page_alloc.c 234.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269 270 271 272 273 274 275 276 277 278 279 280
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
281
int watermark_boost_factor __read_mostly = 15000;
282
#endif
283
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
284

285 286 287
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
288

T
Tejun Heo 已提交
289
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292
static unsigned long required_kernelcore __initdata;
293
static unsigned long required_kernelcore_percent __initdata;
294
static unsigned long required_movablecore __initdata;
295
static unsigned long required_movablecore_percent __initdata;
296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
298 299 300 301 302

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303

M
Miklos Szeredi 已提交
304
#if MAX_NUMNODES > 1
305
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
307
EXPORT_SYMBOL(nr_node_ids);
308
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
309 310
#endif

311 312
int page_group_by_mobility_disabled __read_mostly;

313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351
		return true;

	return false;
}

/*
352
 * Returns true when the remaining initialisation should be deferred until
353 354
 * later in the boot cycle when it can be parallelised.
 */
355 356
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357
{
358 359 360 361 362 363 364 365 366 367 368
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

369
	/* Always populate low zones for address-constrained allocations */
370
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371
		return false;
372 373 374 375 376

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
377
	nr_initialised++;
378
	if ((nr_initialised > PAGES_PER_SECTION) &&
379 380 381
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
382
	}
383
	return false;
384 385
}
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

393
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394
{
395
	return false;
396 397 398
}
#endif

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
500

501
void set_pageblock_migratetype(struct page *page, int migratetype)
502
{
503 504
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
505 506
		migratetype = MIGRATE_UNMOVABLE;

507 508 509 510
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
511
#ifdef CONFIG_DEBUG_VM
512
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
513
{
514 515 516
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
517
	unsigned long sp, start_pfn;
518

519 520
	do {
		seq = zone_span_seqbegin(zone);
521 522
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
523
		if (!zone_spans_pfn(zone, pfn))
524 525 526
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

527
	if (ret)
528 529 530
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
531

532
	return ret;
533 534 535 536
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
537
	if (!pfn_valid_within(page_to_pfn(page)))
538
		return 0;
L
Linus Torvalds 已提交
539
	if (zone != page_zone(page))
540 541 542 543 544 545 546
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
547
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 549
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
550
		return 1;
551 552 553
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
554 555
	return 0;
}
N
Nick Piggin 已提交
556
#else
557
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
558 559 560 561 562
{
	return 0;
}
#endif

563 564
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
580
			pr_alert(
581
			      "BUG: Bad page state: %lu messages suppressed\n",
582 583 584 585 586 587 588 589
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

590
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591
		current->comm, page_to_pfn(page));
592 593 594 595 596
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
597
	dump_page_owner(page);
598

599
	print_modules();
L
Linus Torvalds 已提交
600
	dump_stack();
601
out:
602
	/* Leave bad fields for debug, except PageBuddy could make trouble */
603
	page_mapcount_reset(page); /* remove PageBuddy */
604
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
605 606 607 608 609
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
610
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
611
 *
612 613
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
614
 *
615 616
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
617
 *
618
 * The first tail page's ->compound_order holds the order of allocation.
619
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
620
 */
621

622
void free_compound_page(struct page *page)
623
{
624
	__free_pages_ok(page, compound_order(page));
625 626
}

627
void prep_compound_page(struct page *page, unsigned int order)
628 629 630 631
{
	int i;
	int nr_pages = 1 << order;

632
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 634 635 636
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
637
		set_page_count(p, 0);
638
		p->mapping = TAIL_MAPPING;
639
		set_compound_head(p, page);
640
	}
641
	atomic_set(compound_mapcount_ptr(page), -1);
642 643
}

644 645
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
646 647
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
648
EXPORT_SYMBOL(_debug_pagealloc_enabled);
649 650
bool _debug_guardpage_enabled __read_mostly;

651 652 653 654
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
655
	return kstrtobool(buf, &_debug_pagealloc_enabled);
656 657 658
}
early_param("debug_pagealloc", early_debug_pagealloc);

659 660
static bool need_debug_guardpage(void)
{
661 662 663 664
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

665 666 667
	if (!debug_guardpage_minorder())
		return false;

668 669 670 671 672
	return true;
}

static void init_debug_guardpage(void)
{
673 674 675
	if (!debug_pagealloc_enabled())
		return;

676 677 678
	if (!debug_guardpage_minorder())
		return;

679 680 681 682 683 684 685
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
686 687 688 689 690 691

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
692
		pr_err("Bad debug_guardpage_minorder value\n");
693 694 695
		return 0;
	}
	_debug_guardpage_minorder = res;
696
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
697 698
	return 0;
}
699
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
700

701
static inline bool set_page_guard(struct zone *zone, struct page *page,
702
				unsigned int order, int migratetype)
703
{
704 705 706
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
707 708 709 710
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
711 712

	page_ext = lookup_page_ext(page);
713
	if (unlikely(!page_ext))
714
		return false;
715

716 717
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

718 719 720 721
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
722 723

	return true;
724 725
}

726 727
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
728
{
729 730 731 732 733 734
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
735 736 737
	if (unlikely(!page_ext))
		return;

738 739
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

740 741 742
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
743 744
}
#else
745
struct page_ext_operations debug_guardpage_ops;
746 747
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
748 749
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
750 751
#endif

752
static inline void set_page_order(struct page *page, unsigned int order)
753
{
H
Hugh Dickins 已提交
754
	set_page_private(page, order);
755
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
756 757 758 759
}

static inline void rmv_page_order(struct page *page)
{
760
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
761
	set_page_private(page, 0);
L
Linus Torvalds 已提交
762 763 764 765
}

/*
 * This function checks whether a page is free && is the buddy
766
 * we can coalesce a page and its buddy if
767
 * (a) the buddy is not in a hole (check before calling!) &&
768
 * (b) the buddy is in the buddy system &&
769 770
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
771
 *
772 773
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
774
 *
775
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
776
 */
777
static inline int page_is_buddy(struct page *page, struct page *buddy,
778
							unsigned int order)
L
Linus Torvalds 已提交
779
{
780
	if (page_is_guard(buddy) && page_order(buddy) == order) {
781 782 783
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

784 785
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

786 787 788
		return 1;
	}

789
	if (PageBuddy(buddy) && page_order(buddy) == order) {
790 791 792 793 794 795 796 797
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

798 799
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

800
		return 1;
801
	}
802
	return 0;
L
Linus Torvalds 已提交
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
869 870
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
871
 * So when we are allocating or freeing one, we can derive the state of the
872 873
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
874
 * If a block is freed, and its buddy is also free, then this
875
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
876
 *
877
 * -- nyc
L
Linus Torvalds 已提交
878 879
 */

N
Nick Piggin 已提交
880
static inline void __free_one_page(struct page *page,
881
		unsigned long pfn,
882 883
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
884
{
885 886
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
887
	struct page *buddy;
888
	unsigned int max_order;
889
	struct capture_control *capc = task_capc(zone);
890 891

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
892

893
	VM_BUG_ON(!zone_is_initialized(zone));
894
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
895

896
	VM_BUG_ON(migratetype == -1);
897
	if (likely(!is_migrate_isolate(migratetype)))
898
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
899

900
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
901
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
902

903
continue_merging:
904
	while (order < max_order - 1) {
905 906 907 908 909
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
910 911
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
912 913 914

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
915
		if (!page_is_buddy(page, buddy, order))
916
			goto done_merging;
917 918 919 920 921
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
922
			clear_page_guard(zone, buddy, order, migratetype);
923 924 925 926 927
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
928 929 930
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
931 932
		order++;
	}
933 934 935 936 937 938 939 940 941 942 943 944
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

945 946
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
947 948 949 950 951 952 953 954 955 956 957 958
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
959
	set_page_order(page, order);
960 961 962 963 964 965 966 967 968

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
969
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
970
		struct page *higher_page, *higher_buddy;
971 972 973 974
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
975 976
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
977 978 979 980 981 982 983 984
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
985 986 987
	zone->free_area[order].nr_free++;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1010
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1011
{
1012 1013 1014 1015 1016
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1017

1018
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1019 1020 1021
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1022
	if (unlikely(page_ref_count(page) != 0))
1023
		bad_reason = "nonzero _refcount";
1024 1025 1026 1027
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1028 1029 1030 1031
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1032
	bad_page(page, bad_reason, bad_flags);
1033 1034 1035 1036
}

static inline int free_pages_check(struct page *page)
{
1037
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1038 1039 1040 1041
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1042
	return 1;
L
Linus Torvalds 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1061
		/* the first tail page: ->mapping may be compound_mapcount() */
1062 1063 1064 1065 1066 1067 1068 1069
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1070
		 * deferred_list.next -- ignore value.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1095 1096
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1097
{
1098
	int bad = 0;
1099 1100 1101

	VM_BUG_ON_PAGE(PageTail(page), page);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113

1114 1115
		if (compound)
			ClearPageDoubleMap(page);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1126
	if (PageMappingFlags(page))
1127
		page->mapping = NULL;
1128
	if (memcg_kmem_enabled() && PageKmemcg(page))
1129
		__memcg_kmem_uncharge(page, order);
1130 1131 1132 1133
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1134

1135 1136 1137
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1138 1139 1140

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1141
					   PAGE_SIZE << order);
1142
		debug_check_no_obj_freed(page_address(page),
1143
					   PAGE_SIZE << order);
1144
	}
1145 1146
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
1147 1148 1149
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 0);

1150
	kasan_free_nondeferred_pages(page, order);
1151 1152 1153 1154

	return true;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1171 1172 1173 1174 1175 1176
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1177 1178 1179 1180 1181 1182 1183 1184 1185
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1186
/*
1187
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1188
 * Assumes all pages on list are in same zone, and of same order.
1189
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1197 1198
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1199
{
1200
	int migratetype = 0;
1201
	int batch_free = 0;
1202
	int prefetch_nr = 0;
1203
	bool isolated_pageblocks;
1204 1205
	struct page *page, *tmp;
	LIST_HEAD(head);
1206

1207
	while (count) {
1208 1209 1210
		struct list_head *list;

		/*
1211 1212 1213 1214 1215
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1216 1217
		 */
		do {
1218
			batch_free++;
1219 1220 1221 1222
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1223

1224 1225
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1226
			batch_free = count;
1227

1228
		do {
1229
			page = list_last_entry(list, struct page, lru);
1230
			/* must delete to avoid corrupting pcp list */
1231
			list_del(&page->lru);
1232
			pcp->count--;
1233

1234 1235 1236
			if (bulkfree_pcp_prepare(page))
				continue;

1237
			list_add_tail(&page->lru, &head);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1250
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1251
	}
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1271
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1272 1273
}

1274 1275
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1276
				unsigned int order,
1277
				int migratetype)
L
Linus Torvalds 已提交
1278
{
1279
	spin_lock(&zone->lock);
1280 1281 1282 1283
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1284
	__free_one_page(page, pfn, zone, order, migratetype);
1285
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1286 1287
}

1288
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1289
				unsigned long zone, int nid)
1290
{
1291
	mm_zero_struct_page(page);
1292 1293 1294 1295
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1296
	page_kasan_tag_reset(page);
1297 1298 1299 1300 1301 1302 1303 1304 1305

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1306
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1307
static void __meminit init_reserved_page(unsigned long pfn)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1324
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1325 1326 1327 1328 1329 1330 1331
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1332 1333 1334 1335 1336 1337
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1338
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1339 1340 1341 1342
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1343 1344 1345 1346 1347
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1348 1349 1350 1351

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1352 1353 1354 1355 1356 1357
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1358 1359
		}
	}
1360 1361
}

1362 1363
static void __free_pages_ok(struct page *page, unsigned int order)
{
1364
	unsigned long flags;
M
Minchan Kim 已提交
1365
	int migratetype;
1366
	unsigned long pfn = page_to_pfn(page);
1367

1368
	if (!free_pages_prepare(page, order, true))
1369 1370
		return;

1371
	migratetype = get_pfnblock_migratetype(page, pfn);
1372 1373
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1374
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1375
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1376 1377
}

1378
void __free_pages_core(struct page *page, unsigned int order)
1379
{
1380
	unsigned int nr_pages = 1 << order;
1381
	struct page *p = page;
1382
	unsigned int loop;
1383

1384 1385 1386
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1387 1388
		__ClearPageReserved(p);
		set_page_count(p, 0);
1389
	}
1390 1391
	__ClearPageReserved(p);
	set_page_count(p, 0);
1392

1393
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1394 1395
	set_page_refcounted(page);
	__free_pages(page, order);
1396 1397
}

1398 1399
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1400

1401 1402 1403 1404
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1405
	static DEFINE_SPINLOCK(early_pfn_lock);
1406 1407
	int nid;

1408
	spin_lock(&early_pfn_lock);
1409
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1410
	if (nid < 0)
1411
		nid = first_online_node;
1412 1413 1414
	spin_unlock(&early_pfn_lock);

	return nid;
1415 1416 1417 1418
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1419 1420
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1421 1422 1423
{
	int nid;

1424
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1438
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1439 1440 1441 1442
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1443
	__free_pages_core(page, order);
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1475 1476 1477
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1517
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1518 1519
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1520
{
1521 1522
	struct page *page;
	unsigned long i;
1523

1524
	if (!nr_pages)
1525 1526
		return;

1527 1528
	page = pfn_to_page(pfn);

1529
	/* Free a large naturally-aligned chunk if possible */
1530 1531
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1532
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1533
		__free_pages_core(page, pageblock_order);
1534 1535 1536
		return;
	}

1537 1538 1539
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1540
		__free_pages_core(page, 0);
1541
	}
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1553

1554
/*
1555 1556 1557 1558 1559 1560 1561 1562
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1563
 */
1564
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1565
{
1566 1567 1568 1569 1570 1571
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1572

1573 1574 1575 1576
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1577
static void __init deferred_free_pages(unsigned long pfn,
1578 1579 1580 1581
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1582

1583
	for (; pfn < end_pfn; pfn++) {
1584
		if (!deferred_pfn_valid(pfn)) {
1585 1586 1587 1588 1589
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1590
			touch_nmi_watchdog();
1591 1592 1593 1594 1595 1596
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1597 1598
}

1599 1600 1601 1602 1603
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1604
static unsigned long  __init deferred_init_pages(struct zone *zone,
1605 1606
						 unsigned long pfn,
						 unsigned long end_pfn)
1607 1608
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1609
	int nid = zone_to_nid(zone);
1610
	unsigned long nr_pages = 0;
1611
	int zid = zone_idx(zone);
1612 1613
	struct page *page = NULL;

1614
	for (; pfn < end_pfn; pfn++) {
1615
		if (!deferred_pfn_valid(pfn)) {
1616
			page = NULL;
1617
			continue;
1618
		} else if (!page || !(pfn & nr_pgmask)) {
1619
			page = pfn_to_page(pfn);
1620
			touch_nmi_watchdog();
1621 1622
		} else {
			page++;
1623
		}
1624
		__init_single_page(page, pfn, zid, nid);
1625
		nr_pages++;
1626
	}
1627
	return (nr_pages);
1628 1629
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1714
/* Initialise remaining memory on a node */
1715
static int __init deferred_init_memmap(void *data)
1716
{
1717
	pg_data_t *pgdat = data;
1718 1719 1720
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1721 1722
	unsigned long start = jiffies;
	struct zone *zone;
1723
	int zid;
1724
	u64 i;
1725

1726 1727 1728 1729 1730 1731
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1732
	if (first_init_pfn == ULONG_MAX) {
1733
		pgdat_resize_unlock(pgdat, &flags);
1734
		pgdat_init_report_one_done();
1735 1736 1737
		return 0;
	}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1749 1750 1751 1752 1753

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1754

1755
	/*
1756 1757 1758
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1759
	 */
1760 1761 1762
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1763
	pgdat_resize_unlock(pgdat, &flags);
1764 1765 1766 1767

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1768 1769
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1770 1771

	pgdat_init_report_one_done();
1772 1773
	return 0;
}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1794
	pg_data_t *pgdat = zone->zone_pgdat;
1795
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1796 1797
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1826 1827 1828 1829
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1830
		pgdat_resize_unlock(pgdat, &flags);
1831
		return true;
1832 1833
	}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1844

1845 1846 1847
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1848

1849
		/* If our quota has been met we can stop here */
1850 1851 1852 1853
		if (nr_pages >= nr_pages_needed)
			break;
	}

1854
	pgdat->first_deferred_pfn = spfn;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1872
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1873 1874 1875

void __init page_alloc_init_late(void)
{
1876 1877 1878
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1879 1880
	int nid;

1881 1882
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1883 1884 1885 1886 1887
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1888
	wait_for_completion(&pgdat_init_all_done_comp);
1889

1890 1891 1892 1893 1894 1895
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1896 1897
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1898
#endif
P
Pavel Tatashin 已提交
1899 1900 1901 1902
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1903 1904 1905

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1906 1907
}

1908
#ifdef CONFIG_CMA
1909
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1910 1911 1912 1913 1914 1915 1916 1917
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1918
	} while (++p, --i);
1919 1920

	set_pageblock_migratetype(page, MIGRATE_CMA);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1935
	adjust_managed_page_count(page, pageblock_nr_pages);
1936 1937
}
#endif
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1951
 * -- nyc
L
Linus Torvalds 已提交
1952
 */
N
Nick Piggin 已提交
1953
static inline void expand(struct zone *zone, struct page *page,
1954 1955
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1963
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1964

1965 1966 1967 1968 1969 1970 1971
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1972
			continue;
1973

1974
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1980
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1981
{
1982 1983
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1984

1985
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1986 1987 1988
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1989
	if (unlikely(page_ref_count(page) != 0))
1990
		bad_reason = "nonzero _count";
1991 1992 1993
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1994 1995 1996
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1997
	}
1998 1999 2000 2001
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2002 2003 2004 2005
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2020 2021
}

2022
static inline bool free_pages_prezeroed(void)
2023 2024
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2025
		page_poisoning_enabled();
2026 2027
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2062 2063 2064 2065 2066 2067 2068
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2069 2070
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 1);
2071
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2072
	kernel_poison_pages(page, 1 << order, 1);
2073 2074 2075
	set_page_owner(page, order, gfp_flags);
}

2076
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2077
							unsigned int alloc_flags)
2078 2079
{
	int i;
2080

2081
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2082

2083
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2084 2085
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2086 2087 2088 2089

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2090
	/*
2091
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2092 2093 2094 2095
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2096 2097 2098 2099
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2100 2101
}

2102 2103 2104 2105
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2106
static __always_inline
2107
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2108 2109 2110
						int migratetype)
{
	unsigned int current_order;
2111
	struct free_area *area;
2112 2113 2114 2115 2116
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2117
		page = list_first_entry_or_null(&area->free_list[migratetype],
2118
							struct page, lru);
2119 2120
		if (!page)
			continue;
2121 2122 2123 2124
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2125
		set_pcppage_migratetype(page, migratetype);
2126 2127 2128 2129 2130 2131 2132
		return page;
	}

	return NULL;
}


2133 2134 2135 2136
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2137
static int fallbacks[MIGRATE_TYPES][4] = {
2138 2139
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2140
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2141
#ifdef CONFIG_CMA
2142
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2143
#endif
2144
#ifdef CONFIG_MEMORY_ISOLATION
2145
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2146
#endif
2147 2148
};

2149
#ifdef CONFIG_CMA
2150
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2151 2152 2153 2154 2155 2156 2157 2158 2159
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2160 2161
/*
 * Move the free pages in a range to the free lists of the requested type.
2162
 * Note that start_page and end_pages are not aligned on a pageblock
2163 2164
 * boundary. If alignment is required, use move_freepages_block()
 */
2165
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2166
			  struct page *start_page, struct page *end_page,
2167
			  int migratetype, int *num_movable)
2168 2169
{
	struct page *page;
2170
	unsigned int order;
2171
	int pages_moved = 0;
2172 2173 2174 2175 2176 2177 2178

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2179
	 * grouping pages by mobility
2180
	 */
2181 2182 2183
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2184 2185 2186 2187 2188 2189 2190
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2191 2192 2193
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2194
		if (!PageBuddy(page)) {
2195 2196 2197 2198 2199 2200 2201 2202 2203
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2204 2205 2206 2207 2208
			page++;
			continue;
		}

		order = page_order(page);
2209 2210
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2211
		page += 1 << order;
2212
		pages_moved += 1 << order;
2213 2214
	}

2215
	return pages_moved;
2216 2217
}

2218
int move_freepages_block(struct zone *zone, struct page *page,
2219
				int migratetype, int *num_movable)
2220 2221 2222 2223
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2224 2225 2226
	if (num_movable)
		*num_movable = 0;

2227
	start_pfn = page_to_pfn(page);
2228
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2229
	start_page = pfn_to_page(start_pfn);
2230 2231
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2232 2233

	/* Do not cross zone boundaries */
2234
	if (!zone_spans_pfn(zone, start_pfn))
2235
		start_page = page;
2236
	if (!zone_spans_pfn(zone, end_pfn))
2237 2238
		return 0;

2239 2240
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2254
/*
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2265
 */
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2287 2288 2289 2290 2291 2292 2293 2294 2295
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2308 2309 2310 2311 2312 2313
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2314 2315 2316
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2317 2318 2319 2320
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2321 2322
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2323
		unsigned int alloc_flags, int start_type, bool whole_block)
2324
{
2325
	unsigned int current_order = page_order(page);
2326
	struct free_area *area;
2327 2328 2329 2330
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2331

2332 2333 2334 2335
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2336
	if (is_migrate_highatomic(old_block_type))
2337 2338
		goto single_page;

2339 2340 2341
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2342
		goto single_page;
2343 2344
	}

2345 2346 2347 2348 2349 2350 2351
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2352
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2353

2354 2355 2356 2357
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2382
	/* moving whole block can fail due to zone boundary conditions */
2383
	if (!free_pages)
2384
		goto single_page;
2385

2386 2387 2388 2389 2390
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2391 2392
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2393 2394 2395 2396 2397 2398

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2399 2400
}

2401 2402 2403 2404 2405 2406 2407 2408
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2419
		if (fallback_mt == MIGRATE_TYPES)
2420 2421 2422 2423
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2424

2425 2426 2427
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2428 2429 2430 2431 2432
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2433
	}
2434 2435

	return -1;
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2452
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2464 2465
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2466 2467
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2468
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2480 2481 2482
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2483
 */
2484 2485
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2486 2487 2488 2489 2490 2491 2492
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2493
	bool ret;
2494 2495 2496

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2497 2498 2499 2500 2501 2502
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2503 2504 2505 2506 2507 2508
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2509 2510 2511 2512
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2513 2514 2515
				continue;

			/*
2516 2517 2518 2519 2520
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2521
			 */
2522
			if (is_migrate_highatomic_page(page)) {
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2545 2546
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2547 2548 2549 2550
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2551 2552 2553
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2554 2555

	return false;
2556 2557
}

2558 2559 2560 2561 2562
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2563 2564 2565 2566
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2567
 */
2568
static __always_inline bool
2569 2570
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2571
{
2572
	struct free_area *area;
2573
	int current_order;
2574
	int min_order = order;
2575
	struct page *page;
2576 2577
	int fallback_mt;
	bool can_steal;
2578

2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2587 2588 2589 2590 2591
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2592
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2593
				--current_order) {
2594 2595
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2596
				start_migratetype, false, &can_steal);
2597 2598
		if (fallback_mt == -1)
			continue;
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2611

2612 2613
		goto do_steal;
	}
2614

2615
	return false;
2616

2617 2618 2619 2620 2621 2622 2623 2624
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2625 2626
	}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2637 2638
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2639 2640 2641 2642 2643 2644

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2645 2646
}

2647
/*
L
Linus Torvalds 已提交
2648 2649 2650
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2651
static __always_inline struct page *
2652 2653
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2654 2655 2656
{
	struct page *page;

2657
retry:
2658
	page = __rmqueue_smallest(zone, order, migratetype);
2659
	if (unlikely(!page)) {
2660 2661 2662
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2663 2664
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2665
			goto retry;
2666 2667
	}

2668
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2669
	return page;
L
Linus Torvalds 已提交
2670 2671
}

2672
/*
L
Linus Torvalds 已提交
2673 2674 2675 2676
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2677
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2678
			unsigned long count, struct list_head *list,
2679
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2680
{
2681
	int i, alloced = 0;
2682

2683
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2684
	for (i = 0; i < count; ++i) {
2685 2686
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2687
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2688
			break;
2689

2690 2691 2692
		if (unlikely(check_pcp_refill(page)))
			continue;

2693
		/*
2694 2695 2696 2697 2698 2699 2700 2701
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2702
		 */
2703
		list_add_tail(&page->lru, list);
2704
		alloced++;
2705
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2706 2707
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2708
	}
2709 2710 2711 2712 2713 2714 2715

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2716
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2717
	spin_unlock(&zone->lock);
2718
	return alloced;
L
Linus Torvalds 已提交
2719 2720
}

2721
#ifdef CONFIG_NUMA
2722
/*
2723 2724 2725 2726
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2727 2728
 * Note that this function must be called with the thread pinned to
 * a single processor.
2729
 */
2730
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2731 2732
{
	unsigned long flags;
2733
	int to_drain, batch;
2734

2735
	local_irq_save(flags);
2736
	batch = READ_ONCE(pcp->batch);
2737
	to_drain = min(pcp->count, batch);
2738
	if (to_drain > 0)
2739
		free_pcppages_bulk(zone, to_drain, pcp);
2740
	local_irq_restore(flags);
2741 2742 2743
}
#endif

2744
/*
2745
 * Drain pcplists of the indicated processor and zone.
2746 2747 2748 2749 2750
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2751
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2752
{
N
Nick Piggin 已提交
2753
	unsigned long flags;
2754 2755
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2756

2757 2758
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2759

2760
	pcp = &pset->pcp;
2761
	if (pcp->count)
2762 2763 2764
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2779 2780 2781
	}
}

2782 2783
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2784 2785 2786
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2787
 */
2788
void drain_local_pages(struct zone *zone)
2789
{
2790 2791 2792 2793 2794 2795
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2796 2797
}

2798 2799
static void drain_local_pages_wq(struct work_struct *work)
{
2800 2801 2802 2803
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2804 2805 2806 2807 2808 2809 2810 2811
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2812
	drain_local_pages(drain->zone);
2813
	preempt_enable();
2814 2815
}

2816
/*
2817 2818
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2819 2820
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2821
 * Note that this can be extremely slow as the draining happens in a workqueue.
2822
 */
2823
void drain_all_pages(struct zone *zone)
2824
{
2825 2826 2827 2828 2829 2830 2831 2832
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2833 2834 2835 2836 2837 2838 2839
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2850

2851 2852 2853 2854 2855 2856 2857
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2858 2859
		struct per_cpu_pageset *pcp;
		struct zone *z;
2860
		bool has_pcps = false;
2861 2862

		if (zone) {
2863
			pcp = per_cpu_ptr(zone->pageset, cpu);
2864
			if (pcp->pcp.count)
2865
				has_pcps = true;
2866 2867 2868 2869 2870 2871 2872
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2873 2874
			}
		}
2875

2876 2877 2878 2879 2880
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2881

2882
	for_each_cpu(cpu, &cpus_with_pcps) {
2883 2884 2885 2886 2887
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2888
	}
2889
	for_each_cpu(cpu, &cpus_with_pcps)
2890
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2891 2892

	mutex_unlock(&pcpu_drain_mutex);
2893 2894
}

2895
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2896

2897 2898 2899 2900 2901
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2902 2903
void mark_free_pages(struct zone *zone)
{
2904
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2905
	unsigned long flags;
2906
	unsigned int order, t;
2907
	struct page *page;
L
Linus Torvalds 已提交
2908

2909
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2910 2911 2912
		return;

	spin_lock_irqsave(&zone->lock, flags);
2913

2914
	max_zone_pfn = zone_end_pfn(zone);
2915 2916
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2917
			page = pfn_to_page(pfn);
2918

2919 2920 2921 2922 2923
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2924 2925 2926
			if (page_zone(page) != zone)
				continue;

2927 2928
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2929
		}
L
Linus Torvalds 已提交
2930

2931
	for_each_migratetype_order(order, t) {
2932 2933
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2934
			unsigned long i;
L
Linus Torvalds 已提交
2935

2936
			pfn = page_to_pfn(page);
2937 2938 2939 2940 2941
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2942
				swsusp_set_page_free(pfn_to_page(pfn + i));
2943
			}
2944
		}
2945
	}
L
Linus Torvalds 已提交
2946 2947
	spin_unlock_irqrestore(&zone->lock, flags);
}
2948
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2949

2950
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2951
{
2952
	int migratetype;
L
Linus Torvalds 已提交
2953

2954
	if (!free_pcp_prepare(page))
2955
		return false;
2956

2957
	migratetype = get_pfnblock_migratetype(page, pfn);
2958
	set_pcppage_migratetype(page, migratetype);
2959 2960 2961
	return true;
}

2962
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2963 2964 2965 2966 2967 2968
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2969
	__count_vm_event(PGFREE);
2970

2971 2972 2973
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2974
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2975 2976 2977 2978
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2979
		if (unlikely(is_migrate_isolate(migratetype))) {
2980
			free_one_page(zone, page, pfn, 0, migratetype);
2981
			return;
2982 2983 2984 2985
		}
		migratetype = MIGRATE_MOVABLE;
	}

2986
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2987
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2988
	pcp->count++;
N
Nick Piggin 已提交
2989
	if (pcp->count >= pcp->high) {
2990
		unsigned long batch = READ_ONCE(pcp->batch);
2991
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2992
	}
2993
}
2994

2995 2996 2997
/*
 * Free a 0-order page
 */
2998
void free_unref_page(struct page *page)
2999 3000 3001 3002
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3003
	if (!free_unref_page_prepare(page, pfn))
3004 3005 3006
		return;

	local_irq_save(flags);
3007
	free_unref_page_commit(page, pfn);
3008
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3009 3010
}

3011 3012 3013
/*
 * Free a list of 0-order pages
 */
3014
void free_unref_page_list(struct list_head *list)
3015 3016
{
	struct page *page, *next;
3017
	unsigned long flags, pfn;
3018
	int batch_count = 0;
3019 3020 3021 3022

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3023
		if (!free_unref_page_prepare(page, pfn))
3024 3025 3026
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3027

3028
	local_irq_save(flags);
3029
	list_for_each_entry_safe(page, next, list, lru) {
3030 3031 3032
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3033 3034
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3045
	}
3046
	local_irq_restore(flags);
3047 3048
}

N
Nick Piggin 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3061 3062
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3063

3064
	for (i = 1; i < (1 << order); i++)
3065
		set_page_refcounted(page + i);
3066
	split_page_owner(page, order);
N
Nick Piggin 已提交
3067
}
K
K. Y. Srinivasan 已提交
3068
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3069

3070
int __isolate_free_page(struct page *page, unsigned int order)
3071 3072 3073
{
	unsigned long watermark;
	struct zone *zone;
3074
	int mt;
3075 3076 3077 3078

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3079
	mt = get_pageblock_migratetype(page);
3080

3081
	if (!is_migrate_isolate(mt)) {
3082 3083 3084 3085 3086 3087
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3088
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3089
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3090 3091
			return 0;

3092
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3093
	}
3094 3095 3096 3097 3098

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
3099

3100 3101 3102 3103
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3104 3105
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3106 3107
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3108
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3109
			    && !is_migrate_highatomic(mt))
3110 3111 3112
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3113 3114
	}

3115

3116
	return 1UL << order;
3117 3118
}

3119 3120 3121 3122 3123
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3124
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3125 3126
{
#ifdef CONFIG_NUMA
3127
	enum numa_stat_item local_stat = NUMA_LOCAL;
3128

3129 3130 3131 3132
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3133
	if (zone_to_nid(z) != numa_node_id())
3134 3135
		local_stat = NUMA_OTHER;

3136
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3137
		__inc_numa_state(z, NUMA_HIT);
3138
	else {
3139 3140
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3141
	}
3142
	__inc_numa_state(z, local_stat);
3143 3144 3145
#endif
}

3146 3147
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3148
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3149
			struct per_cpu_pages *pcp,
3150 3151 3152 3153 3154 3155 3156 3157
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3158
					migratetype, alloc_flags);
3159 3160 3161 3162
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3163
		page = list_first_entry(list, struct page, lru);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3174 3175
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3176 3177 3178 3179
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3180
	unsigned long flags;
3181

3182
	local_irq_save(flags);
3183 3184
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3185
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3186 3187 3188 3189
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3190
	local_irq_restore(flags);
3191 3192 3193
	return page;
}

L
Linus Torvalds 已提交
3194
/*
3195
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3196
 */
3197
static inline
3198
struct page *rmqueue(struct zone *preferred_zone,
3199
			struct zone *zone, unsigned int order,
3200 3201
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3202 3203
{
	unsigned long flags;
3204
	struct page *page;
L
Linus Torvalds 已提交
3205

3206
	if (likely(order == 0)) {
3207
		page = rmqueue_pcplist(preferred_zone, zone, order,
3208
				gfp_flags, migratetype, alloc_flags);
3209 3210
		goto out;
	}
3211

3212 3213 3214 3215 3216 3217
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3218

3219 3220 3221 3222 3223 3224 3225
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3226
		if (!page)
3227
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3228 3229 3230 3231 3232 3233
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3234

3235
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3236
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3237
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3238

3239
out:
3240 3241 3242 3243 3244 3245
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3246
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3247
	return page;
N
Nick Piggin 已提交
3248 3249 3250 3251

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3252 3253
}

3254 3255
#ifdef CONFIG_FAIL_PAGE_ALLOC

3256
static struct {
3257 3258
	struct fault_attr attr;

3259
	bool ignore_gfp_highmem;
3260
	bool ignore_gfp_reclaim;
3261
	u32 min_order;
3262 3263
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3264
	.ignore_gfp_reclaim = true,
3265
	.ignore_gfp_highmem = true,
3266
	.min_order = 1,
3267 3268 3269 3270 3271 3272 3273 3274
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3275
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3276
{
3277
	if (order < fail_page_alloc.min_order)
3278
		return false;
3279
	if (gfp_mask & __GFP_NOFAIL)
3280
		return false;
3281
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3282
		return false;
3283 3284
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3285
		return false;
3286 3287 3288 3289 3290 3291 3292 3293

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3294
	umode_t mode = S_IFREG | 0600;
3295 3296
	struct dentry *dir;

3297 3298
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3299

3300 3301 3302 3303 3304
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3305

3306
	return 0;
3307 3308 3309 3310 3311 3312 3313 3314
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3315
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3316
{
3317
	return false;
3318 3319 3320 3321
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3322 3323 3324 3325 3326 3327
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3328
/*
3329 3330 3331 3332
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3333
 */
3334 3335 3336
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3337
{
3338
	long min = mark;
L
Linus Torvalds 已提交
3339
	int o;
3340
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3341

3342
	/* free_pages may go negative - that's OK */
3343
	free_pages -= (1 << order) - 1;
3344

R
Rohit Seth 已提交
3345
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3346
		min -= min / 2;
3347 3348 3349 3350 3351 3352

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3353
	if (likely(!alloc_harder)) {
3354
		free_pages -= z->nr_reserved_highatomic;
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3368

3369 3370 3371 3372 3373 3374
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3375 3376 3377 3378 3379 3380
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3381
		return false;
L
Linus Torvalds 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3401 3402
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3403
			return true;
3404
		}
3405
#endif
3406 3407 3408
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3409
	}
3410
	return false;
3411 3412
}

3413
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3414
		      int classzone_idx, unsigned int alloc_flags)
3415 3416 3417 3418 3419
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3420 3421 3422 3423
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3424 3425 3426 3427 3428 3429 3430
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3431 3432 3433 3434 3435 3436 3437 3438

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3439
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3440 3441 3442 3443 3444 3445
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3446
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3447
			unsigned long mark, int classzone_idx)
3448 3449 3450 3451 3452 3453
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3454
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3455
								free_pages);
L
Linus Torvalds 已提交
3456 3457
}

3458
#ifdef CONFIG_NUMA
3459 3460
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3461
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3462
				RECLAIM_DISTANCE;
3463
}
3464
#else	/* CONFIG_NUMA */
3465 3466 3467 3468
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3469 3470
#endif	/* CONFIG_NUMA */

3471 3472 3473 3474 3475 3476 3477 3478 3479
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3480
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3481
{
3482 3483 3484 3485 3486 3487
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3488 3489 3490
	if (!zone)
		return alloc_flags;

3491
	if (zone_idx(zone) != ZONE_NORMAL)
3492
		return alloc_flags;
3493 3494 3495 3496 3497 3498 3499 3500

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3501
		return alloc_flags;
3502

3503
	alloc_flags |= ALLOC_NOFRAGMENT;
3504 3505
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3506 3507
}

R
Rohit Seth 已提交
3508
/*
3509
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3510 3511 3512
 * a page.
 */
static struct page *
3513 3514
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3515
{
3516
	struct zoneref *z;
3517
	struct zone *zone;
3518
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3519
	bool no_fallback;
3520

3521
retry:
R
Rohit Seth 已提交
3522
	/*
3523
	 * Scan zonelist, looking for a zone with enough free.
3524
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3525
	 */
3526 3527
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3528
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3529
								ac->nodemask) {
3530
		struct page *page;
3531 3532
		unsigned long mark;

3533 3534
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3535
			!__cpuset_zone_allowed(zone, gfp_mask))
3536
				continue;
3537 3538
		/*
		 * When allocating a page cache page for writing, we
3539 3540
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3541
		 * proportional share of globally allowed dirty pages.
3542
		 * The dirty limits take into account the node's
3543 3544 3545 3546 3547
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3548
		 * exceed the per-node dirty limit in the slowpath
3549
		 * (spread_dirty_pages unset) before going into reclaim,
3550
		 * which is important when on a NUMA setup the allowed
3551
		 * nodes are together not big enough to reach the
3552
		 * global limit.  The proper fix for these situations
3553
		 * will require awareness of nodes in the
3554 3555
		 * dirty-throttling and the flusher threads.
		 */
3556 3557 3558 3559 3560 3561 3562 3563 3564
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3582
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3583
		if (!zone_watermark_fast(zone, order, mark,
3584
				       ac_classzone_idx(ac), alloc_flags)) {
3585 3586
			int ret;

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3597 3598 3599 3600 3601
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3602
			if (node_reclaim_mode == 0 ||
3603
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3604 3605
				continue;

3606
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3607
			switch (ret) {
3608
			case NODE_RECLAIM_NOSCAN:
3609
				/* did not scan */
3610
				continue;
3611
			case NODE_RECLAIM_FULL:
3612
				/* scanned but unreclaimable */
3613
				continue;
3614 3615
			default:
				/* did we reclaim enough */
3616
				if (zone_watermark_ok(zone, order, mark,
3617
						ac_classzone_idx(ac), alloc_flags))
3618 3619 3620
					goto try_this_zone;

				continue;
3621
			}
R
Rohit Seth 已提交
3622 3623
		}

3624
try_this_zone:
3625
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3626
				gfp_mask, alloc_flags, ac->migratetype);
3627
		if (page) {
3628
			prep_new_page(page, order, gfp_mask, alloc_flags);
3629 3630 3631 3632 3633 3634 3635 3636

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3637
			return page;
3638 3639 3640 3641 3642 3643 3644 3645
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3646
		}
3647
	}
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3658
	return NULL;
M
Martin Hicks 已提交
3659 3660
}

3661
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3662 3663
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3664
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3665

3666
	if (!__ratelimit(&show_mem_rs))
3667 3668 3669 3670 3671 3672 3673 3674
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3675
		if (tsk_is_oom_victim(current) ||
3676 3677
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3678
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3679 3680
		filter &= ~SHOW_MEM_FILTER_NODES;

3681
	show_mem(filter, nodemask);
3682 3683
}

3684
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3685 3686 3687 3688 3689 3690
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3691
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3692 3693
		return;

3694 3695 3696
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3697
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3698 3699
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3700
	va_end(args);
J
Joe Perches 已提交
3701

3702
	cpuset_print_current_mems_allowed();
3703
	pr_cont("\n");
3704
	dump_stack();
3705
	warn_alloc_show_mem(gfp_mask, nodemask);
3706 3707
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3728 3729
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3730
	const struct alloc_context *ac, unsigned long *did_some_progress)
3731
{
3732 3733 3734
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3735
		.memcg = NULL,
3736 3737 3738
		.gfp_mask = gfp_mask,
		.order = order,
	};
3739 3740
	struct page *page;

3741 3742 3743
	*did_some_progress = 0;

	/*
3744 3745
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3746
	 */
3747
	if (!mutex_trylock(&oom_lock)) {
3748
		*did_some_progress = 1;
3749
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3750 3751
		return NULL;
	}
3752

3753 3754 3755
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3756 3757 3758
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3759
	 */
3760 3761 3762
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3763
	if (page)
3764 3765
		goto out;

3766 3767 3768 3769 3770 3771
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3772 3773 3774 3775 3776 3777 3778 3779
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3798

3799
	/* Exhausted what can be done so it's blame time */
3800
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3801
		*did_some_progress = 1;
3802

3803 3804 3805 3806 3807 3808
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3809 3810
					ALLOC_NO_WATERMARKS, ac);
	}
3811
out:
3812
	mutex_unlock(&oom_lock);
3813 3814 3815
	return page;
}

3816 3817 3818 3819 3820 3821
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3822 3823 3824 3825
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3826
		unsigned int alloc_flags, const struct alloc_context *ac,
3827
		enum compact_priority prio, enum compact_result *compact_result)
3828
{
3829
	struct page *page = NULL;
3830
	unsigned long pflags;
3831
	unsigned int noreclaim_flag;
3832 3833

	if (!order)
3834 3835
		return NULL;

3836
	psi_memstall_enter(&pflags);
3837
	noreclaim_flag = memalloc_noreclaim_save();
3838

3839
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3840
								prio, &page);
3841

3842
	memalloc_noreclaim_restore(noreclaim_flag);
3843
	psi_memstall_leave(&pflags);
3844

3845 3846 3847 3848 3849
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3850

3851 3852 3853 3854 3855 3856 3857
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3858

3859 3860
	if (page) {
		struct zone *zone = page_zone(page);
3861

3862 3863 3864 3865 3866
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3867

3868 3869 3870 3871 3872
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3873

3874
	cond_resched();
3875 3876 3877

	return NULL;
}
3878

3879 3880 3881 3882
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3883
		     int *compaction_retries)
3884 3885
{
	int max_retries = MAX_COMPACT_RETRIES;
3886
	int min_priority;
3887 3888 3889
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3890 3891 3892 3893

	if (!order)
		return false;

3894 3895 3896
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3897 3898 3899 3900 3901
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3902 3903
	if (compaction_failed(compact_result))
		goto check_priority;
3904 3905 3906 3907 3908 3909 3910

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3911 3912 3913 3914
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3915 3916

	/*
3917
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3918 3919 3920 3921 3922 3923 3924 3925
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3926 3927 3928 3929
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3930

3931 3932 3933 3934 3935
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3936 3937
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3938

3939
	if (*compact_priority > min_priority) {
3940 3941
		(*compact_priority)--;
		*compaction_retries = 0;
3942
		ret = true;
3943
	}
3944 3945 3946
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3947
}
3948 3949 3950
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3951
		unsigned int alloc_flags, const struct alloc_context *ac,
3952
		enum compact_priority prio, enum compact_result *compact_result)
3953
{
3954
	*compact_result = COMPACT_SKIPPED;
3955 3956
	return NULL;
}
3957 3958

static inline bool
3959 3960
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3961
		     enum compact_priority *compact_priority,
3962
		     int *compaction_retries)
3963
{
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3982 3983
	return false;
}
3984
#endif /* CONFIG_COMPACTION */
3985

3986
#ifdef CONFIG_LOCKDEP
3987
static struct lockdep_map __fs_reclaim_map =
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3999
	if (current->flags & PF_MEMALLOC)
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4022 4023 4024
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4025
		__fs_reclaim_acquire();
4026 4027 4028 4029 4030 4031
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4032
		__fs_reclaim_release();
4033 4034 4035 4036
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4037 4038
/* Perform direct synchronous page reclaim */
static int
4039 4040
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4041 4042
{
	struct reclaim_state reclaim_state;
4043
	int progress;
4044
	unsigned int noreclaim_flag;
4045
	unsigned long pflags;
4046 4047 4048 4049 4050

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4051
	psi_memstall_enter(&pflags);
4052
	fs_reclaim_acquire(gfp_mask);
4053
	noreclaim_flag = memalloc_noreclaim_save();
4054
	reclaim_state.reclaimed_slab = 0;
4055
	current->reclaim_state = &reclaim_state;
4056

4057 4058
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4059

4060
	current->reclaim_state = NULL;
4061
	memalloc_noreclaim_restore(noreclaim_flag);
4062
	fs_reclaim_release(gfp_mask);
4063
	psi_memstall_leave(&pflags);
4064 4065 4066

	cond_resched();

4067 4068 4069 4070 4071 4072
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4073
		unsigned int alloc_flags, const struct alloc_context *ac,
4074
		unsigned long *did_some_progress)
4075 4076 4077 4078
{
	struct page *page = NULL;
	bool drained = false;

4079
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4080 4081
	if (unlikely(!(*did_some_progress)))
		return NULL;
4082

4083
retry:
4084
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4085 4086 4087

	/*
	 * If an allocation failed after direct reclaim, it could be because
4088 4089
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4090 4091
	 */
	if (!page && !drained) {
4092
		unreserve_highatomic_pageblock(ac, false);
4093
		drain_all_pages(NULL);
4094 4095 4096 4097
		drained = true;
		goto retry;
	}

4098 4099 4100
	return page;
}

4101 4102
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4103 4104 4105
{
	struct zoneref *z;
	struct zone *zone;
4106
	pg_data_t *last_pgdat = NULL;
4107
	enum zone_type high_zoneidx = ac->high_zoneidx;
4108

4109 4110
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4111
		if (last_pgdat != zone->zone_pgdat)
4112
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4113 4114
		last_pgdat = zone->zone_pgdat;
	}
4115 4116
}

4117
static inline unsigned int
4118 4119
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4120
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4121

4122
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4123
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4124

4125 4126 4127 4128
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4129
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4130
	 */
4131
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4132

4133
	if (gfp_mask & __GFP_ATOMIC) {
4134
		/*
4135 4136
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4137
		 */
4138
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4139
			alloc_flags |= ALLOC_HARDER;
4140
		/*
4141
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4142
		 * comment for __cpuset_node_allowed().
4143
		 */
4144
		alloc_flags &= ~ALLOC_CPUSET;
4145
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4146 4147
		alloc_flags |= ALLOC_HARDER;

4148 4149 4150
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4151 4152 4153 4154
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4155 4156 4157
	return alloc_flags;
}

4158
static bool oom_reserves_allowed(struct task_struct *tsk)
4159
{
4160 4161 4162 4163 4164 4165 4166 4167
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4168 4169
		return false;

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4181
	if (gfp_mask & __GFP_MEMALLOC)
4182
		return ALLOC_NO_WATERMARKS;
4183
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4184 4185 4186 4187 4188 4189 4190
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4191

4192 4193 4194 4195 4196 4197
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4198 4199
}

M
Michal Hocko 已提交
4200 4201 4202
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4203 4204 4205 4206
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4207 4208 4209 4210 4211 4212
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4213
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4214 4215 4216
{
	struct zone *zone;
	struct zoneref *z;
4217
	bool ret = false;
M
Michal Hocko 已提交
4218

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4229 4230 4231 4232
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4233 4234
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4235
		return unreserve_highatomic_pageblock(ac, true);
4236
	}
M
Michal Hocko 已提交
4237

4238 4239 4240 4241 4242
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4243 4244 4245 4246
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4247
		unsigned long reclaimable;
4248 4249
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4250

4251 4252
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4253 4254

		/*
4255 4256
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4257
		 */
4258 4259 4260 4261 4262
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4263 4264 4265 4266 4267 4268 4269
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4270
				unsigned long write_pending;
4271

4272 4273
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4274

4275
				if (2 * write_pending > reclaimable) {
4276 4277 4278 4279
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4280

4281 4282
			ret = true;
			goto out;
M
Michal Hocko 已提交
4283 4284 4285
		}
	}

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4299 4300
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4334 4335
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4336
						struct alloc_context *ac)
4337
{
4338
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4339
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4340
	struct page *page = NULL;
4341
	unsigned int alloc_flags;
4342
	unsigned long did_some_progress;
4343
	enum compact_priority compact_priority;
4344
	enum compact_result compact_result;
4345 4346 4347
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4348
	int reserve_flags;
L
Linus Torvalds 已提交
4349

4350 4351 4352 4353 4354 4355 4356 4357
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4358 4359 4360 4361 4362
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4363 4364 4365 4366 4367 4368 4369 4370

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4382
	if (alloc_flags & ALLOC_KSWAPD)
4383
		wake_all_kswapds(order, gfp_mask, ac);
4384 4385 4386 4387 4388 4389 4390 4391 4392

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4393 4394
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4395 4396 4397 4398 4399 4400
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4401
	 */
4402 4403 4404 4405
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4406 4407
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4408
						INIT_COMPACT_PRIORITY,
4409 4410 4411 4412
						&compact_result);
		if (page)
			goto got_pg;

4413 4414 4415 4416
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4417
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4430 4431
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4432
			 * using async compaction.
4433
			 */
4434
			compact_priority = INIT_COMPACT_PRIORITY;
4435 4436
		}
	}
4437

4438
retry:
4439
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4440
	if (alloc_flags & ALLOC_KSWAPD)
4441
		wake_all_kswapds(order, gfp_mask, ac);
4442

4443 4444 4445
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4446

4447
	/*
4448 4449 4450
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4451
	 */
4452
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4453
		ac->nodemask = NULL;
4454 4455 4456 4457
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4458
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4459
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4460 4461
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4462

4463
	/* Caller is not willing to reclaim, we can't balance anything */
4464
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4465 4466
		goto nopage;

4467 4468
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4469 4470
		goto nopage;

4471 4472 4473 4474 4475 4476 4477
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4478
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4479
					compact_priority, &compact_result);
4480 4481
	if (page)
		goto got_pg;
4482

4483 4484
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4485
		goto nopage;
4486

M
Michal Hocko 已提交
4487 4488
	/*
	 * Do not retry costly high order allocations unless they are
4489
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4490
	 */
4491
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4492
		goto nopage;
M
Michal Hocko 已提交
4493 4494

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4495
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4496 4497
		goto retry;

4498 4499 4500 4501 4502 4503 4504
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4505
			should_compact_retry(ac, order, alloc_flags,
4506
				compact_result, &compact_priority,
4507
				&compaction_retries))
4508 4509
		goto retry;

4510 4511 4512

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4513 4514
		goto retry_cpuset;

4515 4516 4517 4518 4519
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4520
	/* Avoid allocations with no watermarks from looping endlessly */
4521 4522
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4523
	     (gfp_mask & __GFP_NOMEMALLOC)))
4524 4525
		goto nopage;

4526
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4527 4528
	if (did_some_progress) {
		no_progress_loops = 0;
4529
		goto retry;
M
Michal Hocko 已提交
4530
	}
4531

L
Linus Torvalds 已提交
4532
nopage:
4533 4534
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4535 4536
		goto retry_cpuset;

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4574 4575 4576 4577
		cond_resched();
		goto retry;
	}
fail:
4578
	warn_alloc(gfp_mask, ac->nodemask,
4579
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4580
got_pg:
4581
	return page;
L
Linus Torvalds 已提交
4582
}
4583

4584
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4585
		int preferred_nid, nodemask_t *nodemask,
4586 4587
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4588
{
4589
	ac->high_zoneidx = gfp_zone(gfp_mask);
4590
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4591 4592
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4593

4594
	if (cpusets_enabled()) {
4595 4596 4597
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4598 4599
		else
			*alloc_flags |= ALLOC_CPUSET;
4600 4601
	}

4602 4603
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4604

4605
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4606 4607

	if (should_fail_alloc_page(gfp_mask, order))
4608
		return false;
4609

4610 4611 4612
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4613 4614
	return true;
}
4615

4616
/* Determine whether to spread dirty pages and what the first usable zone */
4617
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4618
{
4619
	/* Dirty zone balancing only done in the fast path */
4620
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4621

4622 4623 4624 4625 4626
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4627 4628 4629 4630 4631 4632 4633 4634
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4635 4636
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4637 4638 4639
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4640
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4641 4642
	struct alloc_context ac = { };

4643 4644 4645 4646 4647 4648 4649 4650 4651
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4652
	gfp_mask &= gfp_allowed_mask;
4653
	alloc_mask = gfp_mask;
4654
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4655 4656
		return NULL;

4657
	finalise_ac(gfp_mask, &ac);
4658

4659 4660 4661 4662
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4663
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4664

4665
	/* First allocation attempt */
4666
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4667 4668
	if (likely(page))
		goto out;
4669

4670
	/*
4671 4672 4673 4674
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4675
	 */
4676
	alloc_mask = current_gfp_context(gfp_mask);
4677
	ac.spread_dirty_pages = false;
4678

4679 4680 4681 4682
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4683
	if (unlikely(ac.nodemask != nodemask))
4684
		ac.nodemask = nodemask;
4685

4686
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4687

4688
out:
4689
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4690
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4691 4692
		__free_pages(page, order);
		page = NULL;
4693 4694
	}

4695 4696
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4697
	return page;
L
Linus Torvalds 已提交
4698
}
4699
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4700 4701

/*
4702 4703 4704
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4705
 */
H
Harvey Harrison 已提交
4706
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4707
{
4708 4709
	struct page *page;

4710
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715 4716
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4717
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4718
{
4719
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4720 4721 4722
}
EXPORT_SYMBOL(get_zeroed_page);

4723
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4724
{
4725 4726 4727 4728
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4729 4730
}

4731 4732 4733 4734 4735
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4736 4737
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4738
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4739 4740
{
	if (addr != 0) {
N
Nick Piggin 已提交
4741
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4759 4760
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4780
void __page_frag_cache_drain(struct page *page, unsigned int count)
4781 4782 4783
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4784 4785
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4786
}
4787
EXPORT_SYMBOL(__page_frag_cache_drain);
4788

4789 4790
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4791 4792 4793 4794 4795 4796 4797
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4798
		page = __page_frag_cache_refill(nc, gfp_mask);
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4809
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4810 4811

		/* reset page count bias and offset to start of new frag */
4812
		nc->pfmemalloc = page_is_pfmemalloc(page);
4813
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4814 4815 4816 4817 4818 4819 4820
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4821
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4822 4823 4824 4825 4826 4827 4828
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4829
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4830 4831

		/* reset page count bias and offset to start of new frag */
4832
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4833 4834 4835 4836 4837 4838 4839 4840
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4841
EXPORT_SYMBOL(page_frag_alloc);
4842 4843 4844 4845

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4846
void page_frag_free(void *addr)
4847 4848 4849
{
	struct page *page = virt_to_head_page(addr);

4850 4851
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4852
}
4853
EXPORT_SYMBOL(page_frag_free);
4854

4855 4856
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4871 4872 4873
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4874
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4875 4876 4877 4878 4879 4880 4881 4882
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4883 4884
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4885 4886 4887 4888 4889 4890
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4891 4892 4893
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4894
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4895
	return make_alloc_exact(addr, order, size);
4896 4897 4898
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4899 4900 4901
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4902
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4903
 * @size: the number of bytes to allocate
4904
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
4905 4906 4907
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4908 4909
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4910
 */
4911
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4912
{
4913
	unsigned int order = get_order(size);
4914 4915 4916 4917 4918 4919
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
4920 4921 4922 4923 4924
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4944 4945 4946 4947
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4948
 * nr_free_zone_pages() counts the number of pages which are beyond the
4949 4950
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4951 4952
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4953 4954
 *
 * Return: number of pages beyond high watermark.
4955
 */
4956
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4957
{
4958
	struct zoneref *z;
4959 4960
	struct zone *zone;

4961
	/* Just pick one node, since fallback list is circular */
4962
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4963

4964
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4965

4966
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4967
		unsigned long size = zone_managed_pages(zone);
4968
		unsigned long high = high_wmark_pages(zone);
4969 4970
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4971 4972 4973 4974 4975
	}

	return sum;
}

4976 4977 4978 4979 4980
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4981 4982 4983
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4984
 */
4985
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4986
{
A
Al Viro 已提交
4987
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4988
}
4989
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4990

4991 4992 4993 4994 4995
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
4996 4997
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
4998
 */
4999
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5000
{
M
Mel Gorman 已提交
5001
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5002
}
5003 5004

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5005
{
5006
	if (IS_ENABLED(CONFIG_NUMA))
5007
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5008 5009
}

5010 5011 5012 5013 5014 5015
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5016
	unsigned long reclaimable;
5017 5018 5019 5020
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5021
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5022 5023

	for_each_zone(zone)
5024
		wmark_low += low_wmark_pages(zone);
5025 5026 5027 5028 5029

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5030
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5042 5043 5044
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5045
	 */
5046 5047 5048
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5049

5050 5051 5052 5053 5054 5055
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5056 5057
void si_meminfo(struct sysinfo *val)
{
5058
	val->totalram = totalram_pages();
5059
	val->sharedram = global_node_page_state(NR_SHMEM);
5060
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5061
	val->bufferram = nr_blockdev_pages();
5062
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5063 5064 5065 5066 5067 5068 5069 5070 5071
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5072 5073
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5074 5075
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5076 5077
	pg_data_t *pgdat = NODE_DATA(nid);

5078
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5079
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5080
	val->totalram = managed_pages;
5081
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5082
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5083
#ifdef CONFIG_HIGHMEM
5084 5085 5086 5087
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5088
			managed_highpages += zone_managed_pages(zone);
5089 5090 5091 5092 5093
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5094
#else
5095 5096
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5097
#endif
L
Linus Torvalds 已提交
5098 5099 5100 5101
	val->mem_unit = PAGE_SIZE;
}
#endif

5102
/*
5103 5104
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5105
 */
5106
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5107 5108
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5109
		return false;
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5120 5121
}

L
Linus Torvalds 已提交
5122 5123
#define K(x) ((x) << (PAGE_SHIFT-10))

5124 5125 5126 5127 5128
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5129 5130
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5131 5132 5133
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5134
#ifdef CONFIG_MEMORY_ISOLATION
5135
		[MIGRATE_ISOLATE]	= 'I',
5136
#endif
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5148
	printk(KERN_CONT "(%s) ", tmp);
5149 5150
}

L
Linus Torvalds 已提交
5151 5152 5153 5154
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5155 5156 5157 5158
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5159
 */
5160
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5161
{
5162
	unsigned long free_pcp = 0;
5163
	int cpu;
L
Linus Torvalds 已提交
5164
	struct zone *zone;
M
Mel Gorman 已提交
5165
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5166

5167
	for_each_populated_zone(zone) {
5168
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5169
			continue;
5170

5171 5172
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5173 5174
	}

K
KOSAKI Motohiro 已提交
5175 5176
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5177 5178
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5179
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5180
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5181 5182 5183 5184 5185 5186 5187
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5188 5189 5190
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5191 5192
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5193
		global_node_page_state(NR_FILE_MAPPED),
5194
		global_node_page_state(NR_SHMEM),
5195 5196 5197
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5198
		free_pcp,
5199
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5200

M
Mel Gorman 已提交
5201
	for_each_online_pgdat(pgdat) {
5202
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5203 5204
			continue;

M
Mel Gorman 已提交
5205 5206 5207 5208 5209 5210 5211 5212
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5213
			" mapped:%lukB"
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5234
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5235 5236
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5237
			K(node_page_state(pgdat, NR_SHMEM)),
5238 5239 5240 5241 5242 5243 5244 5245
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5246 5247
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5248 5249
	}

5250
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5251 5252
		int i;

5253
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5254
			continue;
5255 5256 5257 5258 5259

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5260
		show_node(zone);
5261 5262
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5263 5264 5265 5266
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5267 5268 5269 5270 5271
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5272
			" writepending:%lukB"
L
Linus Torvalds 已提交
5273
			" present:%lukB"
5274
			" managed:%lukB"
5275
			" mlocked:%lukB"
5276
			" kernel_stack:%lukB"
5277 5278
			" pagetables:%lukB"
			" bounce:%lukB"
5279 5280
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5281
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5282 5283
			"\n",
			zone->name,
5284
			K(zone_page_state(zone, NR_FREE_PAGES)),
5285 5286 5287
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5288 5289 5290 5291 5292
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5293
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5294
			K(zone->present_pages),
5295
			K(zone_managed_pages(zone)),
5296
			K(zone_page_state(zone, NR_MLOCK)),
5297
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5298 5299
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5300 5301
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5302
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5303 5304
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5305 5306
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5307 5308
	}

5309
	for_each_populated_zone(zone) {
5310 5311
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5312
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5313

5314
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5315
			continue;
L
Linus Torvalds 已提交
5316
		show_node(zone);
5317
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5318 5319 5320

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5321 5322 5323 5324
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5325
			total += nr[order] << order;
5326 5327 5328 5329 5330 5331

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5332 5333
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5334
		for (order = 0; order < MAX_ORDER; order++) {
5335 5336
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5337 5338 5339
			if (nr[order])
				show_migration_types(types[order]);
		}
5340
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5341 5342
	}

5343 5344
	hugetlb_show_meminfo();

5345
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5346

L
Linus Torvalds 已提交
5347 5348 5349
	show_swap_cache_info();
}

5350 5351 5352 5353 5354 5355
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5356 5357
/*
 * Builds allocation fallback zone lists.
5358 5359
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5360
 */
5361
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5362
{
5363
	struct zone *zone;
5364
	enum zone_type zone_type = MAX_NR_ZONES;
5365
	int nr_zones = 0;
5366 5367

	do {
5368
		zone_type--;
5369
		zone = pgdat->node_zones + zone_type;
5370
		if (managed_zone(zone)) {
5371
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5372
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5373
		}
5374
	} while (zone_type);
5375

5376
	return nr_zones;
L
Linus Torvalds 已提交
5377 5378 5379
}

#ifdef CONFIG_NUMA
5380 5381 5382

static int __parse_numa_zonelist_order(char *s)
{
5383 5384 5385 5386 5387 5388 5389 5390
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5391 5392 5393 5394 5395 5396 5397
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5398 5399 5400
	if (!s)
		return 0;

5401
	return __parse_numa_zonelist_order(s);
5402 5403 5404
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5405 5406
char numa_zonelist_order[] = "Node";

5407 5408 5409
/*
 * sysctl handler for numa_zonelist_order
 */
5410
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5411
		void __user *buffer, size_t *length,
5412 5413
		loff_t *ppos)
{
5414
	char *str;
5415 5416
	int ret;

5417 5418 5419 5420 5421
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5422

5423 5424
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5425
	return ret;
5426 5427 5428
}


5429
#define MAX_NODE_LOAD (nr_online_nodes)
5430 5431
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5432
/**
5433
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5444 5445
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5446
 */
5447
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5448
{
5449
	int n, val;
L
Linus Torvalds 已提交
5450
	int min_val = INT_MAX;
D
David Rientjes 已提交
5451
	int best_node = NUMA_NO_NODE;
5452
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5453

5454 5455 5456 5457 5458
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5459

5460
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466 5467 5468

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5469 5470 5471
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5472
		/* Give preference to headless and unused nodes */
5473 5474
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5493 5494 5495 5496 5497 5498

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5499 5500
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5501
{
5502 5503 5504 5505 5506 5507 5508 5509 5510
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5511

5512 5513 5514 5515 5516
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5517 5518
}

5519 5520 5521 5522 5523
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5524 5525
	struct zoneref *zonerefs;
	int nr_zones;
5526

5527 5528 5529 5530 5531
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5532 5533
}

5534 5535 5536 5537 5538 5539 5540 5541 5542
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5543 5544
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5545
	nodemask_t used_mask;
5546
	int local_node, prev_node;
L
Linus Torvalds 已提交
5547 5548 5549

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5550
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5551 5552
	prev_node = local_node;
	nodes_clear(used_mask);
5553 5554

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5555 5556 5557 5558 5559 5560
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5561 5562
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5563 5564
			node_load[node] = load;

5565
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5566 5567 5568
		prev_node = node;
		load--;
	}
5569

5570
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5571
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5572 5573
}

5574 5575 5576 5577 5578 5579 5580 5581 5582
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5583
	struct zoneref *z;
5584

5585
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5586
				   gfp_zone(GFP_KERNEL),
5587
				   NULL);
5588
	return zone_to_nid(z->zone);
5589 5590
}
#endif
5591

5592 5593
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5594 5595
#else	/* CONFIG_NUMA */

5596
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5597
{
5598
	int node, local_node;
5599 5600
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5601 5602 5603

	local_node = pgdat->node_id;

5604 5605 5606
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5619 5620
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5621
	}
5622 5623 5624
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5625 5626
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5627 5628
	}

5629 5630
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5631 5632 5633 5634
}

#endif	/* CONFIG_NUMA */

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5652
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5653

5654
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5655
{
5656
	int nid;
5657
	int __maybe_unused cpu;
5658
	pg_data_t *self = data;
5659 5660 5661
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5662

5663 5664 5665
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5666

5667 5668 5669 5670
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5671 5672
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5673 5674 5675
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5676

5677 5678
			build_zonelists(pgdat);
		}
5679

5680 5681 5682 5683 5684 5685 5686 5687 5688
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5689
		for_each_online_cpu(cpu)
5690
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5691
#endif
5692
	}
5693 5694

	spin_unlock(&lock);
5695 5696
}

5697 5698 5699
static noinline void __init
build_all_zonelists_init(void)
{
5700 5701
	int cpu;

5702
	__build_all_zonelists(NULL);
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5720 5721 5722 5723
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5724 5725
/*
 * unless system_state == SYSTEM_BOOTING.
5726
 *
5727
 * __ref due to call of __init annotated helper build_all_zonelists_init
5728
 * [protected by SYSTEM_BOOTING].
5729
 */
5730
void __ref build_all_zonelists(pg_data_t *pgdat)
5731 5732
{
	if (system_state == SYSTEM_BOOTING) {
5733
		build_all_zonelists_init();
5734
	} else {
5735
		__build_all_zonelists(pgdat);
5736 5737
		/* cpuset refresh routine should be here */
	}
5738
	vm_total_pages = nr_free_pagecache_pages();
5739 5740 5741 5742 5743 5744 5745
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5746
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5747 5748 5749 5750
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5751
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5752 5753 5754
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5755
#ifdef CONFIG_NUMA
5756
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5757
#endif
L
Linus Torvalds 已提交
5758 5759
}

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5784 5785
/*
 * Initially all pages are reserved - free ones are freed
5786
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5787 5788
 * done. Non-atomic initialization, single-pass.
 */
5789
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5790 5791
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5792
{
5793
	unsigned long pfn, end_pfn = start_pfn + size;
5794
	struct page *page;
L
Linus Torvalds 已提交
5795

5796 5797 5798
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5799
#ifdef CONFIG_ZONE_DEVICE
5800 5801
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5802 5803 5804 5805
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5806
	 */
5807 5808 5809 5810 5811 5812 5813 5814 5815
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5816

5817
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5818
		/*
5819 5820
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5821
		 */
5822 5823
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5824
				continue;
5825 5826 5827 5828 5829 5830
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5831
		}
5832

5833 5834 5835
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5836
			__SetPageReserved(page);
5837

5838 5839 5840 5841 5842
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5843
		 * kernel allocations are made.
5844 5845 5846 5847 5848 5849 5850 5851
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5852
			cond_resched();
5853
		}
L
Linus Torvalds 已提交
5854 5855 5856
	}
}

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5932
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5933
{
5934
	unsigned int order, t;
5935 5936
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5937 5938 5939 5940
		zone->free_area[order].nr_free = 0;
	}
}

5941 5942 5943 5944 5945
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5946

5947
static int zone_batchsize(struct zone *zone)
5948
{
5949
#ifdef CONFIG_MMU
5950 5951 5952 5953
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5954
	 * size of the zone.
5955
	 */
5956
	batch = zone_managed_pages(zone) / 1024;
5957 5958 5959
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5960 5961 5962 5963 5964
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5965 5966 5967
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5968
	 *
5969 5970 5971 5972
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5973
	 */
5974
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5975

5976
	return batch;
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5994 5995
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6023
/* a companion to pageset_set_high() */
6024 6025
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6026
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6027 6028
}

6029
static void pageset_init(struct per_cpu_pageset *p)
6030 6031
{
	struct per_cpu_pages *pcp;
6032
	int migratetype;
6033

6034 6035
	memset(p, 0, sizeof(*p));

6036
	pcp = &p->pcp;
6037 6038
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6039 6040
}

6041 6042 6043 6044 6045 6046
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6047
/*
6048
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6049 6050
 * to the value high for the pageset p.
 */
6051
static void pageset_set_high(struct per_cpu_pageset *p,
6052 6053
				unsigned long high)
{
6054 6055 6056
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6057

6058
	pageset_update(&p->pcp, high, batch);
6059 6060
}

6061 6062
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6063 6064
{
	if (percpu_pagelist_fraction)
6065
		pageset_set_high(pcp,
6066
			(zone_managed_pages(zone) /
6067 6068 6069 6070 6071
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6072 6073 6074 6075 6076 6077 6078 6079
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6080
void __meminit setup_zone_pageset(struct zone *zone)
6081 6082 6083
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6084 6085
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6086 6087
}

6088
/*
6089 6090
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6091
 */
6092
void __init setup_per_cpu_pageset(void)
6093
{
6094
	struct pglist_data *pgdat;
6095
	struct zone *zone;
6096

6097 6098
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6099 6100 6101 6102

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6103 6104
}

6105
static __meminit void zone_pcp_init(struct zone *zone)
6106
{
6107 6108 6109 6110 6111 6112
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6113

6114
	if (populated_zone(zone))
6115 6116 6117
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6118 6119
}

6120
void __meminit init_currently_empty_zone(struct zone *zone,
6121
					unsigned long zone_start_pfn,
6122
					unsigned long size)
6123 6124
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6125
	int zone_idx = zone_idx(zone) + 1;
6126

6127 6128
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6129 6130 6131

	zone->zone_start_pfn = zone_start_pfn;

6132 6133 6134 6135 6136 6137
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6138
	zone_init_free_lists(zone);
6139
	zone->initialized = 1;
6140 6141
}

T
Tejun Heo 已提交
6142
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6143
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6144

6145 6146 6147
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6148 6149
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6150
{
6151
	unsigned long start_pfn, end_pfn;
6152
	int nid;
6153

6154 6155
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6156

6157
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6158
	if (nid != NUMA_NO_NODE) {
6159 6160 6161
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6162 6163 6164
	}

	return nid;
6165 6166 6167 6168
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6169
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6170
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6171
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6172
 *
6173 6174 6175
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6176
 */
6177
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6178
{
6179 6180
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6181

6182 6183 6184
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6185

6186
		if (start_pfn < end_pfn)
6187 6188 6189
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6190 6191 6192
	}
}

6193 6194
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6195
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6196
 *
6197 6198
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6199 6200 6201
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6202 6203
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6204

6205 6206
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6207 6208 6209 6210
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6211 6212 6213
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6214 6215
 *
 * It returns the start and end page frame of a node based on information
6216
 * provided by memblock_set_node(). If called for a node
6217
 * with no available memory, a warning is printed and the start and end
6218
 * PFNs will be 0.
6219
 */
6220
void __init get_pfn_range_for_nid(unsigned int nid,
6221 6222
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6223
	unsigned long this_start_pfn, this_end_pfn;
6224
	int i;
6225

6226 6227 6228
	*start_pfn = -1UL;
	*end_pfn = 0;

6229 6230 6231
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6232 6233
	}

6234
	if (*start_pfn == -1UL)
6235 6236 6237
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6238 6239 6240 6241 6242
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6243
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6261
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6262 6263 6264 6265 6266 6267 6268
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6269
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6284 6285 6286 6287 6288 6289
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6290 6291 6292 6293 6294 6295
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6296 6297 6298 6299
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6300
static unsigned long __init zone_spanned_pages_in_node(int nid,
6301
					unsigned long zone_type,
6302 6303
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6304 6305
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6306 6307
					unsigned long *ignored)
{
6308 6309
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6310
	/* When hotadd a new node from cpu_up(), the node should be empty */
6311 6312 6313
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6314
	/* Get the start and end of the zone */
6315 6316
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6317 6318
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6319
				zone_start_pfn, zone_end_pfn);
6320 6321

	/* Check that this node has pages within the zone's required range */
6322
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6323 6324 6325
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6326 6327
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6328 6329

	/* Return the spanned pages */
6330
	return *zone_end_pfn - *zone_start_pfn;
6331 6332 6333 6334
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6335
 * then all holes in the requested range will be accounted for.
6336
 */
6337
unsigned long __init __absent_pages_in_range(int nid,
6338 6339 6340
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6341 6342 6343
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6344

6345 6346 6347 6348
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6349
	}
6350
	return nr_absent;
6351 6352 6353 6354 6355 6356 6357
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6358
 * Return: the number of pages frames in memory holes within a range.
6359 6360 6361 6362 6363 6364 6365 6366
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6367
static unsigned long __init zone_absent_pages_in_node(int nid,
6368
					unsigned long zone_type,
6369 6370
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6371 6372
					unsigned long *ignored)
{
6373 6374
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6375
	unsigned long zone_start_pfn, zone_end_pfn;
6376
	unsigned long nr_absent;
6377

6378
	/* When hotadd a new node from cpu_up(), the node should be empty */
6379 6380 6381
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6382 6383
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6384

M
Mel Gorman 已提交
6385 6386 6387
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6388 6389 6390 6391 6392 6393 6394
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6412 6413 6414 6415
		}
	}

	return nr_absent;
6416
}
6417

T
Tejun Heo 已提交
6418
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6419
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6420
					unsigned long zone_type,
6421 6422
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6423 6424
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6425 6426
					unsigned long *zones_size)
{
6427 6428 6429 6430 6431 6432 6433 6434
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6435 6436 6437
	return zones_size[zone_type];
}

6438
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6439
						unsigned long zone_type,
6440 6441
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6442 6443 6444 6445 6446 6447 6448
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6449

T
Tejun Heo 已提交
6450
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6451

6452
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6453 6454 6455 6456
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6457
{
6458
	unsigned long realtotalpages = 0, totalpages = 0;
6459 6460
	enum zone_type i;

6461 6462
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6463
		unsigned long zone_start_pfn, zone_end_pfn;
6464
		unsigned long size, real_size;
6465

6466 6467 6468
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6469 6470
						  &zone_start_pfn,
						  &zone_end_pfn,
6471 6472
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6473 6474
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6475 6476 6477 6478
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6479 6480 6481 6482 6483 6484 6485 6486
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6487 6488 6489 6490 6491
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6492 6493 6494
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6495 6496
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6497 6498 6499
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6500
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6501 6502 6503
{
	unsigned long usemapsize;

6504
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6505 6506
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6507 6508 6509 6510 6511 6512
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6513
static void __ref setup_usemap(struct pglist_data *pgdat,
6514 6515 6516
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6517
{
6518
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6519
	zone->pageblock_flags = NULL;
6520
	if (usemapsize) {
6521
		zone->pageblock_flags =
6522 6523
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6524 6525 6526 6527
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6528 6529
}
#else
6530 6531
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6532 6533
#endif /* CONFIG_SPARSEMEM */

6534
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6535

6536
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6537
void __init set_pageblock_order(void)
6538
{
6539 6540
	unsigned int order;

6541 6542 6543 6544
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6545 6546 6547 6548 6549
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6550 6551
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6552 6553
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6554 6555 6556 6557 6558
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6559 6560
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6561 6562 6563
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6564
 */
6565
void __init set_pageblock_order(void)
6566 6567
{
}
6568 6569 6570

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6571
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6572
						unsigned long present_pages)
6573 6574 6575 6576 6577 6578 6579 6580
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6581
	 * populated regions may not be naturally aligned on page boundary.
6582 6583 6584 6585 6586 6587 6588 6589 6590
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6611
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6612
{
6613
	pgdat_resize_init(pgdat);
6614 6615 6616 6617

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6618
	init_waitqueue_head(&pgdat->kswapd_wait);
6619
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6620

6621
	pgdat_page_ext_init(pgdat);
6622
	spin_lock_init(&pgdat->lru_lock);
6623
	lruvec_init(node_lruvec(pgdat));
6624 6625 6626 6627 6628
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6629
	atomic_long_set(&zone->managed_pages, remaining_pages);
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6670

6671
	pgdat_init_internals(pgdat);
6672 6673
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6674 6675
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6676
		unsigned long size, freesize, memmap_pages;
6677
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6678

6679
		size = zone->spanned_pages;
6680
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6681

6682
		/*
6683
		 * Adjust freesize so that it accounts for how much memory
6684 6685 6686
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6687
		memmap_pages = calc_memmap_size(size, freesize);
6688 6689 6690 6691 6692 6693 6694 6695
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6696
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6697 6698
					zone_names[j], memmap_pages, freesize);
		}
6699

6700
		/* Account for reserved pages */
6701 6702
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6703
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6704
					zone_names[0], dma_reserve);
6705 6706
		}

6707
		if (!is_highmem_idx(j))
6708
			nr_kernel_pages += freesize;
6709 6710 6711
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6712
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6713

6714 6715 6716 6717 6718
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6719
		zone_init_internals(zone, j, nid, freesize);
6720

6721
		if (!size)
L
Linus Torvalds 已提交
6722 6723
			continue;

6724
		set_pageblock_order();
6725 6726
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6727
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6728 6729 6730
	}
}

6731
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6732
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6733
{
6734
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6735 6736
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6737 6738 6739 6740
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6741 6742
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6743 6744
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6745
		unsigned long size, end;
A
Andy Whitcroft 已提交
6746 6747
		struct page *map;

6748 6749 6750 6751 6752
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6753
		end = pgdat_end_pfn(pgdat);
6754 6755
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6756 6757
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6758 6759 6760
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6761
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6762
	}
6763 6764 6765
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6766
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6767 6768 6769
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6770
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6771
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6772
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6773
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6774
			mem_map -= offset;
T
Tejun Heo 已提交
6775
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6776
	}
L
Linus Torvalds 已提交
6777 6778
#endif
}
6779 6780 6781
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6782

6783 6784 6785 6786 6787 6788 6789 6790 6791
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6792
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6793 6794
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6795
{
6796
	pg_data_t *pgdat = NODE_DATA(nid);
6797 6798
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6799

6800
	/* pg_data_t should be reset to zero when it's allocated */
6801
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6802

L
Linus Torvalds 已提交
6803 6804
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6805
	pgdat->per_cpu_nodestats = NULL;
6806 6807
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6808
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6809 6810
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6811 6812
#else
	start_pfn = node_start_pfn;
6813 6814 6815
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6816 6817

	alloc_node_mem_map(pgdat);
6818
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6819

6820
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6821 6822
}

M
Mike Rapoport 已提交
6823
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6846 6847 6848 6849 6850 6851
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6852 6853 6854 6855 6856
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6857
 */
6858
void __init zero_resv_unavail(void)
6859 6860 6861
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6862
	phys_addr_t next = 0;
6863 6864

	/*
6865
	 * Loop through unavailable ranges not covered by memblock.memory.
6866 6867
	 */
	pgcnt = 0;
6868 6869
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6870 6871
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6872 6873
		next = end;
	}
6874
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6875

6876 6877 6878 6879 6880
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6881
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6882
}
M
Mike Rapoport 已提交
6883
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6884

T
Tejun Heo 已提交
6885
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6886 6887 6888 6889 6890

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6891
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6892
{
6893
	unsigned int highest;
M
Miklos Szeredi 已提交
6894

6895
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6896 6897 6898 6899
	nr_node_ids = highest + 1;
}
#endif

6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6916
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6917 6918 6919 6920 6921
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6922
	unsigned long start, end, mask;
6923
	int last_nid = NUMA_NO_NODE;
6924
	int i, nid;
6925

6926
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6950
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6951
static unsigned long __init find_min_pfn_for_node(int nid)
6952
{
6953
	unsigned long min_pfn = ULONG_MAX;
6954 6955
	unsigned long start_pfn;
	int i;
6956

6957 6958
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6959

6960
	if (min_pfn == ULONG_MAX) {
6961
		pr_warn("Could not find start_pfn for node %d\n", nid);
6962 6963 6964 6965
		return 0;
	}

	return min_pfn;
6966 6967 6968 6969 6970
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6971
 * Return: the minimum PFN based on information provided via
6972
 * memblock_set_node().
6973 6974 6975 6976 6977 6978
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6979 6980 6981
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6982
 * Populate N_MEMORY for calculating usable_nodes.
6983
 */
A
Adrian Bunk 已提交
6984
static unsigned long __init early_calculate_totalpages(void)
6985 6986
{
	unsigned long totalpages = 0;
6987 6988 6989 6990 6991
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6992

6993 6994
		totalpages += pages;
		if (pages)
6995
			node_set_state(nid, N_MEMORY);
6996
	}
6997
	return totalpages;
6998 6999
}

M
Mel Gorman 已提交
7000 7001 7002 7003 7004 7005
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7006
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7007 7008 7009 7010
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7011
	/* save the state before borrow the nodemask */
7012
	nodemask_t saved_node_state = node_states[N_MEMORY];
7013
	unsigned long totalpages = early_calculate_totalpages();
7014
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7015
	struct memblock_region *r;
7016 7017 7018 7019 7020 7021 7022 7023 7024

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7025 7026
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7027 7028
				continue;

E
Emil Medve 已提交
7029
			nid = r->nid;
7030

E
Emil Medve 已提交
7031
			usable_startpfn = PFN_DOWN(r->base);
7032 7033 7034 7035 7036 7037 7038
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7039

7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7070
	/*
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7098
		required_movablecore = min(totalpages, required_movablecore);
7099 7100 7101 7102 7103
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7104 7105 7106 7107 7108
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7109
		goto out;
M
Mel Gorman 已提交
7110 7111 7112 7113 7114 7115 7116

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7117
	for_each_node_state(nid, N_MEMORY) {
7118 7119
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7136
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7137 7138
			unsigned long size_pages;

7139
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7182
			 * satisfied
M
Mel Gorman 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7196
	 * satisfied
M
Mel Gorman 已提交
7197 7198 7199 7200 7201
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7202
out2:
M
Mel Gorman 已提交
7203 7204 7205 7206
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7207

7208
out:
7209
	/* restore the node_state */
7210
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7211 7212
}

7213 7214
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7215 7216 7217
{
	enum zone_type zone_type;

7218
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7219
		struct zone *zone = &pgdat->node_zones[zone_type];
7220
		if (populated_zone(zone)) {
7221 7222 7223
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7224
				node_set_state(nid, N_NORMAL_MEMORY);
7225 7226
			break;
		}
7227 7228 7229
	}
}

7230 7231
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7232
 * @max_zone_pfn: an array of max PFNs for each zone
7233 7234
 *
 * This will call free_area_init_node() for each active node in the system.
7235
 * Using the page ranges provided by memblock_set_node(), the size of each
7236 7237 7238 7239 7240 7241 7242 7243 7244
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7245 7246
	unsigned long start_pfn, end_pfn;
	int i, nid;
7247

7248 7249 7250 7251 7252
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7253 7254 7255 7256

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7257 7258
		if (i == ZONE_MOVABLE)
			continue;
7259 7260 7261 7262 7263 7264

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7265
	}
M
Mel Gorman 已提交
7266 7267 7268

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7269
	find_zone_movable_pfns_for_nodes();
7270 7271

	/* Print out the zone ranges */
7272
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7273 7274 7275
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7276
		pr_info("  %-8s ", zone_names[i]);
7277 7278
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7279
			pr_cont("empty\n");
7280
		else
7281 7282 7283 7284
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7285
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7286 7287 7288
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7289
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7290 7291
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7292 7293
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7294
	}
7295

7296
	/* Print out the early node map */
7297
	pr_info("Early memory node ranges\n");
7298
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7299 7300 7301
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7302 7303

	/* Initialise every node */
7304
	mminit_verify_pageflags_layout();
7305
	setup_nr_node_ids();
7306
	zero_resv_unavail();
7307 7308
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7309
		free_area_init_node(nid, NULL,
7310
				find_min_pfn_for_node(nid), NULL);
7311 7312 7313

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7314 7315
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7316 7317
	}
}
M
Mel Gorman 已提交
7318

7319 7320
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7321 7322
{
	unsigned long long coremem;
7323 7324
	char *endptr;

M
Mel Gorman 已提交
7325 7326 7327
	if (!p)
		return -EINVAL;

7328 7329 7330 7331 7332
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7333

7334 7335 7336 7337 7338
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7339

7340 7341 7342
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7343 7344
	return 0;
}
M
Mel Gorman 已提交
7345

7346 7347 7348 7349 7350 7351
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7352 7353 7354 7355 7356 7357
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7358 7359
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7360 7361 7362 7363 7364 7365 7366 7367
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7368 7369
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7370 7371
}

M
Mel Gorman 已提交
7372
early_param("kernelcore", cmdline_parse_kernelcore);
7373
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7374

T
Tejun Heo 已提交
7375
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7376

7377 7378
void adjust_managed_page_count(struct page *page, long count)
{
7379
	atomic_long_add(count, &page_zone(page)->managed_pages);
7380
	totalram_pages_add(count);
7381 7382
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7383
		totalhigh_pages_add(count);
7384
#endif
7385
}
7386
EXPORT_SYMBOL(adjust_managed_page_count);
7387

7388
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7389
{
7390 7391
	void *pos;
	unsigned long pages = 0;
7392

7393 7394 7395
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7407
		if ((unsigned int)poison <= 0xFF)
7408 7409 7410
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7411 7412 7413
	}

	if (pages && s)
7414 7415
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7416 7417 7418 7419

	return pages;
}

7420 7421 7422 7423
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7424
	totalram_pages_inc();
7425
	atomic_long_inc(&page_zone(page)->managed_pages);
7426
	totalhigh_pages_inc();
7427 7428 7429
}
#endif

7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7452 7453 7454 7455
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7466
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7467
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7468
		", %luK highmem"
7469
#endif
J
Joe Perches 已提交
7470 7471 7472 7473 7474
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7475
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7476
		totalcma_pages << (PAGE_SHIFT - 10),
7477
#ifdef	CONFIG_HIGHMEM
7478
		totalhigh_pages() << (PAGE_SHIFT - 10),
7479
#endif
J
Joe Perches 已提交
7480
		str ? ", " : "", str ? str : "");
7481 7482
}

7483
/**
7484 7485
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7486
 *
7487
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7488 7489
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7490 7491 7492
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7493 7494 7495 7496 7497 7498
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7499 7500
void __init free_area_init(unsigned long *zones_size)
{
7501
	zero_resv_unavail();
7502
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7503 7504 7505
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7506
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7507 7508
{

7509 7510
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7511

7512 7513 7514 7515 7516 7517 7518
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7519

7520 7521 7522 7523 7524 7525 7526 7527 7528
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7529 7530 7531 7532
}

void __init page_alloc_init(void)
{
7533 7534 7535 7536 7537 7538
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7539 7540
}

7541
/*
7542
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7543 7544 7545 7546 7547 7548
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7549
	enum zone_type i, j;
7550 7551

	for_each_online_pgdat(pgdat) {
7552 7553 7554

		pgdat->totalreserve_pages = 0;

7555 7556
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7557
			long max = 0;
7558
			unsigned long managed_pages = zone_managed_pages(zone);
7559 7560 7561 7562 7563 7564 7565

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7566 7567
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7568

7569 7570
			if (max > managed_pages)
				max = managed_pages;
7571

7572
			pgdat->totalreserve_pages += max;
7573

7574 7575 7576 7577 7578 7579
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7580 7581
/*
 * setup_per_zone_lowmem_reserve - called whenever
7582
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7583 7584 7585 7586 7587 7588
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7589
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7590

7591
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7592 7593
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7594
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7595 7596 7597

			zone->lowmem_reserve[j] = 0;

7598 7599
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7600 7601
				struct zone *lower_zone;

7602
				idx--;
L
Linus Torvalds 已提交
7603
				lower_zone = pgdat->node_zones + idx;
7604 7605 7606 7607 7608 7609 7610 7611

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7612
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7613 7614 7615
			}
		}
	}
7616 7617 7618

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7619 7620
}

7621
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7622 7623 7624 7625 7626 7627 7628 7629 7630
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7631
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7632 7633 7634
	}

	for_each_zone(zone) {
7635 7636
		u64 tmp;

7637
		spin_lock_irqsave(&zone->lock, flags);
7638
		tmp = (u64)pages_min * zone_managed_pages(zone);
7639
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7640 7641
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7642 7643 7644 7645
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7646
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7647
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7648
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7649
			 */
7650
			unsigned long min_pages;
L
Linus Torvalds 已提交
7651

7652
			min_pages = zone_managed_pages(zone) / 1024;
7653
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7654
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7655
		} else {
N
Nick Piggin 已提交
7656 7657
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7658 7659
			 * proportionate to the zone's size.
			 */
7660
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7661 7662
		}

7663 7664 7665 7666 7667 7668
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7669
			    mult_frac(zone_managed_pages(zone),
7670 7671
				      watermark_scale_factor, 10000));

7672 7673
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7674
		zone->watermark_boost = 0;
7675

7676
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7677
	}
7678 7679 7680

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7681 7682
}

7683 7684 7685 7686 7687 7688 7689 7690 7691
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7692 7693 7694
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7695
	__setup_per_zone_wmarks();
7696
	spin_unlock(&lock);
7697 7698
}

L
Linus Torvalds 已提交
7699 7700 7701 7702 7703 7704 7705
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7706
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7723
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7724 7725
{
	unsigned long lowmem_kbytes;
7726
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7727 7728

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7741
	setup_per_zone_wmarks();
7742
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7743
	setup_per_zone_lowmem_reserve();
7744 7745 7746 7747 7748 7749

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7750 7751
	return 0;
}
7752
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7753 7754

/*
7755
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7756 7757 7758
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7759
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7760
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7761
{
7762 7763 7764 7765 7766 7767
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7768 7769
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7770
		setup_per_zone_wmarks();
7771
	}
L
Linus Torvalds 已提交
7772 7773 7774
	return 0;
}

7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7802
#ifdef CONFIG_NUMA
7803
static void setup_min_unmapped_ratio(void)
7804
{
7805
	pg_data_t *pgdat;
7806 7807
	struct zone *zone;

7808
	for_each_online_pgdat(pgdat)
7809
		pgdat->min_unmapped_pages = 0;
7810

7811
	for_each_zone(zone)
7812 7813
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7814
}
7815

7816 7817

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7818
	void __user *buffer, size_t *length, loff_t *ppos)
7819 7820 7821
{
	int rc;

7822
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7823 7824 7825
	if (rc)
		return rc;

7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7836 7837 7838
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7839
	for_each_zone(zone)
7840 7841
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7855 7856
	return 0;
}
7857 7858
#endif

L
Linus Torvalds 已提交
7859 7860 7861 7862 7863 7864
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7865
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7866 7867
 * if in function of the boot time zone sizes.
 */
7868
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7869
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7870
{
7871
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7872 7873 7874 7875
	setup_per_zone_lowmem_reserve();
	return 0;
}

7876 7877
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7878 7879
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7880
 */
7881
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7882
	void __user *buffer, size_t *length, loff_t *ppos)
7883 7884
{
	struct zone *zone;
7885
	int old_percpu_pagelist_fraction;
7886 7887
	int ret;

7888 7889 7890
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7891
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7906

7907
	for_each_populated_zone(zone) {
7908 7909
		unsigned int cpu;

7910
		for_each_possible_cpu(cpu)
7911 7912
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7913
	}
7914
out:
7915
	mutex_unlock(&pcp_batch_high_lock);
7916
	return ret;
7917 7918
}

7919
#ifdef CONFIG_NUMA
7920
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7971 7972
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7973
{
7974
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7975 7976
	unsigned long log2qty, size;
	void *table = NULL;
7977
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7978 7979 7980 7981

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7982
		numentries = nr_kernel_pages;
7983
		numentries -= arch_reserved_kernel_pages();
7984 7985 7986 7987

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7988

P
Pavel Tatashin 已提交
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7999 8000 8001 8002 8003
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8004 8005

		/* Make sure we've got at least a 0-order allocation.. */
8006 8007 8008 8009 8010 8011 8012 8013
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8014
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8015
	}
8016
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8017 8018 8019 8020 8021 8022

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8023
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8024

8025 8026
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8027 8028 8029
	if (numentries > max)
		numentries = max;

8030
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8031

8032
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8033 8034
	do {
		size = bucketsize << log2qty;
8035 8036
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8037
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8038
			else
8039 8040
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8041
		} else if (hashdist) {
8042
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8043
		} else {
8044 8045
			/*
			 * If bucketsize is not a power-of-two, we may free
8046 8047
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8048
			 */
8049
			if (get_order(size) < MAX_ORDER) {
8050 8051
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
8052
			}
L
Linus Torvalds 已提交
8053 8054 8055 8056 8057 8058
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8059 8060
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
8061 8062 8063 8064 8065 8066 8067 8068

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8069

K
KAMEZAWA Hiroyuki 已提交
8070
/*
8071 8072 8073
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8074
 * PageLRU check without isolation or lru_lock could race so that
8075 8076 8077
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8078
 */
8079
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8080
			 int migratetype, int flags)
8081
{
8082 8083 8084 8085
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8086

8087
	/*
8088 8089 8090 8091 8092
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8093 8094
	 */

8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8107

8108
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8109 8110
		unsigned long check = pfn + iter;

8111
		if (!pfn_valid_within(check))
8112
			continue;
8113

8114
		page = pfn_to_page(check);
8115

8116
		if (PageReserved(page))
8117
			goto unmovable;
8118

8119 8120 8121 8122 8123 8124 8125 8126
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8127 8128
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8129
		 * We need not scan over tail pages because we don't
8130 8131 8132
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8133 8134
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8135

8136
			if (!hugepage_migration_supported(page_hstate(head)))
8137 8138
				goto unmovable;

8139 8140
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8141 8142 8143
			continue;
		}

8144 8145 8146 8147
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8148
		 * because their page->_refcount is zero at all time.
8149
		 */
8150
		if (!page_ref_count(page)) {
8151 8152 8153 8154
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8155

8156 8157 8158 8159
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8160
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8161 8162
			continue;

8163 8164 8165
		if (__PageMovable(page))
			continue;

8166 8167 8168
		if (!PageLRU(page))
			found++;
		/*
8169 8170 8171
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8182
			goto unmovable;
8183
	}
8184
	return false;
8185 8186
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8187
	if (flags & REPORT_FAILURE)
8188
		dump_page(pfn_to_page(pfn + iter), reason);
8189
	return true;
8190 8191
}

8192
#ifdef CONFIG_CONTIG_ALLOC
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8206 8207
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8208 8209
{
	/* This function is based on compact_zone() from compaction.c. */
8210
	unsigned long nr_reclaimed;
8211 8212 8213 8214
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8215
	migrate_prep();
8216

8217
	while (pfn < end || !list_empty(&cc->migratepages)) {
8218 8219 8220 8221 8222
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8223 8224
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8225
			pfn = isolate_migratepages_range(cc, pfn, end);
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8236 8237 8238
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8239

8240
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8241
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8242
	}
8243 8244 8245 8246 8247
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8248 8249 8250 8251 8252 8253
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8254 8255 8256 8257
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8258
 * @gfp_mask:	GFP mask to use during compaction
8259 8260
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8261
 * aligned.  The PFN range must belong to a single zone.
8262
 *
8263 8264 8265
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8266
 *
8267
 * Return: zero on success or negative error code.  On success all
8268 8269 8270
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8271
int alloc_contig_range(unsigned long start, unsigned long end,
8272
		       unsigned migratetype, gfp_t gfp_mask)
8273 8274
{
	unsigned long outer_start, outer_end;
8275 8276
	unsigned int order;
	int ret = 0;
8277

8278 8279 8280 8281
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8282
		.mode = MIGRATE_SYNC,
8283
		.ignore_skip_hint = true,
8284
		.no_set_skip_hint = true,
8285
		.gfp_mask = current_gfp_context(gfp_mask),
8286 8287 8288
	};
	INIT_LIST_HEAD(&cc.migratepages);

8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8314
				       pfn_max_align_up(end), migratetype, 0);
8315
	if (ret < 0)
8316
		return ret;
8317

8318 8319
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8320 8321 8322 8323 8324 8325 8326
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8327
	 */
8328
	ret = __alloc_contig_migrate_range(&cc, start, end);
8329
	if (ret && ret != -EBUSY)
8330
		goto done;
8331
	ret =0;
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8356 8357
			outer_start = start;
			break;
8358 8359 8360 8361
		}
		outer_start &= ~0UL << order;
	}

8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8375
	/* Make sure the range is really isolated. */
8376
	if (test_pages_isolated(outer_start, end, false)) {
8377
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8378
			__func__, outer_start, end);
8379 8380 8381 8382
		ret = -EBUSY;
		goto done;
	}

8383
	/* Grab isolated pages from freelists. */
8384
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8398
				pfn_max_align_up(end), migratetype);
8399 8400
	return ret;
}
8401
#endif /* CONFIG_CONTIG_ALLOC */
8402

8403
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8404
{
8405 8406 8407 8408 8409 8410 8411 8412 8413
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8414 8415
}

8416
#ifdef CONFIG_MEMORY_HOTPLUG
8417 8418 8419 8420
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8421 8422
void __meminit zone_pcp_update(struct zone *zone)
{
8423
	unsigned cpu;
8424
	mutex_lock(&pcp_batch_high_lock);
8425
	for_each_possible_cpu(cpu)
8426 8427
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8428
	mutex_unlock(&pcp_batch_high_lock);
8429 8430 8431
}
#endif

8432 8433 8434
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8435 8436
	int cpu;
	struct per_cpu_pageset *pset;
8437 8438 8439 8440

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8441 8442 8443 8444
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8445 8446 8447 8448 8449 8450
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8451
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8452
/*
8453 8454
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8455
 */
8456
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8457 8458 8459 8460
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8461
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8462 8463
	unsigned long pfn;
	unsigned long flags;
8464 8465
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8466 8467 8468 8469 8470
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8471 8472
		return offlined_pages;

8473
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8474 8475 8476 8477 8478 8479 8480 8481 8482
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8483 8484 8485 8486 8487 8488 8489
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
8490
			offlined_pages++;
8491 8492 8493
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8494 8495 8496
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8497
		offlined_pages += 1 << order;
K
KAMEZAWA Hiroyuki 已提交
8498
#ifdef CONFIG_DEBUG_VM
8499 8500
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8510 8511

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8512 8513
}
#endif
8514 8515 8516 8517 8518 8519

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8520
	unsigned int order;
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif