page_alloc.c 225.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
23
#include <linux/memblock.h>
L
Linus Torvalds 已提交
24
#include <linux/compiler.h>
25
#include <linux/kernel.h>
26
#include <linux/kasan.h>
L
Linus Torvalds 已提交
27 28 29 30 31
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
32
#include <linux/ratelimit.h>
33
#include <linux/oom.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
39 40
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
41
#include <linux/vmstat.h>
42
#include <linux/mempolicy.h>
43
#include <linux/memremap.h>
44
#include <linux/stop_machine.h>
45 46
#include <linux/sort.h>
#include <linux/pfn.h>
47
#include <linux/backing-dev.h>
48
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
49
#include <linux/page-isolation.h>
50
#include <linux/page_ext.h>
51
#include <linux/debugobjects.h>
52
#include <linux/kmemleak.h>
53
#include <linux/compaction.h>
54
#include <trace/events/kmem.h>
55
#include <trace/events/oom.h>
56
#include <linux/prefetch.h>
57
#include <linux/mm_inline.h>
58
#include <linux/migrate.h>
59
#include <linux/hugetlb.h>
60
#include <linux/sched/rt.h>
61
#include <linux/sched/mm.h>
62
#include <linux/page_owner.h>
63
#include <linux/kthread.h>
64
#include <linux/memcontrol.h>
65
#include <linux/ftrace.h>
66
#include <linux/lockdep.h>
67
#include <linux/nmi.h>
68
#include <linux/psi.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

86 87 88 89 90 91 92 93 94
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95
int _node_numa_mem_[MAX_NUMNODES];
96 97
#endif

98 99 100 101
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

102
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103
volatile unsigned long latent_entropy __latent_entropy;
104 105 106
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
107
/*
108
 * Array of node states.
L
Linus Torvalds 已提交
109
 */
110 111 112 113 114 115 116
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 118
#endif
	[N_MEMORY] = { { [0] = 1UL } },
119 120 121 122 123
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

124 125 126
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

127
unsigned long totalram_pages __read_mostly;
128
unsigned long totalreserve_pages __read_mostly;
129
unsigned long totalcma_pages __read_mostly;
130

131
int percpu_pagelist_fraction;
132
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

152 153 154 155 156
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
157 158 159 160
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
161
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166
{
167
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175
{
176
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208
#ifdef CONFIG_ZONE_DMA
209
	[ZONE_DMA] = 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	[ZONE_DMA32] = 256,
213
#endif
214
	[ZONE_NORMAL] = 32,
215
#ifdef CONFIG_HIGHMEM
216
	[ZONE_HIGHMEM] = 0,
217
#endif
218
	[ZONE_MOVABLE] = 0,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274 275
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279 280
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308
		return true;

	return false;
}

/*
309
 * Returns true when the remaining initialisation should be deferred until
310 311
 * later in the boot cycle when it can be parallelised.
 */
312 313
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314
{
315 316 317 318 319 320 321 322 323 324 325
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

326
	/* Always populate low zones for address-constrained allocations */
327
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328
		return false;
329 330 331 332 333
	nr_initialised++;
	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
334
	}
335
	return false;
336 337 338 339 340 341 342
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

343
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344
{
345
	return false;
346 347 348
}
#endif

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
449

450
void set_pageblock_migratetype(struct page *page, int migratetype)
451
{
452 453
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
454 455
		migratetype = MIGRATE_UNMOVABLE;

456 457 458 459
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
460
#ifdef CONFIG_DEBUG_VM
461
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
462
{
463 464 465
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
466
	unsigned long sp, start_pfn;
467

468 469
	do {
		seq = zone_span_seqbegin(zone);
470 471
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
472
		if (!zone_spans_pfn(zone, pfn))
473 474 475
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

476
	if (ret)
477 478 479
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
480

481
	return ret;
482 483 484 485
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
486
	if (!pfn_valid_within(page_to_pfn(page)))
487
		return 0;
L
Linus Torvalds 已提交
488
	if (zone != page_zone(page))
489 490 491 492 493 494 495
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
496
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497 498
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
499
		return 1;
500 501 502
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
503 504
	return 0;
}
N
Nick Piggin 已提交
505
#else
506
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
507 508 509 510 511
{
	return 0;
}
#endif

512 513
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
514
{
515 516 517 518 519 520 521 522 523 524 525 526 527 528
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
529
			pr_alert(
530
			      "BUG: Bad page state: %lu messages suppressed\n",
531 532 533 534 535 536 537 538
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

539
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
540
		current->comm, page_to_pfn(page));
541 542 543 544 545
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
546
	dump_page_owner(page);
547

548
	print_modules();
L
Linus Torvalds 已提交
549
	dump_stack();
550
out:
551
	/* Leave bad fields for debug, except PageBuddy could make trouble */
552
	page_mapcount_reset(page); /* remove PageBuddy */
553
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
554 555 556 557 558
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
559
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
560
 *
561 562
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
563
 *
564 565
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
566
 *
567
 * The first tail page's ->compound_order holds the order of allocation.
568
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
569
 */
570

571
void free_compound_page(struct page *page)
572
{
573
	__free_pages_ok(page, compound_order(page));
574 575
}

576
void prep_compound_page(struct page *page, unsigned int order)
577 578 579 580
{
	int i;
	int nr_pages = 1 << order;

581
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 583 584 585
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
586
		set_page_count(p, 0);
587
		p->mapping = TAIL_MAPPING;
588
		set_compound_head(p, page);
589
	}
590
	atomic_set(compound_mapcount_ptr(page), -1);
591 592
}

593 594
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
595 596
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597
EXPORT_SYMBOL(_debug_pagealloc_enabled);
598 599
bool _debug_guardpage_enabled __read_mostly;

600 601 602 603
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
604
	return kstrtobool(buf, &_debug_pagealloc_enabled);
605 606 607
}
early_param("debug_pagealloc", early_debug_pagealloc);

608 609
static bool need_debug_guardpage(void)
{
610 611 612 613
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

614 615 616
	if (!debug_guardpage_minorder())
		return false;

617 618 619 620 621
	return true;
}

static void init_debug_guardpage(void)
{
622 623 624
	if (!debug_pagealloc_enabled())
		return;

625 626 627
	if (!debug_guardpage_minorder())
		return;

628 629 630 631 632 633 634
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
635 636 637 638 639 640

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
641
		pr_err("Bad debug_guardpage_minorder value\n");
642 643 644
		return 0;
	}
	_debug_guardpage_minorder = res;
645
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 647
	return 0;
}
648
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649

650
static inline bool set_page_guard(struct zone *zone, struct page *page,
651
				unsigned int order, int migratetype)
652
{
653 654 655
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
656 657 658 659
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
660 661

	page_ext = lookup_page_ext(page);
662
	if (unlikely(!page_ext))
663
		return false;
664

665 666
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

667 668 669 670
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
671 672

	return true;
673 674
}

675 676
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
677
{
678 679 680 681 682 683
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
684 685 686
	if (unlikely(!page_ext))
		return;

687 688
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

689 690 691
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
692 693
}
#else
694
struct page_ext_operations debug_guardpage_ops;
695 696
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
697 698
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
699 700
#endif

701
static inline void set_page_order(struct page *page, unsigned int order)
702
{
H
Hugh Dickins 已提交
703
	set_page_private(page, order);
704
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
705 706 707 708
}

static inline void rmv_page_order(struct page *page)
{
709
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
710
	set_page_private(page, 0);
L
Linus Torvalds 已提交
711 712 713 714
}

/*
 * This function checks whether a page is free && is the buddy
715
 * we can coalesce a page and its buddy if
716
 * (a) the buddy is not in a hole (check before calling!) &&
717
 * (b) the buddy is in the buddy system &&
718 719
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
720
 *
721 722
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
723
 *
724
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
725
 */
726
static inline int page_is_buddy(struct page *page, struct page *buddy,
727
							unsigned int order)
L
Linus Torvalds 已提交
728
{
729
	if (page_is_guard(buddy) && page_order(buddy) == order) {
730 731 732
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

733 734
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

735 736 737
		return 1;
	}

738
	if (PageBuddy(buddy) && page_order(buddy) == order) {
739 740 741 742 743 744 745 746
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

747 748
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

749
		return 1;
750
	}
751
	return 0;
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
767 768
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
769
 * So when we are allocating or freeing one, we can derive the state of the
770 771
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
772
 * If a block is freed, and its buddy is also free, then this
773
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
774
 *
775
 * -- nyc
L
Linus Torvalds 已提交
776 777
 */

N
Nick Piggin 已提交
778
static inline void __free_one_page(struct page *page,
779
		unsigned long pfn,
780 781
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
782
{
783 784
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
785
	struct page *buddy;
786 787 788
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
789

790
	VM_BUG_ON(!zone_is_initialized(zone));
791
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
792

793
	VM_BUG_ON(migratetype == -1);
794
	if (likely(!is_migrate_isolate(migratetype)))
795
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
796

797
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
799

800
continue_merging:
801
	while (order < max_order - 1) {
802 803
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
804 805 806

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
807
		if (!page_is_buddy(page, buddy, order))
808
			goto done_merging;
809 810 811 812 813
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
814
			clear_page_guard(zone, buddy, order, migratetype);
815 816 817 818 819
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
820 821 822
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
823 824
		order++;
	}
825 826 827 828 829 830 831 832 833 834 835 836
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

837 838
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
839 840 841 842 843 844 845 846 847 848 849 850
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
851
	set_page_order(page, order);
852 853 854 855 856 857 858 859 860

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
861
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862
		struct page *higher_page, *higher_buddy;
863 864 865 866
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 868
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 870 871 872 873 874 875 876
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
877 878 879
	zone->free_area[order].nr_free++;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

902
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
903
{
904 905 906 907 908
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
909

910
	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 912 913
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
914
	if (unlikely(page_ref_count(page) != 0))
915
		bad_reason = "nonzero _refcount";
916 917 918 919
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
920 921 922 923
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
924
	bad_page(page, bad_reason, bad_flags);
925 926 927 928
}

static inline int free_pages_check(struct page *page)
{
929
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 931 932 933
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
934
	return 1;
L
Linus Torvalds 已提交
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
953
		/* the first tail page: ->mapping may be compound_mapcount() */
954 955 956 957 958 959 960 961
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
962
		 * deferred_list.next -- ignore value.
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

987 988
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
989
{
990
	int bad = 0;
991 992 993

	VM_BUG_ON_PAGE(PageTail(page), page);

994 995 996 997 998 999 1000 1001 1002 1003 1004
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005

1006 1007
		if (compound)
			ClearPageDoubleMap(page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1018
	if (PageMappingFlags(page))
1019
		page->mapping = NULL;
1020
	if (memcg_kmem_enabled() && PageKmemcg(page))
1021
		memcg_kmem_uncharge(page, order);
1022 1023 1024 1025
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1026

1027 1028 1029
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1030 1031 1032

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1033
					   PAGE_SIZE << order);
1034
		debug_check_no_obj_freed(page_address(page),
1035
					   PAGE_SIZE << order);
1036
	}
1037 1038 1039
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1040
	kasan_free_pages(page, order);
1041 1042 1043 1044

	return true;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1061 1062 1063 1064 1065 1066
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1067 1068 1069 1070 1071 1072 1073 1074 1075
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1076
/*
1077
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1078
 * Assumes all pages on list are in same zone, and of same order.
1079
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1080 1081 1082 1083 1084 1085 1086
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1087 1088
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1089
{
1090
	int migratetype = 0;
1091
	int batch_free = 0;
1092
	int prefetch_nr = 0;
1093
	bool isolated_pageblocks;
1094 1095
	struct page *page, *tmp;
	LIST_HEAD(head);
1096

1097
	while (count) {
1098 1099 1100
		struct list_head *list;

		/*
1101 1102 1103 1104 1105
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1106 1107
		 */
		do {
1108
			batch_free++;
1109 1110 1111 1112
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1113

1114 1115
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1116
			batch_free = count;
1117

1118
		do {
1119
			page = list_last_entry(list, struct page, lru);
1120
			/* must delete to avoid corrupting pcp list */
1121
			list_del(&page->lru);
1122
			pcp->count--;
1123

1124 1125 1126
			if (bulkfree_pcp_prepare(page))
				continue;

1127
			list_add_tail(&page->lru, &head);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1140
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1141
	}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1161
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1162 1163
}

1164 1165
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1166
				unsigned int order,
1167
				int migratetype)
L
Linus Torvalds 已提交
1168
{
1169
	spin_lock(&zone->lock);
1170 1171 1172 1173
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1174
	__free_one_page(page, pfn, zone, order, migratetype);
1175
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1176 1177
}

1178
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179
				unsigned long zone, int nid)
1180
{
1181
	mm_zero_struct_page(page);
1182 1183 1184 1185
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1186
	page_kasan_tag_reset(page);
1187 1188 1189 1190 1191 1192 1193 1194 1195

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1196
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197
static void __meminit init_reserved_page(unsigned long pfn)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1214
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1215 1216 1217 1218 1219 1220 1221
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1222 1223 1224 1225 1226 1227
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1228
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1229 1230 1231 1232
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1233 1234 1235 1236 1237
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1238 1239 1240 1241

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1242 1243 1244 1245 1246 1247
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1248 1249
		}
	}
1250 1251
}

1252 1253
static void __free_pages_ok(struct page *page, unsigned int order)
{
1254
	unsigned long flags;
M
Minchan Kim 已提交
1255
	int migratetype;
1256
	unsigned long pfn = page_to_pfn(page);
1257

1258
	if (!free_pages_prepare(page, order, true))
1259 1260
		return;

1261
	migratetype = get_pfnblock_migratetype(page, pfn);
1262 1263
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1264
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1265
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1266 1267
}

1268
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1269
{
1270
	unsigned int nr_pages = 1 << order;
1271
	struct page *p = page;
1272
	unsigned int loop;
1273

1274 1275 1276
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1277 1278
		__ClearPageReserved(p);
		set_page_count(p, 0);
1279
	}
1280 1281
	__ClearPageReserved(p);
	set_page_count(p, 0);
1282

1283
	page_zone(page)->managed_pages += nr_pages;
1284 1285
	set_page_refcounted(page);
	__free_pages(page, order);
1286 1287
}

1288 1289
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1290

1291 1292 1293 1294
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1295
	static DEFINE_SPINLOCK(early_pfn_lock);
1296 1297
	int nid;

1298
	spin_lock(&early_pfn_lock);
1299
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1300
	if (nid < 0)
1301
		nid = first_online_node;
1302 1303 1304
	spin_unlock(&early_pfn_lock);

	return nid;
1305 1306 1307 1308
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 1310 1311
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1333 1334 1335
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1336 1337 1338 1339 1340 1341
{
	return true;
}
#endif


1342
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1343 1344 1345 1346
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1347
	return __free_pages_boot_core(page, order);
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1379 1380 1381
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1421
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 1423
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1424
{
1425 1426
	struct page *page;
	unsigned long i;
1427

1428
	if (!nr_pages)
1429 1430
		return;

1431 1432
	page = pfn_to_page(pfn);

1433
	/* Free a large naturally-aligned chunk if possible */
1434 1435
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1436
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437
		__free_pages_boot_core(page, pageblock_order);
1438 1439 1440
		return;
	}

1441 1442 1443
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1444
		__free_pages_boot_core(page, 0);
1445
	}
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1457

1458
/*
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1471
 */
1472 1473 1474
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1475
{
1476 1477 1478 1479 1480 1481 1482 1483
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1495

1496 1497 1498 1499 1500 1501 1502
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1503
			touch_nmi_watchdog();
1504 1505 1506 1507 1508 1509
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1520 1521 1522 1523 1524 1525
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1526 1527 1528
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1529
			continue;
1530
		} else if (!page || !(pfn & nr_pgmask)) {
1531
			page = pfn_to_page(pfn);
1532
			touch_nmi_watchdog();
1533 1534
		} else {
			page++;
1535
		}
1536
		__init_single_page(page, pfn, zid, nid);
1537
		nr_pages++;
1538
	}
1539
	return (nr_pages);
1540 1541
}

1542
/* Initialise remaining memory on a node */
1543
static int __init deferred_init_memmap(void *data)
1544
{
1545 1546
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1547 1548
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1549
	unsigned long spfn, epfn, first_init_pfn, flags;
1550 1551
	phys_addr_t spa, epa;
	int zid;
1552
	struct zone *zone;
1553
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1554
	u64 i;
1555

1556 1557 1558 1559 1560 1561
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1562
	if (first_init_pfn == ULONG_MAX) {
1563
		pgdat_resize_unlock(pgdat, &flags);
1564
		pgdat_init_report_one_done();
1565 1566 1567
		return 0;
	}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1579
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1592 1593 1594
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595
		deferred_free_pages(nid, zid, spfn, epfn);
1596
	}
1597
	pgdat_resize_unlock(pgdat, &flags);
1598 1599 1600 1601

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1602
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1603
					jiffies_to_msecs(jiffies - start));
1604 1605

	pgdat_init_report_one_done();
1606 1607
	return 0;
}
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1719
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1720 1721 1722

void __init page_alloc_init_late(void)
{
1723 1724 1725
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1726 1727
	int nid;

1728 1729
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1730 1731 1732 1733 1734
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1735
	wait_for_completion(&pgdat_init_all_done_comp);
1736

1737 1738 1739 1740 1741 1742
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1743 1744
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1745
#endif
P
Pavel Tatashin 已提交
1746 1747 1748 1749
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1750 1751 1752

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1753 1754
}

1755
#ifdef CONFIG_CMA
1756
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 1758 1759 1760 1761 1762 1763 1764
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1765
	} while (++p, --i);
1766 1767

	set_pageblock_migratetype(page, MIGRATE_CMA);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1782
	adjust_managed_page_count(page, pageblock_nr_pages);
1783 1784
}
#endif
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1798
 * -- nyc
L
Linus Torvalds 已提交
1799
 */
N
Nick Piggin 已提交
1800
static inline void expand(struct zone *zone, struct page *page,
1801 1802
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807 1808 1809
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1810
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1811

1812 1813 1814 1815 1816 1817 1818
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1819
			continue;
1820

1821
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1827
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1828
{
1829 1830
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1831

1832
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1833 1834 1835
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1836
	if (unlikely(page_ref_count(page) != 0))
1837
		bad_reason = "nonzero _count";
1838 1839 1840
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1841 1842 1843
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1844
	}
1845 1846 1847 1848
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1849 1850 1851 1852
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1867 1868
}

1869
static inline bool free_pages_prezeroed(void)
1870 1871
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1872
		page_poisoning_enabled();
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1922
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1923
							unsigned int alloc_flags)
1924 1925
{
	int i;
1926

1927
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1928

1929
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1930 1931
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1932 1933 1934 1935

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1936
	/*
1937
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 1939 1940 1941
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1942 1943 1944 1945
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1946 1947
}

1948 1949 1950 1951
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1952
static __always_inline
1953
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1954 1955 1956
						int migratetype)
{
	unsigned int current_order;
1957
	struct free_area *area;
1958 1959 1960 1961 1962
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1963
		page = list_first_entry_or_null(&area->free_list[migratetype],
1964
							struct page, lru);
1965 1966
		if (!page)
			continue;
1967 1968 1969 1970
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1971
		set_pcppage_migratetype(page, migratetype);
1972 1973 1974 1975 1976 1977 1978
		return page;
	}

	return NULL;
}


1979 1980 1981 1982
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1983
static int fallbacks[MIGRATE_TYPES][4] = {
1984 1985 1986
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1987
#ifdef CONFIG_CMA
1988
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1989
#endif
1990
#ifdef CONFIG_MEMORY_ISOLATION
1991
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1992
#endif
1993 1994
};

1995
#ifdef CONFIG_CMA
1996
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1997 1998 1999 2000 2001 2002 2003 2004 2005
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2006 2007
/*
 * Move the free pages in a range to the free lists of the requested type.
2008
 * Note that start_page and end_pages are not aligned on a pageblock
2009 2010
 * boundary. If alignment is required, use move_freepages_block()
 */
2011
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2012
			  struct page *start_page, struct page *end_page,
2013
			  int migratetype, int *num_movable)
2014 2015
{
	struct page *page;
2016
	unsigned int order;
2017
	int pages_moved = 0;
2018 2019 2020 2021 2022 2023 2024

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2025
	 * grouping pages by mobility
2026
	 */
2027 2028 2029
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2030 2031 2032 2033 2034 2035 2036
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2037 2038 2039
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2040
		if (!PageBuddy(page)) {
2041 2042 2043 2044 2045 2046 2047 2048 2049
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2050 2051 2052 2053 2054
			page++;
			continue;
		}

		order = page_order(page);
2055 2056
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2057
		page += 1 << order;
2058
		pages_moved += 1 << order;
2059 2060
	}

2061
	return pages_moved;
2062 2063
}

2064
int move_freepages_block(struct zone *zone, struct page *page,
2065
				int migratetype, int *num_movable)
2066 2067 2068 2069
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2070 2071 2072
	if (num_movable)
		*num_movable = 0;

2073
	start_pfn = page_to_pfn(page);
2074
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2075
	start_page = pfn_to_page(start_pfn);
2076 2077
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2078 2079

	/* Do not cross zone boundaries */
2080
	if (!zone_spans_pfn(zone, start_pfn))
2081
		start_page = page;
2082
	if (!zone_spans_pfn(zone, end_pfn))
2083 2084
		return 0;

2085 2086
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2087 2088
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2100
/*
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2111
 */
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2136 2137 2138 2139
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2140 2141
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2142
					int start_type, bool whole_block)
2143
{
2144
	unsigned int current_order = page_order(page);
2145
	struct free_area *area;
2146 2147 2148 2149
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2150

2151 2152 2153 2154
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2155
	if (is_migrate_highatomic(old_block_type))
2156 2157
		goto single_page;

2158 2159 2160
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2161
		goto single_page;
2162 2163
	}

2164 2165 2166 2167
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2192
	/* moving whole block can fail due to zone boundary conditions */
2193
	if (!free_pages)
2194
		goto single_page;
2195

2196 2197 2198 2199 2200
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2201 2202
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2203 2204 2205 2206 2207 2208

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2209 2210
}

2211 2212 2213 2214 2215 2216 2217 2218
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2229
		if (fallback_mt == MIGRATE_TYPES)
2230 2231 2232 2233
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2234

2235 2236 2237
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2238 2239 2240 2241 2242
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2243
	}
2244 2245

	return -1;
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2274 2275
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2276 2277
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2278
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2290 2291 2292
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2293
 */
2294 2295
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2296 2297 2298 2299 2300 2301 2302
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2303
	bool ret;
2304 2305 2306

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2307 2308 2309 2310 2311 2312
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2313 2314 2315 2316 2317 2318
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2319 2320 2321 2322
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2323 2324 2325
				continue;

			/*
2326 2327 2328 2329 2330
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2331
			 */
2332
			if (is_migrate_highatomic_page(page)) {
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2355 2356
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2357 2358 2359 2360
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2361 2362 2363
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2364 2365

	return false;
2366 2367
}

2368 2369 2370 2371 2372
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2373 2374 2375 2376
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2377
 */
2378
static __always_inline bool
2379
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2380
{
2381
	struct free_area *area;
2382
	int current_order;
2383
	struct page *page;
2384 2385
	int fallback_mt;
	bool can_steal;
2386

2387 2388 2389 2390 2391
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2392
	for (current_order = MAX_ORDER - 1; current_order >= order;
2393
				--current_order) {
2394 2395
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2396
				start_migratetype, false, &can_steal);
2397 2398
		if (fallback_mt == -1)
			continue;
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2411

2412 2413
		goto do_steal;
	}
2414

2415
	return false;
2416

2417 2418 2419 2420 2421 2422 2423 2424
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2425 2426
	}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2444 2445
}

2446
/*
L
Linus Torvalds 已提交
2447 2448 2449
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2450 2451
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2452 2453 2454
{
	struct page *page;

2455
retry:
2456
	page = __rmqueue_smallest(zone, order, migratetype);
2457
	if (unlikely(!page)) {
2458 2459 2460
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2461 2462
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2463 2464
	}

2465
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2466
	return page;
L
Linus Torvalds 已提交
2467 2468
}

2469
/*
L
Linus Torvalds 已提交
2470 2471 2472 2473
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2474
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2475
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2476
			int migratetype)
L
Linus Torvalds 已提交
2477
{
2478
	int i, alloced = 0;
2479

2480
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2481
	for (i = 0; i < count; ++i) {
2482
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2483
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2484
			break;
2485

2486 2487 2488
		if (unlikely(check_pcp_refill(page)))
			continue;

2489
		/*
2490 2491 2492 2493 2494 2495 2496 2497
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2498
		 */
2499
		list_add_tail(&page->lru, list);
2500
		alloced++;
2501
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2502 2503
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2504
	}
2505 2506 2507 2508 2509 2510 2511

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2512
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2513
	spin_unlock(&zone->lock);
2514
	return alloced;
L
Linus Torvalds 已提交
2515 2516
}

2517
#ifdef CONFIG_NUMA
2518
/*
2519 2520 2521 2522
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2523 2524
 * Note that this function must be called with the thread pinned to
 * a single processor.
2525
 */
2526
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2527 2528
{
	unsigned long flags;
2529
	int to_drain, batch;
2530

2531
	local_irq_save(flags);
2532
	batch = READ_ONCE(pcp->batch);
2533
	to_drain = min(pcp->count, batch);
2534
	if (to_drain > 0)
2535
		free_pcppages_bulk(zone, to_drain, pcp);
2536
	local_irq_restore(flags);
2537 2538 2539
}
#endif

2540
/*
2541
 * Drain pcplists of the indicated processor and zone.
2542 2543 2544 2545 2546
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2547
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2548
{
N
Nick Piggin 已提交
2549
	unsigned long flags;
2550 2551
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2552

2553 2554
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2555

2556
	pcp = &pset->pcp;
2557
	if (pcp->count)
2558 2559 2560
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2575 2576 2577
	}
}

2578 2579
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2580 2581 2582
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2583
 */
2584
void drain_local_pages(struct zone *zone)
2585
{
2586 2587 2588 2589 2590 2591
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2592 2593
}

2594 2595
static void drain_local_pages_wq(struct work_struct *work)
{
2596 2597 2598 2599 2600 2601 2602 2603
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2604
	drain_local_pages(NULL);
2605
	preempt_enable();
2606 2607
}

2608
/*
2609 2610
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2611 2612
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2613
 * Note that this can be extremely slow as the draining happens in a workqueue.
2614
 */
2615
void drain_all_pages(struct zone *zone)
2616
{
2617 2618 2619 2620 2621 2622 2623 2624
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2625 2626 2627 2628 2629 2630 2631
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2642

2643 2644 2645 2646 2647 2648 2649
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2650 2651
		struct per_cpu_pageset *pcp;
		struct zone *z;
2652
		bool has_pcps = false;
2653 2654

		if (zone) {
2655
			pcp = per_cpu_ptr(zone->pageset, cpu);
2656
			if (pcp->pcp.count)
2657
				has_pcps = true;
2658 2659 2660 2661 2662 2663 2664
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2665 2666
			}
		}
2667

2668 2669 2670 2671 2672
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2673

2674 2675 2676
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2677
		queue_work_on(cpu, mm_percpu_wq, work);
2678
	}
2679 2680 2681 2682
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2683 2684
}

2685
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2686

2687 2688 2689 2690 2691
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2692 2693
void mark_free_pages(struct zone *zone)
{
2694
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2695
	unsigned long flags;
2696
	unsigned int order, t;
2697
	struct page *page;
L
Linus Torvalds 已提交
2698

2699
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2700 2701 2702
		return;

	spin_lock_irqsave(&zone->lock, flags);
2703

2704
	max_zone_pfn = zone_end_pfn(zone);
2705 2706
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2707
			page = pfn_to_page(pfn);
2708

2709 2710 2711 2712 2713
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2714 2715 2716
			if (page_zone(page) != zone)
				continue;

2717 2718
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2719
		}
L
Linus Torvalds 已提交
2720

2721
	for_each_migratetype_order(order, t) {
2722 2723
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2724
			unsigned long i;
L
Linus Torvalds 已提交
2725

2726
			pfn = page_to_pfn(page);
2727 2728 2729 2730 2731
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2732
				swsusp_set_page_free(pfn_to_page(pfn + i));
2733
			}
2734
		}
2735
	}
L
Linus Torvalds 已提交
2736 2737
	spin_unlock_irqrestore(&zone->lock, flags);
}
2738
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2739

2740
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2741
{
2742
	int migratetype;
L
Linus Torvalds 已提交
2743

2744
	if (!free_pcp_prepare(page))
2745
		return false;
2746

2747
	migratetype = get_pfnblock_migratetype(page, pfn);
2748
	set_pcppage_migratetype(page, migratetype);
2749 2750 2751
	return true;
}

2752
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2753 2754 2755 2756 2757 2758
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2759
	__count_vm_event(PGFREE);
2760

2761 2762 2763
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2764
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2765 2766 2767 2768
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2769
		if (unlikely(is_migrate_isolate(migratetype))) {
2770
			free_one_page(zone, page, pfn, 0, migratetype);
2771
			return;
2772 2773 2774 2775
		}
		migratetype = MIGRATE_MOVABLE;
	}

2776
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2777
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2778
	pcp->count++;
N
Nick Piggin 已提交
2779
	if (pcp->count >= pcp->high) {
2780
		unsigned long batch = READ_ONCE(pcp->batch);
2781
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2782
	}
2783
}
2784

2785 2786 2787
/*
 * Free a 0-order page
 */
2788
void free_unref_page(struct page *page)
2789 2790 2791 2792
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2793
	if (!free_unref_page_prepare(page, pfn))
2794 2795 2796
		return;

	local_irq_save(flags);
2797
	free_unref_page_commit(page, pfn);
2798
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2799 2800
}

2801 2802 2803
/*
 * Free a list of 0-order pages
 */
2804
void free_unref_page_list(struct list_head *list)
2805 2806
{
	struct page *page, *next;
2807
	unsigned long flags, pfn;
2808
	int batch_count = 0;
2809 2810 2811 2812

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2813
		if (!free_unref_page_prepare(page, pfn))
2814 2815 2816
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2817

2818
	local_irq_save(flags);
2819
	list_for_each_entry_safe(page, next, list, lru) {
2820 2821 2822
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2823 2824
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2835
	}
2836
	local_irq_restore(flags);
2837 2838
}

N
Nick Piggin 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2851 2852
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2853

2854
	for (i = 1; i < (1 << order); i++)
2855
		set_page_refcounted(page + i);
2856
	split_page_owner(page, order);
N
Nick Piggin 已提交
2857
}
K
K. Y. Srinivasan 已提交
2858
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2859

2860
int __isolate_free_page(struct page *page, unsigned int order)
2861 2862 2863
{
	unsigned long watermark;
	struct zone *zone;
2864
	int mt;
2865 2866 2867 2868

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2869
	mt = get_pageblock_migratetype(page);
2870

2871
	if (!is_migrate_isolate(mt)) {
2872 2873 2874 2875 2876 2877 2878
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2879
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2880 2881
			return 0;

2882
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2883
	}
2884 2885 2886 2887 2888

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2889

2890 2891 2892 2893
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2894 2895
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2896 2897
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2898
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2899
			    && !is_migrate_highatomic(mt))
2900 2901 2902
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2903 2904
	}

2905

2906
	return 1UL << order;
2907 2908
}

2909 2910 2911 2912 2913
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2914
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2915 2916
{
#ifdef CONFIG_NUMA
2917
	enum numa_stat_item local_stat = NUMA_LOCAL;
2918

2919 2920 2921 2922
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2923
	if (zone_to_nid(z) != numa_node_id())
2924 2925
		local_stat = NUMA_OTHER;

2926
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2927
		__inc_numa_state(z, NUMA_HIT);
2928
	else {
2929 2930
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2931
	}
2932
	__inc_numa_state(z, local_stat);
2933 2934 2935
#endif
}

2936 2937
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2938
			struct per_cpu_pages *pcp,
2939 2940 2941 2942 2943 2944 2945 2946
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2947
					migratetype);
2948 2949 2950 2951
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2952
		page = list_first_entry(list, struct page, lru);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2968
	unsigned long flags;
2969

2970
	local_irq_save(flags);
2971 2972
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2973
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2974 2975 2976 2977
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2978
	local_irq_restore(flags);
2979 2980 2981
	return page;
}

L
Linus Torvalds 已提交
2982
/*
2983
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2984
 */
2985
static inline
2986
struct page *rmqueue(struct zone *preferred_zone,
2987
			struct zone *zone, unsigned int order,
2988 2989
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2990 2991
{
	unsigned long flags;
2992
	struct page *page;
L
Linus Torvalds 已提交
2993

2994
	if (likely(order == 0)) {
2995 2996 2997 2998
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2999

3000 3001 3002 3003 3004 3005
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3006

3007 3008 3009 3010 3011 3012 3013
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3014
		if (!page)
3015 3016 3017 3018 3019 3020 3021
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3022

3023
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3024
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3025
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3026

3027 3028
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3029
	return page;
N
Nick Piggin 已提交
3030 3031 3032 3033

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3034 3035
}

3036 3037
#ifdef CONFIG_FAIL_PAGE_ALLOC

3038
static struct {
3039 3040
	struct fault_attr attr;

3041
	bool ignore_gfp_highmem;
3042
	bool ignore_gfp_reclaim;
3043
	u32 min_order;
3044 3045
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3046
	.ignore_gfp_reclaim = true,
3047
	.ignore_gfp_highmem = true,
3048
	.min_order = 1,
3049 3050 3051 3052 3053 3054 3055 3056
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3057
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3058
{
3059
	if (order < fail_page_alloc.min_order)
3060
		return false;
3061
	if (gfp_mask & __GFP_NOFAIL)
3062
		return false;
3063
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3064
		return false;
3065 3066
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3067
		return false;
3068 3069 3070 3071 3072 3073 3074 3075

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3076
	umode_t mode = S_IFREG | 0600;
3077 3078
	struct dentry *dir;

3079 3080 3081 3082
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3083

3084
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3085
				&fail_page_alloc.ignore_gfp_reclaim))
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3096
	debugfs_remove_recursive(dir);
3097

3098
	return -ENOMEM;
3099 3100 3101 3102 3103 3104 3105 3106
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3107
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3108
{
3109
	return false;
3110 3111 3112 3113
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3114
/*
3115 3116 3117 3118
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3119
 */
3120 3121 3122
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3123
{
3124
	long min = mark;
L
Linus Torvalds 已提交
3125
	int o;
3126
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3127

3128
	/* free_pages may go negative - that's OK */
3129
	free_pages -= (1 << order) - 1;
3130

R
Rohit Seth 已提交
3131
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3132
		min -= min / 2;
3133 3134 3135 3136 3137 3138

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3139
	if (likely(!alloc_harder)) {
3140
		free_pages -= z->nr_reserved_highatomic;
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3154

3155 3156 3157 3158 3159 3160
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3161 3162 3163 3164 3165 3166
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3167
		return false;
L
Linus Torvalds 已提交
3168

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3187 3188
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3189
			return true;
3190
		}
3191
#endif
3192 3193 3194
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3195
	}
3196
	return false;
3197 3198
}

3199
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3200
		      int classzone_idx, unsigned int alloc_flags)
3201 3202 3203 3204 3205
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3206 3207 3208 3209
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3210 3211 3212 3213 3214 3215 3216
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3217 3218 3219 3220 3221 3222 3223 3224

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3225
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3226 3227 3228 3229 3230 3231
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3232
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3233
			unsigned long mark, int classzone_idx)
3234 3235 3236 3237 3238 3239
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3240
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3241
								free_pages);
L
Linus Torvalds 已提交
3242 3243
}

3244
#ifdef CONFIG_NUMA
3245 3246
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3247
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3248
				RECLAIM_DISTANCE;
3249
}
3250
#else	/* CONFIG_NUMA */
3251 3252 3253 3254
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3255 3256
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3257
/*
3258
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3259 3260 3261
 * a page.
 */
static struct page *
3262 3263
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3264
{
3265
	struct zoneref *z = ac->preferred_zoneref;
3266
	struct zone *zone;
3267 3268
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3269
	/*
3270
	 * Scan zonelist, looking for a zone with enough free.
3271
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3272
	 */
3273
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3274
								ac->nodemask) {
3275
		struct page *page;
3276 3277
		unsigned long mark;

3278 3279
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3280
			!__cpuset_zone_allowed(zone, gfp_mask))
3281
				continue;
3282 3283
		/*
		 * When allocating a page cache page for writing, we
3284 3285
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3286
		 * proportional share of globally allowed dirty pages.
3287
		 * The dirty limits take into account the node's
3288 3289 3290 3291 3292
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3293
		 * exceed the per-node dirty limit in the slowpath
3294
		 * (spread_dirty_pages unset) before going into reclaim,
3295
		 * which is important when on a NUMA setup the allowed
3296
		 * nodes are together not big enough to reach the
3297
		 * global limit.  The proper fix for these situations
3298
		 * will require awareness of nodes in the
3299 3300
		 * dirty-throttling and the flusher threads.
		 */
3301 3302 3303 3304 3305 3306 3307 3308 3309
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3310

3311
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3312
		if (!zone_watermark_fast(zone, order, mark,
3313
				       ac_classzone_idx(ac), alloc_flags)) {
3314 3315
			int ret;

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3326 3327 3328 3329 3330
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3331
			if (node_reclaim_mode == 0 ||
3332
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3333 3334
				continue;

3335
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3336
			switch (ret) {
3337
			case NODE_RECLAIM_NOSCAN:
3338
				/* did not scan */
3339
				continue;
3340
			case NODE_RECLAIM_FULL:
3341
				/* scanned but unreclaimable */
3342
				continue;
3343 3344
			default:
				/* did we reclaim enough */
3345
				if (zone_watermark_ok(zone, order, mark,
3346
						ac_classzone_idx(ac), alloc_flags))
3347 3348 3349
					goto try_this_zone;

				continue;
3350
			}
R
Rohit Seth 已提交
3351 3352
		}

3353
try_this_zone:
3354
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3355
				gfp_mask, alloc_flags, ac->migratetype);
3356
		if (page) {
3357
			prep_new_page(page, order, gfp_mask, alloc_flags);
3358 3359 3360 3361 3362 3363 3364 3365

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3366
			return page;
3367 3368 3369 3370 3371 3372 3373 3374
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3375
		}
3376
	}
3377

3378
	return NULL;
M
Martin Hicks 已提交
3379 3380
}

3381
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3382 3383
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3384
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3385

3386
	if (!__ratelimit(&show_mem_rs))
3387 3388 3389 3390 3391 3392 3393 3394
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3395
		if (tsk_is_oom_victim(current) ||
3396 3397
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3398
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3399 3400
		filter &= ~SHOW_MEM_FILTER_NODES;

3401
	show_mem(filter, nodemask);
3402 3403
}

3404
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3405 3406 3407 3408 3409 3410
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3411
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3412 3413
		return;

3414 3415 3416
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3417 3418 3419
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3420
	va_end(args);
J
Joe Perches 已提交
3421

3422
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3423

3424
	dump_stack();
3425
	warn_alloc_show_mem(gfp_mask, nodemask);
3426 3427
}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3448 3449
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3450
	const struct alloc_context *ac, unsigned long *did_some_progress)
3451
{
3452 3453 3454
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3455
		.memcg = NULL,
3456 3457 3458
		.gfp_mask = gfp_mask,
		.order = order,
	};
3459 3460
	struct page *page;

3461 3462 3463
	*did_some_progress = 0;

	/*
3464 3465
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3466
	 */
3467
	if (!mutex_trylock(&oom_lock)) {
3468
		*did_some_progress = 1;
3469
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3470 3471
		return NULL;
	}
3472

3473 3474 3475
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3476 3477 3478
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3479
	 */
3480 3481 3482
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3483
	if (page)
3484 3485
		goto out;

3486 3487 3488 3489 3490 3491
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3492 3493 3494 3495 3496 3497 3498 3499
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3518

3519
	/* Exhausted what can be done so it's blame time */
3520
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3521
		*did_some_progress = 1;
3522

3523 3524 3525 3526 3527 3528
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3529 3530
					ALLOC_NO_WATERMARKS, ac);
	}
3531
out:
3532
	mutex_unlock(&oom_lock);
3533 3534 3535
	return page;
}

3536 3537 3538 3539 3540 3541
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3542 3543 3544 3545
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3546
		unsigned int alloc_flags, const struct alloc_context *ac,
3547
		enum compact_priority prio, enum compact_result *compact_result)
3548
{
3549
	struct page *page;
3550
	unsigned long pflags;
3551
	unsigned int noreclaim_flag;
3552 3553

	if (!order)
3554 3555
		return NULL;

3556
	psi_memstall_enter(&pflags);
3557
	noreclaim_flag = memalloc_noreclaim_save();
3558

3559
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560
									prio);
3561

3562
	memalloc_noreclaim_restore(noreclaim_flag);
3563
	psi_memstall_leave(&pflags);
3564

3565
	if (*compact_result <= COMPACT_INACTIVE)
3566
		return NULL;
3567

3568 3569 3570 3571 3572
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3573

3574
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575

3576 3577
	if (page) {
		struct zone *zone = page_zone(page);
3578

3579 3580 3581 3582 3583
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3584

3585 3586 3587 3588 3589
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3590

3591
	cond_resched();
3592 3593 3594

	return NULL;
}
3595

3596 3597 3598 3599
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3600
		     int *compaction_retries)
3601 3602
{
	int max_retries = MAX_COMPACT_RETRIES;
3603
	int min_priority;
3604 3605 3606
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3607 3608 3609 3610

	if (!order)
		return false;

3611 3612 3613
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3614 3615 3616 3617 3618
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3619 3620
	if (compaction_failed(compact_result))
		goto check_priority;
3621 3622 3623 3624 3625 3626 3627

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3628 3629 3630 3631
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3632 3633

	/*
3634
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635 3636 3637 3638 3639 3640 3641 3642
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3643 3644 3645 3646
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3647

3648 3649 3650 3651 3652
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3653 3654
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655

3656
	if (*compact_priority > min_priority) {
3657 3658
		(*compact_priority)--;
		*compaction_retries = 0;
3659
		ret = true;
3660
	}
3661 3662 3663
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3664
}
3665 3666 3667
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668
		unsigned int alloc_flags, const struct alloc_context *ac,
3669
		enum compact_priority prio, enum compact_result *compact_result)
3670
{
3671
	*compact_result = COMPACT_SKIPPED;
3672 3673
	return NULL;
}
3674 3675

static inline bool
3676 3677
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3678
		     enum compact_priority *compact_priority,
3679
		     int *compaction_retries)
3680
{
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3699 3700
	return false;
}
3701
#endif /* CONFIG_COMPACTION */
3702

3703
#ifdef CONFIG_LOCKDEP
3704
static struct lockdep_map __fs_reclaim_map =
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3716
	if (current->flags & PF_MEMALLOC)
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3739 3740 3741
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3742
		__fs_reclaim_acquire();
3743 3744 3745 3746 3747 3748
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3749
		__fs_reclaim_release();
3750 3751 3752 3753
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3754 3755
/* Perform direct synchronous page reclaim */
static int
3756 3757
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3758 3759
{
	struct reclaim_state reclaim_state;
3760
	int progress;
3761
	unsigned int noreclaim_flag;
3762
	unsigned long pflags;
3763 3764 3765 3766 3767

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3768
	psi_memstall_enter(&pflags);
3769
	fs_reclaim_acquire(gfp_mask);
3770
	noreclaim_flag = memalloc_noreclaim_save();
3771
	reclaim_state.reclaimed_slab = 0;
3772
	current->reclaim_state = &reclaim_state;
3773

3774 3775
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3776

3777
	current->reclaim_state = NULL;
3778
	memalloc_noreclaim_restore(noreclaim_flag);
3779
	fs_reclaim_release(gfp_mask);
3780
	psi_memstall_leave(&pflags);
3781 3782 3783

	cond_resched();

3784 3785 3786 3787 3788 3789
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790
		unsigned int alloc_flags, const struct alloc_context *ac,
3791
		unsigned long *did_some_progress)
3792 3793 3794 3795
{
	struct page *page = NULL;
	bool drained = false;

3796
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797 3798
	if (unlikely(!(*did_some_progress)))
		return NULL;
3799

3800
retry:
3801
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802 3803 3804

	/*
	 * If an allocation failed after direct reclaim, it could be because
3805 3806
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3807 3808
	 */
	if (!page && !drained) {
3809
		unreserve_highatomic_pageblock(ac, false);
3810
		drain_all_pages(NULL);
3811 3812 3813 3814
		drained = true;
		goto retry;
	}

3815 3816 3817
	return page;
}

3818 3819
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3820 3821 3822
{
	struct zoneref *z;
	struct zone *zone;
3823
	pg_data_t *last_pgdat = NULL;
3824
	enum zone_type high_zoneidx = ac->high_zoneidx;
3825

3826 3827
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3828
		if (last_pgdat != zone->zone_pgdat)
3829
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3830 3831
		last_pgdat = zone->zone_pgdat;
	}
3832 3833
}

3834
static inline unsigned int
3835 3836
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3837
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3838

3839
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3840
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3841

3842 3843 3844 3845
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3846
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3847
	 */
3848
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3849

3850
	if (gfp_mask & __GFP_ATOMIC) {
3851
		/*
3852 3853
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3854
		 */
3855
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3856
			alloc_flags |= ALLOC_HARDER;
3857
		/*
3858
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3859
		 * comment for __cpuset_node_allowed().
3860
		 */
3861
		alloc_flags &= ~ALLOC_CPUSET;
3862
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3863 3864
		alloc_flags |= ALLOC_HARDER;

3865 3866 3867 3868
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3869 3870 3871
	return alloc_flags;
}

3872
static bool oom_reserves_allowed(struct task_struct *tsk)
3873
{
3874 3875 3876 3877 3878 3879 3880 3881
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3882 3883
		return false;

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3895
	if (gfp_mask & __GFP_MEMALLOC)
3896
		return ALLOC_NO_WATERMARKS;
3897
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3898 3899 3900 3901 3902 3903 3904
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3905

3906 3907 3908 3909 3910 3911
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3912 3913
}

M
Michal Hocko 已提交
3914 3915 3916
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3917 3918 3919 3920
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3921 3922 3923 3924 3925 3926
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3927
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3928 3929 3930
{
	struct zone *zone;
	struct zoneref *z;
3931
	bool ret = false;
M
Michal Hocko 已提交
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3943 3944 3945 3946
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3947 3948
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3949
		return unreserve_highatomic_pageblock(ac, true);
3950
	}
M
Michal Hocko 已提交
3951

3952 3953 3954 3955 3956
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3957 3958 3959 3960
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3961
		unsigned long reclaimable;
3962 3963
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3964

3965 3966
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3967 3968

		/*
3969 3970
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3971
		 */
3972 3973 3974 3975 3976
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3977 3978 3979 3980 3981 3982 3983
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3984
				unsigned long write_pending;
3985

3986 3987
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3988

3989
				if (2 * write_pending > reclaimable) {
3990 3991 3992 3993
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3994

3995 3996
			ret = true;
			goto out;
M
Michal Hocko 已提交
3997 3998 3999
		}
	}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4013 4014
}

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4048 4049
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4050
						struct alloc_context *ac)
4051
{
4052
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4053
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4054
	struct page *page = NULL;
4055
	unsigned int alloc_flags;
4056
	unsigned long did_some_progress;
4057
	enum compact_priority compact_priority;
4058
	enum compact_result compact_result;
4059 4060 4061
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4062
	int reserve_flags;
L
Linus Torvalds 已提交
4063

4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4072 4073 4074 4075 4076
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4077 4078 4079 4080 4081 4082 4083 4084

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4096
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4097
		wake_all_kswapds(order, gfp_mask, ac);
4098 4099 4100 4101 4102 4103 4104 4105 4106

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4107 4108
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4109 4110 4111 4112 4113 4114
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4115
	 */
4116 4117 4118 4119
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4120 4121
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4122
						INIT_COMPACT_PRIORITY,
4123 4124 4125 4126
						&compact_result);
		if (page)
			goto got_pg;

4127 4128 4129 4130
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4131
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4144 4145
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4146
			 * using async compaction.
4147
			 */
4148
			compact_priority = INIT_COMPACT_PRIORITY;
4149 4150
		}
	}
4151

4152
retry:
4153
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4154
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4155
		wake_all_kswapds(order, gfp_mask, ac);
4156

4157 4158 4159
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4160

4161
	/*
4162 4163 4164
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4165
	 */
4166
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4167
		ac->nodemask = NULL;
4168 4169 4170 4171
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4172
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4173
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4174 4175
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4176

4177
	/* Caller is not willing to reclaim, we can't balance anything */
4178
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4179 4180
		goto nopage;

4181 4182
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4183 4184
		goto nopage;

4185 4186 4187 4188 4189 4190 4191
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4192
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4193
					compact_priority, &compact_result);
4194 4195
	if (page)
		goto got_pg;
4196

4197 4198
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4199
		goto nopage;
4200

M
Michal Hocko 已提交
4201 4202
	/*
	 * Do not retry costly high order allocations unless they are
4203
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4204
	 */
4205
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4206
		goto nopage;
M
Michal Hocko 已提交
4207 4208

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4209
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4210 4211
		goto retry;

4212 4213 4214 4215 4216 4217 4218
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4219
			should_compact_retry(ac, order, alloc_flags,
4220
				compact_result, &compact_priority,
4221
				&compaction_retries))
4222 4223
		goto retry;

4224 4225 4226

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4227 4228
		goto retry_cpuset;

4229 4230 4231 4232 4233
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4234
	/* Avoid allocations with no watermarks from looping endlessly */
4235 4236
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4237
	     (gfp_mask & __GFP_NOMEMALLOC)))
4238 4239
		goto nopage;

4240
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4241 4242
	if (did_some_progress) {
		no_progress_loops = 0;
4243
		goto retry;
M
Michal Hocko 已提交
4244
	}
4245

L
Linus Torvalds 已提交
4246
nopage:
4247 4248
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4249 4250
		goto retry_cpuset;

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4288 4289 4290 4291
		cond_resched();
		goto retry;
	}
fail:
4292
	warn_alloc(gfp_mask, ac->nodemask,
4293
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4294
got_pg:
4295
	return page;
L
Linus Torvalds 已提交
4296
}
4297

4298
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4299
		int preferred_nid, nodemask_t *nodemask,
4300 4301
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4302
{
4303
	ac->high_zoneidx = gfp_zone(gfp_mask);
4304
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4305 4306
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4307

4308
	if (cpusets_enabled()) {
4309 4310 4311
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4312 4313
		else
			*alloc_flags |= ALLOC_CPUSET;
4314 4315
	}

4316 4317
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4318

4319
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4320 4321

	if (should_fail_alloc_page(gfp_mask, order))
4322
		return false;
4323

4324 4325 4326
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4327 4328
	return true;
}
4329

4330
/* Determine whether to spread dirty pages and what the first usable zone */
4331
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4332
{
4333
	/* Dirty zone balancing only done in the fast path */
4334
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4335

4336 4337 4338 4339 4340
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4341 4342 4343 4344 4345 4346 4347 4348
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4349 4350
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4351 4352 4353
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4354
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4355 4356
	struct alloc_context ac = { };

4357 4358 4359 4360 4361 4362 4363 4364 4365
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4366
	gfp_mask &= gfp_allowed_mask;
4367
	alloc_mask = gfp_mask;
4368
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4369 4370
		return NULL;

4371
	finalise_ac(gfp_mask, &ac);
4372

4373
	/* First allocation attempt */
4374
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4375 4376
	if (likely(page))
		goto out;
4377

4378
	/*
4379 4380 4381 4382
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4383
	 */
4384
	alloc_mask = current_gfp_context(gfp_mask);
4385
	ac.spread_dirty_pages = false;
4386

4387 4388 4389 4390
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4391
	if (unlikely(ac.nodemask != nodemask))
4392
		ac.nodemask = nodemask;
4393

4394
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4395

4396
out:
4397 4398 4399 4400
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4401 4402
	}

4403 4404
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4405
	return page;
L
Linus Torvalds 已提交
4406
}
4407
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4408 4409

/*
4410 4411 4412
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4413
 */
H
Harvey Harrison 已提交
4414
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4415
{
4416 4417
	struct page *page;

4418
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4425
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4426
{
4427
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4428 4429 4430
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4431
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4432
{
N
Nick Piggin 已提交
4433
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4434
		if (order == 0)
4435
			free_unref_page(page);
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440 4441 4442
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4443
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4444 4445
{
	if (addr != 0) {
N
Nick Piggin 已提交
4446
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4464 4465
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4485
void __page_frag_cache_drain(struct page *page, unsigned int count)
4486 4487 4488 4489
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4490 4491
		unsigned int order = compound_order(page);

4492
		if (order == 0)
4493
			free_unref_page(page);
4494 4495 4496 4497
		else
			__free_pages_ok(page, order);
	}
}
4498
EXPORT_SYMBOL(__page_frag_cache_drain);
4499

4500 4501
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4502 4503 4504 4505 4506 4507 4508
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4509
		page = __page_frag_cache_refill(nc, gfp_mask);
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4520
		page_ref_add(page, size - 1);
4521 4522

		/* reset page count bias and offset to start of new frag */
4523
		nc->pfmemalloc = page_is_pfmemalloc(page);
4524 4525 4526 4527 4528 4529 4530 4531
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4532
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4533 4534 4535 4536 4537 4538 4539
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4540
		set_page_count(page, size);
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4552
EXPORT_SYMBOL(page_frag_alloc);
4553 4554 4555 4556

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4557
void page_frag_free(void *addr)
4558 4559 4560 4561 4562 4563
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4564
EXPORT_SYMBOL(page_frag_free);
4565

4566 4567
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4601
	return make_alloc_exact(addr, order, size);
4602 4603 4604
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4605 4606 4607
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4608
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4609 4610 4611 4612 4613 4614
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4615
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4616
{
4617
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4618 4619 4620 4621 4622 4623
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4643 4644 4645 4646 4647 4648 4649
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4650 4651
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4652
 */
4653
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4654
{
4655
	struct zoneref *z;
4656 4657
	struct zone *zone;

4658
	/* Just pick one node, since fallback list is circular */
4659
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4660

4661
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4662

4663
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4664
		unsigned long size = zone->managed_pages;
4665
		unsigned long high = high_wmark_pages(zone);
4666 4667
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672
	}

	return sum;
}

4673 4674 4675 4676 4677
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4678
 */
4679
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4680
{
A
Al Viro 已提交
4681
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4682
}
4683
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4684

4685 4686 4687 4688 4689
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4690
 */
4691
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4692
{
M
Mel Gorman 已提交
4693
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4694
}
4695 4696

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4697
{
4698
	if (IS_ENABLED(CONFIG_NUMA))
4699
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4700 4701
}

4702 4703 4704 4705 4706 4707
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4708
	unsigned long reclaimable;
4709 4710 4711 4712
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4713
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4714 4715 4716 4717 4718 4719 4720 4721

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4722
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4734 4735 4736
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4737
	 */
4738 4739 4740
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4741

4742 4743 4744 4745 4746 4747
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4748 4749 4750
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4751
	val->sharedram = global_node_page_state(NR_SHMEM);
4752
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4764 4765
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4766 4767
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4768 4769
	pg_data_t *pgdat = NODE_DATA(nid);

4770 4771 4772
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4773
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4774
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4775
#ifdef CONFIG_HIGHMEM
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4786
#else
4787 4788
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4789
#endif
L
Linus Torvalds 已提交
4790 4791 4792 4793
	val->mem_unit = PAGE_SIZE;
}
#endif

4794
/*
4795 4796
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4797
 */
4798
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4799 4800
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4801
		return false;
4802

4803 4804 4805 4806 4807 4808 4809 4810 4811
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4812 4813
}

L
Linus Torvalds 已提交
4814 4815
#define K(x) ((x) << (PAGE_SHIFT-10))

4816 4817 4818 4819 4820
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4821 4822
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4823 4824 4825
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4826
#ifdef CONFIG_MEMORY_ISOLATION
4827
		[MIGRATE_ISOLATE]	= 'I',
4828
#endif
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4840
	printk(KERN_CONT "(%s) ", tmp);
4841 4842
}

L
Linus Torvalds 已提交
4843 4844 4845 4846
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4847 4848 4849 4850
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4851
 */
4852
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4853
{
4854
	unsigned long free_pcp = 0;
4855
	int cpu;
L
Linus Torvalds 已提交
4856
	struct zone *zone;
M
Mel Gorman 已提交
4857
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4858

4859
	for_each_populated_zone(zone) {
4860
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4861
			continue;
4862

4863 4864
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4865 4866
	}

K
KOSAKI Motohiro 已提交
4867 4868
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4869 4870
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4871
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4872
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4873 4874 4875 4876 4877 4878 4879
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4880 4881 4882
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4883 4884
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4885
		global_node_page_state(NR_FILE_MAPPED),
4886
		global_node_page_state(NR_SHMEM),
4887 4888 4889
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4890
		free_pcp,
4891
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4892

M
Mel Gorman 已提交
4893
	for_each_online_pgdat(pgdat) {
4894
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4895 4896
			continue;

M
Mel Gorman 已提交
4897 4898 4899 4900 4901 4902 4903 4904
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4905
			" mapped:%lukB"
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4926
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4927 4928
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4929
			K(node_page_state(pgdat, NR_SHMEM)),
4930 4931 4932 4933 4934 4935 4936 4937
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4938 4939
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4940 4941
	}

4942
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4943 4944
		int i;

4945
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4946
			continue;
4947 4948 4949 4950 4951

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4952
		show_node(zone);
4953 4954
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4955 4956 4957 4958
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4959 4960 4961 4962 4963
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4964
			" writepending:%lukB"
L
Linus Torvalds 已提交
4965
			" present:%lukB"
4966
			" managed:%lukB"
4967
			" mlocked:%lukB"
4968
			" kernel_stack:%lukB"
4969 4970
			" pagetables:%lukB"
			" bounce:%lukB"
4971 4972
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4973
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4974 4975
			"\n",
			zone->name,
4976
			K(zone_page_state(zone, NR_FREE_PAGES)),
4977 4978 4979
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4980 4981 4982 4983 4984
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4985
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4986
			K(zone->present_pages),
4987
			K(zone->managed_pages),
4988
			K(zone_page_state(zone, NR_MLOCK)),
4989
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4990 4991
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4992 4993
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4994
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4995 4996
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4997 4998
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4999 5000
	}

5001
	for_each_populated_zone(zone) {
5002 5003
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5004
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5005

5006
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5007
			continue;
L
Linus Torvalds 已提交
5008
		show_node(zone);
5009
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5010 5011 5012

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5013 5014 5015 5016
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5017
			total += nr[order] << order;
5018 5019 5020 5021 5022 5023

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5024 5025
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5026
		for (order = 0; order < MAX_ORDER; order++) {
5027 5028
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5029 5030 5031
			if (nr[order])
				show_migration_types(types[order]);
		}
5032
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5033 5034
	}

5035 5036
	hugetlb_show_meminfo();

5037
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5038

L
Linus Torvalds 已提交
5039 5040 5041
	show_swap_cache_info();
}

5042 5043 5044 5045 5046 5047
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5048 5049
/*
 * Builds allocation fallback zone lists.
5050 5051
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5052
 */
5053
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5054
{
5055
	struct zone *zone;
5056
	enum zone_type zone_type = MAX_NR_ZONES;
5057
	int nr_zones = 0;
5058 5059

	do {
5060
		zone_type--;
5061
		zone = pgdat->node_zones + zone_type;
5062
		if (managed_zone(zone)) {
5063
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5064
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5065
		}
5066
	} while (zone_type);
5067

5068
	return nr_zones;
L
Linus Torvalds 已提交
5069 5070 5071
}

#ifdef CONFIG_NUMA
5072 5073 5074

static int __parse_numa_zonelist_order(char *s)
{
5075 5076 5077 5078 5079 5080 5081 5082
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5083 5084 5085 5086 5087 5088 5089
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5090 5091 5092
	if (!s)
		return 0;

5093
	return __parse_numa_zonelist_order(s);
5094 5095 5096
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5097 5098
char numa_zonelist_order[] = "Node";

5099 5100 5101
/*
 * sysctl handler for numa_zonelist_order
 */
5102
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5103
		void __user *buffer, size_t *length,
5104 5105
		loff_t *ppos)
{
5106
	char *str;
5107 5108
	int ret;

5109 5110 5111 5112 5113
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5114

5115 5116
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5117
	return ret;
5118 5119 5120
}


5121
#define MAX_NODE_LOAD (nr_online_nodes)
5122 5123
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5124
/**
5125
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5138
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5139
{
5140
	int n, val;
L
Linus Torvalds 已提交
5141
	int min_val = INT_MAX;
D
David Rientjes 已提交
5142
	int best_node = NUMA_NO_NODE;
5143
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5144

5145 5146 5147 5148 5149
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5150

5151
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157 5158 5159

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5160 5161 5162
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5163
		/* Give preference to headless and unused nodes */
5164 5165
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5184 5185 5186 5187 5188 5189

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5190 5191
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5192
{
5193 5194 5195 5196 5197 5198 5199 5200 5201
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5202

5203 5204 5205 5206 5207
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5208 5209
}

5210 5211 5212 5213 5214
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5215 5216
	struct zoneref *zonerefs;
	int nr_zones;
5217

5218 5219 5220 5221 5222
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5223 5224
}

5225 5226 5227 5228 5229 5230 5231 5232 5233
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5234 5235
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5236
	nodemask_t used_mask;
5237
	int local_node, prev_node;
L
Linus Torvalds 已提交
5238 5239 5240

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5241
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5242 5243
	prev_node = local_node;
	nodes_clear(used_mask);
5244 5245

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5246 5247 5248 5249 5250 5251
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5252 5253
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5254 5255
			node_load[node] = load;

5256
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5257 5258 5259
		prev_node = node;
		load--;
	}
5260

5261
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5262
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5263 5264
}

5265 5266 5267 5268 5269 5270 5271 5272 5273
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5274
	struct zoneref *z;
5275

5276
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5277
				   gfp_zone(GFP_KERNEL),
5278
				   NULL);
5279
	return zone_to_nid(z->zone);
5280 5281
}
#endif
5282

5283 5284
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5285 5286
#else	/* CONFIG_NUMA */

5287
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5288
{
5289
	int node, local_node;
5290 5291
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5292 5293 5294

	local_node = pgdat->node_id;

5295 5296 5297
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5298

5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5310 5311
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5312
	}
5313 5314 5315
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5316 5317
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5318 5319
	}

5320 5321
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5322 5323 5324 5325
}

#endif	/* CONFIG_NUMA */

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5343
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5344

5345
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5346
{
5347
	int nid;
5348
	int __maybe_unused cpu;
5349
	pg_data_t *self = data;
5350 5351 5352
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5353

5354 5355 5356
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5357

5358 5359 5360 5361
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5362 5363
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5364 5365 5366
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5367

5368 5369
			build_zonelists(pgdat);
		}
5370

5371 5372 5373 5374 5375 5376 5377 5378 5379
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5380
		for_each_online_cpu(cpu)
5381
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5382
#endif
5383
	}
5384 5385

	spin_unlock(&lock);
5386 5387
}

5388 5389 5390
static noinline void __init
build_all_zonelists_init(void)
{
5391 5392
	int cpu;

5393
	__build_all_zonelists(NULL);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5411 5412 5413 5414
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5415 5416
/*
 * unless system_state == SYSTEM_BOOTING.
5417
 *
5418
 * __ref due to call of __init annotated helper build_all_zonelists_init
5419
 * [protected by SYSTEM_BOOTING].
5420
 */
5421
void __ref build_all_zonelists(pg_data_t *pgdat)
5422 5423
{
	if (system_state == SYSTEM_BOOTING) {
5424
		build_all_zonelists_init();
5425
	} else {
5426
		__build_all_zonelists(pgdat);
5427 5428
		/* cpuset refresh routine should be here */
	}
5429
	vm_total_pages = nr_free_pagecache_pages();
5430 5431 5432 5433 5434 5435 5436
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5437
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5438 5439 5440 5441
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5442
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5443 5444 5445
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5446
#ifdef CONFIG_NUMA
5447
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5448
#endif
L
Linus Torvalds 已提交
5449 5450
}

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5475 5476
/*
 * Initially all pages are reserved - free ones are freed
5477
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5478 5479
 * done. Non-atomic initialization, single-pass.
 */
5480
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5481 5482
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5483
{
5484
	unsigned long pfn, end_pfn = start_pfn + size;
5485
	struct page *page;
L
Linus Torvalds 已提交
5486

5487 5488 5489
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5490
#ifdef CONFIG_ZONE_DEVICE
5491 5492
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5493 5494 5495 5496
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5497
	 */
5498 5499 5500 5501 5502 5503 5504 5505 5506
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5507

5508
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5509
		/*
5510 5511
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5512
		 */
5513 5514
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5515
				continue;
5516 5517 5518 5519 5520 5521
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5522
		}
5523

5524 5525 5526
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5527
			__SetPageReserved(page);
5528

5529 5530 5531 5532 5533
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5534
		 * kernel allocations are made.
5535 5536 5537 5538 5539 5540 5541 5542
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5543
			cond_resched();
5544
		}
L
Linus Torvalds 已提交
5545
	}
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
#ifdef CONFIG_SPARSEMEM
	/*
	 * If the zone does not span the rest of the section then
	 * we should at least initialize those pages. Otherwise we
	 * could blow up on a poisoned page in some paths which depend
	 * on full sections being initialized (e.g. memory hotplug).
	 */
	while (end_pfn % PAGES_PER_SECTION) {
		__init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
		end_pfn++;
	}
#endif
L
Linus Torvalds 已提交
5558 5559
}

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5635
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5636
{
5637
	unsigned int order, t;
5638 5639
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5640 5641 5642 5643
		zone->free_area[order].nr_free = 0;
	}
}

5644 5645 5646 5647 5648
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5649

5650
static int zone_batchsize(struct zone *zone)
5651
{
5652
#ifdef CONFIG_MMU
5653 5654 5655 5656
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5657
	 * size of the zone.
5658
	 */
5659
	batch = zone->managed_pages / 1024;
5660 5661 5662
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5663 5664 5665 5666 5667
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5668 5669 5670
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5671
	 *
5672 5673 5674 5675
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5676
	 */
5677
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5678

5679
	return batch;
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5697 5698
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5726
/* a companion to pageset_set_high() */
5727 5728
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5729
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5730 5731
}

5732
static void pageset_init(struct per_cpu_pageset *p)
5733 5734
{
	struct per_cpu_pages *pcp;
5735
	int migratetype;
5736

5737 5738
	memset(p, 0, sizeof(*p));

5739
	pcp = &p->pcp;
5740 5741
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5742 5743
}

5744 5745 5746 5747 5748 5749
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5750
/*
5751
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5752 5753
 * to the value high for the pageset p.
 */
5754
static void pageset_set_high(struct per_cpu_pageset *p,
5755 5756
				unsigned long high)
{
5757 5758 5759
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5760

5761
	pageset_update(&p->pcp, high, batch);
5762 5763
}

5764 5765
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5766 5767
{
	if (percpu_pagelist_fraction)
5768
		pageset_set_high(pcp,
5769 5770 5771 5772 5773 5774
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5775 5776 5777 5778 5779 5780 5781 5782
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5783
void __meminit setup_zone_pageset(struct zone *zone)
5784 5785 5786
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5787 5788
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5789 5790
}

5791
/*
5792 5793
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5794
 */
5795
void __init setup_per_cpu_pageset(void)
5796
{
5797
	struct pglist_data *pgdat;
5798
	struct zone *zone;
5799

5800 5801
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5802 5803 5804 5805

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5806 5807
}

5808
static __meminit void zone_pcp_init(struct zone *zone)
5809
{
5810 5811 5812 5813 5814 5815
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5816

5817
	if (populated_zone(zone))
5818 5819 5820
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5821 5822
}

5823
void __meminit init_currently_empty_zone(struct zone *zone,
5824
					unsigned long zone_start_pfn,
5825
					unsigned long size)
5826 5827
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5828
	int zone_idx = zone_idx(zone) + 1;
5829

5830 5831
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5832 5833 5834

	zone->zone_start_pfn = zone_start_pfn;

5835 5836 5837 5838 5839 5840
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5841
	zone_init_free_lists(zone);
5842
	zone->initialized = 1;
5843 5844
}

T
Tejun Heo 已提交
5845
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5846
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5847

5848 5849 5850
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5851 5852
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5853
{
5854
	unsigned long start_pfn, end_pfn;
5855
	int nid;
5856

5857 5858
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5859

5860 5861
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5862 5863 5864
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5865 5866 5867
	}

	return nid;
5868 5869 5870 5871
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5872
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5873
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5874
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5875
 *
5876 5877 5878
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5879
 */
5880
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5881
{
5882 5883
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5884

5885 5886 5887
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5888

5889
		if (start_pfn < end_pfn)
5890 5891 5892
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5893 5894 5895
	}
}

5896 5897
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5898
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5899
 *
5900 5901
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5902 5903 5904
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5905 5906
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5907

5908 5909
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5910 5911 5912 5913
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5914 5915 5916
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5917 5918
 *
 * It returns the start and end page frame of a node based on information
5919
 * provided by memblock_set_node(). If called for a node
5920
 * with no available memory, a warning is printed and the start and end
5921
 * PFNs will be 0.
5922
 */
5923
void __meminit get_pfn_range_for_nid(unsigned int nid,
5924 5925
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5926
	unsigned long this_start_pfn, this_end_pfn;
5927
	int i;
5928

5929 5930 5931
	*start_pfn = -1UL;
	*end_pfn = 0;

5932 5933 5934
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5935 5936
	}

5937
	if (*start_pfn == -1UL)
5938 5939 5940
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5941 5942 5943 5944 5945
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5946
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5964
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5965 5966 5967 5968 5969 5970 5971
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5972
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5987 5988 5989 5990 5991 5992
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5993 5994 5995 5996 5997 5998
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5999 6000 6001 6002
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6003
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6004
					unsigned long zone_type,
6005 6006
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6007 6008
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6009 6010
					unsigned long *ignored)
{
6011
	/* When hotadd a new node from cpu_up(), the node should be empty */
6012 6013 6014
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6015
	/* Get the start and end of the zone */
6016 6017
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6018 6019
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6020
				zone_start_pfn, zone_end_pfn);
6021 6022

	/* Check that this node has pages within the zone's required range */
6023
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6024 6025 6026
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6027 6028
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6029 6030

	/* Return the spanned pages */
6031
	return *zone_end_pfn - *zone_start_pfn;
6032 6033 6034 6035
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6036
 * then all holes in the requested range will be accounted for.
6037
 */
6038
unsigned long __meminit __absent_pages_in_range(int nid,
6039 6040 6041
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6042 6043 6044
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6045

6046 6047 6048 6049
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6050
	}
6051
	return nr_absent;
6052 6053 6054 6055 6056 6057 6058
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6059
 * It returns the number of pages frames in memory holes within a range.
6060 6061 6062 6063 6064 6065 6066 6067
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6068
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6069
					unsigned long zone_type,
6070 6071
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6072 6073
					unsigned long *ignored)
{
6074 6075
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6076
	unsigned long zone_start_pfn, zone_end_pfn;
6077
	unsigned long nr_absent;
6078

6079
	/* When hotadd a new node from cpu_up(), the node should be empty */
6080 6081 6082
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6083 6084
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6085

M
Mel Gorman 已提交
6086 6087 6088
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6089 6090 6091 6092 6093 6094 6095
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6113 6114 6115 6116
		}
	}

	return nr_absent;
6117
}
6118

T
Tejun Heo 已提交
6119
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6120
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6121
					unsigned long zone_type,
6122 6123
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6124 6125
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6126 6127
					unsigned long *zones_size)
{
6128 6129 6130 6131 6132 6133 6134 6135
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6136 6137 6138
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6139
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6140
						unsigned long zone_type,
6141 6142
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6143 6144 6145 6146 6147 6148 6149
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6150

T
Tejun Heo 已提交
6151
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6152

6153
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6154 6155 6156 6157
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6158
{
6159
	unsigned long realtotalpages = 0, totalpages = 0;
6160 6161
	enum zone_type i;

6162 6163
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6164
		unsigned long zone_start_pfn, zone_end_pfn;
6165
		unsigned long size, real_size;
6166

6167 6168 6169
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6170 6171
						  &zone_start_pfn,
						  &zone_end_pfn,
6172 6173
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6174 6175
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6176 6177 6178 6179
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6180 6181 6182 6183 6184 6185 6186 6187
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6188 6189 6190 6191 6192
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6193 6194 6195
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6196 6197
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6198 6199 6200
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6201
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6202 6203 6204
{
	unsigned long usemapsize;

6205
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6206 6207
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6208 6209 6210 6211 6212 6213
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6214
static void __ref setup_usemap(struct pglist_data *pgdat,
6215 6216 6217
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6218
{
6219
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6220
	zone->pageblock_flags = NULL;
6221
	if (usemapsize)
6222
		zone->pageblock_flags =
6223
			memblock_alloc_node_nopanic(usemapsize,
6224
							 pgdat->node_id);
6225 6226
}
#else
6227 6228
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6229 6230
#endif /* CONFIG_SPARSEMEM */

6231
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6232

6233
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6234
void __init set_pageblock_order(void)
6235
{
6236 6237
	unsigned int order;

6238 6239 6240 6241
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6242 6243 6244 6245 6246
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6247 6248
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6249 6250
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6251 6252 6253 6254 6255
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6256 6257
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6258 6259 6260
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6261
 */
6262
void __init set_pageblock_order(void)
6263 6264
{
}
6265 6266 6267

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6268
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6269
						unsigned long present_pages)
6270 6271 6272 6273 6274 6275 6276 6277
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6278
	 * populated regions may not be naturally aligned on page boundary.
6279 6280 6281 6282 6283 6284 6285 6286 6287
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6308
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6309
{
6310
	pgdat_resize_init(pgdat);
6311 6312 6313 6314

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6315
	init_waitqueue_head(&pgdat->kswapd_wait);
6316
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6317

6318
	pgdat_page_ext_init(pgdat);
6319
	spin_lock_init(&pgdat->lru_lock);
6320
	lruvec_init(node_lruvec(pgdat));
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6367

6368
	pgdat_init_internals(pgdat);
6369 6370
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6371 6372
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6373
		unsigned long size, freesize, memmap_pages;
6374
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6375

6376
		size = zone->spanned_pages;
6377
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6378

6379
		/*
6380
		 * Adjust freesize so that it accounts for how much memory
6381 6382 6383
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6384
		memmap_pages = calc_memmap_size(size, freesize);
6385 6386 6387 6388 6389 6390 6391 6392
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6393
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6394 6395
					zone_names[j], memmap_pages, freesize);
		}
6396

6397
		/* Account for reserved pages */
6398 6399
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6400
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6401
					zone_names[0], dma_reserve);
6402 6403
		}

6404
		if (!is_highmem_idx(j))
6405
			nr_kernel_pages += freesize;
6406 6407 6408
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6409
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6410

6411 6412 6413 6414 6415
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6416
		zone_init_internals(zone, j, nid, freesize);
6417

6418
		if (!size)
L
Linus Torvalds 已提交
6419 6420
			continue;

6421
		set_pageblock_order();
6422 6423
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6424
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6425 6426 6427
	}
}

6428
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6429
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6430
{
6431
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6432 6433
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6434 6435 6436 6437
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6438 6439
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6440 6441
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6442
		unsigned long size, end;
A
Andy Whitcroft 已提交
6443 6444
		struct page *map;

6445 6446 6447 6448 6449
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6450
		end = pgdat_end_pfn(pgdat);
6451 6452
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6453
		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6454
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6455
	}
6456 6457 6458
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6459
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6460 6461 6462
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6463
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6464
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6465
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6466
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6467
			mem_map -= offset;
T
Tejun Heo 已提交
6468
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6469
	}
L
Linus Torvalds 已提交
6470 6471
#endif
}
6472 6473 6474
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6475

6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6491
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6492 6493
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6494
{
6495
	pg_data_t *pgdat = NODE_DATA(nid);
6496 6497
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6498

6499
	/* pg_data_t should be reset to zero when it's allocated */
6500
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6501

L
Linus Torvalds 已提交
6502 6503
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6504
	pgdat->per_cpu_nodestats = NULL;
6505 6506
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6507
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6508 6509
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6510 6511
#else
	start_pfn = node_start_pfn;
6512 6513 6514
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6515 6516

	alloc_node_mem_map(pgdat);
6517
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6518

6519
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6520 6521
}

M
Mike Rapoport 已提交
6522
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6545 6546 6547 6548 6549 6550
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6551 6552 6553 6554 6555
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6556
 */
6557
void __init zero_resv_unavail(void)
6558 6559 6560
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6561
	phys_addr_t next = 0;
6562 6563

	/*
6564
	 * Loop through unavailable ranges not covered by memblock.memory.
6565 6566
	 */
	pgcnt = 0;
6567 6568
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6569 6570
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6571 6572
		next = end;
	}
6573
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6574

6575 6576 6577 6578 6579
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6580
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6581
}
M
Mike Rapoport 已提交
6582
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6583

T
Tejun Heo 已提交
6584
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6585 6586 6587 6588 6589

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6590
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6591
{
6592
	unsigned int highest;
M
Miklos Szeredi 已提交
6593

6594
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6595 6596 6597 6598
	nr_node_ids = highest + 1;
}
#endif

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6621
	unsigned long start, end, mask;
6622
	int last_nid = -1;
6623
	int i, nid;
6624

6625
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6649
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6650
static unsigned long __init find_min_pfn_for_node(int nid)
6651
{
6652
	unsigned long min_pfn = ULONG_MAX;
6653 6654
	unsigned long start_pfn;
	int i;
6655

6656 6657
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6658

6659
	if (min_pfn == ULONG_MAX) {
6660
		pr_warn("Could not find start_pfn for node %d\n", nid);
6661 6662 6663 6664
		return 0;
	}

	return min_pfn;
6665 6666 6667 6668 6669 6670
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6671
 * memblock_set_node().
6672 6673 6674 6675 6676 6677
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6678 6679 6680
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6681
 * Populate N_MEMORY for calculating usable_nodes.
6682
 */
A
Adrian Bunk 已提交
6683
static unsigned long __init early_calculate_totalpages(void)
6684 6685
{
	unsigned long totalpages = 0;
6686 6687 6688 6689 6690
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6691

6692 6693
		totalpages += pages;
		if (pages)
6694
			node_set_state(nid, N_MEMORY);
6695
	}
6696
	return totalpages;
6697 6698
}

M
Mel Gorman 已提交
6699 6700 6701 6702 6703 6704
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6705
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6706 6707 6708 6709
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6710
	/* save the state before borrow the nodemask */
6711
	nodemask_t saved_node_state = node_states[N_MEMORY];
6712
	unsigned long totalpages = early_calculate_totalpages();
6713
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6714
	struct memblock_region *r;
6715 6716 6717 6718 6719 6720 6721 6722 6723

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6724 6725
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6726 6727
				continue;

E
Emil Medve 已提交
6728
			nid = r->nid;
6729

E
Emil Medve 已提交
6730
			usable_startpfn = PFN_DOWN(r->base);
6731 6732 6733 6734 6735 6736 6737
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6738

6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6769
	/*
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6797
		required_movablecore = min(totalpages, required_movablecore);
6798 6799 6800 6801 6802
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6803 6804 6805 6806 6807
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6808
		goto out;
M
Mel Gorman 已提交
6809 6810 6811 6812 6813 6814 6815

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6816
	for_each_node_state(nid, N_MEMORY) {
6817 6818
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6835
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6836 6837
			unsigned long size_pages;

6838
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6881
			 * satisfied
M
Mel Gorman 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6895
	 * satisfied
M
Mel Gorman 已提交
6896 6897 6898 6899 6900
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6901
out2:
M
Mel Gorman 已提交
6902 6903 6904 6905
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6906

6907
out:
6908
	/* restore the node_state */
6909
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6910 6911
}

6912 6913
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6914 6915 6916
{
	enum zone_type zone_type;

6917
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6918
		struct zone *zone = &pgdat->node_zones[zone_type];
6919
		if (populated_zone(zone)) {
6920 6921 6922
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
6923
				node_set_state(nid, N_NORMAL_MEMORY);
6924 6925
			break;
		}
6926 6927 6928
	}
}

6929 6930
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6931
 * @max_zone_pfn: an array of max PFNs for each zone
6932 6933
 *
 * This will call free_area_init_node() for each active node in the system.
6934
 * Using the page ranges provided by memblock_set_node(), the size of each
6935 6936 6937 6938 6939 6940 6941 6942 6943
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6944 6945
	unsigned long start_pfn, end_pfn;
	int i, nid;
6946

6947 6948 6949 6950 6951
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6952 6953 6954 6955

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6956 6957
		if (i == ZONE_MOVABLE)
			continue;
6958 6959 6960 6961 6962 6963

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6964
	}
M
Mel Gorman 已提交
6965 6966 6967

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6968
	find_zone_movable_pfns_for_nodes();
6969 6970

	/* Print out the zone ranges */
6971
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6972 6973 6974
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6975
		pr_info("  %-8s ", zone_names[i]);
6976 6977
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6978
			pr_cont("empty\n");
6979
		else
6980 6981 6982 6983
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6984
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6985 6986 6987
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6988
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6989 6990
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6991 6992
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6993
	}
6994

6995
	/* Print out the early node map */
6996
	pr_info("Early memory node ranges\n");
6997
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6998 6999 7000
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7001 7002

	/* Initialise every node */
7003
	mminit_verify_pageflags_layout();
7004
	setup_nr_node_ids();
7005
	zero_resv_unavail();
7006 7007
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7008
		free_area_init_node(nid, NULL,
7009
				find_min_pfn_for_node(nid), NULL);
7010 7011 7012

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7013 7014
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7015 7016
	}
}
M
Mel Gorman 已提交
7017

7018 7019
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7020 7021
{
	unsigned long long coremem;
7022 7023
	char *endptr;

M
Mel Gorman 已提交
7024 7025 7026
	if (!p)
		return -EINVAL;

7027 7028 7029 7030 7031
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7032

7033 7034 7035 7036 7037
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7038

7039 7040 7041
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7042 7043
	return 0;
}
M
Mel Gorman 已提交
7044

7045 7046 7047 7048 7049 7050
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7051 7052 7053 7054 7055 7056
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7057 7058
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7059 7060 7061 7062 7063 7064 7065 7066
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7067 7068
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7069 7070
}

M
Mel Gorman 已提交
7071
early_param("kernelcore", cmdline_parse_kernelcore);
7072
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7073

T
Tejun Heo 已提交
7074
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7075

7076 7077 7078 7079 7080
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7081 7082 7083 7084
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7085 7086
	spin_unlock(&managed_page_count_lock);
}
7087
EXPORT_SYMBOL(adjust_managed_page_count);
7088

7089
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7090
{
7091 7092
	void *pos;
	unsigned long pages = 0;
7093

7094 7095 7096
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7108
		if ((unsigned int)poison <= 0xFF)
7109 7110 7111
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7112 7113 7114
	}

	if (pages && s)
7115 7116
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7117 7118 7119

	return pages;
}
7120
EXPORT_SYMBOL(free_reserved_area);
7121

7122 7123 7124 7125 7126
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7127
	page_zone(page)->managed_pages++;
7128 7129 7130 7131
	totalhigh_pages++;
}
#endif

7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7154 7155 7156 7157
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7168
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7169
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7170
		", %luK highmem"
7171
#endif
J
Joe Perches 已提交
7172 7173 7174 7175 7176 7177 7178
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7179
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7180
		totalhigh_pages << (PAGE_SHIFT - 10),
7181
#endif
J
Joe Perches 已提交
7182
		str ? ", " : "", str ? str : "");
7183 7184
}

7185
/**
7186 7187
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7188
 *
7189
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7190 7191
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7192 7193 7194
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7195 7196 7197 7198 7199 7200
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7201 7202
void __init free_area_init(unsigned long *zones_size)
{
7203
	zero_resv_unavail();
7204
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7205 7206 7207
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7208
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7209 7210
{

7211 7212
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7213

7214 7215 7216 7217 7218 7219 7220
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7221

7222 7223 7224 7225 7226 7227 7228 7229 7230
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7231 7232 7233 7234
}

void __init page_alloc_init(void)
{
7235 7236 7237 7238 7239 7240
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7241 7242
}

7243
/*
7244
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7245 7246 7247 7248 7249 7250
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7251
	enum zone_type i, j;
7252 7253

	for_each_online_pgdat(pgdat) {
7254 7255 7256

		pgdat->totalreserve_pages = 0;

7257 7258
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7259
			long max = 0;
7260
			unsigned long managed_pages = zone->managed_pages;
7261 7262 7263 7264 7265 7266 7267

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7268 7269
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7270

7271 7272
			if (max > managed_pages)
				max = managed_pages;
7273

7274
			pgdat->totalreserve_pages += max;
7275

7276 7277 7278 7279 7280 7281
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7282 7283
/*
 * setup_per_zone_lowmem_reserve - called whenever
7284
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7285 7286 7287 7288 7289 7290
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7291
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7292

7293
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7294 7295
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7296
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7297 7298 7299

			zone->lowmem_reserve[j] = 0;

7300 7301
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7302 7303
				struct zone *lower_zone;

7304
				idx--;
L
Linus Torvalds 已提交
7305
				lower_zone = pgdat->node_zones + idx;
7306 7307 7308 7309 7310 7311 7312 7313

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7314
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7315 7316 7317
			}
		}
	}
7318 7319 7320

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7321 7322
}

7323
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7324 7325 7326 7327 7328 7329 7330 7331 7332
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7333
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7334 7335 7336
	}

	for_each_zone(zone) {
7337 7338
		u64 tmp;

7339
		spin_lock_irqsave(&zone->lock, flags);
7340
		tmp = (u64)pages_min * zone->managed_pages;
7341
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7342 7343
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7344 7345 7346 7347
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7348
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7349
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7350
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7351
			 */
7352
			unsigned long min_pages;
L
Linus Torvalds 已提交
7353

7354
			min_pages = zone->managed_pages / 1024;
7355
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7356
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7357
		} else {
N
Nick Piggin 已提交
7358 7359
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7360 7361
			 * proportionate to the zone's size.
			 */
7362
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7363 7364
		}

7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7376

7377
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7378
	}
7379 7380 7381

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7382 7383
}

7384 7385 7386 7387 7388 7389 7390 7391 7392
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7393 7394 7395
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7396
	__setup_per_zone_wmarks();
7397
	spin_unlock(&lock);
7398 7399
}

L
Linus Torvalds 已提交
7400 7401 7402 7403 7404 7405 7406
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7407
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7424
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7425 7426
{
	unsigned long lowmem_kbytes;
7427
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7428 7429

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7442
	setup_per_zone_wmarks();
7443
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7444
	setup_per_zone_lowmem_reserve();
7445 7446 7447 7448 7449 7450

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7451 7452
	return 0;
}
7453
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7454 7455

/*
7456
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7457 7458 7459
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7460
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7461
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7462
{
7463 7464 7465 7466 7467 7468
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7469 7470
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7471
		setup_per_zone_wmarks();
7472
	}
L
Linus Torvalds 已提交
7473 7474 7475
	return 0;
}

7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7491
#ifdef CONFIG_NUMA
7492
static void setup_min_unmapped_ratio(void)
7493
{
7494
	pg_data_t *pgdat;
7495 7496
	struct zone *zone;

7497
	for_each_online_pgdat(pgdat)
7498
		pgdat->min_unmapped_pages = 0;
7499

7500
	for_each_zone(zone)
7501
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7502 7503
				sysctl_min_unmapped_ratio) / 100;
}
7504

7505 7506

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7507
	void __user *buffer, size_t *length, loff_t *ppos)
7508 7509 7510
{
	int rc;

7511
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7512 7513 7514
	if (rc)
		return rc;

7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7525 7526 7527
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7528
	for_each_zone(zone)
7529
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7530
				sysctl_min_slab_ratio) / 100;
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7544 7545
	return 0;
}
7546 7547
#endif

L
Linus Torvalds 已提交
7548 7549 7550 7551 7552 7553
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7554
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7555 7556
 * if in function of the boot time zone sizes.
 */
7557
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7558
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7559
{
7560
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7561 7562 7563 7564
	setup_per_zone_lowmem_reserve();
	return 0;
}

7565 7566
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7567 7568
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7569
 */
7570
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7571
	void __user *buffer, size_t *length, loff_t *ppos)
7572 7573
{
	struct zone *zone;
7574
	int old_percpu_pagelist_fraction;
7575 7576
	int ret;

7577 7578 7579
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7580
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7595

7596
	for_each_populated_zone(zone) {
7597 7598
		unsigned int cpu;

7599
		for_each_possible_cpu(cpu)
7600 7601
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7602
	}
7603
out:
7604
	mutex_unlock(&pcp_batch_high_lock);
7605
	return ret;
7606 7607
}

7608
#ifdef CONFIG_NUMA
7609
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7660 7661
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7662
{
7663
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7664 7665
	unsigned long log2qty, size;
	void *table = NULL;
7666
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7667 7668 7669 7670

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7671
		numentries = nr_kernel_pages;
7672
		numentries -= arch_reserved_kernel_pages();
7673 7674 7675 7676

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7677

P
Pavel Tatashin 已提交
7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7688 7689 7690 7691 7692
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7693 7694

		/* Make sure we've got at least a 0-order allocation.. */
7695 7696 7697 7698 7699 7700 7701 7702
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7703
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7704
	}
7705
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7706 7707 7708 7709 7710 7711

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7712
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7713

7714 7715
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7716 7717 7718
	if (numentries > max)
		numentries = max;

7719
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7720

7721
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7722 7723
	do {
		size = bucketsize << log2qty;
7724 7725
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7726 7727
				table = memblock_alloc_nopanic(size,
							       SMP_CACHE_BYTES);
7728
			else
7729 7730
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7731
		} else if (hashdist) {
7732
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7733
		} else {
7734 7735
			/*
			 * If bucketsize is not a power-of-two, we may free
7736 7737
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7738
			 */
7739
			if (get_order(size) < MAX_ORDER) {
7740 7741
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7742
			}
L
Linus Torvalds 已提交
7743 7744 7745 7746 7747 7748
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7749 7750
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7751 7752 7753 7754 7755 7756 7757 7758

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7759

K
KAMEZAWA Hiroyuki 已提交
7760
/*
7761 7762 7763
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7764
 * PageLRU check without isolation or lru_lock could race so that
7765 7766 7767
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7768
 */
7769
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7770
			 int migratetype, int flags)
7771 7772
{
	unsigned long pfn, iter, found;
7773

7774
	/*
7775 7776 7777 7778 7779
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7780 7781
	 */

7782 7783 7784 7785 7786 7787 7788 7789 7790
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7791 7792 7793 7794
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7795
		if (!pfn_valid_within(check))
7796
			continue;
7797

7798
		page = pfn_to_page(check);
7799

7800
		if (PageReserved(page))
7801
			goto unmovable;
7802

7803 7804 7805 7806 7807 7808 7809 7810
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7811 7812 7813 7814 7815 7816
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7817 7818
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7819

7820
			if (!hugepage_migration_supported(page_hstate(head)))
7821 7822
				goto unmovable;

7823 7824
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7825 7826 7827
			continue;
		}

7828 7829 7830 7831
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7832
		 * because their page->_refcount is zero at all time.
7833
		 */
7834
		if (!page_ref_count(page)) {
7835 7836 7837 7838
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7839

7840 7841 7842 7843
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
7844
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7845 7846
			continue;

7847 7848 7849
		if (__PageMovable(page))
			continue;

7850 7851 7852
		if (!PageLRU(page))
			found++;
		/*
7853 7854 7855
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7866
			goto unmovable;
7867
	}
7868
	return false;
7869 7870
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7871 7872
	if (flags & REPORT_FAILURE)
		dump_page(pfn_to_page(pfn+iter), "unmovable page");
7873
	return true;
7874 7875
}

7876
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7891 7892
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7893 7894
{
	/* This function is based on compact_zone() from compaction.c. */
7895
	unsigned long nr_reclaimed;
7896 7897 7898 7899
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7900
	migrate_prep();
7901

7902
	while (pfn < end || !list_empty(&cc->migratepages)) {
7903 7904 7905 7906 7907
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7908 7909
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7910
			pfn = isolate_migratepages_range(cc, pfn, end);
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7921 7922 7923
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7924

7925
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7926
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7927
	}
7928 7929 7930 7931 7932
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7933 7934 7935 7936 7937 7938
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7939 7940 7941 7942
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7943
 * @gfp_mask:	GFP mask to use during compaction
7944 7945
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7946
 * aligned.  The PFN range must belong to a single zone.
7947
 *
7948 7949 7950
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7951 7952 7953 7954 7955
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7956
int alloc_contig_range(unsigned long start, unsigned long end,
7957
		       unsigned migratetype, gfp_t gfp_mask)
7958 7959
{
	unsigned long outer_start, outer_end;
7960 7961
	unsigned int order;
	int ret = 0;
7962

7963 7964 7965 7966
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7967
		.mode = MIGRATE_SYNC,
7968
		.ignore_skip_hint = true,
7969
		.no_set_skip_hint = true,
7970
		.gfp_mask = current_gfp_context(gfp_mask),
7971 7972 7973
	};
	INIT_LIST_HEAD(&cc.migratepages);

7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7999
				       pfn_max_align_up(end), migratetype, 0);
8000
	if (ret)
8001
		return ret;
8002

8003 8004
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8005 8006 8007 8008 8009 8010 8011
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8012
	 */
8013
	ret = __alloc_contig_migrate_range(&cc, start, end);
8014
	if (ret && ret != -EBUSY)
8015
		goto done;
8016
	ret =0;
8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8036
	drain_all_pages(cc.zone);
8037 8038 8039 8040 8041

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8042 8043
			outer_start = start;
			break;
8044 8045 8046 8047
		}
		outer_start &= ~0UL << order;
	}

8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8061
	/* Make sure the range is really isolated. */
8062
	if (test_pages_isolated(outer_start, end, false)) {
8063
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8064
			__func__, outer_start, end);
8065 8066 8067 8068
		ret = -EBUSY;
		goto done;
	}

8069
	/* Grab isolated pages from freelists. */
8070
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8084
				pfn_max_align_up(end), migratetype);
8085 8086 8087 8088 8089
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8090 8091 8092 8093 8094 8095 8096 8097 8098
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8099 8100 8101
}
#endif

8102
#ifdef CONFIG_MEMORY_HOTPLUG
8103 8104 8105 8106
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8107 8108
void __meminit zone_pcp_update(struct zone *zone)
{
8109
	unsigned cpu;
8110
	mutex_lock(&pcp_batch_high_lock);
8111
	for_each_possible_cpu(cpu)
8112 8113
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8114
	mutex_unlock(&pcp_batch_high_lock);
8115 8116 8117
}
#endif

8118 8119 8120
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8121 8122
	int cpu;
	struct per_cpu_pageset *pset;
8123 8124 8125 8126

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8127 8128 8129 8130
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8131 8132 8133 8134 8135 8136
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8137
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8138
/*
8139 8140
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8141 8142 8143 8144 8145 8146
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8147
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8148 8149 8150 8151 8152 8153 8154 8155
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8156
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8157 8158 8159 8160 8161 8162 8163 8164 8165
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8176 8177 8178 8179
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8180 8181
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8193 8194 8195 8196 8197 8198

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8199
	unsigned int order;
8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif