714
		return false;
715

716 717
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

718 719 720 721
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
722 723

	return true;
724 725
}

726 727
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
728
{
729 730 731 732 733 734
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
735 736 737
	if (unlikely(!page_ext))
		return;

738 739
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

740 741 742
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
743 744
}
#else
745
struct page_ext_operations debug_guardpage_ops;
746 747
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
748 749
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
750 751
#endif

752
static inline void set_page_order(struct page *page, unsigned int order)
753
{
H
Hugh Dickins 已提交
754
	set_page_private(page, order);
755
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
756 757 758 759
}

static inline void rmv_page_order(struct page *page)
{
760
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
761
	set_page_private(page, 0);
L
Linus Torvalds 已提交
762 763 764 765
}

/*
 * This function checks whether a page is free && is the buddy
766
 * we can coalesce a page and its buddy if
767
 * (a) the buddy is not in a hole (check before calling!) &&
768
 * (b) the buddy is in the buddy system &&
769 770
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
771
 *
772 773
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
774
 *
775
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
776
 */
777
static inline int page_is_buddy(struct page *page, struct page *buddy,
778
							unsigned int order)
L
Linus Torvalds 已提交
779
{
780
	if (page_is_guard(buddy) && page_order(buddy) == order) {
781 782 783
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

784 785
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

786 787 788
		return 1;
	}

789
	if (PageBuddy(buddy) && page_order(buddy) == order) {
790 791 792 793 794 795 796 797
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

798 799
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

800
		return 1;
801
	}
802
	return 0;
L
Linus Torvalds 已提交
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
869 870
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
871
 * So when we are allocating or freeing one, we can derive the state of the
872 873
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
874
 * If a block is freed, and its buddy is also free, then this
875
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
876
 *
877
 * -- nyc
L
Linus Torvalds 已提交
878 879
 */

N
Nick Piggin 已提交
880
static inline void __free_one_page(struct page *page,
881
		unsigned long pfn,
882 883
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
884
{
885 886
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
887
	struct page *buddy;
888
	unsigned int max_order;
889
	struct capture_control *capc = task_capc(zone);
890 891

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
892

893
	VM_BUG_ON(!zone_is_initialized(zone));
894
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
895

896
	VM_BUG_ON(migratetype == -1);
897
	if (likely(!is_migrate_isolate(migratetype)))
898
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
899

900
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
901
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
902

903
continue_merging:
904
	while (order < max_order - 1) {
905 906 907 908 909
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
910 911
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
912 913 914

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
915
		if (!page_is_buddy(page, buddy, order))
916
			goto done_merging;
917 918 919 920 921
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
922
			clear_page_guard(zone, buddy, order, migratetype);
923 924 925 926 927
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
928 929 930
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
931 932
		order++;
	}
933 934 935 936 937 938 939 940 941 942 943 944
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

945 946
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
947 948 949 950 951 952 953 954 955 956 957 958
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
959
	set_page_order(page, order);
960 961 962 963 964 965 966 967 968

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
969
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
970
		struct page *higher_page, *higher_buddy;
971 972 973 974
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
975 976
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
977 978 979 980 981 982 983 984
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
985 986 987
	zone->free_area[order].nr_free++;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1010
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1011
{
1012 1013 1014 1015 1016
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1017

1018
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1019 1020 1021
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1022
	if (unlikely(page_ref_count(page) != 0))
1023
		bad_reason = "nonzero _refcount";
1024 1025 1026 1027
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1028 1029 1030 1031
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1032
	bad_page(page, bad_reason, bad_flags);
1033 1034 1035 1036
}

static inline int free_pages_check(struct page *page)
{
1037
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1038 1039 1040 1041
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1042
	return 1;
L
Linus Torvalds 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1061
		/* the first tail page: ->mapping may be compound_mapcount() */
1062 1063 1064 1065 1066 1067 1068 1069
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1070
		 * deferred_list.next -- ignore value.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1095 1096
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1097
{
1098
	int bad = 0;
1099 1100 1101

	VM_BUG_ON_PAGE(PageTail(page), page);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113

1114 1115
		if (compound)
			ClearPageDoubleMap(page);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1126
	if (PageMappingFlags(page))
1127
		page->mapping = NULL;
1128
	if (memcg_kmem_enabled() && PageKmemcg(page))
1129
		__memcg_kmem_uncharge(page, order);
1130 1131 1132 1133
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1134

1135 1136 1137
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1138 1139 1140

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1141
					   PAGE_SIZE << order);
1142
		debug_check_no_obj_freed(page_address(page),
1143
					   PAGE_SIZE << order);
1144
	}
1145 1146
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
1147 1148 1149
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 0);

1150
	kasan_free_nondeferred_pages(page, order);
1151 1152 1153 1154

	return true;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1171 1172 1173 1174 1175 1176
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1177 1178 1179 1180 1181 1182 1183 1184 1185
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1186
/*
1187
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1188
 * Assumes all pages on list are in same zone, and of same order.
1189
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1197 1198
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1199
{
1200
	int migratetype = 0;
1201
	int batch_free = 0;
1202
	int prefetch_nr = 0;
1203
	bool isolated_pageblocks;
1204 1205
	struct page *page, *tmp;
	LIST_HEAD(head);
1206

1207
	while (count) {
1208 1209 1210
		struct list_head *list;

		/*
1211 1212 1213 1214 1215
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1216 1217
		 */
		do {
1218
			batch_free++;
1219 1220 1221 1222
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1223

1224 1225
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1226
			batch_free = count;
1227

1228
		do {
1229
			page = list_last_entry(list, struct page, lru);
1230
			/* must delete to avoid corrupting pcp list */
1231
			list_del(&page->lru);
1232
			pcp->count--;
1233

1234 1235 1236
			if (bulkfree_pcp_prepare(page))
				continue;

1237
			list_add_tail(&page->lru, &head);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1250
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1251
	}
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1271
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1272 1273
}

1274 1275
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1276
				unsigned int order,
1277
				int migratetype)
L
Linus Torvalds 已提交
1278
{
1279
	spin_lock(&zone->lock);
1280 1281 1282 1283
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1284
	__free_one_page(page, pfn, zone, order, migratetype);
1285
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1286 1287
}

1288
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1289
				unsigned long zone, int nid)
1290
{
1291
	mm_zero_struct_page(page);
1292 1293 1294 1295
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1296
	page_kasan_tag_reset(page);
1297 1298 1299 1300 1301 1302 1303 1304 1305

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1306
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1307
static void __meminit init_reserved_page(unsigned long pfn)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1324
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1325 1326 1327 1328 1329 1330 1331
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1332 1333 1334 1335 1336 1337
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1338
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1339 1340 1341 1342
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1343 1344 1345 1346 1347
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1348 1349 1350 1351

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1352 1353 1354 1355 1356 1357
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1358 1359
		}
	}
1360 1361
}

1362 1363
static void __free_pages_ok(struct page *page, unsigned int order)
{
1364
	unsigned long flags;
M
Minchan Kim 已提交
1365
	int migratetype;
1366
	unsigned long pfn = page_to_pfn(page);
1367

1368
	if (!free_pages_prepare(page, order, true))
1369 1370
		return;

1371
	migratetype = get_pfnblock_migratetype(page, pfn);
1372 1373
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1374
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1375
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1376 1377
}

1378
void __free_pages_core(struct page *page, unsigned int order)
1379
{
1380
	unsigned int nr_pages = 1 << order;
1381
	struct page *p = page;
1382
	unsigned int loop;
1383

1384 1385 1386
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1387 1388
		__ClearPageReserved(p);
		set_page_count(p, 0);
1389
	}
1390 1391
	__ClearPageReserved(p);
	set_page_count(p, 0);
1392

1393
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1394 1395
	set_page_refcounted(page);
	__free_pages(page, order);
1396 1397
}

1398 1399
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1400

1401 1402 1403 1404
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1405
	static DEFINE_SPINLOCK(early_pfn_lock);
1406 1407
	int nid;

1408
	spin_lock(&early_pfn_lock);
1409
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1410
	if (nid < 0)
1411
		nid = first_online_node;
1412 1413 1414
	spin_unlock(&early_pfn_lock);

	return nid;
1415 1416 1417 1418
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1419 1420 1421
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1443 1444 1445
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1446 1447 1448 1449 1450 1451
{
	return true;
}
#endif


1452
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1453 1454 1455 1456
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1457
	__free_pages_core(page, order);
1458 1459
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1489 1490 1491
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1531
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1532 1533
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1534
{
1535 1536
	struct page *page;
	unsigned long i;
1537

1538
	if (!nr_pages)
1539 1540
		return;

1541 1542
	page = pfn_to_page(pfn);

1543
	/* Free a large naturally-aligned chunk if possible */
1544 1545
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1546
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1547
		__free_pages_core(page, pageblock_order);
1548 1549 1550
		return;
	}

1551 1552 1553
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1554
		__free_pages_core(page, 0);
1555
	}
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1567

1568
/*
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1581
 */
1582 1583 1584
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1585
{
1586 1587 1588 1589 1590 1591 1592 1593
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1605

1606 1607 1608 1609 1610 1611 1612
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1613
			touch_nmi_watchdog();
1614 1615 1616 1617 1618 1619
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1630 1631 1632 1633 1634 1635
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1636 1637 1638
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1639
			continue;
1640
		} else if (!page || !(pfn & nr_pgmask)) {
1641
			page = pfn_to_page(pfn);
1642
			touch_nmi_watchdog();
1643 1644
		} else {
			page++;
1645
		}
1646
		__init_single_page(page, pfn, zid, nid);
1647
		nr_pages++;
1648
	}
1649
	return (nr_pages);
1650 1651
}

1652
/* Initialise remaining memory on a node */
1653
static int __init deferred_init_memmap(void *data)
1654
{
1655 1656
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1657 1658
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1659
	unsigned long spfn, epfn, first_init_pfn, flags;
1660 1661
	phys_addr_t spa, epa;
	int zid;
1662
	struct zone *zone;
1663
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1664
	u64 i;
1665

1666 1667 1668 1669 1670 1671
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1672
	if (first_init_pfn == ULONG_MAX) {
1673
		pgdat_resize_unlock(pgdat, &flags);
1674
		pgdat_init_report_one_done();
1675 1676 1677
		return 0;
	}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1689
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1702 1703 1704
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1705
		deferred_free_pages(nid, zid, spfn, epfn);
1706
	}
1707
	pgdat_resize_unlock(pgdat, &flags);
1708 1709 1710 1711

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1712
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1713
					jiffies_to_msecs(jiffies - start));
1714 1715

	pgdat_init_report_one_done();
1716 1717
	return 0;
}
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1822
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1823 1824 1825

void __init page_alloc_init_late(void)
{
1826 1827 1828
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1829 1830
	int nid;

1831 1832
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1833 1834 1835 1836 1837
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1838
	wait_for_completion(&pgdat_init_all_done_comp);
1839

1840 1841 1842 1843 1844 1845
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1846 1847
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1848
#endif
P
Pavel Tatashin 已提交
1849 1850 1851 1852
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1853 1854 1855

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1856 1857
}

1858
#ifdef CONFIG_CMA
1859
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1860 1861 1862 1863 1864 1865 1866 1867
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1868
	} while (++p, --i);
1869 1870

	set_pageblock_migratetype(page, MIGRATE_CMA);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1885
	adjust_managed_page_count(page, pageblock_nr_pages);
1886 1887
}
#endif
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1901
 * -- nyc
L
Linus Torvalds 已提交
1902
 */
N
Nick Piggin 已提交
1903
static inline void expand(struct zone *zone, struct page *page,
1904 1905
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911 1912
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1913
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1914

1915 1916 1917 1918 1919 1920 1921
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1922
			continue;
1923

1924
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1930
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1931
{
1932 1933
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1934

1935
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1936 1937 1938
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1939
	if (unlikely(page_ref_count(page) != 0))
1940
		bad_reason = "nonzero _count";
1941 1942 1943
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1944 1945 1946
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1947
	}
1948 1949 1950 1951
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1952 1953 1954 1955
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1970 1971
}

1972
static inline bool free_pages_prezeroed(void)
1973 1974
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1975
		page_poisoning_enabled();
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2012 2013 2014 2015 2016 2017 2018
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2019 2020
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 1);
2021
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2022
	kernel_poison_pages(page, 1 << order, 1);
2023 2024 2025
	set_page_owner(page, order, gfp_flags);
}

2026
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2027
							unsigned int alloc_flags)
2028 2029
{
	int i;
2030

2031
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2032

2033
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2034 2035
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2036 2037 2038 2039

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2040
	/*
2041
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2042 2043 2044 2045
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2046 2047 2048 2049
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2050 2051
}

2052 2053 2054 2055
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2056
static __always_inline
2057
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2058 2059 2060
						int migratetype)
{
	unsigned int current_order;
2061
	struct free_area *area;
2062 2063 2064 2065 2066
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2067
		page = list_first_entry_or_null(&area->free_list[migratetype],
2068
							struct page, lru);
2069 2070
		if (!page)
			continue;
2071 2072 2073 2074
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2075
		set_pcppage_migratetype(page, migratetype);
2076 2077 2078 2079 2080 2081 2082
		return page;
	}

	return NULL;
}


2083 2084 2085 2086
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2087
static int fallbacks[MIGRATE_TYPES][4] = {
2088 2089
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2090
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2091
#ifdef CONFIG_CMA
2092
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2093
#endif
2094
#ifdef CONFIG_MEMORY_ISOLATION
2095
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2096
#endif
2097 2098
};

2099
#ifdef CONFIG_CMA
2100
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2101 2102 2103 2104 2105 2106 2107 2108 2109
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2110 2111
/*
 * Move the free pages in a range to the free lists of the requested type.
2112
 * Note that start_page and end_pages are not aligned on a pageblock
2113 2114
 * boundary. If alignment is required, use move_freepages_block()
 */
2115
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2116
			  struct page *start_page, struct page *end_page,
2117
			  int migratetype, int *num_movable)
2118 2119
{
	struct page *page;
2120
	unsigned int order;
2121
	int pages_moved = 0;
2122 2123 2124 2125 2126 2127 2128

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2129
	 * grouping pages by mobility
2130
	 */
2131 2132 2133
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2134 2135 2136 2137 2138 2139 2140
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2141 2142 2143
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2144
		if (!PageBuddy(page)) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2154 2155 2156 2157 2158
			page++;
			continue;
		}

		order = page_order(page);
2159 2160
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2161
		page += 1 << order;
2162
		pages_moved += 1 << order;
2163 2164
	}

2165
	return pages_moved;
2166 2167
}

2168
int move_freepages_block(struct zone *zone, struct page *page,
2169
				int migratetype, int *num_movable)
2170 2171 2172 2173
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2174 2175 2176
	if (num_movable)
		*num_movable = 0;

2177
	start_pfn = page_to_pfn(page);
2178
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2179
	start_page = pfn_to_page(start_pfn);
2180 2181
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2182 2183

	/* Do not cross zone boundaries */
2184
	if (!zone_spans_pfn(zone, start_pfn))
2185
		start_page = page;
2186
	if (!zone_spans_pfn(zone, end_pfn))
2187 2188
		return 0;

2189 2190
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2191 2192
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2204
/*
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2215
 */
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2237 2238 2239 2240 2241 2242 2243 2244 2245
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2258 2259 2260 2261 2262 2263
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2264 2265 2266
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2267 2268 2269 2270
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2271 2272
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2273
		unsigned int alloc_flags, int start_type, bool whole_block)
2274
{
2275
	unsigned int current_order = page_order(page);
2276
	struct free_area *area;
2277 2278 2279 2280
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2281

2282 2283 2284 2285
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2286
	if (is_migrate_highatomic(old_block_type))
2287 2288
		goto single_page;

2289 2290 2291
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2292
		goto single_page;
2293 2294
	}

2295 2296 2297 2298 2299 2300 2301
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2302
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2303

2304 2305 2306 2307
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2332
	/* moving whole block can fail due to zone boundary conditions */
2333
	if (!free_pages)
2334
		goto single_page;
2335

2336 2337 2338 2339 2340
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2341 2342
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2343 2344 2345 2346 2347 2348

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2369
		if (fallback_mt == MIGRATE_TYPES)
2370 2371 2372 2373
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2374

2375 2376 2377
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2378 2379 2380 2381 2382
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2383
	}
2384 2385

	return -1;
2386 2387
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2402
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2414 2415
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2416 2417
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2418
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2430 2431 2432
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2433
 */
2434 2435
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2436 2437 2438 2439 2440 2441 2442
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2443
	bool ret;
2444 2445 2446

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2447 2448 2449 2450 2451 2452
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2453 2454 2455 2456 2457 2458
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2459 2460 2461 2462
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2463 2464 2465
				continue;

			/*
2466 2467 2468 2469 2470
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2471
			 */
2472
			if (is_migrate_highatomic_page(page)) {
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2495 2496
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2497 2498 2499 2500
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2501 2502 2503
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2504 2505

	return false;
2506 2507
}

2508 2509 2510 2511 2512
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2513 2514 2515 2516
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2517
 */
2518
static __always_inline bool
2519 2520
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2521
{
2522
	struct free_area *area;
2523
	int current_order;
2524
	int min_order = order;
2525
	struct page *page;
2526 2527
	int fallback_mt;
	bool can_steal;
2528

2529 2530 2531 2532 2533 2534 2535 2536
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2537 2538 2539 2540 2541
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2542
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2543
				--current_order) {
2544 2545
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2546
				start_migratetype, false, &can_steal);
2547 2548
		if (fallback_mt == -1)
			continue;
2549

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2561

2562 2563
		goto do_steal;
	}
2564

2565
	return false;
2566

2567 2568 2569 2570 2571 2572 2573 2574
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2575 2576
	}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2587 2588
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2589 2590 2591 2592 2593 2594

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2595 2596
}

2597
/*
L
Linus Torvalds 已提交
2598 2599 2600
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2601
static __always_inline struct page *
2602 2603
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2604 2605 2606
{
	struct page *page;

2607
retry:
2608
	page = __rmqueue_smallest(zone, order, migratetype);
2609
	if (unlikely(!page)) {
2610 2611 2612
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2613 2614
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2615
			goto retry;
2616 2617
	}

2618
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2619
	return page;
L
Linus Torvalds 已提交
2620 2621
}

2622
/*
L
Linus Torvalds 已提交
2623 2624 2625 2626
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2627
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2628
			unsigned long count, struct list_head *list,
2629
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2630
{
2631
	int i, alloced = 0;
2632

2633
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2634
	for (i = 0; i < count; ++i) {
2635 2636
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2637
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2638
			break;
2639

2640 2641 2642
		if (unlikely(check_pcp_refill(page)))
			continue;

2643
		/*
2644 2645 2646 2647 2648 2649 2650 2651
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2652
		 */
2653
		list_add_tail(&page->lru, list);
2654
		alloced++;
2655
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2656 2657
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2658
	}
2659 2660 2661 2662 2663 2664 2665

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2666
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2667
	spin_unlock(&zone->lock);
2668
	return alloced;
L
Linus Torvalds 已提交
2669 2670
}

2671
#ifdef CONFIG_NUMA
2672
/*
2673 2674 2675 2676
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2677 2678
 * Note that this function must be called with the thread pinned to
 * a single processor.
2679
 */
2680
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2681 2682
{
	unsigned long flags;
2683
	int to_drain, batch;
2684

2685
	local_irq_save(flags);
2686
	batch = READ_ONCE(pcp->batch);
2687
	to_drain = min(pcp->count, batch);
2688
	if (to_drain > 0)
2689
		free_pcppages_bulk(zone, to_drain, pcp);
2690
	local_irq_restore(flags);
2691 2692 2693
}
#endif

2694
/*
2695
 * Drain pcplists of the indicated processor and zone.
2696 2697 2698 2699 2700
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2701
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2702
{
N
Nick Piggin 已提交
2703
	unsigned long flags;
2704 2705
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2706

2707 2708
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2709

2710
	pcp = &pset->pcp;
2711
	if (pcp->count)
2712 2713 2714
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2729 2730 2731
	}
}

2732 2733
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2734 2735 2736
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2737
 */
2738
void drain_local_pages(struct zone *zone)
2739
{
2740 2741 2742 2743 2744 2745
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2746 2747
}

2748 2749
static void drain_local_pages_wq(struct work_struct *work)
{
2750 2751 2752 2753
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2754 2755 2756 2757 2758 2759 2760 2761
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2762
	drain_local_pages(drain->zone);
2763
	preempt_enable();
2764 2765
}

2766
/*
2767 2768
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2769 2770
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2771
 * Note that this can be extremely slow as the draining happens in a workqueue.
2772
 */
2773
void drain_all_pages(struct zone *zone)
2774
{
2775 2776 2777 2778 2779 2780 2781 2782
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2783 2784 2785 2786 2787 2788 2789
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2800

2801 2802 2803 2804 2805 2806 2807
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2808 2809
		struct per_cpu_pageset *pcp;
		struct zone *z;
2810
		bool has_pcps = false;
2811 2812

		if (zone) {
2813
			pcp = per_cpu_ptr(zone->pageset, cpu);
2814
			if (pcp->pcp.count)
2815
				has_pcps = true;
2816 2817 2818 2819 2820 2821 2822
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2823 2824
			}
		}
2825

2826 2827 2828 2829 2830
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2831

2832
	for_each_cpu(cpu, &cpus_with_pcps) {
2833 2834 2835 2836 2837
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2838
	}
2839
	for_each_cpu(cpu, &cpus_with_pcps)
2840
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2841 2842

	mutex_unlock(&pcpu_drain_mutex);
2843 2844
}

2845
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2846

2847 2848 2849 2850 2851
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2852 2853
void mark_free_pages(struct zone *zone)
{
2854
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2855
	unsigned long flags;
2856
	unsigned int order, t;
2857
	struct page *page;
L
Linus Torvalds 已提交
2858

2859
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2860 2861 2862
		return;

	spin_lock_irqsave(&zone->lock, flags);
2863

2864
	max_zone_pfn = zone_end_pfn(zone);
2865 2866
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2867
			page = pfn_to_page(pfn);
2868

2869 2870 2871 2872 2873
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2874 2875 2876
			if (page_zone(page) != zone)
				continue;

2877 2878
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2879
		}
L
Linus Torvalds 已提交
2880

2881
	for_each_migratetype_order(order, t) {
2882 2883
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2884
			unsigned long i;
L
Linus Torvalds 已提交
2885

2886
			pfn = page_to_pfn(page);
2887 2888 2889 2890 2891
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2892
				swsusp_set_page_free(pfn_to_page(pfn + i));
2893
			}
2894
		}
2895
	}
L
Linus Torvalds 已提交
2896 2897
	spin_unlock_irqrestore(&zone->lock, flags);
}
2898
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2899

2900
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2901
{
2902
	int migratetype;
L
Linus Torvalds 已提交
2903

2904
	if (!free_pcp_prepare(page))
2905
		return false;
2906

2907
	migratetype = get_pfnblock_migratetype(page, pfn);
2908
	set_pcppage_migratetype(page, migratetype);
2909 2910 2911
	return true;
}

2912
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2913 2914 2915 2916 2917 2918
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2919
	__count_vm_event(PGFREE);
2920

2921 2922 2923
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2924
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2925 2926 2927 2928
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2929
		if (unlikely(is_migrate_isolate(migratetype))) {
2930
			free_one_page(zone, page, pfn, 0, migratetype);
2931
			return;
2932 2933 2934 2935
		}
		migratetype = MIGRATE_MOVABLE;
	}

2936
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2937
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2938
	pcp->count++;
N
Nick Piggin 已提交
2939
	if (pcp->count >= pcp->high) {
2940
		unsigned long batch = READ_ONCE(pcp->batch);
2941
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2942
	}
2943
}
2944

2945 2946 2947
/*
 * Free a 0-order page
 */
2948
void free_unref_page(struct page *page)
2949 2950 2951 2952
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2953
	if (!free_unref_page_prepare(page, pfn))
2954 2955 2956
		return;

	local_irq_save(flags);
2957
	free_unref_page_commit(page, pfn);
2958
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2959 2960
}

2961 2962 2963
/*
 * Free a list of 0-order pages
 */
2964
void free_unref_page_list(struct list_head *list)
2965 2966
{
	struct page *page, *next;
2967
	unsigned long flags, pfn;
2968
	int batch_count = 0;
2969 2970 2971 2972

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2973
		if (!free_unref_page_prepare(page, pfn))
2974 2975 2976
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2977

2978
	local_irq_save(flags);
2979
	list_for_each_entry_safe(page, next, list, lru) {
2980 2981 2982
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2983 2984
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2995
	}
2996
	local_irq_restore(flags);
2997 2998
}

N
Nick Piggin 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3011 3012
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3013

3014
	for (i = 1; i < (1 << order); i++)
3015
		set_page_refcounted(page + i);
3016
	split_page_owner(page, order);
N
Nick Piggin 已提交
3017
}
K
K. Y. Srinivasan 已提交
3018
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3019

3020
int __isolate_free_page(struct page *page, unsigned int order)
3021 3022 3023
{
	unsigned long watermark;
	struct zone *zone;
3024
	int mt;
3025 3026 3027 3028

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3029
	mt = get_pageblock_migratetype(page);
3030

3031
	if (!is_migrate_isolate(mt)) {
3032 3033 3034 3035 3036 3037
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3038
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3039
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3040 3041
			return 0;

3042
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3043
	}
3044 3045 3046 3047 3048

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
3049

3050 3051 3052 3053
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3054 3055
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3056 3057
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3058
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3059
			    && !is_migrate_highatomic(mt))
3060 3061 3062
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3063 3064
	}

3065

3066
	return 1UL << order;
3067 3068
}

3069 3070 3071 3072 3073
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3074
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3075 3076
{
#ifdef CONFIG_NUMA
3077
	enum numa_stat_item local_stat = NUMA_LOCAL;
3078

3079 3080 3081 3082
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3083
	if (zone_to_nid(z) != numa_node_id())
3084 3085
		local_stat = NUMA_OTHER;

3086
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3087
		__inc_numa_state(z, NUMA_HIT);
3088
	else {
3089 3090
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3091
	}
3092
	__inc_numa_state(z, local_stat);
3093 3094 3095
#endif
}

3096 3097
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3098
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3099
			struct per_cpu_pages *pcp,
3100 3101 3102 3103 3104 3105 3106 3107
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3108
					migratetype, alloc_flags);
3109 3110 3111 3112
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3113
		page = list_first_entry(list, struct page, lru);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3124 3125
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3126 3127 3128 3129
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3130
	unsigned long flags;
3131

3132
	local_irq_save(flags);
3133 3134
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3135
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3136 3137 3138 3139
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3140
	local_irq_restore(flags);
3141 3142 3143
	return page;
}

L
Linus Torvalds 已提交
3144
/*
3145
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3146
 */
3147
static inline
3148
struct page *rmqueue(struct zone *preferred_zone,
3149
			struct zone *zone, unsigned int order,
3150 3151
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3152 3153
{
	unsigned long flags;
3154
	struct page *page;
L
Linus Torvalds 已提交
3155

3156
	if (likely(order == 0)) {
3157
		page = rmqueue_pcplist(preferred_zone, zone, order,
3158
				gfp_flags, migratetype, alloc_flags);
3159 3160
		goto out;
	}
3161

3162 3163 3164 3165 3166 3167
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3168

3169 3170 3171 3172 3173 3174 3175
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3176
		if (!page)
3177
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3178 3179 3180 3181 3182 3183
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3184

3185
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3186
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3187
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3188

3189
out:
3190 3191 3192 3193 3194 3195
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3196
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3197
	return page;
N
Nick Piggin 已提交
3198 3199 3200 3201

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3202 3203
}

3204 3205
#ifdef CONFIG_FAIL_PAGE_ALLOC

3206
static struct {
3207 3208
	struct fault_attr attr;

3209
	bool ignore_gfp_highmem;
3210
	bool ignore_gfp_reclaim;
3211
	u32 min_order;
3212 3213
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3214
	.ignore_gfp_reclaim = true,
3215
	.ignore_gfp_highmem = true,
3216
	.min_order = 1,
3217 3218 3219 3220 3221 3222 3223 3224
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3225
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3226
{
3227
	if (order < fail_page_alloc.min_order)
3228
		return false;
3229
	if (gfp_mask & __GFP_NOFAIL)
3230
		return false;
3231
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3232
		return false;
3233 3234
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3235
		return false;
3236 3237 3238 3239 3240 3241 3242 3243

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3244
	umode_t mode = S_IFREG | 0600;
3245 3246
	struct dentry *dir;

3247 3248
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3249

3250 3251 3252 3253 3254
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3255

3256
	return 0;
3257 3258 3259 3260 3261 3262 3263 3264
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3265
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3266
{
3267
	return false;
3268 3269 3270 3271
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3272 3273 3274 3275 3276 3277
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3278
/*
3279 3280 3281 3282
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3283
 */
3284 3285 3286
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3287
{
3288
	long min = mark;
L
Linus Torvalds 已提交
3289
	int o;
3290
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3291

3292
	/* free_pages may go negative - that's OK */
3293
	free_pages -= (1 << order) - 1;
3294

R
Rohit Seth 已提交
3295
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3296
		min -= min / 2;
3297 3298 3299 3300 3301 3302

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3303
	if (likely(!alloc_harder)) {
3304
		free_pages -= z->nr_reserved_highatomic;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3318

3319 3320 3321 3322 3323 3324
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3325 3326 3327 3328 3329 3330
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3331
		return false;
L
Linus Torvalds 已提交
3332

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3351 3352
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3353
			return true;
3354
		}
3355
#endif
3356 3357 3358
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3359
	}
3360
	return false;
3361 3362
}

3363
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3364
		      int classzone_idx, unsigned int alloc_flags)
3365 3366 3367 3368 3369
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3370 3371 3372 3373
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3374 3375 3376 3377 3378 3379 3380
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3381 3382 3383 3384 3385 3386 3387 3388

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3389
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3390 3391 3392 3393 3394 3395
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3396
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3397
			unsigned long mark, int classzone_idx)
3398 3399 3400 3401 3402 3403
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3404
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3405
								free_pages);
L
Linus Torvalds 已提交
3406 3407
}

3408
#ifdef CONFIG_NUMA
3409 3410
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3411
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3412
				RECLAIM_DISTANCE;
3413
}
3414
#else	/* CONFIG_NUMA */
3415 3416 3417 3418
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3419 3420
#endif	/* CONFIG_NUMA */

3421 3422 3423 3424 3425 3426 3427 3428 3429
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3430
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3431
{
3432 3433 3434 3435 3436 3437
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3438 3439 3440
	if (!zone)
		return alloc_flags;

3441
	if (zone_idx(zone) != ZONE_NORMAL)
3442
		return alloc_flags;
3443 3444 3445 3446 3447 3448 3449 3450

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3451
		return alloc_flags;
3452

3453
	alloc_flags |= ALLOC_NOFRAGMENT;
3454 3455
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3456 3457
}

R
Rohit Seth 已提交
3458
/*
3459
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3460 3461 3462
 * a page.
 */
static struct page *
3463 3464
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3465
{
3466
	struct zoneref *z;
3467
	struct zone *zone;
3468
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3469
	bool no_fallback;
3470

3471
retry:
R
Rohit Seth 已提交
3472
	/*
3473
	 * Scan zonelist, looking for a zone with enough free.
3474
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3475
	 */
3476 3477
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3478
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3479
								ac->nodemask) {
3480
		struct page *page;
3481 3482
		unsigned long mark;

3483 3484
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3485
			!__cpuset_zone_allowed(zone, gfp_mask))
3486
				continue;
3487 3488
		/*
		 * When allocating a page cache page for writing, we
3489 3490
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3491
		 * proportional share of globally allowed dirty pages.
3492
		 * The dirty limits take into account the node's
3493 3494 3495 3496 3497
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3498
		 * exceed the per-node dirty limit in the slowpath
3499
		 * (spread_dirty_pages unset) before going into reclaim,
3500
		 * which is important when on a NUMA setup the allowed
3501
		 * nodes are together not big enough to reach the
3502
		 * global limit.  The proper fix for these situations
3503
		 * will require awareness of nodes in the
3504 3505
		 * dirty-throttling and the flusher threads.
		 */
3506 3507 3508 3509 3510 3511 3512 3513 3514
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3532
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3533
		if (!zone_watermark_fast(zone, order, mark,
3534
				       ac_classzone_idx(ac), alloc_flags)) {
3535 3536
			int ret;

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3547 3548 3549 3550 3551
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3552
			if (node_reclaim_mode == 0 ||
3553
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3554 3555
				continue;

3556
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3557
			switch (ret) {
3558
			case NODE_RECLAIM_NOSCAN:
3559
				/* did not scan */
3560
				continue;
3561
			case NODE_RECLAIM_FULL:
3562
				/* scanned but unreclaimable */
3563
				continue;
3564 3565
			default:
				/* did we reclaim enough */
3566
				if (zone_watermark_ok(zone, order, mark,
3567
						ac_classzone_idx(ac), alloc_flags))
3568 3569 3570
					goto try_this_zone;

				continue;
3571
			}
R
Rohit Seth 已提交
3572 3573
		}

3574
try_this_zone:
3575
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3576
				gfp_mask, alloc_flags, ac->migratetype);
3577
		if (page) {
3578
			prep_new_page(page, order, gfp_mask, alloc_flags);
3579 3580 3581 3582 3583 3584 3585 3586

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3587
			return page;
3588 3589 3590 3591 3592 3593 3594 3595
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3596
		}
3597
	}
3598

3599 3600 3601 3602 3603 3604 3605 3606 3607
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3608
	return NULL;
M
Martin Hicks 已提交
3609 3610
}

3611
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3612 3613
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3614
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3615

3616
	if (!__ratelimit(&show_mem_rs))
3617 3618 3619 3620 3621 3622 3623 3624
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3625
		if (tsk_is_oom_victim(current) ||
3626 3627
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3628
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3629 3630
		filter &= ~SHOW_MEM_FILTER_NODES;

3631
	show_mem(filter, nodemask);
3632 3633
}

3634
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3635 3636 3637 3638 3639 3640
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3641
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3642 3643
		return;

3644 3645 3646
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3647
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3648 3649
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3650
	va_end(args);
J
Joe Perches 已提交
3651

3652
	cpuset_print_current_mems_allowed();
3653
	pr_cont("\n");
3654
	dump_stack();
3655
	warn_alloc_show_mem(gfp_mask, nodemask);
3656 3657
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3678 3679
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3680
	const struct alloc_context *ac, unsigned long *did_some_progress)
3681
{
3682 3683 3684
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3685
		.memcg = NULL,
3686 3687 3688
		.gfp_mask = gfp_mask,
		.order = order,
	};
3689 3690
	struct page *page;

3691 3692 3693
	*did_some_progress = 0;

	/*
3694 3695
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3696
	 */
3697
	if (!mutex_trylock(&oom_lock)) {
3698
		*did_some_progress = 1;
3699
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3700 3701
		return NULL;
	}
3702

3703 3704 3705
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3706 3707 3708
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3709
	 */
3710 3711 3712
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3713
	if (page)
3714 3715
		goto out;

3716 3717 3718 3719 3720 3721
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3722 3723 3724 3725 3726 3727 3728 3729
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3748

3749
	/* Exhausted what can be done so it's blame time */
3750
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3751
		*did_some_progress = 1;
3752

3753 3754 3755 3756 3757 3758
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3759 3760
					ALLOC_NO_WATERMARKS, ac);
	}
3761
out:
3762
	mutex_unlock(&oom_lock);
3763 3764 3765
	return page;
}

3766 3767 3768 3769 3770 3771
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3772 3773 3774 3775
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3776
		unsigned int alloc_flags, const struct alloc_context *ac,
3777
		enum compact_priority prio, enum compact_result *compact_result)
3778
{
3779
	struct page *page = NULL;
3780
	unsigned long pflags;
3781
	unsigned int noreclaim_flag;
3782 3783

	if (!order)
3784 3785
		return NULL;

3786
	psi_memstall_enter(&pflags);
3787
	noreclaim_flag = memalloc_noreclaim_save();
3788

3789
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3790
								prio, &page);
3791

3792
	memalloc_noreclaim_restore(noreclaim_flag);
3793
	psi_memstall_leave(&pflags);
3794

3795 3796 3797 3798 3799
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3800

3801 3802 3803 3804 3805 3806 3807
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3808

3809 3810
	if (page) {
		struct zone *zone = page_zone(page);
3811

3812 3813 3814 3815 3816
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3817

3818 3819 3820 3821 3822
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3823

3824
	cond_resched();
3825 3826 3827

	return NULL;
}
3828

3829 3830 3831 3832
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3833
		     int *compaction_retries)
3834 3835
{
	int max_retries = MAX_COMPACT_RETRIES;
3836
	int min_priority;
3837 3838 3839
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3840 3841 3842 3843

	if (!order)
		return false;

3844 3845 3846
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3847 3848 3849 3850 3851
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3852 3853
	if (compaction_failed(compact_result))
		goto check_priority;
3854 3855 3856 3857 3858 3859 3860

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3861 3862 3863 3864
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3865 3866

	/*
3867
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3868 3869 3870 3871 3872 3873 3874 3875
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3876 3877 3878 3879
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3880

3881 3882 3883 3884 3885
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3886 3887
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3888

3889
	if (*compact_priority > min_priority) {
3890 3891
		(*compact_priority)--;
		*compaction_retries = 0;
3892
		ret = true;
3893
	}
3894 3895 3896
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3897
}
3898 3899 3900
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3901
		unsigned int alloc_flags, const struct alloc_context *ac,
3902
		enum compact_priority prio, enum compact_result *compact_result)
3903
{
3904
	*compact_result = COMPACT_SKIPPED;
3905 3906
	return NULL;
}
3907 3908

static inline bool
3909 3910
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3911
		     enum compact_priority *compact_priority,
3912
		     int *compaction_retries)
3913
{
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3932 3933
	return false;
}
3934
#endif /* CONFIG_COMPACTION */
3935

3936
#ifdef CONFIG_LOCKDEP
3937
static struct lockdep_map __fs_reclaim_map =
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3949
	if (current->flags & PF_MEMALLOC)
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3972 3973 3974
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3975
		__fs_reclaim_acquire();
3976 3977 3978 3979 3980 3981
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3982
		__fs_reclaim_release();
3983 3984 3985 3986
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3987 3988
/* Perform direct synchronous page reclaim */
static int
3989 3990
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3991 3992
{
	struct reclaim_state reclaim_state;
3993
	int progress;
3994
	unsigned int noreclaim_flag;
3995
	unsigned long pflags;
3996 3997 3998 3999 4000

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4001
	psi_memstall_enter(&pflags);
4002
	fs_reclaim_acquire(gfp_mask);
4003
	noreclaim_flag = memalloc_noreclaim_save();
4004
	reclaim_state.reclaimed_slab = 0;
4005
	current->reclaim_state = &reclaim_state;
4006

4007 4008
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4009

4010
	current->reclaim_state = NULL;
4011
	memalloc_noreclaim_restore(noreclaim_flag);
4012
	fs_reclaim_release(gfp_mask);
4013
	psi_memstall_leave(&pflags);
4014 4015 4016

	cond_resched();

4017 4018 4019 4020 4021 4022
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4023
		unsigned int alloc_flags, const struct alloc_context *ac,
4024
		unsigned long *did_some_progress)
4025 4026 4027 4028
{
	struct page *page = NULL;
	bool drained = false;

4029
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4030 4031
	if (unlikely(!(*did_some_progress)))
		return NULL;
4032

4033
retry:
4034
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4035 4036 4037

	/*
	 * If an allocation failed after direct reclaim, it could be because
4038 4039
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4040 4041
	 */
	if (!page && !drained) {
4042
		unreserve_highatomic_pageblock(ac, false);
4043
		drain_all_pages(NULL);
4044 4045 4046 4047
		drained = true;
		goto retry;
	}

4048 4049 4050
	return page;
}

4051 4052
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4053 4054 4055
{
	struct zoneref *z;
	struct zone *zone;
4056
	pg_data_t *last_pgdat = NULL;
4057
	enum zone_type high_zoneidx = ac->high_zoneidx;
4058

4059 4060
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4061
		if (last_pgdat != zone->zone_pgdat)
4062
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4063 4064
		last_pgdat = zone->zone_pgdat;
	}
4065 4066
}

4067
static inline unsigned int
4068 4069
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4070
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4071

4072
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4073
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4074

4075 4076 4077 4078
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4079
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4080
	 */
4081
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4082

4083
	if (gfp_mask & __GFP_ATOMIC) {
4084
		/*
4085 4086
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4087
		 */
4088
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4089
			alloc_flags |= ALLOC_HARDER;
4090
		/*
4091
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4092
		 * comment for __cpuset_node_allowed().
4093
		 */
4094
		alloc_flags &= ~ALLOC_CPUSET;
4095
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4096 4097
		alloc_flags |= ALLOC_HARDER;

4098 4099 4100
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4101 4102 4103 4104
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4105 4106 4107
	return alloc_flags;
}

4108
static bool oom_reserves_allowed(struct task_struct *tsk)
4109
{
4110 4111 4112 4113 4114 4115 4116 4117
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4118 4119
		return false;

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4131
	if (gfp_mask & __GFP_MEMALLOC)
4132
		return ALLOC_NO_WATERMARKS;
4133
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4134 4135 4136 4137 4138 4139 4140
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4141

4142 4143 4144 4145 4146 4147
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4148 4149
}

M
Michal Hocko 已提交
4150 4151 4152
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4153 4154 4155 4156
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4157 4158 4159 4160 4161 4162
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4163
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4164 4165 4166
{
	struct zone *zone;
	struct zoneref *z;
4167
	bool ret = false;
M
Michal Hocko 已提交
4168

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4179 4180 4181 4182
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4183 4184
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4185
		return unreserve_highatomic_pageblock(ac, true);
4186
	}
M
Michal Hocko 已提交
4187

4188 4189 4190 4191 4192
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4193 4194 4195 4196
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4197
		unsigned long reclaimable;
4198 4199
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4200

4201 4202
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4203 4204

		/*
4205 4206
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4207
		 */
4208 4209 4210 4211 4212
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4213 4214 4215 4216 4217 4218 4219
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4220
				unsigned long write_pending;
4221

4222 4223
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4224

4225
				if (2 * write_pending > reclaimable) {
4226 4227 4228 4229
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4230

4231 4232
			ret = true;
			goto out;
M
Michal Hocko 已提交
4233 4234 4235
		}
	}

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4249 4250
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4284 4285
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4286
						struct alloc_context *ac)
4287
{
4288
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4289
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4290
	struct page *page = NULL;
4291
	unsigned int alloc_flags;
4292
	unsigned long did_some_progress;
4293
	enum compact_priority compact_priority;
4294
	enum compact_result compact_result;
4295 4296 4297
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4298
	int reserve_flags;
L
Linus Torvalds 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4308 4309 4310 4311 4312
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4313 4314 4315 4316 4317 4318 4319 4320

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4332
	if (alloc_flags & ALLOC_KSWAPD)
4333
		wake_all_kswapds(order, gfp_mask, ac);
4334 4335 4336 4337 4338 4339 4340 4341 4342

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4343 4344
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4345 4346 4347 4348 4349 4350
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4351
	 */
4352 4353 4354 4355
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4356 4357
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4358
						INIT_COMPACT_PRIORITY,
4359 4360 4361 4362
						&compact_result);
		if (page)
			goto got_pg;

4363 4364 4365 4366
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4367
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4380 4381
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4382
			 * using async compaction.
4383
			 */
4384
			compact_priority = INIT_COMPACT_PRIORITY;
4385 4386
		}
	}
4387

4388
retry:
4389
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4390
	if (alloc_flags & ALLOC_KSWAPD)
4391
		wake_all_kswapds(order, gfp_mask, ac);
4392

4393 4394 4395
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4396

4397
	/*
4398 4399 4400
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4401
	 */
4402
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4403
		ac->nodemask = NULL;
4404 4405 4406 4407
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4408
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4409
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4410 4411
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4412

4413
	/* Caller is not willing to reclaim, we can't balance anything */
4414
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4415 4416
		goto nopage;

4417 4418
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4419 4420
		goto nopage;

4421 4422 4423 4424 4425 4426 4427
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4428
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4429
					compact_priority, &compact_result);
4430 4431
	if (page)
		goto got_pg;
4432

4433 4434
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4435
		goto nopage;
4436

M
Michal Hocko 已提交
4437 4438
	/*
	 * Do not retry costly high order allocations unless they are
4439
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4440
	 */
4441
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4442
		goto nopage;
M
Michal Hocko 已提交
4443 4444

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4445
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4446 4447
		goto retry;

4448 4449 4450 4451 4452 4453 4454
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4455
			should_compact_retry(ac, order, alloc_flags,
4456
				compact_result, &compact_priority,
4457
				&compaction_retries))
4458 4459
		goto retry;

4460 4461 4462

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4463 4464
		goto retry_cpuset;

4465 4466 4467 4468 4469
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4470
	/* Avoid allocations with no watermarks from looping endlessly */
4471 4472
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4473
	     (gfp_mask & __GFP_NOMEMALLOC)))
4474 4475
		goto nopage;

4476
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4477 4478
	if (did_some_progress) {
		no_progress_loops = 0;
4479
		goto retry;
M
Michal Hocko 已提交
4480
	}
4481

L
Linus Torvalds 已提交
4482
nopage:
4483 4484
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4485 4486
		goto retry_cpuset;

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4524 4525 4526 4527
		cond_resched();
		goto retry;
	}
fail:
4528
	warn_alloc(gfp_mask, ac->nodemask,
4529
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4530
got_pg:
4531
	return page;
L
Linus Torvalds 已提交
4532
}
4533

4534
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4535
		int preferred_nid, nodemask_t *nodemask,
4536 4537
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4538
{
4539
	ac->high_zoneidx = gfp_zone(gfp_mask);
4540
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4541 4542
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4543

4544
	if (cpusets_enabled()) {
4545 4546 4547
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4548 4549
		else
			*alloc_flags |= ALLOC_CPUSET;
4550 4551
	}

4552 4553
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4554

4555
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4556 4557

	if (should_fail_alloc_page(gfp_mask, order))
4558
		return false;
4559

4560 4561 4562
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4563 4564
	return true;
}
4565

4566
/* Determine whether to spread dirty pages and what the first usable zone */
4567
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4568
{
4569
	/* Dirty zone balancing only done in the fast path */
4570
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4571

4572 4573 4574 4575 4576
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4577 4578 4579 4580 4581 4582 4583 4584
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4585 4586
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4587 4588 4589
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4590
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4591 4592
	struct alloc_context ac = { };

4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4602
	gfp_mask &= gfp_allowed_mask;
4603
	alloc_mask = gfp_mask;
4604
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4605 4606
		return NULL;

4607
	finalise_ac(gfp_mask, &ac);
4608

4609 4610 4611 4612
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4613
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4614

4615
	/* First allocation attempt */
4616
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4617 4618
	if (likely(page))
		goto out;
4619

4620
	/*
4621 4622 4623 4624
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4625
	 */
4626
	alloc_mask = current_gfp_context(gfp_mask);
4627
	ac.spread_dirty_pages = false;
4628

4629 4630 4631 4632
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4633
	if (unlikely(ac.nodemask != nodemask))
4634
		ac.nodemask = nodemask;
4635

4636
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4637

4638
out:
4639
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4640
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4641 4642
		__free_pages(page, order);
		page = NULL;
4643 4644
	}

4645 4646
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4647
	return page;
L
Linus Torvalds 已提交
4648
}
4649
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4650 4651

/*
4652 4653 4654
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4655
 */
H
Harvey Harrison 已提交
4656
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4657
{
4658 4659
	struct page *page;

4660
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4667
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4668
{
4669
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4670 4671 4672
}
EXPORT_SYMBOL(get_zeroed_page);

4673
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4674
{
4675 4676 4677 4678
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4679 4680
}

4681 4682 4683 4684 4685
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4686 4687
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4688
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4689 4690
{
	if (addr != 0) {
N
Nick Piggin 已提交
4691
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4709 4710
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4730
void __page_frag_cache_drain(struct page *page, unsigned int count)
4731 4732 4733
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4734 4735
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4736
}
4737
EXPORT_SYMBOL(__page_frag_cache_drain);
4738

4739 4740
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4741 4742 4743 4744 4745 4746 4747
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4748
		page = __page_frag_cache_refill(nc, gfp_mask);
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4759
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4760 4761

		/* reset page count bias and offset to start of new frag */
4762
		nc->pfmemalloc = page_is_pfmemalloc(page);
4763
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4764 4765 4766 4767 4768 4769 4770
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4771
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4772 4773 4774 4775 4776 4777 4778
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4779
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4780 4781

		/* reset page count bias and offset to start of new frag */
4782
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4783 4784 4785 4786 4787 4788 4789 4790
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4791
EXPORT_SYMBOL(page_frag_alloc);
4792 4793 4794 4795

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4796
void page_frag_free(void *addr)
4797 4798 4799
{
	struct page *page = virt_to_head_page(addr);

4800 4801
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4802
}
4803
EXPORT_SYMBOL(page_frag_free);
4804

4805 4806
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4821 4822 4823
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4824
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4825 4826 4827 4828 4829 4830 4831 4832
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4833 4834
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4835 4836 4837 4838 4839 4840
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4841 4842 4843
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4844
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4845
	return make_alloc_exact(addr, order, size);
4846 4847 4848
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4849 4850 4851
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4852
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4853
 * @size: the number of bytes to allocate
4854
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
4855 4856 4857
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4858 4859
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4860
 */
4861
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4862
{
4863
	unsigned int order = get_order(size);
4864 4865 4866 4867 4868 4869
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
4870 4871 4872 4873 4874
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4894 4895 4896 4897
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4898
 * nr_free_zone_pages() counts the number of pages which are beyond the
4899 4900
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4901 4902
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4903 4904
 *
 * Return: number of pages beyond high watermark.
4905
 */
4906
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4907
{
4908
	struct zoneref *z;
4909 4910
	struct zone *zone;

4911
	/* Just pick one node, since fallback list is circular */
4912
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4913

4914
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4915

4916
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4917
		unsigned long size = zone_managed_pages(zone);
4918
		unsigned long high = high_wmark_pages(zone);
4919 4920
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925
	}

	return sum;
}

4926 4927 4928 4929 4930
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4931 4932 4933
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4934
 */
4935
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4936
{
A
Al Viro 已提交
4937
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4938
}
4939
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4940

4941 4942 4943 4944 4945
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
4946 4947
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
4948
 */
4949
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4950
{
M
Mel Gorman 已提交
4951
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4952
}
4953 4954

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4955
{
4956
	if (IS_ENABLED(CONFIG_NUMA))
4957
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4958 4959
}

4960 4961 4962 4963 4964 4965
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4966
	unsigned long reclaimable;
4967 4968 4969 4970
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4971
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4972 4973

	for_each_zone(zone)
4974
		wmark_low += low_wmark_pages(zone);
4975 4976 4977 4978 4979

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4980
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4992 4993 4994
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4995
	 */
4996 4997 4998
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4999

5000 5001 5002 5003 5004 5005
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5006 5007
void si_meminfo(struct sysinfo *val)
{
5008
	val->totalram = totalram_pages();
5009
	val->sharedram = global_node_page_state(NR_SHMEM);
5010
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5011
	val->bufferram = nr_blockdev_pages();
5012
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5022 5023
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5024 5025
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5026 5027
	pg_data_t *pgdat = NODE_DATA(nid);

5028
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5029
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5030
	val->totalram = managed_pages;
5031
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5032
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5033
#ifdef CONFIG_HIGHMEM
5034 5035 5036 5037
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5038
			managed_highpages += zone_managed_pages(zone);
5039 5040 5041 5042 5043
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5044
#else
5045 5046
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5047
#endif
L
Linus Torvalds 已提交
5048 5049 5050 5051
	val->mem_unit = PAGE_SIZE;
}
#endif

5052
/*
5053 5054
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5055
 */
5056
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5057 5058
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5059
		return false;
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5070 5071
}

L
Linus Torvalds 已提交
5072 5073
#define K(x) ((x) << (PAGE_SHIFT-10))

5074 5075 5076 5077 5078
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5079 5080
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5081 5082 5083
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5084
#ifdef CONFIG_MEMORY_ISOLATION
5085
		[MIGRATE_ISOLATE]	= 'I',
5086
#endif
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5098
	printk(KERN_CONT "(%s) ", tmp);
5099 5100
}

L
Linus Torvalds 已提交
5101 5102 5103 5104
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5105 5106 5107 5108
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5109
 */
5110
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5111
{
5112
	unsigned long free_pcp = 0;
5113
	int cpu;
L
Linus Torvalds 已提交
5114
	struct zone *zone;
M
Mel Gorman 已提交
5115
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5116

5117
	for_each_populated_zone(zone) {
5118
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5119
			continue;
5120

5121 5122
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5123 5124
	}

K
KOSAKI Motohiro 已提交
5125 5126
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5127 5128
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5129
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5130
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5131 5132 5133 5134 5135 5136 5137
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5138 5139 5140
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5141 5142
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5143
		global_node_page_state(NR_FILE_MAPPED),
5144
		global_node_page_state(NR_SHMEM),
5145 5146 5147
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5148
		free_pcp,
5149
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5150

M
Mel Gorman 已提交
5151
	for_each_online_pgdat(pgdat) {
5152
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5153 5154
			continue;

M
Mel Gorman 已提交
5155 5156 5157 5158 5159 5160 5161 5162
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5163
			" mapped:%lukB"
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5184
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5185 5186
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5187
			K(node_page_state(pgdat, NR_SHMEM)),
5188 5189 5190 5191 5192 5193 5194 5195
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5196 5197
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5198 5199
	}

5200
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5201 5202
		int i;

5203
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5204
			continue;
5205 5206 5207 5208 5209

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5210
		show_node(zone);
5211 5212
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5213 5214 5215 5216
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5217 5218 5219 5220 5221
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5222
			" writepending:%lukB"
L
Linus Torvalds 已提交
5223
			" present:%lukB"
5224
			" managed:%lukB"
5225
			" mlocked:%lukB"
5226
			" kernel_stack:%lukB"
5227 5228
			" pagetables:%lukB"
			" bounce:%lukB"
5229 5230
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5231
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5232 5233
			"\n",
			zone->name,
5234
			K(zone_page_state(zone, NR_FREE_PAGES)),
5235 5236 5237
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5238 5239 5240 5241 5242
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5243
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5244
			K(zone->present_pages),
5245
			K(zone_managed_pages(zone)),
5246
			K(zone_page_state(zone, NR_MLOCK)),
5247
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5248 5249
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5250 5251
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5252
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5253 5254
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5255 5256
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5257 5258
	}

5259
	for_each_populated_zone(zone) {
5260 5261
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5262
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5263

5264
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5265
			continue;
L
Linus Torvalds 已提交
5266
		show_node(zone);
5267
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5268 5269 5270

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5271 5272 5273 5274
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5275
			total += nr[order] << order;
5276 5277 5278 5279 5280 5281

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5282 5283
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5284
		for (order = 0; order < MAX_ORDER; order++) {
5285 5286
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5287 5288 5289
			if (nr[order])
				show_migration_types(types[order]);
		}
5290
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5291 5292
	}

5293 5294
	hugetlb_show_meminfo();

5295
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5296

L
Linus Torvalds 已提交
5297 5298 5299
	show_swap_cache_info();
}

5300 5301 5302 5303 5304 5305
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5306 5307
/*
 * Builds allocation fallback zone lists.
5308 5309
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5310
 */
5311
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5312
{
5313
	struct zone *zone;
5314
	enum zone_type zone_type = MAX_NR_ZONES;
5315
	int nr_zones = 0;
5316 5317

	do {
5318
		zone_type--;
5319
		zone = pgdat->node_zones + zone_type;
5320
		if (managed_zone(zone)) {
5321
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5322
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5323
		}
5324
	} while (zone_type);
5325

5326
	return nr_zones;
L
Linus Torvalds 已提交
5327 5328 5329
}

#ifdef CONFIG_NUMA
5330 5331 5332

static int __parse_numa_zonelist_order(char *s)
{
5333 5334 5335 5336 5337 5338 5339 5340
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5341 5342 5343 5344 5345 5346 5347
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5348 5349 5350
	if (!s)
		return 0;

5351
	return __parse_numa_zonelist_order(s);
5352 5353 5354
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5355 5356
char numa_zonelist_order[] = "Node";

5357 5358 5359
/*
 * sysctl handler for numa_zonelist_order
 */
5360
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5361
		void __user *buffer, size_t *length,
5362 5363
		loff_t *ppos)
{
5364
	char *str;
5365 5366
	int ret;

5367 5368 5369 5370 5371
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5372

5373 5374
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5375
	return ret;
5376 5377 5378
}


5379
#define MAX_NODE_LOAD (nr_online_nodes)
5380 5381
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5382
/**
5383
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5394 5395
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5396
 */
5397
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5398
{
5399
	int n, val;
L
Linus Torvalds 已提交
5400
	int min_val = INT_MAX;
D
David Rientjes 已提交
5401
	int best_node = NUMA_NO_NODE;
5402
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5403

5404 5405 5406 5407 5408
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5409

5410
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5419 5420 5421
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5422
		/* Give preference to headless and unused nodes */
5423 5424
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5443 5444 5445 5446 5447 5448

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5449 5450
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5451
{
5452 5453 5454 5455 5456 5457 5458 5459 5460
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5461

5462 5463 5464 5465 5466
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5467 5468
}

5469 5470 5471 5472 5473
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5474 5475
	struct zoneref *zonerefs;
	int nr_zones;
5476

5477 5478 5479 5480 5481
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5482 5483
}

5484 5485 5486 5487 5488 5489 5490 5491 5492
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5493 5494
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5495
	nodemask_t used_mask;
5496
	int local_node, prev_node;
L
Linus Torvalds 已提交
5497 5498 5499

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5500
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5501 5502
	prev_node = local_node;
	nodes_clear(used_mask);
5503 5504

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5511 5512
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5513 5514
			node_load[node] = load;

5515
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5516 5517 5518
		prev_node = node;
		load--;
	}
5519

5520
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5521
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5522 5523
}

5524 5525 5526 5527 5528 5529 5530 5531 5532
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5533
	struct zoneref *z;
5534

5535
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5536
				   gfp_zone(GFP_KERNEL),
5537
				   NULL);
5538
	return zone_to_nid(z->zone);
5539 5540
}
#endif
5541

5542 5543
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5544 5545
#else	/* CONFIG_NUMA */

5546
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5547
{
5548
	int node, local_node;
5549 5550
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5551 5552 5553

	local_node = pgdat->node_id;

5554 5555 5556
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5557

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5569 5570
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5571
	}
5572 5573 5574
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5575 5576
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5577 5578
	}

5579 5580
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5581 5582 5583 5584
}

#endif	/* CONFIG_NUMA */

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5602
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5603

5604
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5605
{
5606
	int nid;
5607
	int __maybe_unused cpu;
5608
	pg_data_t *self = data;
5609 5610 5611
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5612

5613 5614 5615
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5616

5617 5618 5619 5620
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5621 5622
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5623 5624 5625
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5626

5627 5628
			build_zonelists(pgdat);
		}
5629

5630 5631 5632 5633 5634 5635 5636 5637 5638
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5639
		for_each_online_cpu(cpu)
5640
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5641
#endif
5642
	}
5643 5644

	spin_unlock(&lock);
5645 5646
}

5647 5648 5649
static noinline void __init
build_all_zonelists_init(void)
{
5650 5651
	int cpu;

5652
	__build_all_zonelists(NULL);
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5670 5671 5672 5673
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5674 5675
/*
 * unless system_state == SYSTEM_BOOTING.
5676
 *
5677
 * __ref due to call of __init annotated helper build_all_zonelists_init
5678
 * [protected by SYSTEM_BOOTING].
5679
 */
5680
void __ref build_all_zonelists(pg_data_t *pgdat)
5681 5682
{
	if (system_state == SYSTEM_BOOTING) {
5683
		build_all_zonelists_init();
5684
	} else {
5685
		__build_all_zonelists(pgdat);
5686 5687
		/* cpuset refresh routine should be here */
	}
5688
	vm_total_pages = nr_free_pagecache_pages();
5689 5690 5691 5692 5693 5694 5695
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5696
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5697 5698 5699 5700
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5701
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5702 5703 5704
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5705
#ifdef CONFIG_NUMA
5706
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5707
#endif
L
Linus Torvalds 已提交
5708 5709
}

5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5734 5735
/*
 * Initially all pages are reserved - free ones are freed
5736
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5737 5738
 * done. Non-atomic initialization, single-pass.
 */
5739
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5740 5741
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5742
{
5743
	unsigned long pfn, end_pfn = start_pfn + size;
5744
	struct page *page;
L
Linus Torvalds 已提交
5745

5746 5747 5748
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5749
#ifdef CONFIG_ZONE_DEVICE
5750 5751
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5752 5753 5754 5755
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5756
	 */
5757 5758 5759 5760 5761 5762 5763 5764 5765
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5766

5767
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5768
		/*
5769 5770
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5771
		 */
5772 5773
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5774
				continue;
5775 5776 5777 5778 5779 5780
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5781
		}
5782

5783 5784 5785
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5786
			__SetPageReserved(page);
5787

5788 5789 5790 5791 5792
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5793
		 * kernel allocations are made.
5794 5795 5796 5797 5798 5799 5800 5801
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5802
			cond_resched();
5803
		}
L
Linus Torvalds 已提交
5804 5805 5806
	}
}

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5882
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5883
{
5884
	unsigned int order, t;
5885 5886
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5887 5888 5889 5890
		zone->free_area[order].nr_free = 0;
	}
}

5891 5892 5893 5894 5895
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5896

5897
static int zone_batchsize(struct zone *zone)
5898
{
5899
#ifdef CONFIG_MMU
5900 5901 5902 5903
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5904
	 * size of the zone.
5905
	 */
5906
	batch = zone_managed_pages(zone) / 1024;
5907 5908 5909
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5910 5911 5912 5913 5914
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5915 5916 5917
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5918
	 *
5919 5920 5921 5922
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5923
	 */
5924
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5925

5926
	return batch;
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5944 5945
}

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5973
/* a companion to pageset_set_high() */
5974 5975
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5976
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5977 5978
}

5979
static void pageset_init(struct per_cpu_pageset *p)
5980 5981
{
	struct per_cpu_pages *pcp;
5982
	int migratetype;
5983

5984 5985
	memset(p, 0, sizeof(*p));

5986
	pcp = &p->pcp;
5987 5988
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5989 5990
}

5991 5992 5993 5994 5995 5996
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5997
/*
5998
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5999 6000
 * to the value high for the pageset p.
 */
6001
static void pageset_set_high(struct per_cpu_pageset *p,
6002 6003
				unsigned long high)
{
6004 6005 6006
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6007

6008
	pageset_update(&p->pcp, high, batch);
6009 6010
}

6011 6012
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6013 6014
{
	if (percpu_pagelist_fraction)
6015
		pageset_set_high(pcp,
6016
			(zone_managed_pages(zone) /
6017 6018 6019 6020 6021
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6022 6023 6024 6025 6026 6027 6028 6029
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6030
void __meminit setup_zone_pageset(struct zone *zone)
6031 6032 6033
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6034 6035
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6036 6037
}

6038
/*
6039 6040
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6041
 */
6042
void __init setup_per_cpu_pageset(void)
6043
{
6044
	struct pglist_data *pgdat;
6045
	struct zone *zone;
6046

6047 6048
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6049 6050 6051 6052

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6053 6054
}

6055
static __meminit void zone_pcp_init(struct zone *zone)
6056
{
6057 6058 6059 6060 6061 6062
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6063

6064
	if (populated_zone(zone))
6065 6066 6067
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6068 6069
}

6070
void __meminit init_currently_empty_zone(struct zone *zone,
6071
					unsigned long zone_start_pfn,
6072
					unsigned long size)
6073 6074
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6075
	int zone_idx = zone_idx(zone) + 1;
6076

6077 6078
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6079 6080 6081

	zone->zone_start_pfn = zone_start_pfn;

6082 6083 6084 6085 6086 6087
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6088
	zone_init_free_lists(zone);
6089
	zone->initialized = 1;
6090 6091
}

T
Tejun Heo 已提交
6092
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6093
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6094

6095 6096 6097
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6098 6099
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6100
{
6101
	unsigned long start_pfn, end_pfn;
6102
	int nid;
6103

6104 6105
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6106

6107
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6108
	if (nid != NUMA_NO_NODE) {
6109 6110 6111
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6112 6113 6114
	}

	return nid;
6115 6116 6117 6118
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6119
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6120
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6121
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6122
 *
6123 6124 6125
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6126
 */
6127
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6128
{
6129 6130
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6131

6132 6133 6134
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6135

6136
		if (start_pfn < end_pfn)
6137 6138 6139
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6140 6141 6142
	}
}

6143 6144
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6145
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6146
 *
6147 6148
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6149 6150 6151
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6152 6153
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6154

6155 6156
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6157 6158 6159 6160
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6161 6162 6163
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6164 6165
 *
 * It returns the start and end page frame of a node based on information
6166
 * provided by memblock_set_node(). If called for a node
6167
 * with no available memory, a warning is printed and the start and end
6168
 * PFNs will be 0.
6169
 */
6170
void __init get_pfn_range_for_nid(unsigned int nid,
6171 6172
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6173
	unsigned long this_start_pfn, this_end_pfn;
6174
	int i;
6175

6176 6177 6178
	*start_pfn = -1UL;
	*end_pfn = 0;

6179 6180 6181
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6182 6183
	}

6184
	if (*start_pfn == -1UL)
6185 6186 6187
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6188 6189 6190 6191 6192
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6193
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6211
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6212 6213 6214 6215 6216 6217 6218
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6219
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6234 6235 6236 6237 6238 6239
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6240 6241 6242 6243 6244 6245
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6246 6247 6248 6249
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6250
static unsigned long __init zone_spanned_pages_in_node(int nid,
6251
					unsigned long zone_type,
6252 6253
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6254 6255
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6256 6257
					unsigned long *ignored)
{
6258 6259
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6260
	/* When hotadd a new node from cpu_up(), the node should be empty */
6261 6262 6263
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6264
	/* Get the start and end of the zone */
6265 6266
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6267 6268
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6269
				zone_start_pfn, zone_end_pfn);
6270 6271

	/* Check that this node has pages within the zone's required range */
6272
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6273 6274 6275
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6276 6277
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6278 6279

	/* Return the spanned pages */
6280
	return *zone_end_pfn - *zone_start_pfn;
6281 6282 6283 6284
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6285
 * then all holes in the requested range will be accounted for.
6286
 */
6287
unsigned long __init __absent_pages_in_range(int nid,
6288 6289 6290
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6291 6292 6293
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6294

6295 6296 6297 6298
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6299
	}
6300
	return nr_absent;
6301 6302 6303 6304 6305 6306 6307
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6308
 * Return: the number of pages frames in memory holes within a range.
6309 6310 6311 6312 6313 6314 6315 6316
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6317
static unsigned long __init zone_absent_pages_in_node(int nid,
6318
					unsigned long zone_type,
6319 6320
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6321 6322
					unsigned long *ignored)
{
6323 6324
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6325
	unsigned long zone_start_pfn, zone_end_pfn;
6326
	unsigned long nr_absent;
6327

6328
	/* When hotadd a new node from cpu_up(), the node should be empty */
6329 6330 6331
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6332 6333
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6334

M
Mel Gorman 已提交
6335 6336 6337
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6338 6339 6340 6341 6342 6343 6344
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6362 6363 6364 6365
		}
	}

	return nr_absent;
6366
}
6367

T
Tejun Heo 已提交
6368
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6369
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6370
					unsigned long zone_type,
6371 6372
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6373 6374
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6375 6376
					unsigned long *zones_size)
{
6377 6378 6379 6380 6381 6382 6383 6384
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6385 6386 6387
	return zones_size[zone_type];
}

6388
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6389
						unsigned long zone_type,
6390 6391
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6392 6393 6394 6395 6396 6397 6398
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6399

T
Tejun Heo 已提交
6400
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6401

6402
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6403 6404 6405 6406
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6407
{
6408
	unsigned long realtotalpages = 0, totalpages = 0;
6409 6410
	enum zone_type i;

6411 6412
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6413
		unsigned long zone_start_pfn, zone_end_pfn;
6414
		unsigned long size, real_size;
6415

6416 6417 6418
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6419 6420
						  &zone_start_pfn,
						  &zone_end_pfn,
6421 6422
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6423 6424
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6425 6426 6427 6428
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6429 6430 6431 6432 6433 6434 6435 6436
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6437 6438 6439 6440 6441
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6442 6443 6444
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6445 6446
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6447 6448 6449
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6450
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6451 6452 6453
{
	unsigned long usemapsize;

6454
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6455 6456
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6457 6458 6459 6460 6461 6462
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6463
static void __ref setup_usemap(struct pglist_data *pgdat,
6464 6465 6466
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6467
{
6468
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6469
	zone->pageblock_flags = NULL;
6470
	if (usemapsize) {
6471
		zone->pageblock_flags =
6472 6473
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6474 6475 6476 6477
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6478 6479
}
#else
6480 6481
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6482 6483
#endif /* CONFIG_SPARSEMEM */

6484
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6485

6486
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6487
void __init set_pageblock_order(void)
6488
{
6489 6490
	unsigned int order;

6491 6492 6493 6494
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6495 6496 6497 6498 6499
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6500 6501
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6502 6503
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6504 6505 6506 6507 6508
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6509 6510
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6511 6512 6513
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6514
 */
6515
void __init set_pageblock_order(void)
6516 6517
{
}
6518 6519 6520

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6521
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6522
						unsigned long present_pages)
6523 6524 6525 6526 6527 6528 6529 6530
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6531
	 * populated regions may not be naturally aligned on page boundary.
6532 6533 6534 6535 6536 6537 6538 6539 6540
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6561
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6562
{
6563
	pgdat_resize_init(pgdat);
6564 6565 6566 6567

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6568
	init_waitqueue_head(&pgdat->kswapd_wait);
6569
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6570

6571
	pgdat_page_ext_init(pgdat);
6572
	spin_lock_init(&pgdat->lru_lock);
6573
	lruvec_init(node_lruvec(pgdat));
6574 6575 6576 6577 6578
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6579
	atomic_long_set(&zone->managed_pages, remaining_pages);
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6620

6621
	pgdat_init_internals(pgdat);
6622 6623
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6624 6625
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6626
		unsigned long size, freesize, memmap_pages;
6627
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6628

6629
		size = zone->spanned_pages;
6630
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6631

6632
		/*
6633
		 * Adjust freesize so that it accounts for how much memory
6634 6635 6636
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6637
		memmap_pages = calc_memmap_size(size, freesize);
6638 6639 6640 6641 6642 6643 6644 6645
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6646
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6647 6648
					zone_names[j], memmap_pages, freesize);
		}
6649

6650
		/* Account for reserved pages */
6651 6652
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6653
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6654
					zone_names[0], dma_reserve);
6655 6656
		}

6657
		if (!is_highmem_idx(j))
6658
			nr_kernel_pages += freesize;
6659 6660 6661
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6662
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6663

6664 6665 6666 6667 6668
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6669
		zone_init_internals(zone, j, nid, freesize);
6670

6671
		if (!size)
L
Linus Torvalds 已提交
6672 6673
			continue;

6674
		set_pageblock_order();
6675 6676
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6677
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6678 6679 6680
	}
}

6681
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6682
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6683
{
6684
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6685 6686
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6687 6688 6689 6690
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6691 6692
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6693 6694
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6695
		unsigned long size, end;
A
Andy Whitcroft 已提交
6696 6697
		struct page *map;

6698 6699 6700 6701 6702
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6703
		end = pgdat_end_pfn(pgdat);
6704 6705
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6706 6707
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6708 6709 6710
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6711
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6712
	}
6713 6714 6715
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6716
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6717 6718 6719
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6720
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6721
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6722
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6723
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6724
			mem_map -= offset;
T
Tejun Heo 已提交
6725
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6726
	}
L
Linus Torvalds 已提交
6727 6728
#endif
}
6729 6730 6731
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6732

6733 6734 6735 6736 6737 6738 6739 6740 6741
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6742
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6743 6744
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6745
{
6746
	pg_data_t *pgdat = NODE_DATA(nid);
6747 6748
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6749

6750
	/* pg_data_t should be reset to zero when it's allocated */
6751
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6752

L
Linus Torvalds 已提交
6753 6754
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6755
	pgdat->per_cpu_nodestats = NULL;
6756 6757
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6758
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6759 6760
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6761 6762
#else
	start_pfn = node_start_pfn;
6763 6764 6765
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6766 6767

	alloc_node_mem_map(pgdat);
6768
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6769

6770
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6771 6772
}

M
Mike Rapoport 已提交
6773
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6796 6797 6798 6799 6800 6801
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6802 6803 6804 6805 6806
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6807
 */
6808
void __init zero_resv_unavail(void)
6809 6810 6811
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6812
	phys_addr_t next = 0;
6813 6814

	/*
6815
	 * Loop through unavailable ranges not covered by memblock.memory.
6816 6817
	 */
	pgcnt = 0;
6818 6819
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6820 6821
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6822 6823
		next = end;
	}
6824
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6825

6826 6827 6828 6829 6830
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6831
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6832
}
M
Mike Rapoport 已提交
6833
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6834

T
Tejun Heo 已提交
6835
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6836 6837 6838 6839 6840

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6841
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6842
{
6843
	unsigned int highest;
M
Miklos Szeredi 已提交
6844

6845
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6846 6847 6848 6849
	nr_node_ids = highest + 1;
}
#endif

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6866
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6867 6868 6869 6870 6871
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6872
	unsigned long start, end, mask;
6873
	int last_nid = NUMA_NO_NODE;
6874
	int i, nid;
6875

6876
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6900
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6901
static unsigned long __init find_min_pfn_for_node(int nid)
6902
{
6903
	unsigned long min_pfn = ULONG_MAX;
6904 6905
	unsigned long start_pfn;
	int i;
6906

6907 6908
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6909

6910
	if (min_pfn == ULONG_MAX) {
6911
		pr_warn("Could not find start_pfn for node %d\n", nid);
6912 6913 6914 6915
		return 0;
	}

	return min_pfn;
6916 6917 6918 6919 6920
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6921
 * Return: the minimum PFN based on information provided via
6922
 * memblock_set_node().
6923 6924 6925 6926 6927 6928
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6929 6930 6931
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6932
 * Populate N_MEMORY for calculating usable_nodes.
6933
 */
A
Adrian Bunk 已提交
6934
static unsigned long __init early_calculate_totalpages(void)
6935 6936
{
	unsigned long totalpages = 0;
6937 6938 6939 6940 6941
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6942

6943 6944
		totalpages += pages;
		if (pages)
6945
			node_set_state(nid, N_MEMORY);
6946
	}
6947
	return totalpages;
6948 6949
}

M
Mel Gorman 已提交
6950 6951 6952 6953 6954 6955
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6956
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6957 6958 6959 6960
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6961
	/* save the state before borrow the nodemask */
6962
	nodemask_t saved_node_state = node_states[N_MEMORY];
6963
	unsigned long totalpages = early_calculate_totalpages();
6964
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6965
	struct memblock_region *r;
6966 6967 6968 6969 6970 6971 6972 6973 6974

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6975 6976
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6977 6978
				continue;

E
Emil Medve 已提交
6979
			nid = r->nid;
6980

E
Emil Medve 已提交
6981
			usable_startpfn = PFN_DOWN(r->base);
6982 6983 6984 6985 6986 6987 6988
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6989

6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7020
	/*
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7048
		required_movablecore = min(totalpages, required_movablecore);
7049 7050 7051 7052 7053
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7054 7055 7056 7057 7058
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7059
		goto out;
M
Mel Gorman 已提交
7060 7061 7062 7063 7064 7065 7066

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7067
	for_each_node_state(nid, N_MEMORY) {
7068 7069
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7086
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7087 7088
			unsigned long size_pages;

7089
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7132
			 * satisfied
M
Mel Gorman 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7146
	 * satisfied
M
Mel Gorman 已提交
7147 7148 7149 7150 7151
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7152
out2:
M
Mel Gorman 已提交
7153 7154 7155 7156
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7157

7158
out:
7159
	/* restore the node_state */
7160
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7161 7162
}

7163 7164
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7165 7166 7167
{
	enum zone_type zone_type;

7168
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7169
		struct zone *zone = &pgdat->node_zones[zone_type];
7170
		if (populated_zone(zone)) {
7171 7172 7173
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7174
				node_set_state(nid, N_NORMAL_MEMORY);
7175 7176
			break;
		}
7177 7178 7179
	}
}

7180 7181
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7182
 * @max_zone_pfn: an array of max PFNs for each zone
7183 7184
 *
 * This will call free_area_init_node() for each active node in the system.
7185
 * Using the page ranges provided by memblock_set_node(), the size of each
7186 7187 7188 7189 7190 7191 7192 7193 7194
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7195 7196
	unsigned long start_pfn, end_pfn;
	int i, nid;
7197

7198 7199 7200 7201 7202
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7203 7204 7205 7206

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7207 7208
		if (i == ZONE_MOVABLE)
			continue;
7209 7210 7211 7212 7213 7214

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7215
	}
M
Mel Gorman 已提交
7216 7217 7218

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7219
	find_zone_movable_pfns_for_nodes();
7220 7221

	/* Print out the zone ranges */
7222
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7223 7224 7225
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7226
		pr_info("  %-8s ", zone_names[i]);
7227 7228
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7229
			pr_cont("empty\n");
7230
		else
7231 7232 7233 7234
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7235
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7236 7237 7238
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7239
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7240 7241
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7242 7243
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7244
	}
7245

7246
	/* Print out the early node map */
7247
	pr_info("Early memory node ranges\n");
7248
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7249 7250 7251
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7252 7253

	/* Initialise every node */
7254
	mminit_verify_pageflags_layout();
7255
	setup_nr_node_ids();
7256
	zero_resv_unavail();
7257 7258
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7259
		free_area_init_node(nid, NULL,
7260
				find_min_pfn_for_node(nid), NULL);
7261 7262 7263

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7264 7265
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7266 7267
	}
}
M
Mel Gorman 已提交
7268

7269 7270
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7271 7272
{
	unsigned long long coremem;
7273 7274
	char *endptr;

M
Mel Gorman 已提交
7275 7276 7277
	if (!p)
		return -EINVAL;

7278 7279 7280 7281 7282
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7283

7284 7285 7286 7287 7288
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7289

7290 7291 7292
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7293 7294
	return 0;
}
M
Mel Gorman 已提交
7295

7296 7297 7298 7299 7300 7301
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7302 7303 7304 7305 7306 7307
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7308 7309
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7310 7311 7312 7313 7314 7315 7316 7317
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7318 7319
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7320 7321
}

M
Mel Gorman 已提交
7322
early_param("kernelcore", cmdline_parse_kernelcore);
7323
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7324

T
Tejun Heo 已提交
7325
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7326

7327 7328
void adjust_managed_page_count(struct page *page, long count)
{
7329
	atomic_long_add(count, &page_zone(page)->managed_pages);
7330
	totalram_pages_add(count);
7331 7332
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7333
		totalhigh_pages_add(count);
7334
#endif
7335
}
7336
EXPORT_SYMBOL(adjust_managed_page_count);
7337

7338
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7339
{
7340 7341
	void *pos;
	unsigned long pages = 0;
7342

7343 7344 7345
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7357
		if ((unsigned int)poison <= 0xFF)
7358 7359 7360
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7361 7362 7363
	}

	if (pages && s)
7364 7365
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7366 7367 7368 7369

	return pages;
}

7370 7371 7372 7373
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7374
	totalram_pages_inc();
7375
	atomic_long_inc(&page_zone(page)->managed_pages);
7376
	totalhigh_pages_inc();
7377 7378 7379
}
#endif

7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7402 7403 7404 7405
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7416
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7417
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7418
		", %luK highmem"
7419
#endif
J
Joe Perches 已提交
7420 7421 7422 7423 7424
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7425
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7426
		totalcma_pages << (PAGE_SHIFT - 10),
7427
#ifdef	CONFIG_HIGHMEM
7428
		totalhigh_pages() << (PAGE_SHIFT - 10),
7429
#endif
J
Joe Perches 已提交
7430
		str ? ", " : "", str ? str : "");
7431 7432
}

7433
/**
7434 7435
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7436
 *
7437
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7438 7439
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7440 7441 7442
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7443 7444 7445 7446 7447 7448
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7449 7450
void __init free_area_init(unsigned long *zones_size)
{
7451
	zero_resv_unavail();
7452
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7453 7454 7455
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7456
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7457 7458
{

7459 7460
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7461

7462 7463 7464 7465 7466 7467 7468
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7469

7470 7471 7472 7473 7474 7475 7476 7477 7478
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7479 7480 7481 7482
}

void __init page_alloc_init(void)
{
7483 7484 7485 7486 7487 7488
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7489 7490
}

7491
/*
7492
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7493 7494 7495 7496 7497 7498
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7499
	enum zone_type i, j;
7500 7501

	for_each_online_pgdat(pgdat) {
7502 7503 7504

		pgdat->totalreserve_pages = 0;

7505 7506
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7507
			long max = 0;
7508
			unsigned long managed_pages = zone_managed_pages(zone);
7509 7510 7511 7512 7513 7514 7515

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7516 7517
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7518

7519 7520
			if (max > managed_pages)
				max = managed_pages;
7521

7522
			pgdat->totalreserve_pages += max;
7523

7524 7525 7526 7527 7528 7529
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7530 7531
/*
 * setup_per_zone_lowmem_reserve - called whenever
7532
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7533 7534 7535 7536 7537 7538
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7539
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7540

7541
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7542 7543
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7544
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7545 7546 7547

			zone->lowmem_reserve[j] = 0;

7548 7549
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7550 7551
				struct zone *lower_zone;

7552
				idx--;
L
Linus Torvalds 已提交
7553
				lower_zone = pgdat->node_zones + idx;
7554 7555 7556 7557 7558 7559 7560 7561

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7562
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7563 7564 7565
			}
		}
	}
7566 7567 7568

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7569 7570
}

7571
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7581
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7582 7583 7584
	}

	for_each_zone(zone) {
7585 7586
		u64 tmp;

7587
		spin_lock_irqsave(&zone->lock, flags);
7588
		tmp = (u64)pages_min * zone_managed_pages(zone);
7589
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7590 7591
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7592 7593 7594 7595
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7596
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7597
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7598
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7599
			 */
7600
			unsigned long min_pages;
L
Linus Torvalds 已提交
7601

7602
			min_pages = zone_managed_pages(zone) / 1024;
7603
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7604
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7605
		} else {
N
Nick Piggin 已提交
7606 7607
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7608 7609
			 * proportionate to the zone's size.
			 */
7610
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7611 7612
		}

7613 7614 7615 7616 7617 7618
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7619
			    mult_frac(zone_managed_pages(zone),
7620 7621
				      watermark_scale_factor, 10000));

7622 7623
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7624
		zone->watermark_boost = 0;
7625

7626
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7627
	}
7628 7629 7630

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7631 7632
}

7633 7634 7635 7636 7637 7638 7639 7640 7641
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7642 7643 7644
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7645
	__setup_per_zone_wmarks();
7646
	spin_unlock(&lock);
7647 7648
}

L
Linus Torvalds 已提交
7649 7650 7651 7652 7653 7654 7655
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7656
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7673
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7674 7675
{
	unsigned long lowmem_kbytes;
7676
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7677 7678

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7691
	setup_per_zone_wmarks();
7692
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7693
	setup_per_zone_lowmem_reserve();
7694 7695 7696 7697 7698 7699

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7700 7701
	return 0;
}
7702
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7703 7704

/*
7705
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7706 7707 7708
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7709
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7710
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7711
{
7712 7713 7714 7715 7716 7717
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7718 7719
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7720
		setup_per_zone_wmarks();
7721
	}
L
Linus Torvalds 已提交
7722 7723 7724
	return 0;
}

7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7752
#ifdef CONFIG_NUMA
7753
static void setup_min_unmapped_ratio(void)
7754
{
7755
	pg_data_t *pgdat;
7756 7757
	struct zone *zone;

7758
	for_each_online_pgdat(pgdat)
7759
		pgdat->min_unmapped_pages = 0;
7760

7761
	for_each_zone(zone)
7762 7763
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7764
}
7765

7766 7767

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7768
	void __user *buffer, size_t *length, loff_t *ppos)
7769 7770 7771
{
	int rc;

7772
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7773 7774 7775
	if (rc)
		return rc;

7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7786 7787 7788
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7789
	for_each_zone(zone)
7790 7791
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7805 7806
	return 0;
}
7807 7808
#endif

L
Linus Torvalds 已提交
7809 7810 7811 7812 7813 7814
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7815
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7816 7817
 * if in function of the boot time zone sizes.
 */
7818
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7819
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7820
{
7821
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7822 7823 7824 7825
	setup_per_zone_lowmem_reserve();
	return 0;
}

7826 7827
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7828 7829
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7830
 */
7831
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7832
	void __user *buffer, size_t *length, loff_t *ppos)
7833 7834
{
	struct zone *zone;
7835
	int old_percpu_pagelist_fraction;
7836 7837
	int ret;

7838 7839 7840
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7841
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7856

7857
	for_each_populated_zone(zone) {
7858 7859
		unsigned int cpu;

7860
		for_each_possible_cpu(cpu)
7861 7862
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7863
	}
7864
out:
7865
	mutex_unlock(&pcp_batch_high_lock);
7866
	return ret;
7867 7868
}

7869
#ifdef CONFIG_NUMA
7870
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7921 7922
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7923
{
7924
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7925 7926
	unsigned long log2qty, size;
	void *table = NULL;
7927
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7928 7929 7930 7931

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7932
		numentries = nr_kernel_pages;
7933
		numentries -= arch_reserved_kernel_pages();
7934 7935 7936 7937

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7938

P
Pavel Tatashin 已提交
7939 7940 7941 7942 7943 7944 7945 7946 7947 7948
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7949 7950 7951 7952 7953
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7954 7955

		/* Make sure we've got at least a 0-order allocation.. */
7956 7957 7958 7959 7960 7961 7962 7963
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7964
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7965
	}
7966
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7967 7968 7969 7970 7971 7972

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7973
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7974

7975 7976
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7977 7978 7979
	if (numentries > max)
		numentries = max;

7980
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7981

7982
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7983 7984
	do {
		size = bucketsize << log2qty;
7985 7986
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7987
				table = memblock_alloc(size, SMP_CACHE_BYTES);
7988
			else
7989 7990
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7991
		} else if (hashdist) {
7992
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7993
		} else {
7994 7995
			/*
			 * If bucketsize is not a power-of-two, we may free
7996 7997
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7998
			 */
7999
			if (get_order(size) < MAX_ORDER) {
8000 8001
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
8002
			}
L
Linus Torvalds 已提交
8003 8004 8005 8006 8007 8008
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8009 8010
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
8011 8012 8013 8014 8015 8016 8017 8018

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8019

K
KAMEZAWA Hiroyuki 已提交
8020
/*
8021 8022 8023
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8024
 * PageLRU check without isolation or lru_lock could race so that
8025 8026 8027
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8028
 */
8029
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8030
			 int migratetype, int flags)
8031
{
8032 8033 8034 8035
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8036

8037
	/*
8038 8039 8040 8041 8042
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8043 8044
	 */

8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8057

8058
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8059 8060
		unsigned long check = pfn + iter;

8061
		if (!pfn_valid_within(check))
8062
			continue;
8063

8064
		page = pfn_to_page(check);
8065

8066
		if (PageReserved(page))
8067
			goto unmovable;
8068

8069 8070 8071 8072 8073 8074 8075 8076
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8077 8078
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8079
		 * We need not scan over tail pages because we don't
8080 8081 8082
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8083 8084
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8085

8086
			if (!hugepage_migration_supported(page_hstate(head)))
8087 8088
				goto unmovable;

8089 8090
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8091 8092 8093
			continue;
		}

8094 8095 8096 8097
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8098
		 * because their page->_refcount is zero at all time.
8099
		 */
8100
		if (!page_ref_count(page)) {
8101 8102 8103 8104
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8105

8106 8107 8108 8109
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8110
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8111 8112
			continue;

8113 8114 8115
		if (__PageMovable(page))
			continue;

8116 8117 8118
		if (!PageLRU(page))
			found++;
		/*
8119 8120 8121
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8132
			goto unmovable;
8133
	}
8134
	return false;
8135 8136
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8137
	if (flags & REPORT_FAILURE)
8138
		dump_page(pfn_to_page(pfn + iter), reason);
8139
	return true;
8140 8141
}

8142
#ifdef CONFIG_CONTIG_ALLOC
8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8156 8157
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8158 8159
{
	/* This function is based on compact_zone() from compaction.c. */
8160
	unsigned long nr_reclaimed;
8161 8162 8163 8164
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8165
	migrate_prep();
8166

8167
	while (pfn < end || !list_empty(&cc->migratepages)) {
8168 8169 8170 8171 8172
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8173 8174
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8175
			pfn = isolate_migratepages_range(cc, pfn, end);
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8186 8187 8188
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8189

8190
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8191
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8192
	}
8193 8194 8195 8196 8197
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8198 8199 8200 8201 8202 8203
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8204 8205 8206 8207
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8208
 * @gfp_mask:	GFP mask to use during compaction
8209 8210
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8211
 * aligned.  The PFN range must belong to a single zone.
8212
 *
8213 8214 8215
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8216
 *
8217
 * Return: zero on success or negative error code.  On success all
8218 8219 8220
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8221
int alloc_contig_range(unsigned long start, unsigned long end,
8222
		       unsigned migratetype, gfp_t gfp_mask)
8223 8224
{
	unsigned long outer_start, outer_end;
8225 8226
	unsigned int order;
	int ret = 0;
8227

8228 8229 8230 8231
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8232
		.mode = MIGRATE_SYNC,
8233
		.ignore_skip_hint = true,
8234
		.no_set_skip_hint = true,
8235
		.gfp_mask = current_gfp_context(gfp_mask),
8236 8237 8238
	};
	INIT_LIST_HEAD(&cc.migratepages);

8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8264
				       pfn_max_align_up(end), migratetype, 0);
8265
	if (ret < 0)
8266
		return ret;
8267

8268 8269
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8270 8271 8272 8273 8274 8275 8276
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8277
	 */
8278
	ret = __alloc_contig_migrate_range(&cc, start, end);
8279
	if (ret && ret != -EBUSY)
8280
		goto done;
8281
	ret =0;
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8306 8307
			outer_start = start;
			break;
8308 8309 8310 8311
		}
		outer_start &= ~0UL << order;
	}

8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8325
	/* Make sure the range is really isolated. */
8326
	if (test_pages_isolated(outer_start, end, false)) {
8327
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8328
			__func__, outer_start, end);
8329 8330 8331 8332
		ret = -EBUSY;
		goto done;
	}

8333
	/* Grab isolated pages from freelists. */
8334
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8348
				pfn_max_align_up(end), migratetype);
8349 8350
	return ret;
}
8351
#endif /* CONFIG_CONTIG_ALLOC */
8352

8353
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8354
{
8355 8356 8357 8358 8359 8360 8361 8362 8363
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8364 8365
}

8366
#ifdef CONFIG_MEMORY_HOTPLUG
8367 8368 8369 8370
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8371 8372
void __meminit zone_pcp_update(struct zone *zone)
{
8373
	unsigned cpu;
8374
	mutex_lock(&pcp_batch_high_lock);
8375
	for_each_possible_cpu(cpu)
8376 8377
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8378
	mutex_unlock(&pcp_batch_high_lock);
8379 8380 8381
}
#endif

8382 8383 8384
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8385 8386
	int cpu;
	struct per_cpu_pageset *pset;
8387 8388 8389 8390

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8391 8392 8393 8394
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8395 8396 8397 8398 8399 8400
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8401
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8402
/*
8403 8404
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8405 8406 8407 8408 8409 8410
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8411
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8412 8413 8414 8415 8416 8417 8418 8419
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8420
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8421 8422 8423 8424 8425 8426 8427 8428 8429
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8440 8441 8442 8443
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8444 8445
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8457 8458 8459 8460 8461 8462

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8463
	unsigned int order;
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif