page_alloc.c 236.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
70
#include <linux/psi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75
#include "internal.h"
76
#include "shuffle.h"
L
Linus Torvalds 已提交
77

78 79
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
80
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
81

82 83 84 85 86
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

87 88
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

89 90 91 92 93 94 95 96 97
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98
int _node_numa_mem_[MAX_NUMNODES];
99 100
#endif

101
/* work_structs for global per-cpu drains */
102 103 104 105
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
106
DEFINE_MUTEX(pcpu_drain_mutex);
107
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108

109
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110
volatile unsigned long latent_entropy __latent_entropy;
111 112 113
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
114
/*
115
 * Array of node states.
L
Linus Torvalds 已提交
116
 */
117 118 119 120 121 122 123
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 125
#endif
	[N_MEMORY] = { { [0] = 1UL } },
126 127 128 129 130
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

131 132
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
133
unsigned long totalreserve_pages __read_mostly;
134
unsigned long totalcma_pages __read_mostly;
135

136
int percpu_pagelist_fraction;
137
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);

#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);

static int __init early_init_on_alloc(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
	if (bool_result)
		static_branch_enable(&init_on_alloc);
	else
		static_branch_disable(&init_on_alloc);
	return ret;
}
early_param("init_on_alloc", early_init_on_alloc);

static int __init early_init_on_free(char *buf)
{
	int ret;
	bool bool_result;

	if (!buf)
		return -EINVAL;
	ret = kstrtobool(buf, &bool_result);
	if (bool_result && page_poisoning_enabled())
		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
	if (bool_result)
		static_branch_enable(&init_on_free);
	else
		static_branch_disable(&init_on_free);
	return ret;
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

206 207 208 209 210
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
211 212 213 214
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
215
 */
216 217 218 219

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
220
{
221
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 223 224 225
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
226 227
}

228
void pm_restrict_gfp_mask(void)
229
{
230
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 232
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
233
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234
}
235 236 237

bool pm_suspended_storage(void)
{
238
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 240 241
		return false;
	return true;
}
242 243
#endif /* CONFIG_PM_SLEEP */

244
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245
unsigned int pageblock_order __read_mostly;
246 247
#endif

248
static void __free_pages_ok(struct page *page, unsigned int order);
249

L
Linus Torvalds 已提交
250 251 252 253 254 255
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
256
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
257 258 259
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
260
 */
261
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262
#ifdef CONFIG_ZONE_DMA
263
	[ZONE_DMA] = 256,
264
#endif
265
#ifdef CONFIG_ZONE_DMA32
266
	[ZONE_DMA32] = 256,
267
#endif
268
	[ZONE_NORMAL] = 32,
269
#ifdef CONFIG_HIGHMEM
270
	[ZONE_HIGHMEM] = 0,
271
#endif
272
	[ZONE_MOVABLE] = 0,
273
};
L
Linus Torvalds 已提交
274

275
static char * const zone_names[MAX_NR_ZONES] = {
276
#ifdef CONFIG_ZONE_DMA
277
	 "DMA",
278
#endif
279
#ifdef CONFIG_ZONE_DMA32
280
	 "DMA32",
281
#endif
282
	 "Normal",
283
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
284
	 "HighMem",
285
#endif
M
Mel Gorman 已提交
286
	 "Movable",
287 288 289
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
290 291
};

292
const char * const migratetype_names[MIGRATE_TYPES] = {
293 294 295 296 297 298 299 300 301 302 303 304
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

305 306 307 308 309 310
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
311 312 313
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
314 315
};

L
Linus Torvalds 已提交
316
int min_free_kbytes = 1024;
317
int user_min_free_kbytes = -1;
318 319 320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
330
int watermark_boost_factor __read_mostly = 15000;
331
#endif
332
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
333

334 335 336
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
337

T
Tejun Heo 已提交
338
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 340
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341
static unsigned long required_kernelcore __initdata;
342
static unsigned long required_kernelcore_percent __initdata;
343
static unsigned long required_movablecore __initdata;
344
static unsigned long required_movablecore_percent __initdata;
345
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
347 348 349 350 351

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352

M
Miklos Szeredi 已提交
353
#if MAX_NUMNODES > 1
354
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
356
EXPORT_SYMBOL(nr_node_ids);
357
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
358 359
#endif

360 361
int page_group_by_mobility_disabled __read_mostly;

362
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

389
/* Returns true if the struct page for the pfn is uninitialised */
390
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391
{
392 393 394
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 396 397 398 399 400
		return true;

	return false;
}

/*
401
 * Returns true when the remaining initialisation should be deferred until
402 403
 * later in the boot cycle when it can be parallelised.
 */
404 405
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406
{
407 408 409 410 411 412 413 414 415 416 417
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

418
	/* Always populate low zones for address-constrained allocations */
419
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420
		return false;
421 422 423 424 425

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
426
	nr_initialised++;
427
	if ((nr_initialised > PAGES_PER_SECTION) &&
428 429 430
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
431
	}
432
	return false;
433 434
}
#else
435 436
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

437 438 439 440 441
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

442
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443
{
444
	return false;
445 446 447
}
#endif

448 449 450 451 452
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
453
	return section_to_usemap(__pfn_to_section(pfn));
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
549

550
void set_pageblock_migratetype(struct page *page, int migratetype)
551
{
552 553
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
554 555
		migratetype = MIGRATE_UNMOVABLE;

556 557 558 559
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
560
#ifdef CONFIG_DEBUG_VM
561
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
562
{
563 564 565
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
566
	unsigned long sp, start_pfn;
567

568 569
	do {
		seq = zone_span_seqbegin(zone);
570 571
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
572
		if (!zone_spans_pfn(zone, pfn))
573 574 575
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

576
	if (ret)
577 578 579
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
580

581
	return ret;
582 583 584 585
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
586
	if (!pfn_valid_within(page_to_pfn(page)))
587
		return 0;
L
Linus Torvalds 已提交
588
	if (zone != page_zone(page))
589 590 591 592 593 594 595
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
596
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 598
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
599
		return 1;
600 601 602
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
603 604
	return 0;
}
N
Nick Piggin 已提交
605
#else
606
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
607 608 609 610 611
{
	return 0;
}
#endif

612 613
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
614
{
615 616 617 618 619 620 621 622 623 624 625 626 627 628
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
629
			pr_alert(
630
			      "BUG: Bad page state: %lu messages suppressed\n",
631 632 633 634 635 636 637 638
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

639
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640
		current->comm, page_to_pfn(page));
641 642 643 644 645
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
646
	dump_page_owner(page);
647

648
	print_modules();
L
Linus Torvalds 已提交
649
	dump_stack();
650
out:
651
	/* Leave bad fields for debug, except PageBuddy could make trouble */
652
	page_mapcount_reset(page); /* remove PageBuddy */
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654 655 656 657 658
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
659
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
660
 *
661 662
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
663
 *
664 665
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
666
 *
667
 * The first tail page's ->compound_order holds the order of allocation.
668
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
669
 */
670

671
void free_compound_page(struct page *page)
672
{
673
	__free_pages_ok(page, compound_order(page));
674 675
}

676
void prep_compound_page(struct page *page, unsigned int order)
677 678 679 680
{
	int i;
	int nr_pages = 1 << order;

681
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
682 683 684 685
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
686
		set_page_count(p, 0);
687
		p->mapping = TAIL_MAPPING;
688
		set_compound_head(p, page);
689
	}
690
	atomic_set(compound_mapcount_ptr(page), -1);
691 692
}

693 694
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
695 696 697 698 699 700

#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
#else
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
#endif
701
EXPORT_SYMBOL(_debug_pagealloc_enabled);
702 703

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704

705 706
static int __init early_debug_pagealloc(char *buf)
{
707 708 709
	bool enable = false;

	if (kstrtobool(buf, &enable))
710
		return -EINVAL;
711 712 713 714 715

	if (enable)
		static_branch_enable(&_debug_pagealloc_enabled);

	return 0;
716 717 718
}
early_param("debug_pagealloc", early_debug_pagealloc);

719 720
static void init_debug_guardpage(void)
{
721 722 723
	if (!debug_pagealloc_enabled())
		return;

724 725 726
	if (!debug_guardpage_minorder())
		return;

727
	static_branch_enable(&_debug_guardpage_enabled);
728 729
}

730 731 732 733 734
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
735
		pr_err("Bad debug_guardpage_minorder value\n");
736 737 738
		return 0;
	}
	_debug_guardpage_minorder = res;
739
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 741
	return 0;
}
742
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743

744
static inline bool set_page_guard(struct zone *zone, struct page *page,
745
				unsigned int order, int migratetype)
746
{
747
	if (!debug_guardpage_enabled())
748 749 750 751
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
752

753
	__SetPageGuard(page);
754 755 756 757
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
758 759

	return true;
760 761
}

762 763
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
764
{
765 766 767
	if (!debug_guardpage_enabled())
		return;

768
	__ClearPageGuard(page);
769

770 771 772
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
773 774
}
#else
775 776
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
777 778
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
779 780
#endif

781
static inline void set_page_order(struct page *page, unsigned int order)
782
{
H
Hugh Dickins 已提交
783
	set_page_private(page, order);
784
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
785 786 787 788
}

/*
 * This function checks whether a page is free && is the buddy
789
 * we can coalesce a page and its buddy if
790
 * (a) the buddy is not in a hole (check before calling!) &&
791
 * (b) the buddy is in the buddy system &&
792 793
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
794
 *
795 796
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
797
 *
798
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
799
 */
800
static inline int page_is_buddy(struct page *page, struct page *buddy,
801
							unsigned int order)
L
Linus Torvalds 已提交
802
{
803
	if (page_is_guard(buddy) && page_order(buddy) == order) {
804 805 806
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

807 808
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

809 810 811
		return 1;
	}

812
	if (PageBuddy(buddy) && page_order(buddy) == order) {
813 814 815 816 817 818 819 820
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

821 822
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

823
		return 1;
824
	}
825
	return 0;
L
Linus Torvalds 已提交
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
892 893
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
894
 * So when we are allocating or freeing one, we can derive the state of the
895 896
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
897
 * If a block is freed, and its buddy is also free, then this
898
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
899
 *
900
 * -- nyc
L
Linus Torvalds 已提交
901 902
 */

N
Nick Piggin 已提交
903
static inline void __free_one_page(struct page *page,
904
		unsigned long pfn,
905 906
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
907
{
908 909
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
910
	struct page *buddy;
911
	unsigned int max_order;
912
	struct capture_control *capc = task_capc(zone);
913 914

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
915

916
	VM_BUG_ON(!zone_is_initialized(zone));
917
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
918

919
	VM_BUG_ON(migratetype == -1);
920
	if (likely(!is_migrate_isolate(migratetype)))
921
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
922

923
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
924
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
925

926
continue_merging:
927
	while (order < max_order - 1) {
928 929 930 931 932
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
933 934
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
935 936 937

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
938
		if (!page_is_buddy(page, buddy, order))
939
			goto done_merging;
940 941 942 943
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
944
		if (page_is_guard(buddy))
945
			clear_page_guard(zone, buddy, order, migratetype);
946 947
		else
			del_page_from_free_area(buddy, &zone->free_area[order]);
948 949 950
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
951 952
		order++;
	}
953 954 955 956 957 958 959 960 961 962 963 964
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

965 966
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
967 968 969 970 971 972 973 974 975 976 977 978
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
979
	set_page_order(page, order);
980 981 982 983 984 985 986 987 988

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
989 990
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
			&& !is_shuffle_order(order)) {
991
		struct page *higher_page, *higher_buddy;
992 993 994 995
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
996 997
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
998 999 1000
			add_to_free_area_tail(page, &zone->free_area[order],
					      migratetype);
			return;
1001 1002 1003
		}
	}

1004 1005 1006 1007 1008 1009
	if (is_shuffle_order(order))
		add_to_free_area_random(page, &zone->free_area[order],
				migratetype);
	else
		add_to_free_area(page, &zone->free_area[order], migratetype);

L
Linus Torvalds 已提交
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1034
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1035
{
1036 1037 1038 1039 1040
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1041

1042
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1043 1044 1045
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1046
	if (unlikely(page_ref_count(page) != 0))
1047
		bad_reason = "nonzero _refcount";
1048 1049 1050 1051
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1052 1053 1054 1055
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1056
	bad_page(page, bad_reason, bad_flags);
1057 1058 1059 1060
}

static inline int free_pages_check(struct page *page)
{
1061
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1062 1063 1064 1065
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1066
	return 1;
L
Linus Torvalds 已提交
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1085
		/* the first tail page: ->mapping may be compound_mapcount() */
1086 1087 1088 1089 1090 1091 1092 1093
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1094
		 * deferred_list.next -- ignore value.
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1119 1120 1121 1122 1123 1124 1125 1126
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

	for (i = 0; i < numpages; i++)
		clear_highpage(page + i);
}

1127 1128
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1129
{
1130
	int bad = 0;
1131 1132 1133

	VM_BUG_ON_PAGE(PageTail(page), page);

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1145

1146 1147
		if (compound)
			ClearPageDoubleMap(page);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1158
	if (PageMappingFlags(page))
1159
		page->mapping = NULL;
1160
	if (memcg_kmem_enabled() && PageKmemcg(page))
1161
		__memcg_kmem_uncharge(page, order);
1162 1163 1164 1165
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1166

1167 1168 1169
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1170 1171 1172

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1173
					   PAGE_SIZE << order);
1174
		debug_check_no_obj_freed(page_address(page),
1175
					   PAGE_SIZE << order);
1176
	}
1177
	arch_free_page(page, order);
1178 1179 1180
	if (want_init_on_free())
		kernel_init_free_pages(page, 1 << order);

1181
	kernel_poison_pages(page, 1 << order, 0);
1182 1183 1184
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 0);

1185
	kasan_free_nondeferred_pages(page, order);
1186 1187 1188 1189

	return true;
}

1190
#ifdef CONFIG_DEBUG_VM
1191 1192 1193 1194 1195 1196
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1197 1198 1199 1200
{
	return free_pages_prepare(page, 0, true);
}

1201
static bool bulkfree_pcp_prepare(struct page *page)
1202
{
1203 1204 1205 1206
	if (debug_pagealloc_enabled())
		return free_pages_check(page);
	else
		return false;
1207 1208
}
#else
1209 1210 1211 1212 1213 1214
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1215 1216
static bool free_pcp_prepare(struct page *page)
{
1217 1218 1219 1220
	if (debug_pagealloc_enabled())
		return free_pages_prepare(page, 0, true);
	else
		return free_pages_prepare(page, 0, false);
1221 1222
}

1223 1224 1225 1226 1227 1228
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1229 1230 1231 1232 1233 1234 1235 1236 1237
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1238
/*
1239
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1240
 * Assumes all pages on list are in same zone, and of same order.
1241
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246 1247 1248
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1249 1250
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1251
{
1252
	int migratetype = 0;
1253
	int batch_free = 0;
1254
	int prefetch_nr = 0;
1255
	bool isolated_pageblocks;
1256 1257
	struct page *page, *tmp;
	LIST_HEAD(head);
1258

1259
	while (count) {
1260 1261 1262
		struct list_head *list;

		/*
1263 1264 1265 1266 1267
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1268 1269
		 */
		do {
1270
			batch_free++;
1271 1272 1273 1274
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1275

1276 1277
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1278
			batch_free = count;
1279

1280
		do {
1281
			page = list_last_entry(list, struct page, lru);
1282
			/* must delete to avoid corrupting pcp list */
1283
			list_del(&page->lru);
1284
			pcp->count--;
1285

1286 1287 1288
			if (bulkfree_pcp_prepare(page))
				continue;

1289
			list_add_tail(&page->lru, &head);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1302
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1303
	}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1323
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1324 1325
}

1326 1327
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1328
				unsigned int order,
1329
				int migratetype)
L
Linus Torvalds 已提交
1330
{
1331
	spin_lock(&zone->lock);
1332 1333 1334 1335
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1336
	__free_one_page(page, pfn, zone, order, migratetype);
1337
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1338 1339
}

1340
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341
				unsigned long zone, int nid)
1342
{
1343
	mm_zero_struct_page(page);
1344 1345 1346 1347
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1348
	page_kasan_tag_reset(page);
1349 1350 1351 1352 1353 1354 1355 1356 1357

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1358
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359
static void __meminit init_reserved_page(unsigned long pfn)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1376
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1377 1378 1379 1380 1381 1382 1383
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1384 1385 1386 1387 1388 1389
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1390
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1391 1392 1393 1394
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1395 1396 1397 1398 1399
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1400 1401 1402 1403

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1404 1405 1406 1407 1408 1409
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1410 1411
		}
	}
1412 1413
}

1414 1415
static void __free_pages_ok(struct page *page, unsigned int order)
{
1416
	unsigned long flags;
M
Minchan Kim 已提交
1417
	int migratetype;
1418
	unsigned long pfn = page_to_pfn(page);
1419

1420
	if (!free_pages_prepare(page, order, true))
1421 1422
		return;

1423
	migratetype = get_pfnblock_migratetype(page, pfn);
1424 1425
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1426
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1427
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1428 1429
}

1430
void __free_pages_core(struct page *page, unsigned int order)
1431
{
1432
	unsigned int nr_pages = 1 << order;
1433
	struct page *p = page;
1434
	unsigned int loop;
1435

1436 1437 1438
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1439 1440
		__ClearPageReserved(p);
		set_page_count(p, 0);
1441
	}
1442 1443
	__ClearPageReserved(p);
	set_page_count(p, 0);
1444

1445
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 1447
	set_page_refcounted(page);
	__free_pages(page, order);
1448 1449
}

1450 1451
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1452

1453 1454 1455 1456
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1457
	static DEFINE_SPINLOCK(early_pfn_lock);
1458 1459
	int nid;

1460
	spin_lock(&early_pfn_lock);
1461
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1462
	if (nid < 0)
1463
		nid = first_online_node;
1464 1465 1466
	spin_unlock(&early_pfn_lock);

	return nid;
1467 1468 1469 1470
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 1472
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1473 1474 1475
{
	int nid;

1476
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1490
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1491 1492 1493 1494
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1495
	__free_pages_core(page, order);
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1527 1528 1529
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1569
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 1571
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1572
{
1573 1574
	struct page *page;
	unsigned long i;
1575

1576
	if (!nr_pages)
1577 1578
		return;

1579 1580
	page = pfn_to_page(pfn);

1581
	/* Free a large naturally-aligned chunk if possible */
1582 1583
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1584
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585
		__free_pages_core(page, pageblock_order);
1586 1587 1588
		return;
	}

1589 1590 1591
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592
		__free_pages_core(page, 0);
1593
	}
1594 1595
}

1596 1597 1598 1599 1600 1601 1602 1603 1604
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1605

1606
/*
1607 1608 1609 1610 1611 1612 1613 1614
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1615
 */
1616
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1617
{
1618 1619 1620 1621 1622 1623
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1624

1625 1626 1627 1628
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1629
static void __init deferred_free_pages(unsigned long pfn,
1630 1631 1632 1633
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1634

1635
	for (; pfn < end_pfn; pfn++) {
1636
		if (!deferred_pfn_valid(pfn)) {
1637 1638 1639 1640 1641
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1642
			touch_nmi_watchdog();
1643 1644 1645 1646 1647 1648
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1649 1650
}

1651 1652 1653 1654 1655
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1656
static unsigned long  __init deferred_init_pages(struct zone *zone,
1657 1658
						 unsigned long pfn,
						 unsigned long end_pfn)
1659 1660
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661
	int nid = zone_to_nid(zone);
1662
	unsigned long nr_pages = 0;
1663
	int zid = zone_idx(zone);
1664 1665
	struct page *page = NULL;

1666
	for (; pfn < end_pfn; pfn++) {
1667
		if (!deferred_pfn_valid(pfn)) {
1668
			page = NULL;
1669
			continue;
1670
		} else if (!page || !(pfn & nr_pgmask)) {
1671
			page = pfn_to_page(pfn);
1672
			touch_nmi_watchdog();
1673 1674
		} else {
			page++;
1675
		}
1676
		__init_single_page(page, pfn, zid, nid);
1677
		nr_pages++;
1678
	}
1679
	return (nr_pages);
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1766
/* Initialise remaining memory on a node */
1767
static int __init deferred_init_memmap(void *data)
1768
{
1769
	pg_data_t *pgdat = data;
1770 1771 1772
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
	unsigned long first_init_pfn, flags;
1773 1774
	unsigned long start = jiffies;
	struct zone *zone;
1775
	int zid;
1776
	u64 i;
1777

1778 1779 1780 1781 1782 1783
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1784
	if (first_init_pfn == ULONG_MAX) {
1785
		pgdat_resize_unlock(pgdat, &flags);
1786
		pgdat_init_report_one_done();
1787 1788 1789
		return 0;
	}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1801 1802 1803 1804 1805

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1806

1807
	/*
1808 1809 1810
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1811
	 */
1812 1813 1814
	while (spfn < epfn)
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
zone_empty:
1815
	pgdat_resize_unlock(pgdat, &flags);
1816 1817 1818 1819

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1820 1821
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1822 1823

	pgdat_init_report_one_done();
1824 1825
	return 0;
}
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846
	pg_data_t *pgdat = zone->zone_pgdat;
1847
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 1849
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1878 1879 1880 1881
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1882
		pgdat_resize_unlock(pgdat, &flags);
1883 1884
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1885 1886
	}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897

1898 1899 1900
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1901

1902
		/* If our quota has been met we can stop here */
1903 1904 1905 1906
		if (nr_pages >= nr_pages_needed)
			break;
	}

1907
	pgdat->first_deferred_pfn = spfn;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1925
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1926 1927 1928

void __init page_alloc_init_late(void)
{
1929
	struct zone *zone;
1930
	int nid;
1931 1932

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1933

1934 1935
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 1937 1938 1939 1940
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1941
	wait_for_completion(&pgdat_init_all_done_comp);
1942

1943 1944 1945 1946 1947 1948
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1949 1950
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1951
#endif
1952

P
Pavel Tatashin 已提交
1953 1954
	/* Discard memblock private memory */
	memblock_discard();
1955

1956 1957 1958
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

1959 1960
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1961 1962 1963 1964

#ifdef CONFIG_DEBUG_PAGEALLOC
	init_debug_guardpage();
#endif
1965 1966
}

1967
#ifdef CONFIG_CMA
1968
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1969 1970 1971 1972 1973 1974 1975 1976
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1977
	} while (++p, --i);
1978 1979

	set_pageblock_migratetype(page, MIGRATE_CMA);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1994
	adjust_managed_page_count(page, pageblock_nr_pages);
1995 1996
}
#endif
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2010
 * -- nyc
L
Linus Torvalds 已提交
2011
 */
N
Nick Piggin 已提交
2012
static inline void expand(struct zone *zone, struct page *page,
2013 2014
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
2022
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2023

2024 2025 2026 2027 2028 2029 2030
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2031
			continue;
2032

2033
		add_to_free_area(&page[size], area, migratetype);
L
Linus Torvalds 已提交
2034 2035 2036 2037
		set_page_order(&page[size], high);
	}
}

2038
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2039
{
2040 2041
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2042

2043
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2044 2045 2046
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2047
	if (unlikely(page_ref_count(page) != 0))
2048
		bad_reason = "nonzero _refcount";
2049 2050 2051
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2052 2053 2054
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2055
	}
2056 2057 2058 2059
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2060 2061 2062 2063
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2078 2079
}

2080
static inline bool free_pages_prezeroed(void)
2081
{
2082 2083
	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled()) || want_init_on_free();
2084 2085
}

2086
#ifdef CONFIG_DEBUG_VM
2087 2088 2089 2090 2091 2092
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2093
{
2094 2095 2096 2097
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2098 2099
}

2100
static inline bool check_new_pcp(struct page *page)
2101 2102 2103 2104
{
	return check_new_page(page);
}
#else
2105 2106 2107 2108 2109 2110
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2111 2112 2113
{
	return check_new_page(page);
}
2114
static inline bool check_new_pcp(struct page *page)
2115
{
2116 2117 2118 2119
	if (debug_pagealloc_enabled())
		return check_new_page(page);
	else
		return false;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2136 2137 2138 2139 2140 2141 2142
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2143 2144
	if (debug_pagealloc_enabled())
		kernel_map_pages(page, 1 << order, 1);
2145
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2146
	kernel_poison_pages(page, 1 << order, 1);
2147 2148 2149
	set_page_owner(page, order, gfp_flags);
}

2150
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2151
							unsigned int alloc_flags)
2152
{
2153
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2154

2155 2156
	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
		kernel_init_free_pages(page, 1 << order);
N
Nick Piggin 已提交
2157 2158 2159 2160

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2161
	/*
2162
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2163 2164 2165 2166
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2167 2168 2169 2170
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2171 2172
}

2173 2174 2175 2176
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2177
static __always_inline
2178
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2179 2180 2181
						int migratetype)
{
	unsigned int current_order;
2182
	struct free_area *area;
2183 2184 2185 2186 2187
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2188
		page = get_page_from_free_area(area, migratetype);
2189 2190
		if (!page)
			continue;
2191
		del_page_from_free_area(page, area);
2192
		expand(zone, page, order, current_order, area, migratetype);
2193
		set_pcppage_migratetype(page, migratetype);
2194 2195 2196 2197 2198 2199 2200
		return page;
	}

	return NULL;
}


2201 2202 2203 2204
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2205
static int fallbacks[MIGRATE_TYPES][4] = {
2206 2207
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2208
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2209
#ifdef CONFIG_CMA
2210
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2211
#endif
2212
#ifdef CONFIG_MEMORY_ISOLATION
2213
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2214
#endif
2215 2216
};

2217
#ifdef CONFIG_CMA
2218
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2219 2220 2221 2222 2223 2224 2225 2226 2227
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2228 2229
/*
 * Move the free pages in a range to the free lists of the requested type.
2230
 * Note that start_page and end_pages are not aligned on a pageblock
2231 2232
 * boundary. If alignment is required, use move_freepages_block()
 */
2233
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2234
			  struct page *start_page, struct page *end_page,
2235
			  int migratetype, int *num_movable)
2236 2237
{
	struct page *page;
2238
	unsigned int order;
2239
	int pages_moved = 0;
2240 2241 2242 2243 2244 2245 2246 2247

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

		if (!PageBuddy(page)) {
2248 2249 2250 2251 2252 2253 2254 2255 2256
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2257 2258 2259 2260
			page++;
			continue;
		}

2261 2262 2263 2264
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2265
		order = page_order(page);
2266
		move_to_free_area(page, &zone->free_area[order], migratetype);
2267
		page += 1 << order;
2268
		pages_moved += 1 << order;
2269 2270
	}

2271
	return pages_moved;
2272 2273
}

2274
int move_freepages_block(struct zone *zone, struct page *page,
2275
				int migratetype, int *num_movable)
2276 2277 2278 2279
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2280 2281 2282
	if (num_movable)
		*num_movable = 0;

2283
	start_pfn = page_to_pfn(page);
2284
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2285
	start_page = pfn_to_page(start_pfn);
2286 2287
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2288 2289

	/* Do not cross zone boundaries */
2290
	if (!zone_spans_pfn(zone, start_pfn))
2291
		start_page = page;
2292
	if (!zone_spans_pfn(zone, end_pfn))
2293 2294
		return 0;

2295 2296
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2310
/*
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2321
 */
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2364 2365 2366 2367 2368 2369
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2370 2371 2372
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2373 2374 2375 2376
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2377 2378
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2379
		unsigned int alloc_flags, int start_type, bool whole_block)
2380
{
2381
	unsigned int current_order = page_order(page);
2382
	struct free_area *area;
2383 2384 2385 2386
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2387

2388 2389 2390 2391
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2392
	if (is_migrate_highatomic(old_block_type))
2393 2394
		goto single_page;

2395 2396 2397
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2398
		goto single_page;
2399 2400
	}

2401 2402 2403 2404 2405 2406 2407
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2408
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2409

2410 2411 2412 2413
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2438
	/* moving whole block can fail due to zone boundary conditions */
2439
	if (!free_pages)
2440
		goto single_page;
2441

2442 2443 2444 2445 2446
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2447 2448
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2449 2450 2451 2452 2453

	return;

single_page:
	area = &zone->free_area[current_order];
2454
	move_to_free_area(page, area, start_type);
2455 2456
}

2457 2458 2459 2460 2461 2462 2463 2464
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2475
		if (fallback_mt == MIGRATE_TYPES)
2476 2477
			break;

2478
		if (free_area_empty(area, fallback_mt))
2479
			continue;
2480

2481 2482 2483
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2484 2485 2486 2487 2488
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2489
	}
2490 2491

	return -1;
2492 2493
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2508
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2520 2521
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2522 2523
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2524
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2536 2537 2538
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2539
 */
2540 2541
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2542 2543 2544 2545 2546 2547 2548
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2549
	bool ret;
2550 2551 2552

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2553 2554 2555 2556 2557 2558
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2559 2560 2561 2562 2563 2564
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2565
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2566
			if (!page)
2567 2568 2569
				continue;

			/*
2570 2571 2572 2573 2574
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2575
			 */
2576
			if (is_migrate_highatomic_page(page)) {
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2599 2600
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2601 2602 2603 2604
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2605 2606 2607
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2608 2609

	return false;
2610 2611
}

2612 2613 2614 2615 2616
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2617 2618 2619 2620
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2621
 */
2622
static __always_inline bool
2623 2624
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2625
{
2626
	struct free_area *area;
2627
	int current_order;
2628
	int min_order = order;
2629
	struct page *page;
2630 2631
	int fallback_mt;
	bool can_steal;
2632

2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2641 2642 2643 2644 2645
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2646
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2647
				--current_order) {
2648 2649
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2650
				start_migratetype, false, &can_steal);
2651 2652
		if (fallback_mt == -1)
			continue;
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2665

2666 2667
		goto do_steal;
	}
2668

2669
	return false;
2670

2671 2672 2673 2674 2675 2676 2677 2678
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2679 2680
	}

2681 2682 2683 2684 2685 2686 2687
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2688
	page = get_page_from_free_area(area, fallback_mt);
2689

2690 2691
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2692 2693 2694 2695 2696 2697

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2698 2699
}

2700
/*
L
Linus Torvalds 已提交
2701 2702 2703
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2704
static __always_inline struct page *
2705 2706
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2707 2708 2709
{
	struct page *page;

2710
retry:
2711
	page = __rmqueue_smallest(zone, order, migratetype);
2712
	if (unlikely(!page)) {
2713 2714 2715
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2716 2717
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2718
			goto retry;
2719 2720
	}

2721
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2722
	return page;
L
Linus Torvalds 已提交
2723 2724
}

2725
/*
L
Linus Torvalds 已提交
2726 2727 2728 2729
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2730
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2731
			unsigned long count, struct list_head *list,
2732
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2733
{
2734
	int i, alloced = 0;
2735

2736
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2737
	for (i = 0; i < count; ++i) {
2738 2739
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2740
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2741
			break;
2742

2743 2744 2745
		if (unlikely(check_pcp_refill(page)))
			continue;

2746
		/*
2747 2748 2749 2750 2751 2752 2753 2754
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2755
		 */
2756
		list_add_tail(&page->lru, list);
2757
		alloced++;
2758
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2759 2760
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2761
	}
2762 2763 2764 2765 2766 2767 2768

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2769
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2770
	spin_unlock(&zone->lock);
2771
	return alloced;
L
Linus Torvalds 已提交
2772 2773
}

2774
#ifdef CONFIG_NUMA
2775
/*
2776 2777 2778 2779
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2780 2781
 * Note that this function must be called with the thread pinned to
 * a single processor.
2782
 */
2783
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2784 2785
{
	unsigned long flags;
2786
	int to_drain, batch;
2787

2788
	local_irq_save(flags);
2789
	batch = READ_ONCE(pcp->batch);
2790
	to_drain = min(pcp->count, batch);
2791
	if (to_drain > 0)
2792
		free_pcppages_bulk(zone, to_drain, pcp);
2793
	local_irq_restore(flags);
2794 2795 2796
}
#endif

2797
/*
2798
 * Drain pcplists of the indicated processor and zone.
2799 2800 2801 2802 2803
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2804
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2805
{
N
Nick Piggin 已提交
2806
	unsigned long flags;
2807 2808
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2809

2810 2811
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2812

2813
	pcp = &pset->pcp;
2814
	if (pcp->count)
2815 2816 2817
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2832 2833 2834
	}
}

2835 2836
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2837 2838 2839
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2840
 */
2841
void drain_local_pages(struct zone *zone)
2842
{
2843 2844 2845 2846 2847 2848
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2849 2850
}

2851 2852
static void drain_local_pages_wq(struct work_struct *work)
{
2853 2854 2855 2856
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2857 2858 2859 2860 2861 2862 2863 2864
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2865
	drain_local_pages(drain->zone);
2866
	preempt_enable();
2867 2868
}

2869
/*
2870 2871
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2872 2873
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2874
 * Note that this can be extremely slow as the draining happens in a workqueue.
2875
 */
2876
void drain_all_pages(struct zone *zone)
2877
{
2878 2879 2880 2881 2882 2883 2884 2885
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2886 2887 2888 2889 2890 2891 2892
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2903

2904 2905 2906 2907 2908 2909 2910
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2911 2912
		struct per_cpu_pageset *pcp;
		struct zone *z;
2913
		bool has_pcps = false;
2914 2915

		if (zone) {
2916
			pcp = per_cpu_ptr(zone->pageset, cpu);
2917
			if (pcp->pcp.count)
2918
				has_pcps = true;
2919 2920 2921 2922 2923 2924 2925
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2926 2927
			}
		}
2928

2929 2930 2931 2932 2933
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2934

2935
	for_each_cpu(cpu, &cpus_with_pcps) {
2936 2937 2938 2939 2940
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2941
	}
2942
	for_each_cpu(cpu, &cpus_with_pcps)
2943
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2944 2945

	mutex_unlock(&pcpu_drain_mutex);
2946 2947
}

2948
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2949

2950 2951 2952 2953 2954
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2955 2956
void mark_free_pages(struct zone *zone)
{
2957
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2958
	unsigned long flags;
2959
	unsigned int order, t;
2960
	struct page *page;
L
Linus Torvalds 已提交
2961

2962
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2963 2964 2965
		return;

	spin_lock_irqsave(&zone->lock, flags);
2966

2967
	max_zone_pfn = zone_end_pfn(zone);
2968 2969
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2970
			page = pfn_to_page(pfn);
2971

2972 2973 2974 2975 2976
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2977 2978 2979
			if (page_zone(page) != zone)
				continue;

2980 2981
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2982
		}
L
Linus Torvalds 已提交
2983

2984
	for_each_migratetype_order(order, t) {
2985 2986
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2987
			unsigned long i;
L
Linus Torvalds 已提交
2988

2989
			pfn = page_to_pfn(page);
2990 2991 2992 2993 2994
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2995
				swsusp_set_page_free(pfn_to_page(pfn + i));
2996
			}
2997
		}
2998
	}
L
Linus Torvalds 已提交
2999 3000
	spin_unlock_irqrestore(&zone->lock, flags);
}
3001
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3002

3003
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3004
{
3005
	int migratetype;
L
Linus Torvalds 已提交
3006

3007
	if (!free_pcp_prepare(page))
3008
		return false;
3009

3010
	migratetype = get_pfnblock_migratetype(page, pfn);
3011
	set_pcppage_migratetype(page, migratetype);
3012 3013 3014
	return true;
}

3015
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3016 3017 3018 3019 3020 3021
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3022
	__count_vm_event(PGFREE);
3023

3024 3025 3026
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3027
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3028 3029 3030 3031
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3032
		if (unlikely(is_migrate_isolate(migratetype))) {
3033
			free_one_page(zone, page, pfn, 0, migratetype);
3034
			return;
3035 3036 3037 3038
		}
		migratetype = MIGRATE_MOVABLE;
	}

3039
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3040
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3041
	pcp->count++;
N
Nick Piggin 已提交
3042
	if (pcp->count >= pcp->high) {
3043
		unsigned long batch = READ_ONCE(pcp->batch);
3044
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3045
	}
3046
}
3047

3048 3049 3050
/*
 * Free a 0-order page
 */
3051
void free_unref_page(struct page *page)
3052 3053 3054 3055
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3056
	if (!free_unref_page_prepare(page, pfn))
3057 3058 3059
		return;

	local_irq_save(flags);
3060
	free_unref_page_commit(page, pfn);
3061
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3062 3063
}

3064 3065 3066
/*
 * Free a list of 0-order pages
 */
3067
void free_unref_page_list(struct list_head *list)
3068 3069
{
	struct page *page, *next;
3070
	unsigned long flags, pfn;
3071
	int batch_count = 0;
3072 3073 3074 3075

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3076
		if (!free_unref_page_prepare(page, pfn))
3077 3078 3079
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3080

3081
	local_irq_save(flags);
3082
	list_for_each_entry_safe(page, next, list, lru) {
3083 3084 3085
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3086 3087
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3098
	}
3099
	local_irq_restore(flags);
3100 3101
}

N
Nick Piggin 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3114 3115
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3116

3117
	for (i = 1; i < (1 << order); i++)
3118
		set_page_refcounted(page + i);
3119
	split_page_owner(page, order);
N
Nick Piggin 已提交
3120
}
K
K. Y. Srinivasan 已提交
3121
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3122

3123
int __isolate_free_page(struct page *page, unsigned int order)
3124
{
3125
	struct free_area *area = &page_zone(page)->free_area[order];
3126 3127
	unsigned long watermark;
	struct zone *zone;
3128
	int mt;
3129 3130 3131 3132

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3133
	mt = get_pageblock_migratetype(page);
3134

3135
	if (!is_migrate_isolate(mt)) {
3136 3137 3138 3139 3140 3141
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3142
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3143
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3144 3145
			return 0;

3146
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3147
	}
3148 3149

	/* Remove page from free list */
3150 3151

	del_page_from_free_area(page, area);
3152

3153 3154 3155 3156
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3157 3158
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3159 3160
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3161
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3162
			    && !is_migrate_highatomic(mt))
3163 3164 3165
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3166 3167
	}

3168

3169
	return 1UL << order;
3170 3171
}

3172 3173 3174 3175 3176
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3177
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3178 3179
{
#ifdef CONFIG_NUMA
3180
	enum numa_stat_item local_stat = NUMA_LOCAL;
3181

3182 3183 3184 3185
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3186
	if (zone_to_nid(z) != numa_node_id())
3187 3188
		local_stat = NUMA_OTHER;

3189
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3190
		__inc_numa_state(z, NUMA_HIT);
3191
	else {
3192 3193
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3194
	}
3195
	__inc_numa_state(z, local_stat);
3196 3197 3198
#endif
}

3199 3200
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3201
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3202
			struct per_cpu_pages *pcp,
3203 3204 3205 3206 3207 3208 3209 3210
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3211
					migratetype, alloc_flags);
3212 3213 3214 3215
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3216
		page = list_first_entry(list, struct page, lru);
3217 3218 3219 3220 3221 3222 3223 3224 3225
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3226 3227
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3228 3229 3230 3231
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3232
	unsigned long flags;
3233

3234
	local_irq_save(flags);
3235 3236
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3237
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3238
	if (page) {
3239
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3240 3241
		zone_statistics(preferred_zone, zone);
	}
3242
	local_irq_restore(flags);
3243 3244 3245
	return page;
}

L
Linus Torvalds 已提交
3246
/*
3247
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3248
 */
3249
static inline
3250
struct page *rmqueue(struct zone *preferred_zone,
3251
			struct zone *zone, unsigned int order,
3252 3253
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3254 3255
{
	unsigned long flags;
3256
	struct page *page;
L
Linus Torvalds 已提交
3257

3258
	if (likely(order == 0)) {
3259 3260
		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
					migratetype, alloc_flags);
3261 3262
		goto out;
	}
3263

3264 3265 3266 3267 3268 3269
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3270

3271 3272 3273 3274 3275 3276 3277
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3278
		if (!page)
3279
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3280 3281 3282 3283 3284 3285
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3286

3287
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3288
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3289
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3290

3291
out:
3292 3293 3294 3295 3296 3297
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3298
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3299
	return page;
N
Nick Piggin 已提交
3300 3301 3302 3303

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3304 3305
}

3306 3307
#ifdef CONFIG_FAIL_PAGE_ALLOC

3308
static struct {
3309 3310
	struct fault_attr attr;

3311
	bool ignore_gfp_highmem;
3312
	bool ignore_gfp_reclaim;
3313
	u32 min_order;
3314 3315
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3316
	.ignore_gfp_reclaim = true,
3317
	.ignore_gfp_highmem = true,
3318
	.min_order = 1,
3319 3320 3321 3322 3323 3324 3325 3326
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3327
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3328
{
3329
	if (order < fail_page_alloc.min_order)
3330
		return false;
3331
	if (gfp_mask & __GFP_NOFAIL)
3332
		return false;
3333
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3334
		return false;
3335 3336
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3337
		return false;
3338 3339 3340 3341 3342 3343 3344 3345

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3346
	umode_t mode = S_IFREG | 0600;
3347 3348
	struct dentry *dir;

3349 3350
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3351

3352 3353 3354 3355 3356
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3357

3358
	return 0;
3359 3360 3361 3362 3363 3364 3365 3366
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3367
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3368
{
3369
	return false;
3370 3371 3372 3373
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3374 3375 3376 3377 3378 3379
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3380
/*
3381 3382 3383 3384
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3385
 */
3386 3387 3388
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3389
{
3390
	long min = mark;
L
Linus Torvalds 已提交
3391
	int o;
3392
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3393

3394
	/* free_pages may go negative - that's OK */
3395
	free_pages -= (1 << order) - 1;
3396

R
Rohit Seth 已提交
3397
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3398
		min -= min / 2;
3399 3400 3401 3402 3403 3404

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3405
	if (likely(!alloc_harder)) {
3406
		free_pages -= z->nr_reserved_highatomic;
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3420

3421 3422 3423 3424 3425 3426
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3427 3428 3429 3430 3431 3432
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3433
		return false;
L
Linus Torvalds 已提交
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3448
			if (!free_area_empty(area, mt))
3449 3450 3451 3452
				return true;
		}

#ifdef CONFIG_CMA
3453
		if ((alloc_flags & ALLOC_CMA) &&
3454
		    !free_area_empty(area, MIGRATE_CMA)) {
3455
			return true;
3456
		}
3457
#endif
3458 3459 3460
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3461
	}
3462
	return false;
3463 3464
}

3465
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3466
		      int classzone_idx, unsigned int alloc_flags)
3467 3468 3469 3470 3471
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3472 3473 3474 3475
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3476 3477 3478 3479 3480 3481 3482
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3483 3484 3485 3486 3487 3488 3489 3490

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3491
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3492 3493 3494 3495 3496 3497
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3498
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3499
			unsigned long mark, int classzone_idx)
3500 3501 3502 3503 3504 3505
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3506
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3507
								free_pages);
L
Linus Torvalds 已提交
3508 3509
}

3510
#ifdef CONFIG_NUMA
3511 3512
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3513
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3514
				RECLAIM_DISTANCE;
3515
}
3516
#else	/* CONFIG_NUMA */
3517 3518 3519 3520
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3521 3522
#endif	/* CONFIG_NUMA */

3523 3524 3525 3526 3527 3528 3529 3530 3531
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3532
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3533
{
3534 3535 3536 3537 3538 3539
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3540 3541 3542
	if (!zone)
		return alloc_flags;

3543
	if (zone_idx(zone) != ZONE_NORMAL)
3544
		return alloc_flags;
3545 3546 3547 3548 3549 3550 3551 3552

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3553
		return alloc_flags;
3554

3555
	alloc_flags |= ALLOC_NOFRAGMENT;
3556 3557
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3558 3559
}

R
Rohit Seth 已提交
3560
/*
3561
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3562 3563 3564
 * a page.
 */
static struct page *
3565 3566
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3567
{
3568
	struct zoneref *z;
3569
	struct zone *zone;
3570
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3571
	bool no_fallback;
3572

3573
retry:
R
Rohit Seth 已提交
3574
	/*
3575
	 * Scan zonelist, looking for a zone with enough free.
3576
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3577
	 */
3578 3579
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3580
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3581
								ac->nodemask) {
3582
		struct page *page;
3583 3584
		unsigned long mark;

3585 3586
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3587
			!__cpuset_zone_allowed(zone, gfp_mask))
3588
				continue;
3589 3590
		/*
		 * When allocating a page cache page for writing, we
3591 3592
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3593
		 * proportional share of globally allowed dirty pages.
3594
		 * The dirty limits take into account the node's
3595 3596 3597 3598 3599
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3600
		 * exceed the per-node dirty limit in the slowpath
3601
		 * (spread_dirty_pages unset) before going into reclaim,
3602
		 * which is important when on a NUMA setup the allowed
3603
		 * nodes are together not big enough to reach the
3604
		 * global limit.  The proper fix for these situations
3605
		 * will require awareness of nodes in the
3606 3607
		 * dirty-throttling and the flusher threads.
		 */
3608 3609 3610 3611 3612 3613 3614 3615 3616
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3617

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3634
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3635
		if (!zone_watermark_fast(zone, order, mark,
3636
				       ac_classzone_idx(ac), alloc_flags)) {
3637 3638
			int ret;

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3649 3650 3651 3652 3653
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3654
			if (node_reclaim_mode == 0 ||
3655
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3656 3657
				continue;

3658
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3659
			switch (ret) {
3660
			case NODE_RECLAIM_NOSCAN:
3661
				/* did not scan */
3662
				continue;
3663
			case NODE_RECLAIM_FULL:
3664
				/* scanned but unreclaimable */
3665
				continue;
3666 3667
			default:
				/* did we reclaim enough */
3668
				if (zone_watermark_ok(zone, order, mark,
3669
						ac_classzone_idx(ac), alloc_flags))
3670 3671 3672
					goto try_this_zone;

				continue;
3673
			}
R
Rohit Seth 已提交
3674 3675
		}

3676
try_this_zone:
3677
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3678
				gfp_mask, alloc_flags, ac->migratetype);
3679
		if (page) {
3680
			prep_new_page(page, order, gfp_mask, alloc_flags);
3681 3682 3683 3684 3685 3686 3687 3688

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3689
			return page;
3690 3691 3692 3693 3694 3695 3696 3697
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3698
		}
3699
	}
3700

3701 3702 3703 3704 3705 3706 3707 3708 3709
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3710
	return NULL;
M
Martin Hicks 已提交
3711 3712
}

3713
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3714 3715
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3716
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3717

3718
	if (!__ratelimit(&show_mem_rs))
3719 3720 3721 3722 3723 3724 3725 3726
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3727
		if (tsk_is_oom_victim(current) ||
3728 3729
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3730
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 3732
		filter &= ~SHOW_MEM_FILTER_NODES;

3733
	show_mem(filter, nodemask);
3734 3735
}

3736
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3737 3738 3739 3740 3741 3742
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3743
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3744 3745
		return;

3746 3747 3748
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3749
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3750 3751
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3752
	va_end(args);
J
Joe Perches 已提交
3753

3754
	cpuset_print_current_mems_allowed();
3755
	pr_cont("\n");
3756
	dump_stack();
3757
	warn_alloc_show_mem(gfp_mask, nodemask);
3758 3759
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3780 3781
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3782
	const struct alloc_context *ac, unsigned long *did_some_progress)
3783
{
3784 3785 3786
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3787
		.memcg = NULL,
3788 3789 3790
		.gfp_mask = gfp_mask,
		.order = order,
	};
3791 3792
	struct page *page;

3793 3794 3795
	*did_some_progress = 0;

	/*
3796 3797
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3798
	 */
3799
	if (!mutex_trylock(&oom_lock)) {
3800
		*did_some_progress = 1;
3801
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3802 3803
		return NULL;
	}
3804

3805 3806 3807
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3808 3809 3810
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3811
	 */
3812 3813 3814
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3815
	if (page)
3816 3817
		goto out;

3818 3819 3820 3821 3822 3823
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3824 3825 3826 3827 3828 3829 3830 3831
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3850

3851
	/* Exhausted what can be done so it's blame time */
3852
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3853
		*did_some_progress = 1;
3854

3855 3856 3857 3858 3859 3860
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3861 3862
					ALLOC_NO_WATERMARKS, ac);
	}
3863
out:
3864
	mutex_unlock(&oom_lock);
3865 3866 3867
	return page;
}

3868 3869 3870 3871 3872 3873
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3874 3875 3876 3877
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3878
		unsigned int alloc_flags, const struct alloc_context *ac,
3879
		enum compact_priority prio, enum compact_result *compact_result)
3880
{
3881
	struct page *page = NULL;
3882
	unsigned long pflags;
3883
	unsigned int noreclaim_flag;
3884 3885

	if (!order)
3886 3887
		return NULL;

3888
	psi_memstall_enter(&pflags);
3889
	noreclaim_flag = memalloc_noreclaim_save();
3890

3891
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3892
								prio, &page);
3893

3894
	memalloc_noreclaim_restore(noreclaim_flag);
3895
	psi_memstall_leave(&pflags);
3896

3897 3898 3899 3900 3901
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3902

3903 3904 3905 3906 3907 3908 3909
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3910

3911 3912
	if (page) {
		struct zone *zone = page_zone(page);
3913

3914 3915 3916 3917 3918
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3919

3920 3921 3922 3923 3924
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3925

3926
	cond_resched();
3927 3928 3929

	return NULL;
}
3930

3931 3932 3933 3934
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3935
		     int *compaction_retries)
3936 3937
{
	int max_retries = MAX_COMPACT_RETRIES;
3938
	int min_priority;
3939 3940 3941
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3942 3943 3944 3945

	if (!order)
		return false;

3946 3947 3948
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3949 3950 3951 3952 3953
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3954 3955
	if (compaction_failed(compact_result))
		goto check_priority;
3956 3957 3958 3959 3960 3961 3962

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3963 3964 3965 3966
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3967 3968

	/*
3969
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3970 3971 3972 3973 3974 3975 3976 3977
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3978 3979 3980 3981
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3982

3983 3984 3985 3986 3987
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3988 3989
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3990

3991
	if (*compact_priority > min_priority) {
3992 3993
		(*compact_priority)--;
		*compaction_retries = 0;
3994
		ret = true;
3995
	}
3996 3997 3998
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3999
}
4000 4001 4002
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4003
		unsigned int alloc_flags, const struct alloc_context *ac,
4004
		enum compact_priority prio, enum compact_result *compact_result)
4005
{
4006
	*compact_result = COMPACT_SKIPPED;
4007 4008
	return NULL;
}
4009 4010

static inline bool
4011 4012
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4013
		     enum compact_priority *compact_priority,
4014
		     int *compaction_retries)
4015
{
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4034 4035
	return false;
}
4036
#endif /* CONFIG_COMPACTION */
4037

4038
#ifdef CONFIG_LOCKDEP
4039
static struct lockdep_map __fs_reclaim_map =
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4051
	if (current->flags & PF_MEMALLOC)
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4074 4075 4076
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4077
		__fs_reclaim_acquire();
4078 4079 4080 4081 4082 4083
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4084
		__fs_reclaim_release();
4085 4086 4087 4088
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4089 4090
/* Perform direct synchronous page reclaim */
static int
4091 4092
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4093
{
4094
	int progress;
4095
	unsigned int noreclaim_flag;
4096
	unsigned long pflags;
4097 4098 4099 4100 4101

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4102
	psi_memstall_enter(&pflags);
4103
	fs_reclaim_acquire(gfp_mask);
4104
	noreclaim_flag = memalloc_noreclaim_save();
4105

4106 4107
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4108

4109
	memalloc_noreclaim_restore(noreclaim_flag);
4110
	fs_reclaim_release(gfp_mask);
4111
	psi_memstall_leave(&pflags);
4112 4113 4114

	cond_resched();

4115 4116 4117 4118 4119 4120
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4121
		unsigned int alloc_flags, const struct alloc_context *ac,
4122
		unsigned long *did_some_progress)
4123 4124 4125 4126
{
	struct page *page = NULL;
	bool drained = false;

4127
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4128 4129
	if (unlikely(!(*did_some_progress)))
		return NULL;
4130

4131
retry:
4132
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4133 4134 4135

	/*
	 * If an allocation failed after direct reclaim, it could be because
4136 4137
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4138 4139
	 */
	if (!page && !drained) {
4140
		unreserve_highatomic_pageblock(ac, false);
4141
		drain_all_pages(NULL);
4142 4143 4144 4145
		drained = true;
		goto retry;
	}

4146 4147 4148
	return page;
}

4149 4150
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4151 4152 4153
{
	struct zoneref *z;
	struct zone *zone;
4154
	pg_data_t *last_pgdat = NULL;
4155
	enum zone_type high_zoneidx = ac->high_zoneidx;
4156

4157 4158
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4159
		if (last_pgdat != zone->zone_pgdat)
4160
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4161 4162
		last_pgdat = zone->zone_pgdat;
	}
4163 4164
}

4165
static inline unsigned int
4166 4167
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4168
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4169

4170
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4171
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4172

4173 4174 4175 4176
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4177
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4178
	 */
4179
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4180

4181
	if (gfp_mask & __GFP_ATOMIC) {
4182
		/*
4183 4184
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4185
		 */
4186
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4187
			alloc_flags |= ALLOC_HARDER;
4188
		/*
4189
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4190
		 * comment for __cpuset_node_allowed().
4191
		 */
4192
		alloc_flags &= ~ALLOC_CPUSET;
4193
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4194 4195
		alloc_flags |= ALLOC_HARDER;

4196 4197 4198
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4199 4200 4201 4202
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4203 4204 4205
	return alloc_flags;
}

4206
static bool oom_reserves_allowed(struct task_struct *tsk)
4207
{
4208 4209 4210 4211 4212 4213 4214 4215
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4216 4217
		return false;

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4229
	if (gfp_mask & __GFP_MEMALLOC)
4230
		return ALLOC_NO_WATERMARKS;
4231
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4232 4233 4234 4235 4236 4237 4238
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4239

4240 4241 4242 4243 4244 4245
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4246 4247
}

M
Michal Hocko 已提交
4248 4249 4250
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4251 4252 4253 4254
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4255 4256 4257 4258 4259 4260
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4261
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4262 4263 4264
{
	struct zone *zone;
	struct zoneref *z;
4265
	bool ret = false;
M
Michal Hocko 已提交
4266

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4277 4278 4279 4280
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4281 4282
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4283
		return unreserve_highatomic_pageblock(ac, true);
4284
	}
M
Michal Hocko 已提交
4285

4286 4287 4288 4289 4290
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4291 4292 4293 4294
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4295
		unsigned long reclaimable;
4296 4297
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4298

4299 4300
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4301 4302

		/*
4303 4304
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4305
		 */
4306 4307 4308 4309 4310
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4311 4312 4313 4314 4315 4316 4317
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4318
				unsigned long write_pending;
4319

4320 4321
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4322

4323
				if (2 * write_pending > reclaimable) {
4324 4325 4326 4327
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4328

4329 4330
			ret = true;
			goto out;
M
Michal Hocko 已提交
4331 4332 4333
		}
	}

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4347 4348
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4382 4383
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4384
						struct alloc_context *ac)
4385
{
4386
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4387
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4388
	struct page *page = NULL;
4389
	unsigned int alloc_flags;
4390
	unsigned long did_some_progress;
4391
	enum compact_priority compact_priority;
4392
	enum compact_result compact_result;
4393 4394 4395
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4396
	int reserve_flags;
L
Linus Torvalds 已提交
4397

4398 4399 4400 4401 4402 4403 4404 4405
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4406 4407 4408 4409 4410
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4411 4412 4413 4414 4415 4416 4417 4418

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4430
	if (alloc_flags & ALLOC_KSWAPD)
4431
		wake_all_kswapds(order, gfp_mask, ac);
4432 4433 4434 4435 4436 4437 4438 4439 4440

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4441 4442
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4443 4444 4445 4446 4447 4448
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4449
	 */
4450 4451 4452 4453
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4454 4455
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4456
						INIT_COMPACT_PRIORITY,
4457 4458 4459 4460
						&compact_result);
		if (page)
			goto got_pg;

4461 4462 4463 4464
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4465
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4478 4479
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4480
			 * using async compaction.
4481
			 */
4482
			compact_priority = INIT_COMPACT_PRIORITY;
4483 4484
		}
	}
4485

4486
retry:
4487
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4488
	if (alloc_flags & ALLOC_KSWAPD)
4489
		wake_all_kswapds(order, gfp_mask, ac);
4490

4491 4492 4493
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4494

4495
	/*
4496 4497 4498
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4499
	 */
4500
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4501
		ac->nodemask = NULL;
4502 4503 4504 4505
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4506
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4507
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4508 4509
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4510

4511
	/* Caller is not willing to reclaim, we can't balance anything */
4512
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4513 4514
		goto nopage;

4515 4516
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4517 4518
		goto nopage;

4519 4520 4521 4522 4523 4524 4525
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4526
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4527
					compact_priority, &compact_result);
4528 4529
	if (page)
		goto got_pg;
4530

4531 4532
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4533
		goto nopage;
4534

M
Michal Hocko 已提交
4535 4536
	/*
	 * Do not retry costly high order allocations unless they are
4537
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4538
	 */
4539
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4540
		goto nopage;
M
Michal Hocko 已提交
4541 4542

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4543
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4544 4545
		goto retry;

4546 4547 4548 4549 4550 4551 4552
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4553
			should_compact_retry(ac, order, alloc_flags,
4554
				compact_result, &compact_priority,
4555
				&compaction_retries))
4556 4557
		goto retry;

4558 4559 4560

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4561 4562
		goto retry_cpuset;

4563 4564 4565 4566 4567
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4568
	/* Avoid allocations with no watermarks from looping endlessly */
4569 4570
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4571
	     (gfp_mask & __GFP_NOMEMALLOC)))
4572 4573
		goto nopage;

4574
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4575 4576
	if (did_some_progress) {
		no_progress_loops = 0;
4577
		goto retry;
M
Michal Hocko 已提交
4578
	}
4579

L
Linus Torvalds 已提交
4580
nopage:
4581 4582
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4583 4584
		goto retry_cpuset;

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4622 4623 4624 4625
		cond_resched();
		goto retry;
	}
fail:
4626
	warn_alloc(gfp_mask, ac->nodemask,
4627
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4628
got_pg:
4629
	return page;
L
Linus Torvalds 已提交
4630
}
4631

4632
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4633
		int preferred_nid, nodemask_t *nodemask,
4634 4635
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4636
{
4637
	ac->high_zoneidx = gfp_zone(gfp_mask);
4638
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4639 4640
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4641

4642
	if (cpusets_enabled()) {
4643 4644 4645
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4646 4647
		else
			*alloc_flags |= ALLOC_CPUSET;
4648 4649
	}

4650 4651
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4652

4653
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4654 4655

	if (should_fail_alloc_page(gfp_mask, order))
4656
		return false;
4657

4658 4659 4660
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4661 4662
	return true;
}
4663

4664
/* Determine whether to spread dirty pages and what the first usable zone */
4665
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4666
{
4667
	/* Dirty zone balancing only done in the fast path */
4668
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4669

4670 4671 4672 4673 4674
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4675 4676 4677 4678 4679 4680 4681 4682
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4683 4684
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4685 4686 4687
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4688
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4689 4690
	struct alloc_context ac = { };

4691 4692 4693 4694 4695 4696 4697 4698 4699
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4700
	gfp_mask &= gfp_allowed_mask;
4701
	alloc_mask = gfp_mask;
4702
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4703 4704
		return NULL;

4705
	finalise_ac(gfp_mask, &ac);
4706

4707 4708 4709 4710
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4711
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4712

4713
	/* First allocation attempt */
4714
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4715 4716
	if (likely(page))
		goto out;
4717

4718
	/*
4719 4720 4721 4722
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4723
	 */
4724
	alloc_mask = current_gfp_context(gfp_mask);
4725
	ac.spread_dirty_pages = false;
4726

4727 4728 4729 4730
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4731
	if (unlikely(ac.nodemask != nodemask))
4732
		ac.nodemask = nodemask;
4733

4734
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4735

4736
out:
4737
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4738
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4739 4740
		__free_pages(page, order);
		page = NULL;
4741 4742
	}

4743 4744
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4745
	return page;
L
Linus Torvalds 已提交
4746
}
4747
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4748 4749

/*
4750 4751 4752
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4753
 */
H
Harvey Harrison 已提交
4754
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4755
{
4756 4757
	struct page *page;

4758
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4765
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4766
{
4767
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4768 4769 4770
}
EXPORT_SYMBOL(get_zeroed_page);

4771
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4772
{
4773 4774 4775 4776
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4777 4778
}

4779 4780 4781 4782 4783
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4784 4785
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4786
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4787 4788
{
	if (addr != 0) {
N
Nick Piggin 已提交
4789
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4807 4808
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4828
void __page_frag_cache_drain(struct page *page, unsigned int count)
4829 4830 4831
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4832 4833
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4834
}
4835
EXPORT_SYMBOL(__page_frag_cache_drain);
4836

4837 4838
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4839 4840 4841 4842 4843 4844 4845
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4846
		page = __page_frag_cache_refill(nc, gfp_mask);
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4857
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4858 4859

		/* reset page count bias and offset to start of new frag */
4860
		nc->pfmemalloc = page_is_pfmemalloc(page);
4861
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4862 4863 4864 4865 4866 4867 4868
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4869
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4870 4871 4872 4873 4874 4875 4876
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4877
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4878 4879

		/* reset page count bias and offset to start of new frag */
4880
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4881 4882 4883 4884 4885 4886 4887 4888
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4889
EXPORT_SYMBOL(page_frag_alloc);
4890 4891 4892 4893

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4894
void page_frag_free(void *addr)
4895 4896 4897
{
	struct page *page = virt_to_head_page(addr);

4898 4899
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4900
}
4901
EXPORT_SYMBOL(page_frag_free);
4902

4903 4904
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4919 4920 4921
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
4922
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4923 4924 4925 4926 4927 4928 4929 4930
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4931 4932
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4933 4934 4935 4936 4937 4938
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

4939 4940 4941
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

4942
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4943
	return make_alloc_exact(addr, order, size);
4944 4945 4946
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4947 4948 4949
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4950
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4951
 * @size: the number of bytes to allocate
4952
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
4953 4954 4955
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4956 4957
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4958
 */
4959
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4960
{
4961
	unsigned int order = get_order(size);
4962 4963 4964 4965 4966 4967
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
4968 4969 4970 4971 4972
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4992 4993 4994 4995
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4996
 * nr_free_zone_pages() counts the number of pages which are beyond the
4997 4998
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4999 5000
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5001 5002
 *
 * Return: number of pages beyond high watermark.
5003
 */
5004
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5005
{
5006
	struct zoneref *z;
5007 5008
	struct zone *zone;

5009
	/* Just pick one node, since fallback list is circular */
5010
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5011

5012
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5013

5014
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5015
		unsigned long size = zone_managed_pages(zone);
5016
		unsigned long high = high_wmark_pages(zone);
5017 5018
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023
	}

	return sum;
}

5024 5025 5026 5027 5028
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5029 5030 5031
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5032
 */
5033
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5034
{
A
Al Viro 已提交
5035
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5036
}
5037
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5038

5039 5040 5041 5042 5043
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
5044 5045
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
5046
 */
5047
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5048
{
M
Mel Gorman 已提交
5049
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5050
}
5051 5052

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5053
{
5054
	if (IS_ENABLED(CONFIG_NUMA))
5055
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5056 5057
}

5058 5059 5060 5061 5062 5063
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5064
	unsigned long reclaimable;
5065 5066 5067 5068
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5069
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5070 5071

	for_each_zone(zone)
5072
		wmark_low += low_wmark_pages(zone);
5073 5074 5075 5076 5077

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5078
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5090 5091 5092
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5093
	 */
5094 5095 5096
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
5097

5098 5099 5100 5101 5102 5103
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5104 5105
void si_meminfo(struct sysinfo *val)
{
5106
	val->totalram = totalram_pages();
5107
	val->sharedram = global_node_page_state(NR_SHMEM);
5108
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5109
	val->bufferram = nr_blockdev_pages();
5110
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5120 5121
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5122 5123
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5124 5125
	pg_data_t *pgdat = NODE_DATA(nid);

5126
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5127
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5128
	val->totalram = managed_pages;
5129
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5130
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5131
#ifdef CONFIG_HIGHMEM
5132 5133 5134 5135
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5136
			managed_highpages += zone_managed_pages(zone);
5137 5138 5139 5140 5141
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5142
#else
5143 5144
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5145
#endif
L
Linus Torvalds 已提交
5146 5147 5148 5149
	val->mem_unit = PAGE_SIZE;
}
#endif

5150
/*
5151 5152
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5153
 */
5154
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5155 5156
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5157
		return false;
5158

5159 5160 5161 5162 5163 5164 5165 5166 5167
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5168 5169
}

L
Linus Torvalds 已提交
5170 5171
#define K(x) ((x) << (PAGE_SHIFT-10))

5172 5173 5174 5175 5176
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5177 5178
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5179 5180 5181
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5182
#ifdef CONFIG_MEMORY_ISOLATION
5183
		[MIGRATE_ISOLATE]	= 'I',
5184
#endif
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5196
	printk(KERN_CONT "(%s) ", tmp);
5197 5198
}

L
Linus Torvalds 已提交
5199 5200 5201 5202
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5203 5204 5205 5206
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5207
 */
5208
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5209
{
5210
	unsigned long free_pcp = 0;
5211
	int cpu;
L
Linus Torvalds 已提交
5212
	struct zone *zone;
M
Mel Gorman 已提交
5213
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5214

5215
	for_each_populated_zone(zone) {
5216
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5217
			continue;
5218

5219 5220
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5221 5222
	}

K
KOSAKI Motohiro 已提交
5223 5224
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5225 5226
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5227
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5228
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5229 5230 5231 5232 5233 5234 5235
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5236 5237 5238
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5239 5240
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5241
		global_node_page_state(NR_FILE_MAPPED),
5242
		global_node_page_state(NR_SHMEM),
5243 5244 5245
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5246
		free_pcp,
5247
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5248

M
Mel Gorman 已提交
5249
	for_each_online_pgdat(pgdat) {
5250
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5251 5252
			continue;

M
Mel Gorman 已提交
5253 5254 5255 5256 5257 5258 5259 5260
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5261
			" mapped:%lukB"
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5282
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5283 5284
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5285
			K(node_page_state(pgdat, NR_SHMEM)),
5286 5287 5288 5289 5290 5291 5292 5293
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5294 5295
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5296 5297
	}

5298
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5299 5300
		int i;

5301
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5302
			continue;
5303 5304 5305 5306 5307

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5308
		show_node(zone);
5309 5310
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5311 5312 5313 5314
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5315 5316 5317 5318 5319
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5320
			" writepending:%lukB"
L
Linus Torvalds 已提交
5321
			" present:%lukB"
5322
			" managed:%lukB"
5323
			" mlocked:%lukB"
5324
			" kernel_stack:%lukB"
5325 5326
			" pagetables:%lukB"
			" bounce:%lukB"
5327 5328
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5329
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5330 5331
			"\n",
			zone->name,
5332
			K(zone_page_state(zone, NR_FREE_PAGES)),
5333 5334 5335
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5336 5337 5338 5339 5340
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5341
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5342
			K(zone->present_pages),
5343
			K(zone_managed_pages(zone)),
5344
			K(zone_page_state(zone, NR_MLOCK)),
5345
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5346 5347
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5348 5349
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5350
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5351 5352
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5353 5354
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5355 5356
	}

5357
	for_each_populated_zone(zone) {
5358 5359
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5360
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5361

5362
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5363
			continue;
L
Linus Torvalds 已提交
5364
		show_node(zone);
5365
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5366 5367 5368

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5369 5370 5371 5372
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5373
			total += nr[order] << order;
5374 5375 5376

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5377
				if (!free_area_empty(area, type))
5378 5379
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5380 5381
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5382
		for (order = 0; order < MAX_ORDER; order++) {
5383 5384
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5385 5386 5387
			if (nr[order])
				show_migration_types(types[order]);
		}
5388
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5389 5390
	}

5391 5392
	hugetlb_show_meminfo();

5393
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5394

L
Linus Torvalds 已提交
5395 5396 5397
	show_swap_cache_info();
}

5398 5399 5400 5401 5402 5403
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5404 5405
/*
 * Builds allocation fallback zone lists.
5406 5407
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5408
 */
5409
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5410
{
5411
	struct zone *zone;
5412
	enum zone_type zone_type = MAX_NR_ZONES;
5413
	int nr_zones = 0;
5414 5415

	do {
5416
		zone_type--;
5417
		zone = pgdat->node_zones + zone_type;
5418
		if (managed_zone(zone)) {
5419
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5420
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5421
		}
5422
	} while (zone_type);
5423

5424
	return nr_zones;
L
Linus Torvalds 已提交
5425 5426 5427
}

#ifdef CONFIG_NUMA
5428 5429 5430

static int __parse_numa_zonelist_order(char *s)
{
5431 5432 5433 5434 5435 5436 5437 5438
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5439 5440 5441 5442 5443 5444 5445
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5446 5447 5448
	if (!s)
		return 0;

5449
	return __parse_numa_zonelist_order(s);
5450 5451 5452
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5453 5454
char numa_zonelist_order[] = "Node";

5455 5456 5457
/*
 * sysctl handler for numa_zonelist_order
 */
5458
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5459
		void __user *buffer, size_t *length,
5460 5461
		loff_t *ppos)
{
5462
	char *str;
5463 5464
	int ret;

5465 5466 5467 5468 5469
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5470

5471 5472
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5473
	return ret;
5474 5475 5476
}


5477
#define MAX_NODE_LOAD (nr_online_nodes)
5478 5479
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5480
/**
5481
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5492 5493
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5494
 */
5495
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5496
{
5497
	int n, val;
L
Linus Torvalds 已提交
5498
	int min_val = INT_MAX;
D
David Rientjes 已提交
5499
	int best_node = NUMA_NO_NODE;
5500
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5501

5502 5503 5504 5505 5506
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5507

5508
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5509 5510 5511 5512 5513 5514 5515 5516

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5517 5518 5519
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5520
		/* Give preference to headless and unused nodes */
5521 5522
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5541 5542 5543 5544 5545 5546

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5547 5548
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5549
{
5550 5551 5552 5553 5554 5555 5556 5557 5558
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5559

5560 5561 5562 5563 5564
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5565 5566
}

5567 5568 5569 5570 5571
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5572 5573
	struct zoneref *zonerefs;
	int nr_zones;
5574

5575 5576 5577 5578 5579
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5580 5581
}

5582 5583 5584 5585 5586 5587 5588 5589 5590
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5591 5592
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5593
	nodemask_t used_mask;
5594
	int local_node, prev_node;
L
Linus Torvalds 已提交
5595 5596 5597

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5598
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5599 5600
	prev_node = local_node;
	nodes_clear(used_mask);
5601 5602

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5609 5610
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5611 5612
			node_load[node] = load;

5613
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5614 5615 5616
		prev_node = node;
		load--;
	}
5617

5618
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5619
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5620 5621
}

5622 5623 5624 5625 5626 5627 5628 5629 5630
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5631
	struct zoneref *z;
5632

5633
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5634
				   gfp_zone(GFP_KERNEL),
5635
				   NULL);
5636
	return zone_to_nid(z->zone);
5637 5638
}
#endif
5639

5640 5641
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5642 5643
#else	/* CONFIG_NUMA */

5644
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5645
{
5646
	int node, local_node;
5647 5648
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5649 5650 5651

	local_node = pgdat->node_id;

5652 5653 5654
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5655

5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5667 5668
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5669
	}
5670 5671 5672
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5673 5674
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5675 5676
	}

5677 5678
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5679 5680 5681 5682
}

#endif	/* CONFIG_NUMA */

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5700
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5701

5702
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5703
{
5704
	int nid;
5705
	int __maybe_unused cpu;
5706
	pg_data_t *self = data;
5707 5708 5709
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5710

5711 5712 5713
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5714

5715 5716 5717 5718
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5719 5720
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5721 5722 5723
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5724

5725 5726
			build_zonelists(pgdat);
		}
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5737
		for_each_online_cpu(cpu)
5738
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5739
#endif
5740
	}
5741 5742

	spin_unlock(&lock);
5743 5744
}

5745 5746 5747
static noinline void __init
build_all_zonelists_init(void)
{
5748 5749
	int cpu;

5750
	__build_all_zonelists(NULL);
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5768 5769 5770 5771
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5772 5773
/*
 * unless system_state == SYSTEM_BOOTING.
5774
 *
5775
 * __ref due to call of __init annotated helper build_all_zonelists_init
5776
 * [protected by SYSTEM_BOOTING].
5777
 */
5778
void __ref build_all_zonelists(pg_data_t *pgdat)
5779 5780
{
	if (system_state == SYSTEM_BOOTING) {
5781
		build_all_zonelists_init();
5782
	} else {
5783
		__build_all_zonelists(pgdat);
5784 5785
		/* cpuset refresh routine should be here */
	}
5786
	vm_total_pages = nr_free_pagecache_pages();
5787 5788 5789 5790 5791 5792 5793
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5794
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5795 5796 5797 5798
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5799
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5800 5801 5802
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5803
#ifdef CONFIG_NUMA
5804
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5805
#endif
L
Linus Torvalds 已提交
5806 5807
}

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5832 5833
/*
 * Initially all pages are reserved - free ones are freed
5834
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5835 5836
 * done. Non-atomic initialization, single-pass.
 */
5837
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5838 5839
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5840
{
5841
	unsigned long pfn, end_pfn = start_pfn + size;
5842
	struct page *page;
L
Linus Torvalds 已提交
5843

5844 5845 5846
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5847
#ifdef CONFIG_ZONE_DEVICE
5848 5849
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5850 5851 5852 5853
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5854
	 */
5855 5856 5857 5858 5859 5860 5861 5862 5863
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5864

5865
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5866
		/*
5867 5868
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5869
		 */
5870 5871
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5872
				continue;
5873 5874 5875 5876 5877 5878
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5879
		}
5880

5881 5882 5883
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5884
			__SetPageReserved(page);
5885

5886 5887 5888 5889 5890
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5891
		 * kernel allocations are made.
5892 5893 5894 5895 5896 5897 5898 5899
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5900
			cond_resched();
5901
		}
L
Linus Torvalds 已提交
5902 5903 5904
	}
}

5905 5906 5907 5908 5909 5910 5911 5912
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
5913
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5914 5915 5916 5917
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
5918
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5919 5920 5921 5922 5923 5924 5925
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
5926
	if (altmap) {
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
5946 5947 5948
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
5949 5950
		 */
		page->pgmap = pgmap;
5951
		page->zone_device_data = NULL;
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5966
		 * because this is done early in section_activate()
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5979
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5980
{
5981
	unsigned int order, t;
5982 5983
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5984 5985 5986 5987
		zone->free_area[order].nr_free = 0;
	}
}

5988 5989 5990 5991 5992
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5993

5994
static int zone_batchsize(struct zone *zone)
5995
{
5996
#ifdef CONFIG_MMU
5997 5998 5999 6000
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6001
	 * size of the zone.
6002
	 */
6003
	batch = zone_managed_pages(zone) / 1024;
6004 6005 6006
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6007 6008 6009 6010 6011
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6012 6013 6014
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6015
	 *
6016 6017 6018 6019
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6020
	 */
6021
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6022

6023
	return batch;
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6041 6042
}

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6070
/* a companion to pageset_set_high() */
6071 6072
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6073
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6074 6075
}

6076
static void pageset_init(struct per_cpu_pageset *p)
6077 6078
{
	struct per_cpu_pages *pcp;
6079
	int migratetype;
6080

6081 6082
	memset(p, 0, sizeof(*p));

6083
	pcp = &p->pcp;
6084 6085
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6086 6087
}

6088 6089 6090 6091 6092 6093
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6094
/*
6095
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6096 6097
 * to the value high for the pageset p.
 */
6098
static void pageset_set_high(struct per_cpu_pageset *p,
6099 6100
				unsigned long high)
{
6101 6102 6103
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6104

6105
	pageset_update(&p->pcp, high, batch);
6106 6107
}

6108 6109
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6110 6111
{
	if (percpu_pagelist_fraction)
6112
		pageset_set_high(pcp,
6113
			(zone_managed_pages(zone) /
6114 6115 6116 6117 6118
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6119 6120 6121 6122 6123 6124 6125 6126
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6127
void __meminit setup_zone_pageset(struct zone *zone)
6128 6129 6130
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6131 6132
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6133 6134
}

6135
/*
6136 6137
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6138
 */
6139
void __init setup_per_cpu_pageset(void)
6140
{
6141
	struct pglist_data *pgdat;
6142
	struct zone *zone;
6143

6144 6145
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6146 6147 6148 6149

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6150 6151
}

6152
static __meminit void zone_pcp_init(struct zone *zone)
6153
{
6154 6155 6156 6157 6158 6159
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6160

6161
	if (populated_zone(zone))
6162 6163 6164
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6165 6166
}

6167
void __meminit init_currently_empty_zone(struct zone *zone,
6168
					unsigned long zone_start_pfn,
6169
					unsigned long size)
6170 6171
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6172
	int zone_idx = zone_idx(zone) + 1;
6173

6174 6175
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6176 6177 6178

	zone->zone_start_pfn = zone_start_pfn;

6179 6180 6181 6182 6183 6184
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6185
	zone_init_free_lists(zone);
6186
	zone->initialized = 1;
6187 6188
}

T
Tejun Heo 已提交
6189
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6190
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6191

6192 6193 6194
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6195 6196
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6197
{
6198
	unsigned long start_pfn, end_pfn;
6199
	int nid;
6200

6201 6202
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6203

6204
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6205
	if (nid != NUMA_NO_NODE) {
6206 6207 6208
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6209 6210 6211
	}

	return nid;
6212 6213 6214 6215
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6216
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6217
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6218
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6219
 *
6220 6221 6222
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6223
 */
6224
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6225
{
6226 6227
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6228

6229 6230 6231
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6232

6233
		if (start_pfn < end_pfn)
6234 6235 6236
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6237 6238 6239
	}
}

6240 6241
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6242
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6243
 *
6244 6245
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6246 6247 6248
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6249 6250
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6251

6252 6253
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6254 6255 6256 6257
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6258 6259 6260
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6261 6262
 *
 * It returns the start and end page frame of a node based on information
6263
 * provided by memblock_set_node(). If called for a node
6264
 * with no available memory, a warning is printed and the start and end
6265
 * PFNs will be 0.
6266
 */
6267
void __init get_pfn_range_for_nid(unsigned int nid,
6268 6269
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6270
	unsigned long this_start_pfn, this_end_pfn;
6271
	int i;
6272

6273 6274 6275
	*start_pfn = -1UL;
	*end_pfn = 0;

6276 6277 6278
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6279 6280
	}

6281
	if (*start_pfn == -1UL)
6282 6283 6284
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6285 6286 6287 6288 6289
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6290
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6308
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6309 6310 6311 6312 6313 6314 6315
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6316
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6331 6332 6333 6334 6335 6336
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6337 6338 6339 6340 6341 6342
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6343 6344 6345 6346
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6347
static unsigned long __init zone_spanned_pages_in_node(int nid,
6348
					unsigned long zone_type,
6349 6350
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6351 6352
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6353 6354
					unsigned long *ignored)
{
6355 6356
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6357
	/* When hotadd a new node from cpu_up(), the node should be empty */
6358 6359 6360
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6361
	/* Get the start and end of the zone */
6362 6363
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6364 6365
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6366
				zone_start_pfn, zone_end_pfn);
6367 6368

	/* Check that this node has pages within the zone's required range */
6369
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6370 6371 6372
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6373 6374
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6375 6376

	/* Return the spanned pages */
6377
	return *zone_end_pfn - *zone_start_pfn;
6378 6379 6380 6381
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6382
 * then all holes in the requested range will be accounted for.
6383
 */
6384
unsigned long __init __absent_pages_in_range(int nid,
6385 6386 6387
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6388 6389 6390
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6391

6392 6393 6394 6395
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6396
	}
6397
	return nr_absent;
6398 6399 6400 6401 6402 6403 6404
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6405
 * Return: the number of pages frames in memory holes within a range.
6406 6407 6408 6409 6410 6411 6412 6413
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6414
static unsigned long __init zone_absent_pages_in_node(int nid,
6415
					unsigned long zone_type,
6416 6417
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6418 6419
					unsigned long *ignored)
{
6420 6421
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6422
	unsigned long zone_start_pfn, zone_end_pfn;
6423
	unsigned long nr_absent;
6424

6425
	/* When hotadd a new node from cpu_up(), the node should be empty */
6426 6427 6428
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6429 6430
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6431

M
Mel Gorman 已提交
6432 6433 6434
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6435 6436 6437 6438 6439 6440 6441
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6459 6460 6461 6462
		}
	}

	return nr_absent;
6463
}
6464

T
Tejun Heo 已提交
6465
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6466
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6467
					unsigned long zone_type,
6468 6469
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6470 6471
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6472 6473
					unsigned long *zones_size)
{
6474 6475 6476 6477 6478 6479 6480 6481
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6482 6483 6484
	return zones_size[zone_type];
}

6485
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6486
						unsigned long zone_type,
6487 6488
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6489 6490 6491 6492 6493 6494 6495
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6496

T
Tejun Heo 已提交
6497
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6498

6499
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6500 6501 6502 6503
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6504
{
6505
	unsigned long realtotalpages = 0, totalpages = 0;
6506 6507
	enum zone_type i;

6508 6509
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6510
		unsigned long zone_start_pfn, zone_end_pfn;
6511
		unsigned long size, real_size;
6512

6513 6514 6515
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6516 6517
						  &zone_start_pfn,
						  &zone_end_pfn,
6518 6519
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6520 6521
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6522 6523 6524 6525
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6526 6527 6528 6529 6530 6531 6532 6533
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6534 6535 6536 6537 6538
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6539 6540 6541
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6542 6543
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6544 6545 6546
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6547
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6548 6549 6550
{
	unsigned long usemapsize;

6551
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6552 6553
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6554 6555 6556 6557 6558 6559
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6560
static void __ref setup_usemap(struct pglist_data *pgdat,
6561 6562 6563
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6564
{
6565
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6566
	zone->pageblock_flags = NULL;
6567
	if (usemapsize) {
6568
		zone->pageblock_flags =
6569 6570
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6571 6572 6573 6574
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6575 6576
}
#else
6577 6578
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6579 6580
#endif /* CONFIG_SPARSEMEM */

6581
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6582

6583
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6584
void __init set_pageblock_order(void)
6585
{
6586 6587
	unsigned int order;

6588 6589 6590 6591
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6592 6593 6594 6595 6596
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6597 6598
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6599 6600
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6601 6602 6603 6604 6605
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6606 6607
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6608 6609 6610
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6611
 */
6612
void __init set_pageblock_order(void)
6613 6614
{
}
6615 6616 6617

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6618
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6619
						unsigned long present_pages)
6620 6621 6622 6623 6624 6625 6626 6627
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6628
	 * populated regions may not be naturally aligned on page boundary.
6629 6630 6631 6632 6633 6634 6635 6636 6637
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6658
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6659
{
6660
	pgdat_resize_init(pgdat);
6661 6662 6663 6664

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6665
	init_waitqueue_head(&pgdat->kswapd_wait);
6666
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6667

6668
	pgdat_page_ext_init(pgdat);
6669
	spin_lock_init(&pgdat->lru_lock);
6670
	lruvec_init(node_lruvec(pgdat));
6671 6672 6673 6674 6675
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6676
	atomic_long_set(&zone->managed_pages, remaining_pages);
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6717

6718
	pgdat_init_internals(pgdat);
6719 6720
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6721 6722
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6723
		unsigned long size, freesize, memmap_pages;
6724
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6725

6726
		size = zone->spanned_pages;
6727
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6728

6729
		/*
6730
		 * Adjust freesize so that it accounts for how much memory
6731 6732 6733
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6734
		memmap_pages = calc_memmap_size(size, freesize);
6735 6736 6737 6738 6739 6740 6741 6742
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6743
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6744 6745
					zone_names[j], memmap_pages, freesize);
		}
6746

6747
		/* Account for reserved pages */
6748 6749
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6750
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6751
					zone_names[0], dma_reserve);
6752 6753
		}

6754
		if (!is_highmem_idx(j))
6755
			nr_kernel_pages += freesize;
6756 6757 6758
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6759
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6760

6761 6762 6763 6764 6765
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6766
		zone_init_internals(zone, j, nid, freesize);
6767

6768
		if (!size)
L
Linus Torvalds 已提交
6769 6770
			continue;

6771
		set_pageblock_order();
6772 6773
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6774
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6775 6776 6777
	}
}

6778
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6779
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6780
{
6781
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6782 6783
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6784 6785 6786 6787
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6788 6789
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6790 6791
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6792
		unsigned long size, end;
A
Andy Whitcroft 已提交
6793 6794
		struct page *map;

6795 6796 6797 6798 6799
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6800
		end = pgdat_end_pfn(pgdat);
6801 6802
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6803 6804
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6805 6806 6807
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6808
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6809
	}
6810 6811 6812
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6813
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6814 6815 6816
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6817
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6818
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6819
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6820
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6821
			mem_map -= offset;
T
Tejun Heo 已提交
6822
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6823
	}
L
Linus Torvalds 已提交
6824 6825
#endif
}
6826 6827 6828
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6829

6830 6831 6832 6833 6834 6835 6836 6837 6838
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6839
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6840 6841
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6842
{
6843
	pg_data_t *pgdat = NODE_DATA(nid);
6844 6845
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6846

6847
	/* pg_data_t should be reset to zero when it's allocated */
6848
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6849

L
Linus Torvalds 已提交
6850 6851
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6852
	pgdat->per_cpu_nodestats = NULL;
6853 6854
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6855
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6856 6857
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6858 6859
#else
	start_pfn = node_start_pfn;
6860 6861 6862
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6863 6864

	alloc_node_mem_map(pgdat);
6865
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6866

6867
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6868 6869
}

M
Mike Rapoport 已提交
6870
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6893 6894 6895 6896 6897 6898
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6899 6900 6901 6902 6903
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6904
 */
6905
void __init zero_resv_unavail(void)
6906 6907 6908
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6909
	phys_addr_t next = 0;
6910 6911

	/*
6912
	 * Loop through unavailable ranges not covered by memblock.memory.
6913 6914
	 */
	pgcnt = 0;
6915 6916
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6917 6918
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6919 6920
		next = end;
	}
6921
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6922

6923 6924 6925 6926 6927
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6928
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6929
}
M
Mike Rapoport 已提交
6930
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6931

T
Tejun Heo 已提交
6932
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6933 6934 6935 6936 6937

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6938
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6939
{
6940
	unsigned int highest;
M
Miklos Szeredi 已提交
6941

6942
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6943 6944 6945 6946
	nr_node_ids = highest + 1;
}
#endif

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6963
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6964 6965 6966 6967 6968
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6969
	unsigned long start, end, mask;
6970
	int last_nid = NUMA_NO_NODE;
6971
	int i, nid;
6972

6973
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6997
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6998
static unsigned long __init find_min_pfn_for_node(int nid)
6999
{
7000
	unsigned long min_pfn = ULONG_MAX;
7001 7002
	unsigned long start_pfn;
	int i;
7003

7004 7005
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
7006

7007
	if (min_pfn == ULONG_MAX) {
7008
		pr_warn("Could not find start_pfn for node %d\n", nid);
7009 7010 7011 7012
		return 0;
	}

	return min_pfn;
7013 7014 7015 7016 7017
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7018
 * Return: the minimum PFN based on information provided via
7019
 * memblock_set_node().
7020 7021 7022 7023 7024 7025
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7026 7027 7028
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7029
 * Populate N_MEMORY for calculating usable_nodes.
7030
 */
A
Adrian Bunk 已提交
7031
static unsigned long __init early_calculate_totalpages(void)
7032 7033
{
	unsigned long totalpages = 0;
7034 7035 7036 7037 7038
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7039

7040 7041
		totalpages += pages;
		if (pages)
7042
			node_set_state(nid, N_MEMORY);
7043
	}
7044
	return totalpages;
7045 7046
}

M
Mel Gorman 已提交
7047 7048 7049 7050 7051 7052
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7053
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7054 7055 7056 7057
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7058
	/* save the state before borrow the nodemask */
7059
	nodemask_t saved_node_state = node_states[N_MEMORY];
7060
	unsigned long totalpages = early_calculate_totalpages();
7061
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7062
	struct memblock_region *r;
7063 7064 7065 7066 7067 7068 7069 7070 7071

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7072 7073
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7074 7075
				continue;

E
Emil Medve 已提交
7076
			nid = r->nid;
7077

E
Emil Medve 已提交
7078
			usable_startpfn = PFN_DOWN(r->base);
7079 7080 7081 7082 7083 7084 7085
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7086

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7117
	/*
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7145
		required_movablecore = min(totalpages, required_movablecore);
7146 7147 7148 7149 7150
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7151 7152 7153 7154 7155
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7156
		goto out;
M
Mel Gorman 已提交
7157 7158 7159 7160 7161 7162 7163

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7164
	for_each_node_state(nid, N_MEMORY) {
7165 7166
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7183
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7184 7185
			unsigned long size_pages;

7186
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7229
			 * satisfied
M
Mel Gorman 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7243
	 * satisfied
M
Mel Gorman 已提交
7244 7245 7246 7247 7248
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7249
out2:
M
Mel Gorman 已提交
7250 7251 7252 7253
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7254

7255
out:
7256
	/* restore the node_state */
7257
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7258 7259
}

7260 7261
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7262 7263 7264
{
	enum zone_type zone_type;

7265
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7266
		struct zone *zone = &pgdat->node_zones[zone_type];
7267
		if (populated_zone(zone)) {
7268 7269 7270
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7271
				node_set_state(nid, N_NORMAL_MEMORY);
7272 7273
			break;
		}
7274 7275 7276
	}
}

7277 7278
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7279
 * @max_zone_pfn: an array of max PFNs for each zone
7280 7281
 *
 * This will call free_area_init_node() for each active node in the system.
7282
 * Using the page ranges provided by memblock_set_node(), the size of each
7283 7284 7285 7286 7287 7288 7289 7290 7291
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7292 7293
	unsigned long start_pfn, end_pfn;
	int i, nid;
7294

7295 7296 7297 7298 7299
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7300 7301 7302 7303

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7304 7305
		if (i == ZONE_MOVABLE)
			continue;
7306 7307 7308 7309 7310 7311

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7312
	}
M
Mel Gorman 已提交
7313 7314 7315

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7316
	find_zone_movable_pfns_for_nodes();
7317 7318

	/* Print out the zone ranges */
7319
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7320 7321 7322
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7323
		pr_info("  %-8s ", zone_names[i]);
7324 7325
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7326
			pr_cont("empty\n");
7327
		else
7328 7329 7330 7331
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7332
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7333 7334 7335
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7336
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7337 7338
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7339 7340
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7341
	}
7342

7343 7344 7345 7346 7347
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7348
	pr_info("Early memory node ranges\n");
7349
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7350 7351 7352
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7353 7354
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7355 7356

	/* Initialise every node */
7357
	mminit_verify_pageflags_layout();
7358
	setup_nr_node_ids();
7359
	zero_resv_unavail();
7360 7361
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7362
		free_area_init_node(nid, NULL,
7363
				find_min_pfn_for_node(nid), NULL);
7364 7365 7366

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7367 7368
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7369 7370
	}
}
M
Mel Gorman 已提交
7371

7372 7373
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7374 7375
{
	unsigned long long coremem;
7376 7377
	char *endptr;

M
Mel Gorman 已提交
7378 7379 7380
	if (!p)
		return -EINVAL;

7381 7382 7383 7384 7385
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7386

7387 7388 7389 7390 7391
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7392

7393 7394 7395
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7396 7397
	return 0;
}
M
Mel Gorman 已提交
7398

7399 7400 7401 7402 7403 7404
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7405 7406 7407 7408 7409 7410
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7411 7412
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7413 7414 7415 7416 7417 7418 7419 7420
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7421 7422
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7423 7424
}

M
Mel Gorman 已提交
7425
early_param("kernelcore", cmdline_parse_kernelcore);
7426
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7427

T
Tejun Heo 已提交
7428
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7429

7430 7431
void adjust_managed_page_count(struct page *page, long count)
{
7432
	atomic_long_add(count, &page_zone(page)->managed_pages);
7433
	totalram_pages_add(count);
7434 7435
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7436
		totalhigh_pages_add(count);
7437
#endif
7438
}
7439
EXPORT_SYMBOL(adjust_managed_page_count);
7440

7441
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7442
{
7443 7444
	void *pos;
	unsigned long pages = 0;
7445

7446 7447 7448
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7460
		if ((unsigned int)poison <= 0xFF)
7461 7462 7463
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7464 7465 7466
	}

	if (pages && s)
7467 7468
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7469 7470 7471 7472

	return pages;
}

7473 7474 7475 7476
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7477
	totalram_pages_inc();
7478
	atomic_long_inc(&page_zone(page)->managed_pages);
7479
	totalhigh_pages_inc();
7480 7481 7482
}
#endif

7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7505 7506 7507 7508
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7519
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7520
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7521
		", %luK highmem"
7522
#endif
J
Joe Perches 已提交
7523 7524 7525 7526 7527
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7528
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7529
		totalcma_pages << (PAGE_SHIFT - 10),
7530
#ifdef	CONFIG_HIGHMEM
7531
		totalhigh_pages() << (PAGE_SHIFT - 10),
7532
#endif
J
Joe Perches 已提交
7533
		str ? ", " : "", str ? str : "");
7534 7535
}

7536
/**
7537 7538
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7539
 *
7540
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7541 7542
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7543 7544 7545
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7546 7547 7548 7549 7550 7551
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7552 7553
void __init free_area_init(unsigned long *zones_size)
{
7554
	zero_resv_unavail();
7555
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7556 7557 7558
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7559
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7560 7561
{

7562 7563
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7564

7565 7566 7567 7568 7569 7570 7571
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7572

7573 7574 7575 7576 7577 7578 7579 7580 7581
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7582 7583
}

7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7597 7598
void __init page_alloc_init(void)
{
7599 7600
	int ret;

7601 7602 7603 7604 7605
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

7606 7607 7608 7609
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7610 7611
}

7612
/*
7613
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7614 7615 7616 7617 7618 7619
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7620
	enum zone_type i, j;
7621 7622

	for_each_online_pgdat(pgdat) {
7623 7624 7625

		pgdat->totalreserve_pages = 0;

7626 7627
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7628
			long max = 0;
7629
			unsigned long managed_pages = zone_managed_pages(zone);
7630 7631 7632 7633 7634 7635 7636

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7637 7638
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7639

7640 7641
			if (max > managed_pages)
				max = managed_pages;
7642

7643
			pgdat->totalreserve_pages += max;
7644

7645 7646 7647 7648 7649 7650
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7651 7652
/*
 * setup_per_zone_lowmem_reserve - called whenever
7653
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7654 7655 7656 7657 7658 7659
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7660
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7661

7662
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7663 7664
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7665
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7666 7667 7668

			zone->lowmem_reserve[j] = 0;

7669 7670
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7671 7672
				struct zone *lower_zone;

7673
				idx--;
L
Linus Torvalds 已提交
7674
				lower_zone = pgdat->node_zones + idx;
7675 7676 7677 7678 7679 7680 7681 7682

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7683
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7684 7685 7686
			}
		}
	}
7687 7688 7689

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7690 7691
}

7692
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7693 7694 7695 7696 7697 7698 7699 7700 7701
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7702
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7703 7704 7705
	}

	for_each_zone(zone) {
7706 7707
		u64 tmp;

7708
		spin_lock_irqsave(&zone->lock, flags);
7709
		tmp = (u64)pages_min * zone_managed_pages(zone);
7710
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7711 7712
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7713 7714 7715 7716
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7717
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7718
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7719
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7720
			 */
7721
			unsigned long min_pages;
L
Linus Torvalds 已提交
7722

7723
			min_pages = zone_managed_pages(zone) / 1024;
7724
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7725
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7726
		} else {
N
Nick Piggin 已提交
7727 7728
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7729 7730
			 * proportionate to the zone's size.
			 */
7731
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7732 7733
		}

7734 7735 7736 7737 7738 7739
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7740
			    mult_frac(zone_managed_pages(zone),
7741 7742
				      watermark_scale_factor, 10000));

7743 7744
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7745
		zone->watermark_boost = 0;
7746

7747
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7748
	}
7749 7750 7751

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7752 7753
}

7754 7755 7756 7757 7758 7759 7760 7761 7762
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7763 7764 7765
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7766
	__setup_per_zone_wmarks();
7767
	spin_unlock(&lock);
7768 7769
}

L
Linus Torvalds 已提交
7770 7771 7772 7773 7774 7775 7776
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7777
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7794
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7795 7796
{
	unsigned long lowmem_kbytes;
7797
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7798 7799

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7812
	setup_per_zone_wmarks();
7813
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7814
	setup_per_zone_lowmem_reserve();
7815 7816 7817 7818 7819 7820

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7821 7822
	return 0;
}
7823
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7824 7825

/*
7826
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7827 7828 7829
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7830
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7831
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7832
{
7833 7834 7835 7836 7837 7838
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7839 7840
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7841
		setup_per_zone_wmarks();
7842
	}
L
Linus Torvalds 已提交
7843 7844 7845
	return 0;
}

7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7873
#ifdef CONFIG_NUMA
7874
static void setup_min_unmapped_ratio(void)
7875
{
7876
	pg_data_t *pgdat;
7877 7878
	struct zone *zone;

7879
	for_each_online_pgdat(pgdat)
7880
		pgdat->min_unmapped_pages = 0;
7881

7882
	for_each_zone(zone)
7883 7884
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7885
}
7886

7887 7888

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7889
	void __user *buffer, size_t *length, loff_t *ppos)
7890 7891 7892
{
	int rc;

7893
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7894 7895 7896
	if (rc)
		return rc;

7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7907 7908 7909
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7910
	for_each_zone(zone)
7911 7912
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7926 7927
	return 0;
}
7928 7929
#endif

L
Linus Torvalds 已提交
7930 7931 7932 7933 7934 7935
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7936
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7937 7938
 * if in function of the boot time zone sizes.
 */
7939
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7940
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7941
{
7942
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7943 7944 7945 7946
	setup_per_zone_lowmem_reserve();
	return 0;
}

7947 7948
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7949 7950
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7951
 */
7952
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7953
	void __user *buffer, size_t *length, loff_t *ppos)
7954 7955
{
	struct zone *zone;
7956
	int old_percpu_pagelist_fraction;
7957 7958
	int ret;

7959 7960 7961
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7962
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7977

7978
	for_each_populated_zone(zone) {
7979 7980
		unsigned int cpu;

7981
		for_each_possible_cpu(cpu)
7982 7983
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7984
	}
7985
out:
7986
	mutex_unlock(&pcp_batch_high_lock);
7987
	return ret;
7988 7989
}

7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8029 8030
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8031
{
8032
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8033 8034
	unsigned long log2qty, size;
	void *table = NULL;
8035
	gfp_t gfp_flags;
8036
	bool virt;
L
Linus Torvalds 已提交
8037 8038 8039 8040

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8041
		numentries = nr_kernel_pages;
8042
		numentries -= arch_reserved_kernel_pages();
8043 8044 8045 8046

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8047

P
Pavel Tatashin 已提交
8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8058 8059 8060 8061 8062
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8063 8064

		/* Make sure we've got at least a 0-order allocation.. */
8065 8066 8067 8068 8069 8070 8071 8072
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8073
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8074
	}
8075
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8076 8077 8078 8079 8080 8081

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8082
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8083

8084 8085
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8086 8087 8088
	if (numentries > max)
		numentries = max;

8089
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8090

8091
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8092
	do {
8093
		virt = false;
L
Linus Torvalds 已提交
8094
		size = bucketsize << log2qty;
8095 8096
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8097
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8098
			else
8099 8100
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8101
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8102
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8103
			virt = true;
8104
		} else {
8105 8106
			/*
			 * If bucketsize is not a power-of-two, we may free
8107 8108
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8109
			 */
8110 8111
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8112 8113 8114 8115 8116 8117
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8118 8119 8120
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
		virt ? "vmalloc" : "linear");
L
Linus Torvalds 已提交
8121 8122 8123 8124 8125 8126 8127 8128

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8129

K
KAMEZAWA Hiroyuki 已提交
8130
/*
8131 8132 8133
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8134
 * PageLRU check without isolation or lru_lock could race so that
8135 8136 8137
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8138
 */
8139
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8140
			 int migratetype, int flags)
8141
{
8142 8143 8144 8145
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8146

8147
	/*
8148 8149 8150 8151 8152
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8153 8154
	 */

8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8167

8168
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8169 8170
		unsigned long check = pfn + iter;

8171
		if (!pfn_valid_within(check))
8172
			continue;
8173

8174
		page = pfn_to_page(check);
8175

8176
		if (PageReserved(page))
8177
			goto unmovable;
8178

8179 8180 8181 8182 8183 8184 8185 8186
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8187 8188
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8189
		 * We need not scan over tail pages because we don't
8190 8191 8192
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8193 8194
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8195

8196
			if (!hugepage_migration_supported(page_hstate(head)))
8197 8198
				goto unmovable;

8199 8200
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8201 8202 8203
			continue;
		}

8204 8205 8206 8207
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8208
		 * because their page->_refcount is zero at all time.
8209
		 */
8210
		if (!page_ref_count(page)) {
8211 8212 8213 8214
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8215

8216 8217 8218 8219
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8220
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8221 8222
			continue;

8223 8224 8225
		if (__PageMovable(page))
			continue;

8226 8227 8228
		if (!PageLRU(page))
			found++;
		/*
8229 8230 8231
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8242
			goto unmovable;
8243
	}
8244
	return false;
8245 8246
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8247
	if (flags & REPORT_FAILURE)
8248
		dump_page(pfn_to_page(pfn + iter), reason);
8249
	return true;
8250 8251
}

8252
#ifdef CONFIG_CONTIG_ALLOC
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8266 8267
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8268 8269
{
	/* This function is based on compact_zone() from compaction.c. */
8270
	unsigned long nr_reclaimed;
8271 8272 8273 8274
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8275
	migrate_prep();
8276

8277
	while (pfn < end || !list_empty(&cc->migratepages)) {
8278 8279 8280 8281 8282
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8283 8284
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8285
			pfn = isolate_migratepages_range(cc, pfn, end);
8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8296 8297 8298
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8299

8300
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8301
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8302
	}
8303 8304 8305 8306 8307
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8308 8309 8310 8311 8312 8313
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8314 8315 8316 8317
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8318
 * @gfp_mask:	GFP mask to use during compaction
8319 8320
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8321
 * aligned.  The PFN range must belong to a single zone.
8322
 *
8323 8324 8325
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8326
 *
8327
 * Return: zero on success or negative error code.  On success all
8328 8329 8330
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8331
int alloc_contig_range(unsigned long start, unsigned long end,
8332
		       unsigned migratetype, gfp_t gfp_mask)
8333 8334
{
	unsigned long outer_start, outer_end;
8335 8336
	unsigned int order;
	int ret = 0;
8337

8338 8339 8340 8341
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8342
		.mode = MIGRATE_SYNC,
8343
		.ignore_skip_hint = true,
8344
		.no_set_skip_hint = true,
8345
		.gfp_mask = current_gfp_context(gfp_mask),
8346 8347 8348
	};
	INIT_LIST_HEAD(&cc.migratepages);

8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8374
				       pfn_max_align_up(end), migratetype, 0);
8375
	if (ret < 0)
8376
		return ret;
8377

8378 8379
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8380 8381 8382 8383 8384 8385 8386
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8387
	 */
8388
	ret = __alloc_contig_migrate_range(&cc, start, end);
8389
	if (ret && ret != -EBUSY)
8390
		goto done;
8391
	ret =0;
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8416 8417
			outer_start = start;
			break;
8418 8419 8420 8421
		}
		outer_start &= ~0UL << order;
	}

8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8435
	/* Make sure the range is really isolated. */
8436
	if (test_pages_isolated(outer_start, end, false)) {
8437
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8438
			__func__, outer_start, end);
8439 8440 8441 8442
		ret = -EBUSY;
		goto done;
	}

8443
	/* Grab isolated pages from freelists. */
8444
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8458
				pfn_max_align_up(end), migratetype);
8459 8460
	return ret;
}
8461
#endif /* CONFIG_CONTIG_ALLOC */
8462

8463
void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8464
{
8465 8466 8467 8468 8469 8470 8471 8472 8473
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8474 8475
}

8476
#ifdef CONFIG_MEMORY_HOTPLUG
8477 8478 8479 8480
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8481 8482
void __meminit zone_pcp_update(struct zone *zone)
{
8483
	unsigned cpu;
8484
	mutex_lock(&pcp_batch_high_lock);
8485
	for_each_possible_cpu(cpu)
8486 8487
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8488
	mutex_unlock(&pcp_batch_high_lock);
8489 8490 8491
}
#endif

8492 8493 8494
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8495 8496
	int cpu;
	struct per_cpu_pageset *pset;
8497 8498 8499 8500

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8501 8502 8503 8504
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8505 8506 8507 8508 8509 8510
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8511
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8512
/*
8513 8514
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8515
 */
8516
unsigned long
K
KAMEZAWA Hiroyuki 已提交
8517 8518 8519 8520
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8521
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8522 8523
	unsigned long pfn;
	unsigned long flags;
8524 8525
	unsigned long offlined_pages = 0;

K
KAMEZAWA Hiroyuki 已提交
8526 8527 8528 8529 8530
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
8531 8532
		return offlined_pages;

8533
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8534 8535 8536 8537 8538 8539 8540 8541 8542
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8543 8544 8545 8546 8547 8548 8549
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
8550
			offlined_pages++;
8551 8552 8553
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8554 8555 8556
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
8557
		offlined_pages += 1 << order;
K
KAMEZAWA Hiroyuki 已提交
8558
#ifdef CONFIG_DEBUG_VM
8559 8560
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8561
#endif
8562
		del_page_from_free_area(page, &zone->free_area[order]);
K
KAMEZAWA Hiroyuki 已提交
8563 8564 8565 8566 8567
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
8568 8569

	return offlined_pages;
K
KAMEZAWA Hiroyuki 已提交
8570 8571
}
#endif
8572 8573 8574 8575 8576 8577

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8578
	unsigned int order;
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif