hugetlb.c 187.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33
#include <linux/migrate.h>
34

D
David Gibson 已提交
35
#include <asm/page.h>
36
#include <asm/pgalloc.h>
37
#include <asm/tlb.h>
D
David Gibson 已提交
38

39
#include <linux/io.h>
D
David Gibson 已提交
40
#include <linux/hugetlb.h>
41
#include <linux/hugetlb_cgroup.h>
42
#include <linux/node.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
45
#include "hugetlb_vmemmap.h"
L
Linus Torvalds 已提交
46

47
int hugetlb_max_hstate __read_mostly;
48 49
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
50

51
#ifdef CONFIG_CMA
52
static struct cma *hugetlb_cma[MAX_NUMNODES];
53 54 55 56 57 58 59 60 61 62
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
				1 << order);
}
#else
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return false;
}
63 64
#endif
static unsigned long hugetlb_cma_size __initdata;
65

66 67 68 69 70
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
71

72 73
__initdata LIST_HEAD(huge_boot_pages);

74 75 76
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
77
static bool __initdata parsed_valid_hugepagesz = true;
78
static bool __initdata parsed_default_hugepagesz;
79

80
/*
81 82
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
83
 */
84
DEFINE_SPINLOCK(hugetlb_lock);
85

86 87 88 89 90
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
91
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92

93 94 95
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

96
static inline bool subpool_is_free(struct hugepage_subpool *spool)
97
{
98 99 100 101 102 103 104 105 106
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
107

108 109
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
						unsigned long irq_flags)
110
{
111
	spin_unlock_irqrestore(&spool->lock, irq_flags);
112 113

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
114
	 * remain, give up any reservations based on minimum size and
115
	 * free the subpool */
116
	if (subpool_is_free(spool)) {
117 118 119
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
120
		kfree(spool);
121
	}
122 123
}

124 125
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
126 127 128
{
	struct hugepage_subpool *spool;

129
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
130 131 132 133 134
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
135 136 137 138 139 140 141 142 143
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
144 145 146 147 148 149

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
150 151 152
	unsigned long flags;

	spin_lock_irqsave(&spool->lock, flags);
153 154
	BUG_ON(!spool->count);
	spool->count--;
155
	unlock_or_release_subpool(spool, flags);
156 157
}

158 159 160
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
161
 * request.  Otherwise, return the number of pages by which the
162 163
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
164
 * a subpool minimum size must be maintained.
165 166
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
167 168
				      long delta)
{
169
	long ret = delta;
170 171

	if (!spool)
172
		return ret;
173

174
	spin_lock_irq(&spool->lock);
175 176 177 178 179 180 181 182

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
183 184
	}

185 186
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
187 188 189 190 191 192 193 194 195 196 197 198 199 200
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
201
	spin_unlock_irq(&spool->lock);
202 203 204
	return ret;
}

205 206 207 208 209 210 211
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
212 213
				       long delta)
{
214
	long ret = delta;
215
	unsigned long flags;
216

217
	if (!spool)
218
		return delta;
219

220
	spin_lock_irqsave(&spool->lock, flags);
221 222 223 224

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

225 226
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
241
	unlock_or_release_subpool(spool, flags);
242 243

	return ret;
244 245 246 247 248 249 250 251 252
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
253
	return subpool_inode(file_inode(vma->vm_file));
254 255
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
298 299 300 301 302 303 304 305 306 307 308
		/*
		 * The caller will hold exactly one h_cg->css reference for the
		 * whole contiguous reservation region. But this area might be
		 * scattered when there are already some file_regions reside in
		 * it. As a result, many file_regions may share only one css
		 * reference. In order to ensure that one file_region must hold
		 * exactly one h_cg->css reference, we should do css_get for
		 * each file_region and leave the reference held by caller
		 * untouched.
		 */
		css_get(&h_cg->css);
309 310 311 312 313 314 315 316 317 318 319 320 321
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

322 323 324 325 326 327 328 329
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (rg->css)
		css_put(rg->css);
#endif
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
353
		put_uncharge_info(rg);
354 355
		kfree(rg);

356
		rg = prg;
357 358 359 360 361 362 363 364
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
365
		put_uncharge_info(rg);
366 367 368 369
		kfree(rg);
	}
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static inline long
hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
		     long *regions_needed)
{
	struct file_region *nrg;

	if (!regions_needed) {
		nrg = get_file_region_entry_from_cache(map, from, to);
		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
		list_add(&nrg->link, rg->link.prev);
		coalesce_file_region(map, nrg);
	} else
		*regions_needed += 1;

	return to - from;
}

388 389 390 391 392 393 394
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
395 396
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
397
				     struct hugetlb_cgroup *h_cg,
398
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
399
{
400
	long add = 0;
M
Mina Almasry 已提交
401
	struct list_head *head = &resv->regions;
402
	long last_accounted_offset = f;
403
	struct file_region *rg = NULL, *trg = NULL;
M
Mina Almasry 已提交
404

405 406
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
422

423 424 425
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
426
		if (rg->from >= t)
M
Mina Almasry 已提交
427 428
			break;

429 430 431
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
432 433 434 435 436
		if (rg->from > last_accounted_offset)
			add += hugetlb_resv_map_add(resv, rg,
						    last_accounted_offset,
						    rg->from, h, h_cg,
						    regions_needed);
437 438 439 440 441 442 443

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
444 445 446
	if (last_accounted_offset < t)
		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
					    t, h, h_cg, regions_needed);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
I
Ingo Molnar 已提交
481
		 * for all the existing adds_in_progress. We should only be
482
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
483
		 */
484 485 486 487 488 489 490 491
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
492 493
		}

494 495
		spin_lock(&resv->lock);

496 497
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
498 499
	}

500
	return 0;
M
Mina Almasry 已提交
501

502 503 504 505 506 507
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
508 509
}

510 511
/*
 * Add the huge page range represented by [f, t) to the reserve
512 513 514 515 516
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
517
 *
518 519 520 521
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
522
 * this operation and we were not able to allocate, it returns -ENOMEM.
523 524 525
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
526
 */
527
static long region_add(struct resv_map *resv, long f, long t,
528 529
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
530
{
531
	long add = 0, actual_regions_needed = 0;
532

533
	spin_lock(&resv->lock);
534 535 536
retry:

	/* Count how many regions are actually needed to execute this add. */
537 538
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
539

540
	/*
541 542 543 544 545 546 547
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
548
	 */
549 550 551 552 553 554 555 556
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
557

558 559 560 561
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
562

563
		goto retry;
564 565
	}

566
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
567 568

	resv->adds_in_progress -= in_regions_needed;
569

570
	spin_unlock(&resv->lock);
571
	return add;
572 573
}

574 575 576 577 578 579 580
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
581 582 583 584 585 586 587
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
588 589 590 591 592
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
593
 */
594 595
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
596 597 598
{
	long chg = 0;

599
	spin_lock(&resv->lock);
600

601
	/* Count how many hugepages in this range are NOT represented. */
602
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
603
				       out_regions_needed);
604

605 606
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
607

608 609
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
610

611
	resv->adds_in_progress += *out_regions_needed;
612 613

	spin_unlock(&resv->lock);
614 615 616
	return chg;
}

617 618 619 620 621
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
622 623 624
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
625 626 627 628 629
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
630 631
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
632 633 634
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
635
	resv->adds_in_progress -= regions_needed;
636 637 638
	spin_unlock(&resv->lock);
}

639
/*
640 641 642 643 644 645 646 647 648 649 650 651
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
652
 */
653
static long region_del(struct resv_map *resv, long f, long t)
654
{
655
	struct list_head *head = &resv->regions;
656
	struct file_region *rg, *trg;
657 658
	struct file_region *nrg = NULL;
	long del = 0;
659

660
retry:
661
	spin_lock(&resv->lock);
662
	list_for_each_entry_safe(rg, trg, head, link) {
663 664 665 666 667 668 669 670
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
671
			continue;
672

673
		if (rg->from >= t)
674 675
			break;

676 677 678 679 680 681 682 683 684 685 686 687 688
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
689

690 691 692 693 694 695 696 697 698
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
699
			hugetlb_cgroup_uncharge_file_region(
700
				resv, rg, t - f, false);
701 702 703 704

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
705 706 707

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

708 709 710 711 712 713 714
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
715
			break;
716 717 718 719
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
720
			hugetlb_cgroup_uncharge_file_region(resv, rg,
721
							    rg->to - rg->from, true);
722 723 724 725 726 727
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
728
			hugetlb_cgroup_uncharge_file_region(resv, rg,
729
							    t - rg->from, false);
730

731 732 733
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
734
			hugetlb_cgroup_uncharge_file_region(resv, rg,
735
							    rg->to - f, false);
736 737 738

			del += rg->to - f;
			rg->to = f;
739
		}
740
	}
741 742

	spin_unlock(&resv->lock);
743 744
	kfree(nrg);
	return del;
745 746
}

747 748 749 750 751 752 753 754 755
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
756
void hugetlb_fix_reserve_counts(struct inode *inode)
757 758 759
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;
760
	bool reserved = false;
761 762

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
763
	if (rsv_adjust > 0) {
764 765
		struct hstate *h = hstate_inode(inode);

766 767 768 769
		if (!hugetlb_acct_memory(h, 1))
			reserved = true;
	} else if (!rsv_adjust) {
		reserved = true;
770
	}
771 772 773

	if (!reserved)
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
774 775
}

776 777 778 779
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
780
static long region_count(struct resv_map *resv, long f, long t)
781
{
782
	struct list_head *head = &resv->regions;
783 784 785
	struct file_region *rg;
	long chg = 0;

786
	spin_lock(&resv->lock);
787 788
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
789 790
		long seg_from;
		long seg_to;
791 792 793 794 795 796 797 798 799 800 801

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
802
	spin_unlock(&resv->lock);
803 804 805 806

	return chg;
}

807 808 809 810
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
811 812
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
813
{
814 815
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
816 817
}

818 819 820 821 822
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
823
EXPORT_SYMBOL_GPL(linear_hugepage_index);
824

825 826 827 828 829 830
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
831 832 833
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
834
}
835
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
836

837 838 839
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
840 841
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
842
 */
843
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
844 845 846 847
{
	return vma_kernel_pagesize(vma);
}

848 849 850 851 852 853 854
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
855
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
856

857 858 859 860 861 862 863 864 865
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
866 867 868 869 870 871 872 873 874
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
875
 */
876 877 878 879 880 881 882 883 884 885 886
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

906
struct resv_map *resv_map_alloc(void)
907 908
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
909 910 911 912 913
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
914
		return NULL;
915
	}
916 917

	kref_init(&resv_map->refs);
918
	spin_lock_init(&resv_map->lock);
919 920
	INIT_LIST_HEAD(&resv_map->regions);

921
	resv_map->adds_in_progress = 0;
922 923 924 925 926 927 928
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
929 930 931 932 933

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

934 935 936
	return resv_map;
}

937
void resv_map_release(struct kref *ref)
938 939
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
940 941
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
942 943

	/* Clear out any active regions before we release the map. */
944
	region_del(resv_map, 0, LONG_MAX);
945 946 947 948 949 950 951 952 953

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

954 955 956
	kfree(resv_map);
}

957 958
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
959 960 961 962 963 964 965 966 967
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
968 969
}

970
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
971
{
972
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 974 975 976 977 978 979
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
980 981
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
982
	}
983 984
}

985
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
986
{
987 988
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
989

990 991
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
992 993 994 995
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
996 997
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
998 999

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1000 1001 1002 1003
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
1004
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005 1006

	return (get_vma_private_data(vma) & flag) != 0;
1007 1008
}

1009
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010 1011
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
1012
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013
	if (!(vma->vm_flags & VM_MAYSHARE))
1014 1015 1016
		vma->vm_private_data = (void *)0;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * Reset and decrement one ref on hugepage private reservation.
 * Called with mm->mmap_sem writer semaphore held.
 * This function should be only used by move_vma() and operate on
 * same sized vma. It should never come here with last ref on the
 * reservation.
 */
void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	/*
	 * Clear the old hugetlb private page reservation.
	 * It has already been transferred to new_vma.
	 *
	 * During a mremap() operation of a hugetlb vma we call move_vma()
	 * which copies vma into new_vma and unmaps vma. After the copy
	 * operation both new_vma and vma share a reference to the resv_map
	 * struct, and at that point vma is about to be unmapped. We don't
	 * want to return the reservation to the pool at unmap of vma because
	 * the reservation still lives on in new_vma, so simply decrement the
	 * ref here and remove the resv_map reference from this vma.
	 */
	struct resv_map *reservations = vma_resv_map(vma);

	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&reservations->refs, resv_map_release);

	reset_vma_resv_huge_pages(vma);
}

1046
/* Returns true if the VMA has associated reserve pages */
1047
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1048
{
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1060
			return true;
1061
		else
1062
			return false;
1063
	}
1064 1065

	/* Shared mappings always use reserves */
1066 1067 1068 1069 1070
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1071
		 * fallocate.  In this case, there really are no reserves to
1072 1073 1074 1075 1076 1077 1078
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1079 1080 1081 1082 1083

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1105

1106
	return false;
1107 1108
}

1109
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1110 1111
{
	int nid = page_to_nid(page);
1112 1113

	lockdep_assert_held(&hugetlb_lock);
1114 1115
	VM_BUG_ON_PAGE(page_count(page), page);

1116
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1117 1118
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1119
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1120 1121
}

1122
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1123 1124
{
	struct page *page;
1125
	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1126

1127
	lockdep_assert_held(&hugetlb_lock);
1128
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1129
		if (pin && !is_pinnable_page(page))
1130
			continue;
1131

1132 1133 1134 1135 1136
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1137
		ClearHPageFreed(page);
1138 1139 1140
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1141 1142
	}

1143
	return NULL;
1144 1145
}

1146 1147
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1148
{
1149 1150 1151 1152
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1153
	int node = NUMA_NO_NODE;
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1171 1172 1173 1174 1175

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1176 1177 1178
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1179 1180 1181
	return NULL;
}

1182 1183
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1184 1185
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1186
{
1187
	struct page *page = NULL;
1188
	struct mempolicy *mpol;
1189
	gfp_t gfp_mask;
1190
	nodemask_t *nodemask;
1191
	int nid;
L
Linus Torvalds 已提交
1192

1193 1194 1195 1196 1197
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1198
	if (!vma_has_reserves(vma, chg) &&
1199
			h->free_huge_pages - h->resv_huge_pages == 0)
1200
		goto err;
1201

1202
	/* If reserves cannot be used, ensure enough pages are in the pool */
1203
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1204
		goto err;
1205

1206 1207
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	if (mpol_is_preferred_many(mpol)) {
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

1219
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1220
		SetHPageRestoreReserve(page);
1221
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1222
	}
1223

1224
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1225
	return page;
1226 1227 1228

err:
	return NULL;
L
Linus Torvalds 已提交
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1240
	nid = next_node_in(nid, *nodes_allowed);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
1273
 * helper for remove_pool_huge_page() - return the previously saved
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1302
/* used to demote non-gigantic_huge pages as well */
1303 1304
static void __destroy_compound_gigantic_page(struct page *page,
					unsigned int order, bool demote)
1305 1306 1307 1308 1309
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1310
	atomic_set(compound_mapcount_ptr(page), 0);
1311
	atomic_set(compound_pincount_ptr(page), 0);
1312

1313
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314
		p->mapping = NULL;
1315
		clear_compound_head(p);
1316 1317
		if (!demote)
			set_page_refcounted(p);
1318 1319 1320
	}

	set_compound_order(page, 0);
1321
	page[1].compound_nr = 0;
1322 1323 1324
	__ClearPageHead(page);
}

1325 1326 1327 1328 1329 1330 1331
static void destroy_compound_hugetlb_page_for_demote(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, true);
}

#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1332 1333 1334 1335 1336 1337
static void destroy_compound_gigantic_page(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, false);
}

1338
static void free_gigantic_page(struct page *page, unsigned int order)
1339
{
1340 1341 1342 1343
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1344 1345
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1346
		return;
1347
#endif
1348

1349 1350 1351
	free_contig_range(page_to_pfn(page), 1 << order);
}

1352
#ifdef CONFIG_CONTIG_ALLOC
1353 1354
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1355
{
1356
	unsigned long nr_pages = pages_per_huge_page(h);
1357 1358
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1359

1360 1361
#ifdef CONFIG_CMA
	{
1362 1363 1364
		struct page *page;
		int node;

1365 1366 1367
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1368 1369 1370
			if (page)
				return page;
		}
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1383
	}
1384
#endif
1385

1386
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1387 1388
}

1389 1390 1391 1392 1393 1394 1395
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1396

1397
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1398
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1399 1400 1401 1402
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1403
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1404
static inline void destroy_compound_gigantic_page(struct page *page,
1405
						unsigned int order) { }
1406 1407
#endif

1408 1409
/*
 * Remove hugetlb page from lists, and update dtor so that page appears
1410 1411 1412
 * as just a compound page.
 *
 * A reference is held on the page, except in the case of demote.
1413 1414 1415
 *
 * Must be called with hugetlb lock held.
 */
1416 1417 1418
static void __remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus,
							bool demote)
1419 1420 1421 1422 1423 1424
{
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);

1425
	lockdep_assert_held(&hugetlb_lock);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return;

	list_del(&page->lru);

	if (HPageFreed(page)) {
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	}
	if (adjust_surplus) {
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * Very subtle
	 *
	 * For non-gigantic pages set the destructor to the normal compound
	 * page dtor.  This is needed in case someone takes an additional
	 * temporary ref to the page, and freeing is delayed until they drop
	 * their reference.
	 *
	 * For gigantic pages set the destructor to the null dtor.  This
	 * destructor will never be called.  Before freeing the gigantic
	 * page destroy_compound_gigantic_page will turn the compound page
	 * into a simple group of pages.  After this the destructor does not
	 * apply.
	 *
	 * This handles the case where more than one ref is held when and
	 * after update_and_free_page is called.
1456 1457 1458
	 *
	 * In the case of demote we do not ref count the page as it will soon
	 * be turned into a page of smaller size.
1459
	 */
1460 1461
	if (!demote)
		set_page_refcounted(page);
1462 1463 1464 1465
	if (hstate_is_gigantic(h))
		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
	else
		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1466 1467 1468 1469 1470

	h->nr_huge_pages--;
	h->nr_huge_pages_node[nid]--;
}

1471 1472 1473 1474 1475 1476
static void remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, false);
}

1477 1478 1479 1480 1481 1482
static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, true);
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static void add_hugetlb_page(struct hstate *h, struct page *page,
			     bool adjust_surplus)
{
	int zeroed;
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);

	lockdep_assert_held(&hugetlb_lock);

	INIT_LIST_HEAD(&page->lru);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;

	if (adjust_surplus) {
		h->surplus_huge_pages++;
		h->surplus_huge_pages_node[nid]++;
	}

	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	set_page_private(page, 0);
	SetHPageVmemmapOptimized(page);

	/*
1507 1508 1509
	 * This page is about to be managed by the hugetlb allocator and
	 * should have no users.  Drop our reference, and check for others
	 * just in case.
1510 1511
	 */
	zeroed = put_page_testzero(page);
1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (!zeroed)
		/*
		 * It is VERY unlikely soneone else has taken a ref on
		 * the page.  In this case, we simply return as the
		 * hugetlb destructor (free_huge_page) will be called
		 * when this other ref is dropped.
		 */
		return;

1521 1522 1523 1524
	arch_clear_hugepage_flags(page);
	enqueue_huge_page(h, page);
}

1525
static void __update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1526 1527
{
	int i;
1528
	struct page *subpage = page;
1529

1530
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1531
		return;
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (alloc_huge_page_vmemmap(h, page)) {
		spin_lock_irq(&hugetlb_lock);
		/*
		 * If we cannot allocate vmemmap pages, just refuse to free the
		 * page and put the page back on the hugetlb free list and treat
		 * as a surplus page.
		 */
		add_hugetlb_page(h, page, true);
		spin_unlock_irq(&hugetlb_lock);
		return;
	}

1545 1546 1547
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1548
				1 << PG_referenced | 1 << PG_dirty |
1549 1550
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1551
	}
1552 1553 1554 1555 1556 1557 1558

	/*
	 * Non-gigantic pages demoted from CMA allocated gigantic pages
	 * need to be given back to CMA in free_gigantic_page.
	 */
	if (hstate_is_gigantic(h) ||
	    hugetlb_cma_page(page, huge_page_order(h))) {
1559 1560 1561 1562 1563
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/*
 * As update_and_free_page() can be called under any context, so we cannot
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 * the vmemmap pages.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 * freed and frees them one-by-one. As the page->mapping pointer is going
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 * structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		struct page *page;
		struct hstate *h;

		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		page->mapping = NULL;
		/*
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
		 * is going to trigger because a previous call to
		 * remove_hugetlb_page() will set_compound_page_dtor(page,
		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
		 */
		h = size_to_hstate(page_size(page));

		__update_and_free_page(h, page);

		cond_resched();
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

static inline void flush_free_hpage_work(struct hstate *h)
{
	if (free_vmemmap_pages_per_hpage(h))
		flush_work(&free_hpage_work);
}

static void update_and_free_page(struct hstate *h, struct page *page,
				 bool atomic)
{
1617
	if (!HPageVmemmapOptimized(page) || !atomic) {
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		__update_and_free_page(h, page);
		return;
	}

	/*
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
	 *
	 * Only call schedule_work() if hpage_freelist is previously
	 * empty. Otherwise, schedule_work() had been called but the workfn
	 * hasn't retrieved the list yet.
	 */
	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
		schedule_work(&free_hpage_work);
}

1633 1634 1635 1636 1637
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
	struct page *page, *t_page;

	list_for_each_entry_safe(page, t_page, list, lru) {
1638
		update_and_free_page(h, page, false);
1639 1640 1641 1642
		cond_resched();
	}
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1654
void free_huge_page(struct page *page)
1655
{
1656 1657 1658 1659
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1660
	struct hstate *h = page_hstate(page);
1661
	int nid = page_to_nid(page);
1662
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1663
	bool restore_reserve;
1664
	unsigned long flags;
1665

1666 1667
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1668

1669
	hugetlb_set_page_subpool(page, NULL);
1670
	page->mapping = NULL;
1671 1672
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1673

1674
	/*
1675
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1676 1677 1678
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1679
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1680
	 * remove the reserved page from the subpool.
1681
	 */
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1692

1693
	spin_lock_irqsave(&hugetlb_lock, flags);
1694
	ClearHPageMigratable(page);
1695 1696
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1697 1698
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1699 1700 1701
	if (restore_reserve)
		h->resv_huge_pages++;

1702
	if (HPageTemporary(page)) {
1703
		remove_hugetlb_page(h, page, false);
1704
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1705
		update_and_free_page(h, page, true);
1706
	} else if (h->surplus_huge_pages_node[nid]) {
1707
		/* remove the page from active list */
1708
		remove_hugetlb_page(h, page, true);
1709
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1710
		update_and_free_page(h, page, true);
1711
	} else {
1712
		arch_clear_hugepage_flags(page);
1713
		enqueue_huge_page(h, page);
1714
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1715 1716 1717
	}
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
/*
 * Must be called with the hugetlb lock held
 */
static void __prep_account_new_huge_page(struct hstate *h, int nid)
{
	lockdep_assert_held(&hugetlb_lock);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
}

1728
static void __prep_new_huge_page(struct hstate *h, struct page *page)
1729
{
1730
	free_huge_page_vmemmap(h, page);
1731
	INIT_LIST_HEAD(&page->lru);
1732
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1733
	hugetlb_set_page_subpool(page, NULL);
1734
	set_hugetlb_cgroup(page, NULL);
1735
	set_hugetlb_cgroup_rsvd(page, NULL);
1736 1737 1738 1739
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
1740
	__prep_new_huge_page(h, page);
1741
	spin_lock_irq(&hugetlb_lock);
1742
	__prep_account_new_huge_page(h, nid);
1743
	spin_unlock_irq(&hugetlb_lock);
1744 1745
}

1746 1747
static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
								bool demote)
1748
{
1749
	int i, j;
1750 1751 1752 1753 1754
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1755
	__ClearPageReserved(page);
1756
	__SetPageHead(page);
1757
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1758 1759 1760 1761
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1762
		 * too.  Otherwise drivers using get_user_pages() to access tail
1763 1764 1765 1766 1767 1768 1769 1770
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		/*
		 * Subtle and very unlikely
		 *
		 * Gigantic 'page allocators' such as memblock or cma will
		 * return a set of pages with each page ref counted.  We need
		 * to turn this set of pages into a compound page with tail
		 * page ref counts set to zero.  Code such as speculative page
		 * cache adding could take a ref on a 'to be' tail page.
		 * We need to respect any increased ref count, and only set
		 * the ref count to zero if count is currently 1.  If count
1781 1782 1783 1784
		 * is not 1, we return an error.  An error return indicates
		 * the set of pages can not be converted to a gigantic page.
		 * The caller who allocated the pages should then discard the
		 * pages using the appropriate free interface.
1785 1786
		 *
		 * In the case of demote, the ref count will be zero.
1787
		 */
1788 1789 1790 1791 1792 1793 1794
		if (!demote) {
			if (!page_ref_freeze(p, 1)) {
				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
				goto out_error;
			}
		} else {
			VM_BUG_ON_PAGE(page_count(p), p);
1795
		}
1796
		set_page_count(p, 0);
1797
		set_compound_head(p, page);
1798
	}
1799
	atomic_set(compound_mapcount_ptr(page), -1);
1800
	atomic_set(compound_pincount_ptr(page), 0);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	return true;

out_error:
	/* undo tail page modifications made above */
	p = page + 1;
	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
		clear_compound_head(p);
		set_page_refcounted(p);
	}
	/* need to clear PG_reserved on remaining tail pages  */
	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
		__ClearPageReserved(p);
	set_compound_order(page, 0);
	page[1].compound_nr = 0;
	__ClearPageHead(page);
	return false;
1817 1818
}

1819 1820 1821 1822 1823
static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, false);
}

1824 1825 1826 1827 1828 1829
static bool prep_compound_gigantic_page_for_demote(struct page *page,
							unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, true);
}

A
Andrew Morton 已提交
1830 1831 1832 1833 1834
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1835 1836 1837 1838 1839 1840
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1841
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1842
}
1843 1844
EXPORT_SYMBOL_GPL(PageHuge);

1845 1846 1847 1848 1849 1850 1851 1852 1853
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1854
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1855 1856
}

1857 1858 1859
/*
 * Find and lock address space (mapping) in write mode.
 *
1860 1861 1862
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1863 1864 1865
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1866
	struct address_space *mapping = page_mapping(hpage);
1867 1868 1869 1870 1871 1872 1873

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1874
	return NULL;
1875 1876
}

1877
pgoff_t hugetlb_basepage_index(struct page *page)
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1891
static struct page *alloc_buddy_huge_page(struct hstate *h,
1892 1893
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1894
{
1895
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1896
	struct page *page;
1897
	bool alloc_try_hard = true;
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1911 1912
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1913
	page = __alloc_pages(gfp_mask, order, nid, nmask);
1914 1915 1916 1917
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1935 1936 1937
	return page;
}

1938 1939 1940 1941 1942
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1943 1944
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1945 1946
{
	struct page *page;
1947
	bool retry = false;
1948

1949
retry:
1950 1951 1952 1953
	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1954
				nid, nmask, node_alloc_noretry);
1955 1956 1957
	if (!page)
		return NULL;

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	if (hstate_is_gigantic(h)) {
		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
			/*
			 * Rare failure to convert pages to compound page.
			 * Free pages and try again - ONCE!
			 */
			free_gigantic_page(page, huge_page_order(h));
			if (!retry) {
				retry = true;
				goto retry;
			}
			return NULL;
		}
	}
1972 1973 1974 1975 1976
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1977 1978 1979 1980
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1981 1982
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1983 1984 1985
{
	struct page *page;
	int nr_nodes, node;
1986
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1987 1988

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1989 1990
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1991
		if (page)
1992 1993 1994
			break;
	}

1995 1996
	if (!page)
		return 0;
1997

1998 1999 2000
	put_page(page); /* free it into the hugepage allocator */

	return 1;
2001 2002
}

2003
/*
2004 2005 2006 2007
 * Remove huge page from pool from next node to free.  Attempt to keep
 * persistent huge pages more or less balanced over allowed nodes.
 * This routine only 'removes' the hugetlb page.  The caller must make
 * an additional call to free the page to low level allocators.
2008 2009
 * Called with hugetlb_lock locked.
 */
2010 2011 2012
static struct page *remove_pool_huge_page(struct hstate *h,
						nodemask_t *nodes_allowed,
						 bool acct_surplus)
2013
{
2014
	int nr_nodes, node;
2015
	struct page *page = NULL;
2016

2017
	lockdep_assert_held(&hugetlb_lock);
2018
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2019 2020 2021 2022
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
2023 2024
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
2025
			page = list_entry(h->hugepage_freelists[node].next,
2026
					  struct page, lru);
2027
			remove_hugetlb_page(h, page, acct_surplus);
2028
			break;
2029
		}
2030
	}
2031

2032
	return page;
2033 2034
}

2035 2036
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
2037 2038 2039
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
2040 2041 2042 2043 2044 2045 2046 2047
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 *           when the system is under memory pressure and the feature of
 *           freeing unused vmemmap pages associated with each hugetlb page
 *           is enabled.
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 *           (allocated or reserved.)
 *       0:  successfully dissolved free hugepages or the page is not a
 *           hugepage (considered as already dissolved)
2048
 */
2049
int dissolve_free_huge_page(struct page *page)
2050
{
2051
	int rc = -EBUSY;
2052

2053
retry:
2054 2055 2056 2057
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

2058
	spin_lock_irq(&hugetlb_lock);
2059 2060 2061 2062 2063 2064
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
2065 2066
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
2067
		if (h->free_huge_pages - h->resv_huge_pages == 0)
2068
			goto out;
2069 2070 2071 2072 2073

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
2074
		if (unlikely(!HPageFreed(head))) {
2075
			spin_unlock_irq(&hugetlb_lock);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

2089
		remove_hugetlb_page(h, head, false);
2090
		h->max_huge_pages--;
2091
		spin_unlock_irq(&hugetlb_lock);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

		/*
		 * Normally update_and_free_page will allocate required vmemmmap
		 * before freeing the page.  update_and_free_page will fail to
		 * free the page if it can not allocate required vmemmap.  We
		 * need to adjust max_huge_pages if the page is not freed.
		 * Attempt to allocate vmemmmap here so that we can take
		 * appropriate action on failure.
		 */
		rc = alloc_huge_page_vmemmap(h, head);
		if (!rc) {
			/*
			 * Move PageHWPoison flag from head page to the raw
			 * error page, which makes any subpages rather than
			 * the error page reusable.
			 */
			if (PageHWPoison(head) && page != head) {
				SetPageHWPoison(page);
				ClearPageHWPoison(head);
			}
			update_and_free_page(h, head, false);
		} else {
			spin_lock_irq(&hugetlb_lock);
			add_hugetlb_page(h, head, false);
			h->max_huge_pages++;
			spin_unlock_irq(&hugetlb_lock);
		}

		return rc;
2121
	}
2122
out:
2123
	spin_unlock_irq(&hugetlb_lock);
2124
	return rc;
2125 2126 2127 2128 2129
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
2130 2131
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
2132 2133
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
2134
 */
2135
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2136 2137
{
	unsigned long pfn;
2138
	struct page *page;
2139
	int rc = 0;
2140

2141
	if (!hugepages_supported())
2142
		return rc;
2143

2144 2145
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
2146 2147 2148
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
2149
	}
2150 2151

	return rc;
2152 2153
}

2154 2155 2156
/*
 * Allocates a fresh surplus page from the page allocator.
 */
2157
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2158
		int nid, nodemask_t *nmask, bool zero_ref)
2159
{
2160
	struct page *page = NULL;
2161
	bool retry = false;
2162

2163
	if (hstate_is_gigantic(h))
2164 2165
		return NULL;

2166
	spin_lock_irq(&hugetlb_lock);
2167 2168
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
2169
	spin_unlock_irq(&hugetlb_lock);
2170

2171
retry:
2172
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2173
	if (!page)
2174
		return NULL;
2175

2176
	spin_lock_irq(&hugetlb_lock);
2177 2178 2179 2180 2181 2182 2183 2184
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2185
		SetHPageTemporary(page);
2186
		spin_unlock_irq(&hugetlb_lock);
2187
		put_page(page);
2188
		return NULL;
2189
	}
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	if (zero_ref) {
		/*
		 * Caller requires a page with zero ref count.
		 * We will drop ref count here.  If someone else is holding
		 * a ref, the page will be freed when they drop it.  Abuse
		 * temporary page flag to accomplish this.
		 */
		SetHPageTemporary(page);
		if (!put_page_testzero(page)) {
			/*
			 * Unexpected inflated ref count on freshly allocated
			 * huge.  Retry once.
			 */
			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
			spin_unlock_irq(&hugetlb_lock);
			if (retry)
				return NULL;

			retry = true;
			goto retry;
		}
		ClearHPageTemporary(page);
	}

	h->surplus_huge_pages++;
	h->surplus_huge_pages_node[page_to_nid(page)]++;

2218
out_unlock:
2219
	spin_unlock_irq(&hugetlb_lock);
2220 2221 2222 2223

	return page;
}

2224
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2225
				     int nid, nodemask_t *nmask)
2226 2227 2228 2229 2230 2231
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

2232
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2233 2234 2235 2236 2237 2238 2239
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
2240
	SetHPageTemporary(page);
2241 2242 2243 2244

	return page;
}

2245 2246 2247
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
2248
static
2249
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2250 2251
		struct vm_area_struct *vma, unsigned long addr)
{
2252
	struct page *page = NULL;
2253 2254 2255 2256 2257 2258
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2259 2260 2261 2262 2263
	if (mpol_is_preferred_many(mpol)) {
		gfp_t gfp = gfp_mask | __GFP_NOWARN;

		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2264

2265 2266 2267 2268 2269 2270 2271
		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
	mpol_cond_put(mpol);
2272
	return page;
2273 2274
}

2275
/* page migration callback function */
2276
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2277
		nodemask_t *nmask, gfp_t gfp_mask)
2278
{
2279
	spin_lock_irq(&hugetlb_lock);
2280
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2281 2282 2283 2284
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
2285
			spin_unlock_irq(&hugetlb_lock);
2286
			return page;
2287 2288
		}
	}
2289
	spin_unlock_irq(&hugetlb_lock);
2290

2291
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2292 2293
}

2294
/* mempolicy aware migration callback */
2295 2296
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2297 2298 2299 2300 2301 2302 2303 2304 2305
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2306
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2307 2308 2309 2310 2311
	mpol_cond_put(mpol);

	return page;
}

2312
/*
L
Lucas De Marchi 已提交
2313
 * Increase the hugetlb pool such that it can accommodate a reservation
2314 2315
 * of size 'delta'.
 */
2316
static int gather_surplus_pages(struct hstate *h, long delta)
2317
	__must_hold(&hugetlb_lock)
2318 2319 2320
{
	struct list_head surplus_list;
	struct page *page, *tmp;
2321 2322 2323
	int ret;
	long i;
	long needed, allocated;
2324
	bool alloc_ok = true;
2325

2326
	lockdep_assert_held(&hugetlb_lock);
2327
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2328
	if (needed <= 0) {
2329
		h->resv_huge_pages += delta;
2330
		return 0;
2331
	}
2332 2333 2334 2335 2336 2337

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
2338
	spin_unlock_irq(&hugetlb_lock);
2339
	for (i = 0; i < needed; i++) {
2340
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2341
				NUMA_NO_NODE, NULL, true);
2342 2343 2344 2345
		if (!page) {
			alloc_ok = false;
			break;
		}
2346
		list_add(&page->lru, &surplus_list);
2347
		cond_resched();
2348
	}
2349
	allocated += i;
2350 2351 2352 2353 2354

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
2355
	spin_lock_irq(&hugetlb_lock);
2356 2357
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2368 2369
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2370
	 * needed to accommodate the reservation.  Add the appropriate number
2371
	 * of pages to the hugetlb pool and free the extras back to the buddy
2372 2373 2374
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2375 2376
	 */
	needed += allocated;
2377
	h->resv_huge_pages += delta;
2378
	ret = 0;
2379

2380
	/* Free the needed pages to the hugetlb pool */
2381
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2382 2383
		if ((--needed) < 0)
			break;
2384
		/* Add the page to the hugetlb allocator */
2385
		enqueue_huge_page(h, page);
2386
	}
2387
free:
2388
	spin_unlock_irq(&hugetlb_lock);
2389

2390 2391 2392 2393
	/*
	 * Free unnecessary surplus pages to the buddy allocator.
	 * Pages have no ref count, call free_huge_page directly.
	 */
2394
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2395
		free_huge_page(page);
2396
	spin_lock_irq(&hugetlb_lock);
2397 2398 2399 2400 2401

	return ret;
}

/*
2402 2403 2404 2405 2406 2407
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
2408
 */
2409 2410
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2411 2412
{
	unsigned long nr_pages;
2413 2414 2415
	struct page *page;
	LIST_HEAD(page_list);

2416
	lockdep_assert_held(&hugetlb_lock);
2417 2418
	/* Uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2419

2420
	/* Cannot return gigantic pages currently */
2421
	if (hstate_is_gigantic(h))
2422
		goto out;
2423

2424 2425 2426 2427
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2428
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2429

2430 2431
	/*
	 * We want to release as many surplus pages as possible, spread
2432 2433 2434
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2435
	 * remove_pool_huge_page() will balance the freed pages across the
2436
	 * on-line nodes with memory and will handle the hstate accounting.
2437 2438
	 */
	while (nr_pages--) {
2439 2440
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
		if (!page)
2441
			goto out;
2442 2443

		list_add(&page->lru, &page_list);
2444
	}
2445 2446

out:
2447
	spin_unlock_irq(&hugetlb_lock);
2448
	update_and_free_pages_bulk(h, &page_list);
2449
	spin_lock_irq(&hugetlb_lock);
2450 2451
}

2452

2453
/*
2454
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2455
 * are used by the huge page allocation routines to manage reservations.
2456 2457 2458 2459 2460 2461
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2462 2463 2464
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2465 2466 2467 2468 2469 2470
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2471 2472 2473 2474 2475
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2476 2477 2478 2479 2480
 *
 * vma_del_reservation is used in error paths where an entry in the reserve
 * map was created during huge page allocation and must be removed.  It is to
 * be called after calling vma_needs_reservation to determine if a reservation
 * exists.
2481
 */
2482 2483 2484
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2485
	VMA_END_RESV,
2486
	VMA_ADD_RESV,
2487
	VMA_DEL_RESV,
2488
};
2489 2490
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2491
				enum vma_resv_mode mode)
2492
{
2493 2494
	struct resv_map *resv;
	pgoff_t idx;
2495
	long ret;
2496
	long dummy_out_regions_needed;
2497

2498 2499
	resv = vma_resv_map(vma);
	if (!resv)
2500
		return 1;
2501

2502
	idx = vma_hugecache_offset(h, vma, addr);
2503 2504
	switch (mode) {
	case VMA_NEEDS_RESV:
2505 2506 2507 2508 2509 2510
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2511 2512
		break;
	case VMA_COMMIT_RESV:
2513
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2514 2515
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2516
		break;
2517
	case VMA_END_RESV:
2518
		region_abort(resv, idx, idx + 1, 1);
2519 2520
		ret = 0;
		break;
2521
	case VMA_ADD_RESV:
2522
		if (vma->vm_flags & VM_MAYSHARE) {
2523
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2524 2525 2526 2527
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2528 2529 2530
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	case VMA_DEL_RESV:
		if (vma->vm_flags & VM_MAYSHARE) {
			region_abort(resv, idx, idx + 1, 1);
			ret = region_del(resv, idx, idx + 1);
		} else {
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		}
		break;
2541 2542 2543
	default:
		BUG();
	}
2544

2545
	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2546
		return ret;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * We know private mapping must have HPAGE_RESV_OWNER set.
	 *
	 * In most cases, reserves always exist for private mappings.
	 * However, a file associated with mapping could have been
	 * hole punched or truncated after reserves were consumed.
	 * As subsequent fault on such a range will not use reserves.
	 * Subtle - The reserve map for private mappings has the
	 * opposite meaning than that of shared mappings.  If NO
	 * entry is in the reserve map, it means a reservation exists.
	 * If an entry exists in the reserve map, it means the
	 * reservation has already been consumed.  As a result, the
	 * return value of this routine is the opposite of the
	 * value returned from reserve map manipulation routines above.
	 */
	if (ret > 0)
		return 0;
	if (ret == 0)
		return 1;
	return ret;
2567
}
2568 2569

static long vma_needs_reservation(struct hstate *h,
2570
			struct vm_area_struct *vma, unsigned long addr)
2571
{
2572
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2573
}
2574

2575 2576 2577
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2578 2579 2580
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2581
static void vma_end_reservation(struct hstate *h,
2582 2583
			struct vm_area_struct *vma, unsigned long addr)
{
2584
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2585 2586
}

2587 2588 2589 2590 2591 2592
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

2593 2594 2595 2596 2597 2598
static long vma_del_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
}

2599
/*
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
 * This routine is called to restore reservation information on error paths.
 * It should ONLY be called for pages allocated via alloc_huge_page(), and
 * the hugetlb mutex should remain held when calling this routine.
 *
 * It handles two specific cases:
 * 1) A reservation was in place and the page consumed the reservation.
 *    HPageRestoreReserve is set in the page.
 * 2) No reservation was in place for the page, so HPageRestoreReserve is
 *    not set.  However, alloc_huge_page always updates the reserve map.
 *
 * In case 1, free_huge_page later in the error path will increment the
 * global reserve count.  But, free_huge_page does not have enough context
 * to adjust the reservation map.  This case deals primarily with private
 * mappings.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.  Make sure the
 * reserve map indicates there is a reservation present.
 *
 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2618
 */
2619 2620
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
			unsigned long address, struct page *page)
2621
{
2622
	long rc = vma_needs_reservation(h, vma, address);
2623

2624 2625
	if (HPageRestoreReserve(page)) {
		if (unlikely(rc < 0))
2626 2627
			/*
			 * Rare out of memory condition in reserve map
2628
			 * manipulation.  Clear HPageRestoreReserve so that
2629 2630 2631 2632 2633 2634 2635 2636
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2637
			ClearHPageRestoreReserve(page);
2638 2639 2640 2641 2642 2643 2644 2645
		else if (rc)
			(void)vma_add_reservation(h, vma, address);
		else
			vma_end_reservation(h, vma, address);
	} else {
		if (!rc) {
			/*
			 * This indicates there is an entry in the reserve map
2646
			 * not added by alloc_huge_page.  We know it was added
2647 2648 2649 2650 2651 2652 2653
			 * before the alloc_huge_page call, otherwise
			 * HPageRestoreReserve would be set on the page.
			 * Remove the entry so that a subsequent allocation
			 * does not consume a reservation.
			 */
			rc = vma_del_reservation(h, vma, address);
			if (rc < 0)
2654
				/*
2655 2656 2657 2658 2659 2660
				 * VERY rare out of memory condition.  Since
				 * we can not delete the entry, set
				 * HPageRestoreReserve so that the reserve
				 * count will be incremented when the page
				 * is freed.  This reserve will be consumed
				 * on a subsequent allocation.
2661
				 */
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
				SetHPageRestoreReserve(page);
		} else if (rc < 0) {
			/*
			 * Rare out of memory condition from
			 * vma_needs_reservation call.  Memory allocation is
			 * only attempted if a new entry is needed.  Therefore,
			 * this implies there is not an entry in the
			 * reserve map.
			 *
			 * For shared mappings, no entry in the map indicates
			 * no reservation.  We are done.
			 */
			if (!(vma->vm_flags & VM_MAYSHARE))
				/*
				 * For private mappings, no entry indicates
				 * a reservation is present.  Since we can
				 * not add an entry, set SetHPageRestoreReserve
				 * on the page so reserve count will be
				 * incremented when freed.  This reserve will
				 * be consumed on a subsequent allocation.
				 */
				SetHPageRestoreReserve(page);
2684
		} else
2685 2686 2687 2688
			/*
			 * No reservation present, do nothing
			 */
			 vma_end_reservation(h, vma, address);
2689 2690 2691
	}
}

2692 2693 2694 2695
/*
 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
 * @h: struct hstate old page belongs to
 * @old_page: Old page to dissolve
2696
 * @list: List to isolate the page in case we need to
2697 2698
 * Returns 0 on success, otherwise negated error.
 */
2699 2700
static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
					struct list_head *list)
2701 2702 2703
{
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
	int nid = page_to_nid(old_page);
2704
	bool alloc_retry = false;
2705 2706 2707 2708 2709
	struct page *new_page;
	int ret = 0;

	/*
	 * Before dissolving the page, we need to allocate a new one for the
2710 2711 2712 2713
	 * pool to remain stable.  Here, we allocate the page and 'prep' it
	 * by doing everything but actually updating counters and adding to
	 * the pool.  This simplifies and let us do most of the processing
	 * under the lock.
2714
	 */
2715
alloc_retry:
2716 2717 2718
	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
	if (!new_page)
		return -ENOMEM;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * If all goes well, this page will be directly added to the free
	 * list in the pool.  For this the ref count needs to be zero.
	 * Attempt to drop now, and retry once if needed.  It is VERY
	 * unlikely there is another ref on the page.
	 *
	 * If someone else has a reference to the page, it will be freed
	 * when they drop their ref.  Abuse temporary page flag to accomplish
	 * this.  Retry once if there is an inflated ref count.
	 */
	SetHPageTemporary(new_page);
	if (!put_page_testzero(new_page)) {
		if (alloc_retry)
			return -EBUSY;

		alloc_retry = true;
		goto alloc_retry;
	}
	ClearHPageTemporary(new_page);

2739
	__prep_new_huge_page(h, new_page);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

retry:
	spin_lock_irq(&hugetlb_lock);
	if (!PageHuge(old_page)) {
		/*
		 * Freed from under us. Drop new_page too.
		 */
		goto free_new;
	} else if (page_count(old_page)) {
		/*
2750 2751
		 * Someone has grabbed the page, try to isolate it here.
		 * Fail with -EBUSY if not possible.
2752
		 */
2753 2754 2755 2756
		spin_unlock_irq(&hugetlb_lock);
		if (!isolate_huge_page(old_page, list))
			ret = -EBUSY;
		spin_lock_irq(&hugetlb_lock);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		goto free_new;
	} else if (!HPageFreed(old_page)) {
		/*
		 * Page's refcount is 0 but it has not been enqueued in the
		 * freelist yet. Race window is small, so we can succeed here if
		 * we retry.
		 */
		spin_unlock_irq(&hugetlb_lock);
		cond_resched();
		goto retry;
	} else {
		/*
		 * Ok, old_page is still a genuine free hugepage. Remove it from
		 * the freelist and decrease the counters. These will be
		 * incremented again when calling __prep_account_new_huge_page()
		 * and enqueue_huge_page() for new_page. The counters will remain
		 * stable since this happens under the lock.
		 */
		remove_hugetlb_page(h, old_page, false);

		/*
2778 2779
		 * Ref count on new page is already zero as it was dropped
		 * earlier.  It can be directly added to the pool free list.
2780 2781 2782 2783 2784 2785 2786 2787
		 */
		__prep_account_new_huge_page(h, nid);
		enqueue_huge_page(h, new_page);

		/*
		 * Pages have been replaced, we can safely free the old one.
		 */
		spin_unlock_irq(&hugetlb_lock);
2788
		update_and_free_page(h, old_page, false);
2789 2790 2791 2792 2793 2794
	}

	return ret;

free_new:
	spin_unlock_irq(&hugetlb_lock);
2795 2796
	/* Page has a zero ref count, but needs a ref to be freed */
	set_page_refcounted(new_page);
2797
	update_and_free_page(h, new_page, false);
2798 2799 2800 2801

	return ret;
}

2802
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2803 2804 2805
{
	struct hstate *h;
	struct page *head;
2806
	int ret = -EBUSY;
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

	/*
	 * The page might have been dissolved from under our feet, so make sure
	 * to carefully check the state under the lock.
	 * Return success when racing as if we dissolved the page ourselves.
	 */
	spin_lock_irq(&hugetlb_lock);
	if (PageHuge(page)) {
		head = compound_head(page);
		h = page_hstate(head);
	} else {
		spin_unlock_irq(&hugetlb_lock);
		return 0;
	}
	spin_unlock_irq(&hugetlb_lock);

	/*
	 * Fence off gigantic pages as there is a cyclic dependency between
	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
	 * of bailing out right away without further retrying.
	 */
	if (hstate_is_gigantic(h))
		return -ENOMEM;

2831 2832 2833 2834 2835 2836
	if (page_count(head) && isolate_huge_page(head, list))
		ret = 0;
	else if (!page_count(head))
		ret = alloc_and_dissolve_huge_page(h, head, list);

	return ret;
2837 2838
}

2839
struct page *alloc_huge_page(struct vm_area_struct *vma,
2840
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2841
{
2842
	struct hugepage_subpool *spool = subpool_vma(vma);
2843
	struct hstate *h = hstate_vma(vma);
2844
	struct page *page;
2845 2846
	long map_chg, map_commit;
	long gbl_chg;
2847 2848
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2849
	bool deferred_reserve;
2850

2851
	idx = hstate_index(h);
2852
	/*
2853 2854 2855
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2856
	 */
2857 2858
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2859
		return ERR_PTR(-ENOMEM);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2871
			vma_end_reservation(h, vma, addr);
2872
			return ERR_PTR(-ENOSPC);
2873
		}
L
Linus Torvalds 已提交
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2887 2888
	/* If this allocation is not consuming a reservation, charge it now.
	 */
2889
	deferred_reserve = map_chg || avoid_reserve;
2890 2891 2892 2893 2894 2895 2896
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2897
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2898
	if (ret)
2899
		goto out_uncharge_cgroup_reservation;
2900

2901
	spin_lock_irq(&hugetlb_lock);
2902 2903 2904 2905 2906 2907
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2908
	if (!page) {
2909
		spin_unlock_irq(&hugetlb_lock);
2910
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2911 2912
		if (!page)
			goto out_uncharge_cgroup;
2913
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2914
			SetHPageRestoreReserve(page);
2915 2916
			h->resv_huge_pages--;
		}
2917
		spin_lock_irq(&hugetlb_lock);
2918
		list_add(&page->lru, &h->hugepage_activelist);
2919
		/* Fall through */
K
Ken Chen 已提交
2920
	}
2921
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2922 2923 2924 2925 2926 2927 2928 2929
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2930
	spin_unlock_irq(&hugetlb_lock);
2931

2932
	hugetlb_set_page_subpool(page, spool);
2933

2934 2935
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2949 2950 2951
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2952
	}
2953
	return page;
2954 2955 2956

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2957 2958 2959 2960
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2961
out_subpool_put:
2962
	if (map_chg || avoid_reserve)
2963
		hugepage_subpool_put_pages(spool, 1);
2964
	vma_end_reservation(h, vma, addr);
2965
	return ERR_PTR(-ENOSPC);
2966 2967
}

2968 2969 2970
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2971 2972
{
	struct huge_bootmem_page *m;
2973
	int nr_nodes, node;
2974

2975
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2976 2977
		void *addr;

2978
		addr = memblock_alloc_try_nid_raw(
2979
				huge_page_size(h), huge_page_size(h),
2980
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2981 2982 2983 2984 2985 2986 2987
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2988
			goto found;
2989 2990 2991 2992 2993
		}
	}
	return 0;

found:
2994
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2995
	/* Put them into a private list first because mem_map is not up yet */
2996
	INIT_LIST_HEAD(&m->list);
2997 2998 2999 3000 3001
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

3002 3003 3004 3005
/*
 * Put bootmem huge pages into the standard lists after mem_map is up.
 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
 */
3006 3007 3008 3009 3010
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
3011
		struct page *page = virt_to_page(m);
3012
		struct hstate *h = m->hstate;
3013

3014
		VM_BUG_ON(!hstate_is_gigantic(h));
3015
		WARN_ON(page_count(page) != 1);
3016 3017 3018 3019 3020
		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
			WARN_ON(PageReserved(page));
			prep_new_huge_page(h, page, page_to_nid(page));
			put_page(page); /* add to the hugepage allocator */
		} else {
3021
			/* VERY unlikely inflated ref count on a tail page */
3022 3023
			free_gigantic_page(page, huge_page_order(h));
		}
3024

3025
		/*
3026 3027 3028
		 * We need to restore the 'stolen' pages to totalram_pages
		 * in order to fix confusing memory reports from free(1) and
		 * other side-effects, like CommitLimit going negative.
3029
		 */
3030
		adjust_managed_page_count(page, pages_per_huge_page(h));
3031
		cond_resched();
3032 3033 3034
	}
}

3035
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
3036 3037
{
	unsigned long i;
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
3057

3058
	for (i = 0; i < h->max_huge_pages; ++i) {
3059
		if (hstate_is_gigantic(h)) {
3060
			if (hugetlb_cma_size) {
3061
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3062
				goto free;
3063
			}
3064 3065
			if (!alloc_bootmem_huge_page(h))
				break;
3066
		} else if (!alloc_pool_huge_page(h,
3067 3068
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
3069
			break;
3070
		cond_resched();
L
Linus Torvalds 已提交
3071
	}
3072 3073 3074
	if (i < h->max_huge_pages) {
		char buf[32];

3075
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3076 3077 3078 3079
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
3080
free:
3081
	kfree(node_alloc_noretry);
3082 3083 3084 3085
}

static void __init hugetlb_init_hstates(void)
{
3086
	struct hstate *h, *h2;
3087 3088

	for_each_hstate(h) {
3089 3090 3091
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

3092
		/* oversize hugepages were init'ed in early boot */
3093
		if (!hstate_is_gigantic(h))
3094
			hugetlb_hstate_alloc_pages(h);
3095 3096 3097 3098 3099 3100

		/*
		 * Set demote order for each hstate.  Note that
		 * h->demote_order is initially 0.
		 * - We can not demote gigantic pages if runtime freeing
		 *   is not supported, so skip this.
3101 3102
		 * - If CMA allocation is possible, we can not demote
		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3103 3104 3105
		 */
		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
			continue;
3106 3107
		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
			continue;
3108 3109 3110 3111 3112 3113 3114
		for_each_hstate(h2) {
			if (h2 == h)
				continue;
			if (h2->order < h->order &&
			    h2->order > h->demote_order)
				h->demote_order = h2->order;
		}
3115
	}
3116
	VM_BUG_ON(minimum_order == UINT_MAX);
3117 3118 3119 3120 3121 3122 3123
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
3124
		char buf[32];
3125 3126

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3127
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3128
			buf, h->free_huge_pages);
3129 3130 3131
	}
}

L
Linus Torvalds 已提交
3132
#ifdef CONFIG_HIGHMEM
3133 3134
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3135
{
3136
	int i;
3137
	LIST_HEAD(page_list);
3138

3139
	lockdep_assert_held(&hugetlb_lock);
3140
	if (hstate_is_gigantic(h))
3141 3142
		return;

3143 3144 3145
	/*
	 * Collect pages to be freed on a list, and free after dropping lock
	 */
3146
	for_each_node_mask(i, *nodes_allowed) {
3147
		struct page *page, *next;
3148 3149 3150
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
3151
				goto out;
L
Linus Torvalds 已提交
3152 3153
			if (PageHighMem(page))
				continue;
3154
			remove_hugetlb_page(h, page, false);
3155
			list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3156 3157
		}
	}
3158 3159

out:
3160
	spin_unlock_irq(&hugetlb_lock);
3161
	update_and_free_pages_bulk(h, &page_list);
3162
	spin_lock_irq(&hugetlb_lock);
L
Linus Torvalds 已提交
3163 3164
}
#else
3165 3166
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3167 3168 3169 3170
{
}
#endif

3171 3172 3173 3174 3175
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
3176 3177
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
3178
{
3179
	int nr_nodes, node;
3180

3181
	lockdep_assert_held(&hugetlb_lock);
3182 3183
	VM_BUG_ON(delta != -1 && delta != 1);

3184 3185 3186 3187
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
3188
		}
3189 3190 3191 3192 3193
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
3194
		}
3195 3196
	}
	return 0;
3197

3198 3199 3200 3201
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
3202 3203
}

3204
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3205
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3206
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3207
{
3208
	unsigned long min_count, ret;
3209 3210
	struct page *page;
	LIST_HEAD(page_list);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
3222

3223 3224 3225 3226 3227
	/*
	 * resize_lock mutex prevents concurrent adjustments to number of
	 * pages in hstate via the proc/sysfs interfaces.
	 */
	mutex_lock(&h->resize_lock);
3228
	flush_free_hpage_work(h);
3229
	spin_lock_irq(&hugetlb_lock);
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

3251 3252 3253 3254 3255 3256 3257 3258 3259
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
3260
			spin_unlock_irq(&hugetlb_lock);
3261
			mutex_unlock(&h->resize_lock);
3262
			NODEMASK_FREE(node_alloc_noretry);
3263 3264 3265 3266
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
3267

3268 3269 3270 3271
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
3272
	 *
3273
	 * We might race with alloc_surplus_huge_page() here and be unable
3274 3275 3276 3277
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
3278
	 */
3279
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3280
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3281 3282 3283
			break;
	}

3284
	while (count > persistent_huge_pages(h)) {
3285 3286 3287 3288 3289
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
3290
		spin_unlock_irq(&hugetlb_lock);
3291 3292 3293 3294

		/* yield cpu to avoid soft lockup */
		cond_resched();

3295 3296
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
3297
		spin_lock_irq(&hugetlb_lock);
3298 3299 3300
		if (!ret)
			goto out;

3301 3302 3303
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
3304 3305 3306 3307 3308 3309 3310 3311
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
3312 3313 3314 3315
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
3316
	 * alloc_surplus_huge_page() is checking the global counter,
3317 3318 3319
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
3320
	 */
3321
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3322
	min_count = max(count, min_count);
3323
	try_to_free_low(h, min_count, nodes_allowed);
3324 3325 3326 3327

	/*
	 * Collect pages to be removed on list without dropping lock
	 */
3328
	while (min_count < persistent_huge_pages(h)) {
3329 3330
		page = remove_pool_huge_page(h, nodes_allowed, 0);
		if (!page)
L
Linus Torvalds 已提交
3331
			break;
3332 3333

		list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3334
	}
3335
	/* free the pages after dropping lock */
3336
	spin_unlock_irq(&hugetlb_lock);
3337
	update_and_free_pages_bulk(h, &page_list);
3338
	flush_free_hpage_work(h);
3339
	spin_lock_irq(&hugetlb_lock);
3340

3341
	while (count < persistent_huge_pages(h)) {
3342
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3343 3344 3345
			break;
	}
out:
3346
	h->max_huge_pages = persistent_huge_pages(h);
3347
	spin_unlock_irq(&hugetlb_lock);
3348
	mutex_unlock(&h->resize_lock);
3349

3350 3351
	NODEMASK_FREE(node_alloc_noretry);

3352
	return 0;
L
Linus Torvalds 已提交
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static int demote_free_huge_page(struct hstate *h, struct page *page)
{
	int i, nid = page_to_nid(page);
	struct hstate *target_hstate;
	int rc = 0;

	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);

	remove_hugetlb_page_for_demote(h, page, false);
	spin_unlock_irq(&hugetlb_lock);

	rc = alloc_huge_page_vmemmap(h, page);
	if (rc) {
		/* Allocation of vmemmmap failed, we can not demote page */
		spin_lock_irq(&hugetlb_lock);
		set_page_refcounted(page);
		add_hugetlb_page(h, page, false);
		return rc;
	}

	/*
	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
	 * sizes as it will not ref count pages.
	 */
	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));

	/*
	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
	 * Without the mutex, pages added to target hstate could be marked
	 * as surplus.
	 *
	 * Note that we already hold h->resize_lock.  To prevent deadlock,
	 * use the convention of always taking larger size hstate mutex first.
	 */
	mutex_lock(&target_hstate->resize_lock);
	for (i = 0; i < pages_per_huge_page(h);
				i += pages_per_huge_page(target_hstate)) {
		if (hstate_is_gigantic(target_hstate))
			prep_compound_gigantic_page_for_demote(page + i,
							target_hstate->order);
		else
			prep_compound_page(page + i, target_hstate->order);
		set_page_private(page + i, 0);
		set_page_refcounted(page + i);
		prep_new_huge_page(target_hstate, page + i, nid);
		put_page(page + i);
	}
	mutex_unlock(&target_hstate->resize_lock);

	spin_lock_irq(&hugetlb_lock);

	/*
	 * Not absolutely necessary, but for consistency update max_huge_pages
	 * based on pool changes for the demoted page.
	 */
	h->max_huge_pages--;
	target_hstate->max_huge_pages += pages_per_huge_page(h);

	return rc;
}

3416 3417 3418
static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
	__must_hold(&hugetlb_lock)
{
3419 3420
	int nr_nodes, node;
	struct page *page;
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	int rc = 0;

	lockdep_assert_held(&hugetlb_lock);

	/* We should never get here if no demote order */
	if (!h->demote_order) {
		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
		return -EINVAL;		/* internal error */
	}

3431 3432 3433 3434 3435 3436 3437 3438 3439
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
		if (!list_empty(&h->hugepage_freelists[node])) {
			page = list_entry(h->hugepage_freelists[node].next,
					struct page, lru);
			rc = demote_free_huge_page(h, page);
			break;
		}
	}

3440 3441 3442
	return rc;
}

3443 3444 3445
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

3446 3447 3448
#define HSTATE_ATTR_WO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)

3449 3450 3451 3452 3453 3454 3455
#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

3456 3457 3458
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3459 3460
{
	int i;
3461

3462
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3463 3464 3465
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
3466
			return &hstates[i];
3467 3468 3469
		}

	return kobj_to_node_hstate(kobj, nidp);
3470 3471
}

3472
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3473 3474
					struct kobj_attribute *attr, char *buf)
{
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

3485
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3486
}
3487

3488 3489 3490
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
3491 3492
{
	int err;
3493
	nodemask_t nodes_allowed, *n_mask;
3494

3495 3496
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
3497

3498 3499 3500 3501 3502
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
3503 3504 3505 3506 3507
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
3508
		/*
3509 3510
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
3511
		 */
3512 3513
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
3514
	}
3515

3516
	err = set_max_huge_pages(h, count, nid, n_mask);
3517

3518
	return err ? err : len;
3519 3520
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

3538 3539 3540 3541 3542 3543 3544 3545 3546
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3547
	return nr_hugepages_store_common(false, kobj, buf, len);
3548 3549 3550
}
HSTATE_ATTR(nr_hugepages);

3551 3552 3553 3554 3555 3556 3557
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3558 3559
					   struct kobj_attribute *attr,
					   char *buf)
3560 3561 3562 3563 3564 3565 3566
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3567
	return nr_hugepages_store_common(true, kobj, buf, len);
3568 3569 3570 3571 3572
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


3573 3574 3575
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3576
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3577
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3578
}
3579

3580 3581 3582 3583 3584
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
3585
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3586

3587
	if (hstate_is_gigantic(h))
3588 3589
		return -EINVAL;

3590
	err = kstrtoul(buf, 10, &input);
3591
	if (err)
3592
		return err;
3593

3594
	spin_lock_irq(&hugetlb_lock);
3595
	h->nr_overcommit_huge_pages = input;
3596
	spin_unlock_irq(&hugetlb_lock);
3597 3598 3599 3600 3601 3602 3603 3604

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

3615
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3616 3617 3618 3619 3620 3621
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3622
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3623
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3624 3625 3626 3627 3628 3629
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

3640
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3641 3642 3643
}
HSTATE_ATTR_RO(surplus_hugepages);

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static ssize_t demote_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	unsigned long nr_demote;
	unsigned long nr_available;
	nodemask_t nodes_allowed, *n_mask;
	struct hstate *h;
	int err = 0;
	int nid;

	err = kstrtoul(buf, 10, &nr_demote);
	if (err)
		return err;
	h = kobj_to_hstate(kobj, &nid);

	if (nid != NUMA_NO_NODE) {
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
	} else {
		n_mask = &node_states[N_MEMORY];
	}

	/* Synchronize with other sysfs operations modifying huge pages */
	mutex_lock(&h->resize_lock);
	spin_lock_irq(&hugetlb_lock);

	while (nr_demote) {
		/*
		 * Check for available pages to demote each time thorough the
		 * loop as demote_pool_huge_page will drop hugetlb_lock.
		 */
		if (nid != NUMA_NO_NODE)
			nr_available = h->free_huge_pages_node[nid];
		else
			nr_available = h->free_huge_pages;
		nr_available -= h->resv_huge_pages;
		if (!nr_available)
			break;

		err = demote_pool_huge_page(h, n_mask);
		if (err)
			break;

		nr_demote--;
	}

	spin_unlock_irq(&hugetlb_lock);
	mutex_unlock(&h->resize_lock);

	if (err)
		return err;
	return len;
}
HSTATE_ATTR_WO(demote);

static ssize_t demote_size_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	int nid;
	struct hstate *h = kobj_to_hstate(kobj, &nid);
	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;

	return sysfs_emit(buf, "%lukB\n", demote_size);
}

static ssize_t demote_size_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t count)
{
	struct hstate *h, *demote_hstate;
	unsigned long demote_size;
	unsigned int demote_order;
	int nid;

	demote_size = (unsigned long)memparse(buf, NULL);

	demote_hstate = size_to_hstate(demote_size);
	if (!demote_hstate)
		return -EINVAL;
	demote_order = demote_hstate->order;
3724 3725
	if (demote_order < HUGETLB_PAGE_ORDER)
		return -EINVAL;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

	/* demote order must be smaller than hstate order */
	h = kobj_to_hstate(kobj, &nid);
	if (demote_order >= h->order)
		return -EINVAL;

	/* resize_lock synchronizes access to demote size and writes */
	mutex_lock(&h->resize_lock);
	h->demote_order = demote_order;
	mutex_unlock(&h->resize_lock);

	return count;
}
HSTATE_ATTR(demote_size);

3741 3742 3743 3744 3745 3746
static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3747 3748 3749
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3750 3751 3752
	NULL,
};

3753
static const struct attribute_group hstate_attr_group = {
3754 3755 3756
	.attrs = hstate_attrs,
};

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
static struct attribute *hstate_demote_attrs[] = {
	&demote_size_attr.attr,
	&demote_attr.attr,
	NULL,
};

static const struct attribute_group hstate_demote_attr_group = {
	.attrs = hstate_demote_attrs,
};

J
Jeff Mahoney 已提交
3767 3768
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3769
				    const struct attribute_group *hstate_attr_group)
3770 3771
{
	int retval;
3772
	int hi = hstate_index(h);
3773

3774 3775
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3776 3777
		return -ENOMEM;

3778
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3779
	if (retval) {
3780
		kobject_put(hstate_kobjs[hi]);
3781 3782
		hstate_kobjs[hi] = NULL;
	}
3783

3784 3785 3786 3787 3788 3789
	if (h->demote_order) {
		if (sysfs_create_group(hstate_kobjs[hi],
					&hstate_demote_attr_group))
			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
	}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3803 3804
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3805
		if (err)
3806
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3807 3808 3809
	}
}

3810 3811 3812 3813
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3814 3815 3816
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3817 3818 3819 3820 3821 3822
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3823
static struct node_hstate node_hstates[MAX_NUMNODES];
3824 3825

/*
3826
 * A subset of global hstate attributes for node devices
3827 3828 3829 3830 3831 3832 3833 3834
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3835
static const struct attribute_group per_node_hstate_attr_group = {
3836 3837 3838 3839
	.attrs = per_node_hstate_attrs,
};

/*
3840
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3863
 * Unregister hstate attributes from a single node device.
3864 3865
 * No-op if no hstate attributes attached.
 */
3866
static void hugetlb_unregister_node(struct node *node)
3867 3868
{
	struct hstate *h;
3869
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3870 3871

	if (!nhs->hugepages_kobj)
3872
		return;		/* no hstate attributes */
3873

3874 3875 3876 3877 3878
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3879
		}
3880
	}
3881 3882 3883 3884 3885 3886 3887

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3888
 * Register hstate attributes for a single node device.
3889 3890
 * No-op if attributes already registered.
 */
3891
static void hugetlb_register_node(struct node *node)
3892 3893
{
	struct hstate *h;
3894
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3895 3896 3897 3898 3899 3900
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3901
							&node->dev.kobj);
3902 3903 3904 3905 3906 3907 3908 3909
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3910
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3911
				h->name, node->dev.id);
3912 3913 3914 3915 3916 3917 3918
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3919
 * hugetlb init time:  register hstate attributes for all registered node
3920 3921
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3922
 */
3923
static void __init hugetlb_register_all_nodes(void)
3924 3925 3926
{
	int nid;

3927
	for_each_node_state(nid, N_MEMORY) {
3928
		struct node *node = node_devices[nid];
3929
		if (node->dev.id == nid)
3930 3931 3932 3933
			hugetlb_register_node(node);
	}

	/*
3934
	 * Let the node device driver know we're here so it can
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3954 3955
static int __init hugetlb_init(void)
{
3956 3957
	int i;

3958 3959 3960
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3961 3962 3963
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3964
		return 0;
3965
	}
3966

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3995
		}
3996
	}
3997

3998
	hugetlb_cma_check();
3999
	hugetlb_init_hstates();
4000
	gather_bootmem_prealloc();
4001 4002 4003
	report_hugepages();

	hugetlb_sysfs_init();
4004
	hugetlb_register_all_nodes();
4005
	hugetlb_cgroup_file_init();
4006

4007 4008 4009 4010 4011
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
4012
	hugetlb_fault_mutex_table =
4013 4014
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
4015
	BUG_ON(!hugetlb_fault_mutex_table);
4016 4017

	for (i = 0; i < num_fault_mutexes; i++)
4018
		mutex_init(&hugetlb_fault_mutex_table[i]);
4019 4020
	return 0;
}
4021
subsys_initcall(hugetlb_init);
4022

4023 4024
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4025
{
4026
	return size == HPAGE_SIZE;
4027 4028
}

4029
void __init hugetlb_add_hstate(unsigned int order)
4030 4031
{
	struct hstate *h;
4032 4033
	unsigned long i;

4034 4035 4036
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
4037
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4038
	BUG_ON(order == 0);
4039
	h = &hstates[hugetlb_max_hstate++];
4040
	mutex_init(&h->resize_lock);
4041
	h->order = order;
4042
	h->mask = ~(huge_page_size(h) - 1);
4043 4044
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4045
	INIT_LIST_HEAD(&h->hugepage_activelist);
4046 4047
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
4048 4049
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
4050
	hugetlb_vmemmap_init(h);
4051

4052 4053 4054
	parsed_hstate = h;
}

4055 4056 4057 4058 4059 4060 4061 4062
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
4063 4064
{
	unsigned long *mhp;
4065
	static unsigned long *last_mhp;
4066

4067
	if (!parsed_valid_hugepagesz) {
4068
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4069
		parsed_valid_hugepagesz = true;
4070
		return 0;
4071
	}
4072

4073
	/*
4074 4075 4076 4077
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
4078
	 */
4079
	else if (!hugetlb_max_hstate)
4080 4081 4082 4083
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

4084
	if (mhp == last_mhp) {
4085 4086
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
4087 4088
	}

4089 4090 4091
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

4092 4093
	/*
	 * Global state is always initialized later in hugetlb_init.
4094
	 * But we need to allocate gigantic hstates here early to still
4095 4096
	 * use the bootmem allocator.
	 */
4097
	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4098 4099 4100 4101
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

4102 4103
	return 1;
}
4104
__setup("hugepages=", hugepages_setup);
4105

4106 4107 4108 4109 4110 4111 4112
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
4113
static int __init hugepagesz_setup(char *s)
4114
{
4115
	unsigned long size;
4116 4117 4118
	struct hstate *h;

	parsed_valid_hugepagesz = false;
4119 4120 4121
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4122
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4123 4124 4125
		return 0;
	}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
4149 4150
	}

4151
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4152
	parsed_valid_hugepagesz = true;
4153 4154
	return 1;
}
4155 4156
__setup("hugepagesz=", hugepagesz_setup);

4157 4158 4159 4160
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
4161
static int __init default_hugepagesz_setup(char *s)
4162
{
4163 4164
	unsigned long size;

4165 4166 4167 4168 4169 4170
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

4171 4172 4173
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4174
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4175 4176 4177
		return 0;
	}

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

4197 4198
	return 1;
}
4199
__setup("default_hugepagesz=", default_hugepagesz_setup);
4200

4201
static unsigned int allowed_mems_nr(struct hstate *h)
4202 4203 4204
{
	int node;
	unsigned int nr = 0;
4205 4206 4207 4208 4209
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
4210

4211
	for_each_node_mask(node, cpuset_current_mems_allowed) {
4212
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4213 4214
			nr += array[node];
	}
4215 4216 4217 4218 4219

	return nr;
}

#ifdef CONFIG_SYSCTL
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

4236 4237
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
4238
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
4239
{
4240
	struct hstate *h = &default_hstate;
4241
	unsigned long tmp = h->max_huge_pages;
4242
	int ret;
4243

4244
	if (!hugepages_supported())
4245
		return -EOPNOTSUPP;
4246

4247 4248
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4249 4250
	if (ret)
		goto out;
4251

4252 4253 4254
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
4255 4256
out:
	return ret;
L
Linus Torvalds 已提交
4257
}
4258

4259
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4260
			  void *buffer, size_t *length, loff_t *ppos)
4261 4262 4263 4264 4265 4266 4267 4268
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4269
			  void *buffer, size_t *length, loff_t *ppos)
4270 4271 4272 4273 4274 4275
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

4276
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4277
		void *buffer, size_t *length, loff_t *ppos)
4278
{
4279
	struct hstate *h = &default_hstate;
4280
	unsigned long tmp;
4281
	int ret;
4282

4283
	if (!hugepages_supported())
4284
		return -EOPNOTSUPP;
4285

4286
	tmp = h->nr_overcommit_huge_pages;
4287

4288
	if (write && hstate_is_gigantic(h))
4289 4290
		return -EINVAL;

4291 4292
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4293 4294
	if (ret)
		goto out;
4295 4296

	if (write) {
4297
		spin_lock_irq(&hugetlb_lock);
4298
		h->nr_overcommit_huge_pages = tmp;
4299
		spin_unlock_irq(&hugetlb_lock);
4300
	}
4301 4302
out:
	return ret;
4303 4304
}

L
Linus Torvalds 已提交
4305 4306
#endif /* CONFIG_SYSCTL */

4307
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
4308
{
4309 4310 4311
	struct hstate *h;
	unsigned long total = 0;

4312 4313
	if (!hugepages_supported())
		return;
4314 4315 4316 4317

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

4318
		total += huge_page_size(h) * count;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
4331
				   huge_page_size(h) / SZ_1K);
4332 4333
	}

4334
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
4335 4336
}

4337
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
4338
{
4339
	struct hstate *h = &default_hstate;
4340

4341 4342
	if (!hugepages_supported())
		return 0;
4343 4344 4345 4346 4347 4348 4349 4350

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
4351 4352
}

4353 4354 4355 4356 4357
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

4358 4359 4360
	if (!hugepages_supported())
		return;

4361 4362 4363 4364 4365 4366 4367
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
4368
				huge_page_size(h) / SZ_1K);
4369 4370
}

4371 4372 4373 4374 4375 4376
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
4377 4378 4379
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
4380 4381 4382 4383 4384 4385
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
4386 4387
}

4388
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
4389 4390 4391
{
	int ret = -ENOMEM;

4392 4393 4394
	if (!delta)
		return 0;

4395
	spin_lock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
4412 4413 4414 4415 4416 4417
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
4418 4419
	 */
	if (delta > 0) {
4420
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
4421 4422
			goto out;

4423
		if (delta > allowed_mems_nr(h)) {
4424
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
4425 4426 4427 4428 4429 4430
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
4431
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
4432 4433

out:
4434
	spin_unlock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4435 4436 4437
	return ret;
}

4438 4439
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
4440
	struct resv_map *resv = vma_resv_map(vma);
4441 4442 4443 4444 4445

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
4446
	 * has a reference to the reservation map it cannot disappear until
4447 4448 4449
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
4450 4451
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4452
		kref_get(&resv->refs);
4453
	}
4454 4455
}

4456 4457
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
4458
	struct hstate *h = hstate_vma(vma);
4459
	struct resv_map *resv = vma_resv_map(vma);
4460
	struct hugepage_subpool *spool = subpool_vma(vma);
4461
	unsigned long reserve, start, end;
4462
	long gbl_reserve;
4463

4464 4465
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
4466

4467 4468
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
4469

4470
	reserve = (end - start) - region_count(resv, start, end);
4471
	hugetlb_cgroup_uncharge_counter(resv, start, end);
4472
	if (reserve) {
4473 4474 4475 4476 4477 4478
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
4479
	}
4480 4481

	kref_put(&resv->refs, resv_map_release);
4482 4483
}

4484 4485 4486 4487 4488 4489 4490
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

4491 4492
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
4493
	return huge_page_size(hstate_vma(vma));
4494 4495
}

L
Linus Torvalds 已提交
4496 4497 4498
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
4499
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
4500 4501
 * this far.
 */
4502
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
4503 4504
{
	BUG();
N
Nick Piggin 已提交
4505
	return 0;
L
Linus Torvalds 已提交
4506 4507
}

4508 4509 4510 4511 4512 4513 4514
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
4515
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
4516
	.fault = hugetlb_vm_op_fault,
4517
	.open = hugetlb_vm_op_open,
4518
	.close = hugetlb_vm_op_close,
4519
	.may_split = hugetlb_vm_op_split,
4520
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
4521 4522
};

4523 4524
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
4525 4526
{
	pte_t entry;
4527
	unsigned int shift = huge_page_shift(hstate_vma(vma));
D
David Gibson 已提交
4528

4529
	if (writable) {
4530 4531
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
4532
	} else {
4533 4534
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
4535 4536 4537
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
4538
	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
D
David Gibson 已提交
4539 4540 4541 4542

	return entry;
}

4543 4544 4545 4546 4547
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

4548
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4549
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4550
		update_mmu_cache(vma, address, ptep);
4551 4552
}

4553
bool is_hugetlb_entry_migration(pte_t pte)
4554 4555 4556 4557
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4558
		return false;
4559
	swp = pte_to_swp_entry(pte);
4560
	if (is_migration_entry(swp))
4561
		return true;
4562
	else
4563
		return false;
4564 4565
}

4566
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4567 4568 4569 4570
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4571
		return false;
4572
	swp = pte_to_swp_entry(pte);
4573
	if (is_hwpoison_entry(swp))
4574
		return true;
4575
	else
4576
		return false;
4577
}
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
static void
hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
		     struct page *new_page)
{
	__SetPageUptodate(new_page);
	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
	hugepage_add_new_anon_rmap(new_page, vma, addr);
	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
	ClearHPageRestoreReserve(new_page);
	SetHPageMigratable(new_page);
}

D
David Gibson 已提交
4591 4592 4593
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
4594
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
4595
	struct page *ptepage;
4596
	unsigned long addr;
4597
	bool cow = is_cow_mapping(vma->vm_flags);
4598 4599
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4600
	unsigned long npages = pages_per_huge_page(h);
4601
	struct address_space *mapping = vma->vm_file->f_mapping;
4602
	struct mmu_notifier_range range;
4603
	int ret = 0;
4604

4605
	if (cow) {
4606
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4607
					vma->vm_start,
4608 4609
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
4610 4611 4612 4613 4614 4615 4616 4617
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
4618
	}
4619

4620
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4621
		spinlock_t *src_ptl, *dst_ptl;
4622
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
4623 4624
		if (!src_pte)
			continue;
4625
		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4626 4627 4628 4629
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
4630

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4642 4643
			continue;

4644 4645 4646
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4647
		entry = huge_ptep_get(src_pte);
4648
		dst_entry = huge_ptep_get(dst_pte);
4649
again:
4650 4651 4652 4653 4654 4655
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
4656 4657 4658 4659 4660
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

4661
			if (is_writable_migration_entry(swp_entry) && cow) {
4662 4663 4664 4665
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
4666 4667
				swp_entry = make_readable_migration_entry(
							swp_offset(swp_entry));
4668
				entry = swp_entry_to_pte(swp_entry);
4669 4670
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
4671
			}
4672
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4673
		} else {
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
			entry = huge_ptep_get(src_pte);
			ptepage = pte_page(entry);
			get_page(ptepage);

			/*
			 * This is a rare case where we see pinned hugetlb
			 * pages while they're prone to COW.  We need to do the
			 * COW earlier during fork.
			 *
			 * When pre-allocating the page or copying data, we
			 * need to be without the pgtable locks since we could
			 * sleep during the process.
			 */
			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
				pte_t src_pte_old = entry;
				struct page *new;

				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				/* Do not use reserve as it's private owned */
				new = alloc_huge_page(vma, addr, 1);
				if (IS_ERR(new)) {
					put_page(ptepage);
					ret = PTR_ERR(new);
					break;
				}
				copy_user_huge_page(new, ptepage, addr, vma,
						    npages);
				put_page(ptepage);

				/* Install the new huge page if src pte stable */
				dst_ptl = huge_pte_lock(h, dst, dst_pte);
				src_ptl = huge_pte_lockptr(h, src, src_pte);
				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
				entry = huge_ptep_get(src_pte);
				if (!pte_same(src_pte_old, entry)) {
4710 4711
					restore_reserve_on_error(h, vma, addr,
								new);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
					put_page(new);
					/* dst_entry won't change as in child */
					goto again;
				}
				hugetlb_install_page(vma, dst_pte, addr, new);
				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				continue;
			}

4722
			if (cow) {
4723 4724 4725 4726 4727
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
4728
				 * See Documentation/vm/mmu_notifier.rst
4729
				 */
4730
				huge_ptep_set_wrprotect(src, addr, src_pte);
4731
				entry = huge_pte_wrprotect(entry);
4732
			}
4733

4734
			page_dup_rmap(ptepage, true);
4735
			set_huge_pte_at(dst, addr, dst_pte, entry);
4736
			hugetlb_count_add(npages, dst);
4737
		}
4738 4739
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
4740 4741
	}

4742
	if (cow)
4743
		mmu_notifier_invalidate_range_end(&range);
4744 4745
	else
		i_mmap_unlock_read(mapping);
4746 4747

	return ret;
D
David Gibson 已提交
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
			  unsigned long new_addr, pte_t *src_pte)
{
	struct hstate *h = hstate_vma(vma);
	struct mm_struct *mm = vma->vm_mm;
	pte_t *dst_pte, pte;
	spinlock_t *src_ptl, *dst_ptl;

	dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h));
	dst_ptl = huge_pte_lock(h, mm, dst_pte);
	src_ptl = huge_pte_lockptr(h, mm, src_pte);

	/*
	 * We don't have to worry about the ordering of src and dst ptlocks
	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
	 */
	if (src_ptl != dst_ptl)
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
	set_huge_pte_at(mm, new_addr, dst_pte, pte);

	if (src_ptl != dst_ptl)
		spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
}

int move_hugetlb_page_tables(struct vm_area_struct *vma,
			     struct vm_area_struct *new_vma,
			     unsigned long old_addr, unsigned long new_addr,
			     unsigned long len)
{
	struct hstate *h = hstate_vma(vma);
	struct address_space *mapping = vma->vm_file->f_mapping;
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	unsigned long old_end = old_addr + len;
	unsigned long old_addr_copy;
	pte_t *src_pte, *dst_pte;
	struct mmu_notifier_range range;

	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
				old_end);
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
	/* Prevent race with file truncation */
	i_mmap_lock_write(mapping);
	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
		src_pte = huge_pte_offset(mm, old_addr, sz);
		if (!src_pte)
			continue;
		if (huge_pte_none(huge_ptep_get(src_pte)))
			continue;

		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
		 * arg may be modified. Pass a copy instead to preserve the
		 * value in old_addr.
		 */
		old_addr_copy = old_addr;

		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
			continue;

		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
		if (!dst_pte)
			break;

		move_huge_pte(vma, old_addr, new_addr, src_pte);
	}
	i_mmap_unlock_write(mapping);
	flush_tlb_range(vma, old_end - len, old_end);
	mmu_notifier_invalidate_range_end(&range);

	return len + old_addr - old_end;
}

4826 4827 4828
static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
				   unsigned long start, unsigned long end,
				   struct page *ref_page)
D
David Gibson 已提交
4829 4830 4831
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
4832
	pte_t *ptep;
D
David Gibson 已提交
4833
	pte_t pte;
4834
	spinlock_t *ptl;
D
David Gibson 已提交
4835
	struct page *page;
4836 4837
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4838
	struct mmu_notifier_range range;
4839

D
David Gibson 已提交
4840
	WARN_ON(!is_vm_hugetlb_page(vma));
4841 4842
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
4843

4844 4845 4846 4847
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
4848
	tlb_change_page_size(tlb, sz);
4849
	tlb_start_vma(tlb, vma);
4850 4851 4852 4853

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
4854 4855
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
4856 4857
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
4858 4859
	address = start;
	for (; address < end; address += sz) {
4860
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
4861
		if (!ptep)
4862 4863
			continue;

4864
		ptl = huge_pte_lock(h, mm, ptep);
4865
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4866
			spin_unlock(ptl);
4867 4868 4869 4870
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
4871 4872
			continue;
		}
4873

4874
		pte = huge_ptep_get(ptep);
4875 4876 4877 4878
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
4879 4880

		/*
4881 4882
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
4883
		 */
4884
		if (unlikely(!pte_present(pte))) {
4885
			huge_pte_clear(mm, address, ptep, sz);
4886 4887
			spin_unlock(ptl);
			continue;
4888
		}
4889 4890

		page = pte_page(pte);
4891 4892 4893 4894 4895 4896
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
4897 4898 4899 4900
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
4901 4902 4903 4904 4905 4906 4907 4908
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

4909
		pte = huge_ptep_get_and_clear(mm, address, ptep);
4910
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4911
		if (huge_pte_dirty(pte))
4912
			set_page_dirty(page);
4913

4914
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4915
		page_remove_rmap(page, true);
4916

4917
		spin_unlock(ptl);
4918
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4919 4920 4921 4922 4923
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4924
	}
4925
	mmu_notifier_invalidate_range_end(&range);
4926
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4927
}
D
David Gibson 已提交
4928

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4941
	 * is to clear it before releasing the i_mmap_rwsem. This works
4942
	 * because in the context this is called, the VMA is about to be
4943
	 * destroyed and the i_mmap_rwsem is held.
4944 4945 4946 4947
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4948
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4949
			  unsigned long end, struct page *ref_page)
4950
{
4951
	struct mmu_gather tlb;
4952

4953
	tlb_gather_mmu(&tlb, vma->vm_mm);
4954
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4955
	tlb_finish_mmu(&tlb);
4956 4957
}

4958 4959
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4960
 * mapping it owns the reserve page for. The intention is to unmap the page
4961 4962 4963
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4964 4965
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4966
{
4967
	struct hstate *h = hstate_vma(vma);
4968 4969 4970 4971 4972 4973 4974 4975
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4976
	address = address & huge_page_mask(h);
4977 4978
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4979
	mapping = vma->vm_file->f_mapping;
4980

4981 4982 4983 4984 4985
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4986
	i_mmap_lock_write(mapping);
4987
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4988 4989 4990 4991
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4992 4993 4994 4995 4996 4997 4998 4999
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

5000 5001 5002 5003 5004 5005 5006 5007
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5008 5009
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
5010
	}
5011
	i_mmap_unlock_write(mapping);
5012 5013
}

5014 5015
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5016 5017 5018
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
5019
 */
5020
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5021
		       unsigned long address, pte_t *ptep,
5022
		       struct page *pagecache_page, spinlock_t *ptl)
5023
{
5024
	pte_t pte;
5025
	struct hstate *h = hstate_vma(vma);
5026
	struct page *old_page, *new_page;
5027 5028
	int outside_reserve = 0;
	vm_fault_t ret = 0;
5029
	unsigned long haddr = address & huge_page_mask(h);
5030
	struct mmu_notifier_range range;
5031

5032
	pte = huge_ptep_get(ptep);
5033 5034
	old_page = pte_page(pte);

5035
retry_avoidcopy:
5036 5037
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
5038
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5039
		page_move_anon_rmap(old_page, vma);
5040
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
5041
		return 0;
5042 5043
	}

5044 5045 5046 5047 5048 5049 5050 5051 5052
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
5053
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5054 5055 5056
			old_page != pagecache_page)
		outside_reserve = 1;

5057
	get_page(old_page);
5058

5059 5060 5061 5062
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
5063
	spin_unlock(ptl);
5064
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5065

5066
	if (IS_ERR(new_page)) {
5067 5068 5069 5070 5071 5072 5073 5074
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
5075 5076 5077 5078
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

5079
			put_page(old_page);
5080
			BUG_ON(huge_pte_none(pte));
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

5095
			unmap_ref_private(mm, vma, old_page, haddr);
5096 5097 5098

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5099
			spin_lock(ptl);
5100
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5101 5102 5103 5104 5105 5106 5107 5108
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
5109 5110
		}

5111
		ret = vmf_error(PTR_ERR(new_page));
5112
		goto out_release_old;
5113 5114
	}

5115 5116 5117 5118
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
5119
	if (unlikely(anon_vma_prepare(vma))) {
5120 5121
		ret = VM_FAULT_OOM;
		goto out_release_all;
5122
	}
5123

5124
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
5125
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
5126
	__SetPageUptodate(new_page);
5127

5128
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5129
				haddr + huge_page_size(h));
5130
	mmu_notifier_invalidate_range_start(&range);
5131

5132
	/*
5133
	 * Retake the page table lock to check for racing updates
5134 5135
	 * before the page tables are altered
	 */
5136
	spin_lock(ptl);
5137
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5138
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5139
		ClearHPageRestoreReserve(new_page);
5140

5141
		/* Break COW */
5142
		huge_ptep_clear_flush(vma, haddr, ptep);
5143
		mmu_notifier_invalidate_range(mm, range.start, range.end);
5144
		set_huge_pte_at(mm, haddr, ptep,
5145
				make_huge_pte(vma, new_page, 1));
5146
		page_remove_rmap(old_page, true);
5147
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5148
		SetHPageMigratable(new_page);
5149 5150 5151
		/* Make the old page be freed below */
		new_page = old_page;
	}
5152
	spin_unlock(ptl);
5153
	mmu_notifier_invalidate_range_end(&range);
5154
out_release_all:
5155 5156 5157
	/* No restore in case of successful pagetable update (Break COW) */
	if (new_page != old_page)
		restore_reserve_on_error(h, vma, haddr, new_page);
5158
	put_page(new_page);
5159
out_release_old:
5160
	put_page(old_page);
5161

5162 5163
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
5164 5165
}

5166
/* Return the pagecache page at a given address within a VMA */
5167 5168
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
5169 5170
{
	struct address_space *mapping;
5171
	pgoff_t idx;
5172 5173

	mapping = vma->vm_file->f_mapping;
5174
	idx = vma_hugecache_offset(h, vma, address);
5175 5176 5177 5178

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
5179 5180 5181 5182 5183
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

5199 5200 5201 5202 5203 5204 5205 5206 5207
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
5208
	ClearHPageRestoreReserve(page);
5209

5210 5211 5212 5213 5214 5215
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

5216 5217 5218 5219 5220 5221
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
						  struct address_space *mapping,
						  pgoff_t idx,
						  unsigned int flags,
						  unsigned long haddr,
						  unsigned long reason)
{
	vm_fault_t ret;
	u32 hash;
	struct vm_fault vmf = {
		.vma = vma,
		.address = haddr,
		.flags = flags,

		/*
		 * Hard to debug if it ends up being
		 * used by a callee that assumes
		 * something about the other
		 * uninitialized fields... same as in
		 * memory.c
		 */
	};

	/*
	 * hugetlb_fault_mutex and i_mmap_rwsem must be
	 * dropped before handling userfault.  Reacquire
	 * after handling fault to make calling code simpler.
	 */
	hash = hugetlb_fault_mutex_hash(mapping, idx);
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
	i_mmap_unlock_read(mapping);
	ret = handle_userfault(&vmf, reason);
	i_mmap_lock_read(mapping);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);

	return ret;
}

5260 5261 5262 5263
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
5264
{
5265
	struct hstate *h = hstate_vma(vma);
5266
	vm_fault_t ret = VM_FAULT_SIGBUS;
5267
	int anon_rmap = 0;
A
Adam Litke 已提交
5268 5269
	unsigned long size;
	struct page *page;
5270
	pte_t new_pte;
5271
	spinlock_t *ptl;
5272
	unsigned long haddr = address & huge_page_mask(h);
5273
	bool new_page, new_pagecache_page = false;
A
Adam Litke 已提交
5274

5275 5276 5277
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
5278
	 * COW. Warn that such a situation has occurred as it may not be obvious
5279 5280
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5281
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5282
			   current->pid);
5283 5284 5285
		return ret;
	}

A
Adam Litke 已提交
5286
	/*
5287 5288 5289
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
5290
	 */
5291 5292 5293 5294
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

5295
retry:
5296
	new_page = false;
5297 5298
	page = find_lock_page(mapping, idx);
	if (!page) {
5299
		/* Check for page in userfault range */
5300
		if (userfaultfd_missing(vma)) {
5301 5302 5303
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MISSING);
5304 5305 5306
			goto out;
		}

5307
		page = alloc_huge_page(vma, haddr, 0);
5308
		if (IS_ERR(page)) {
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
5322 5323 5324
			ret = 0;
			if (huge_pte_none(huge_ptep_get(ptep)))
				ret = vmf_error(PTR_ERR(page));
5325
			spin_unlock(ptl);
5326 5327
			goto out;
		}
A
Andrea Arcangeli 已提交
5328
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
5329
		__SetPageUptodate(page);
5330
		new_page = true;
5331

5332
		if (vma->vm_flags & VM_MAYSHARE) {
5333
			int err = huge_add_to_page_cache(page, mapping, idx);
5334 5335 5336 5337 5338 5339
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
5340
			new_pagecache_page = true;
5341
		} else {
5342
			lock_page(page);
5343 5344 5345 5346
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
5347
			anon_rmap = 1;
5348
		}
5349
	} else {
5350 5351 5352 5353 5354 5355
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
5356
			ret = VM_FAULT_HWPOISON_LARGE |
5357
				VM_FAULT_SET_HINDEX(hstate_index(h));
5358 5359
			goto backout_unlocked;
		}
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

		/* Check for page in userfault range. */
		if (userfaultfd_minor(vma)) {
			unlock_page(page);
			put_page(page);
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MINOR);
			goto out;
		}
5370
	}
5371

5372 5373 5374 5375 5376 5377
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
5378
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5379
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5380 5381 5382
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
5383
		/* Just decrements count, does not deallocate */
5384
		vma_end_reservation(h, vma, haddr);
5385
	}
5386

5387
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
5388
	ret = 0;
5389
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
5390 5391
		goto backout;

5392
	if (anon_rmap) {
5393
		ClearHPageRestoreReserve(page);
5394
		hugepage_add_new_anon_rmap(page, vma, haddr);
5395
	} else
5396
		page_dup_rmap(page, true);
5397 5398
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
5399
	set_huge_pte_at(mm, haddr, ptep, new_pte);
5400

5401
	hugetlb_count_add(pages_per_huge_page(h), mm);
5402
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5403
		/* Optimization, do the COW without a second fault */
5404
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5405 5406
	}

5407
	spin_unlock(ptl);
5408 5409

	/*
5410 5411 5412
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
5413 5414
	 */
	if (new_page)
5415
		SetHPageMigratable(page);
5416

A
Adam Litke 已提交
5417 5418
	unlock_page(page);
out:
5419
	return ret;
A
Adam Litke 已提交
5420 5421

backout:
5422
	spin_unlock(ptl);
5423
backout_unlocked:
A
Adam Litke 已提交
5424
	unlock_page(page);
5425 5426 5427
	/* restore reserve for newly allocated pages not in page cache */
	if (new_page && !new_pagecache_page)
		restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
5428 5429
	put_page(page);
	goto out;
5430 5431
}

5432
#ifdef CONFIG_SMP
5433
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5434 5435 5436 5437
{
	unsigned long key[2];
	u32 hash;

5438 5439
	key[0] = (unsigned long) mapping;
	key[1] = idx;
5440

5441
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5442 5443 5444 5445 5446

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
5447
 * For uniprocessor systems we always use a single mutex, so just
5448 5449
 * return 0 and avoid the hashing overhead.
 */
5450
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5451 5452 5453 5454 5455
{
	return 0;
}
#endif

5456
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5457
			unsigned long address, unsigned int flags)
5458
{
5459
	pte_t *ptep, entry;
5460
	spinlock_t *ptl;
5461
	vm_fault_t ret;
5462 5463
	u32 hash;
	pgoff_t idx;
5464
	struct page *page = NULL;
5465
	struct page *pagecache_page = NULL;
5466
	struct hstate *h = hstate_vma(vma);
5467
	struct address_space *mapping;
5468
	int need_wait_lock = 0;
5469
	unsigned long haddr = address & huge_page_mask(h);
5470

5471
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5472
	if (ptep) {
5473 5474 5475 5476 5477
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
5478
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
5479
		if (unlikely(is_hugetlb_entry_migration(entry))) {
5480
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
5481 5482
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5483
			return VM_FAULT_HWPOISON_LARGE |
5484
				VM_FAULT_SET_HINDEX(hstate_index(h));
5485 5486
	}

5487 5488
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5489 5490 5491 5492
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
5493 5494 5495 5496 5497
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
5498
	mapping = vma->vm_file->f_mapping;
5499
	i_mmap_lock_read(mapping);
5500
	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5501 5502 5503 5504
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
5505

5506 5507 5508 5509 5510
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
5511
	idx = vma_hugecache_offset(h, vma, haddr);
5512
	hash = hugetlb_fault_mutex_hash(mapping, idx);
5513
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5514

5515 5516
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
5517
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5518
		goto out_mutex;
5519
	}
5520

N
Nick Piggin 已提交
5521
	ret = 0;
5522

5523 5524 5525
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
5526 5527 5528
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
5529 5530 5531 5532
	 */
	if (!pte_present(entry))
		goto out_mutex;

5533 5534 5535 5536 5537 5538 5539 5540
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
5541
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5542
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5543
			ret = VM_FAULT_OOM;
5544
			goto out_mutex;
5545
		}
5546
		/* Just decrements count, does not deallocate */
5547
		vma_end_reservation(h, vma, haddr);
5548

5549
		if (!(vma->vm_flags & VM_MAYSHARE))
5550
			pagecache_page = hugetlbfs_pagecache_page(h,
5551
								vma, haddr);
5552 5553
	}

5554 5555 5556 5557 5558 5559
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

5560 5561 5562 5563 5564 5565 5566
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
5567 5568 5569 5570
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
5571

5572
	get_page(page);
5573

5574
	if (flags & FAULT_FLAG_WRITE) {
5575
		if (!huge_pte_write(entry)) {
5576
			ret = hugetlb_cow(mm, vma, address, ptep,
5577
					  pagecache_page, ptl);
5578
			goto out_put_page;
5579
		}
5580
		entry = huge_pte_mkdirty(entry);
5581 5582
	}
	entry = pte_mkyoung(entry);
5583
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5584
						flags & FAULT_FLAG_WRITE))
5585
		update_mmu_cache(vma, haddr, ptep);
5586 5587 5588 5589
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
5590 5591
out_ptl:
	spin_unlock(ptl);
5592 5593 5594 5595 5596

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
5597
out_mutex:
5598
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5599
	i_mmap_unlock_read(mapping);
5600 5601 5602 5603 5604 5605 5606 5607 5608
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
5609
	return ret;
5610 5611
}

5612
#ifdef CONFIG_USERFAULTFD
5613 5614 5615 5616 5617 5618 5619 5620 5621
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
5622
			    enum mcopy_atomic_mode mode,
5623 5624
			    struct page **pagep)
{
5625
	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5626 5627 5628
	struct hstate *h = hstate_vma(dst_vma);
	struct address_space *mapping = dst_vma->vm_file->f_mapping;
	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5629
	unsigned long size;
5630
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5631 5632
	pte_t _dst_pte;
	spinlock_t *ptl;
5633
	int ret = -ENOMEM;
5634
	struct page *page;
5635
	int writable;
5636
	bool new_pagecache_page = false;
5637

5638 5639 5640 5641 5642 5643
	if (is_continue) {
		ret = -EFAULT;
		page = find_lock_page(mapping, idx);
		if (!page)
			goto out;
	} else if (!*pagep) {
5644 5645 5646 5647 5648 5649 5650 5651 5652
		/* If a page already exists, then it's UFFDIO_COPY for
		 * a non-missing case. Return -EEXIST.
		 */
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			ret = -EEXIST;
			goto out;
		}

5653
		page = alloc_huge_page(dst_vma, dst_addr, 0);
5654 5655
		if (IS_ERR(page)) {
			ret = -ENOMEM;
5656
			goto out;
5657
		}
5658 5659 5660

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
5661
						pages_per_huge_page(h), false);
5662

5663
		/* fallback to copy_from_user outside mmap_lock */
5664
		if (unlikely(ret)) {
5665
			ret = -ENOENT;
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
			/* Free the allocated page which may have
			 * consumed a reservation.
			 */
			restore_reserve_on_error(h, dst_vma, dst_addr, page);
			put_page(page);

			/* Allocate a temporary page to hold the copied
			 * contents.
			 */
			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
			if (!page) {
				ret = -ENOMEM;
				goto out;
			}
5680
			*pagep = page;
5681 5682 5683 5684
			/* Set the outparam pagep and return to the caller to
			 * copy the contents outside the lock. Don't free the
			 * page.
			 */
5685 5686 5687
			goto out;
		}
	} else {
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			put_page(*pagep);
			ret = -EEXIST;
			*pagep = NULL;
			goto out;
		}

		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page)) {
			ret = -ENOMEM;
			*pagep = NULL;
			goto out;
		}
		copy_huge_page(page, *pagep);
		put_page(*pagep);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

5714 5715
	/* Add shared, newly allocated pages to the page cache. */
	if (vm_shared && !is_continue) {
5716 5717 5718 5719
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
5720

5721 5722 5723 5724 5725 5726
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
5727 5728 5729
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
5730
		new_pagecache_page = true;
5731 5732
	}

5733 5734 5735
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

5750 5751 5752 5753
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

5754 5755 5756
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
5757
		ClearHPageRestoreReserve(page);
5758 5759
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
5760

5761 5762 5763 5764 5765 5766 5767 5768
	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
	if (is_continue && !vm_shared)
		writable = 0;
	else
		writable = dst_vma->vm_flags & VM_WRITE;

	_dst_pte = make_huge_pte(dst_vma, page, writable);
	if (writable)
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
5782 5783 5784
	if (!is_continue)
		SetHPageMigratable(page);
	if (vm_shared || is_continue)
5785
		unlock_page(page);
5786 5787 5788 5789 5790
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
5791
	if (vm_shared || is_continue)
5792
		unlock_page(page);
5793
out_release_nounlock:
5794 5795
	if (!new_pagecache_page)
		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5796 5797 5798
	put_page(page);
	goto out;
}
5799
#endif /* CONFIG_USERFAULTFD */
5800

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

5815 5816 5817
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
5818
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
5819
{
5820 5821
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
5822
	unsigned long remainder = *nr_pages;
5823
	struct hstate *h = hstate_vma(vma);
5824
	int err = -EFAULT, refs;
D
David Gibson 已提交
5825 5826

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
5827
		pte_t *pte;
5828
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
5829
		int absent;
A
Adam Litke 已提交
5830
		struct page *page;
D
David Gibson 已提交
5831

5832 5833 5834 5835
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
5836
		if (fatal_signal_pending(current)) {
5837 5838 5839 5840
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
5841 5842
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
5843
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
5844
		 * first, for the page indexing below to work.
5845 5846
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
5847
		 */
5848 5849
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
5850 5851
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
5852 5853 5854 5855
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
5856 5857 5858 5859
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
5860
		 */
H
Hugh Dickins 已提交
5861 5862
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5863 5864
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
5865 5866 5867
			remainder = 0;
			break;
		}
D
David Gibson 已提交
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5880 5881
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
5882
			vm_fault_t ret;
5883
			unsigned int fault_flags = 0;
D
David Gibson 已提交
5884

5885 5886
			if (pte)
				spin_unlock(ptl);
5887 5888
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
5889
			if (locked)
5890 5891
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
5892 5893 5894 5895
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
5896 5897 5898 5899
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
5900 5901 5902 5903
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
5904
				err = vm_fault_to_errno(ret, flags);
5905 5906 5907 5908
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
5909
				if (locked &&
5910
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5911
					*locked = 0;
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
5925 5926
		}

5927
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5928
		page = pte_page(huge_ptep_get(pte));
5929

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

5944 5945 5946
		/* vaddr may not be aligned to PAGE_SIZE */
		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5947

5948 5949 5950 5951 5952
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
5953

5954
		if (pages) {
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
			/*
			 * try_grab_compound_head() should always succeed here,
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
5965
			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5966 5967 5968 5969 5970 5971 5972
								 refs,
								 flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
5973
		}
5974 5975 5976 5977 5978

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

5979
		spin_unlock(ptl);
D
David Gibson 已提交
5980
	}
5981
	*nr_pages = remainder;
5982 5983 5984 5985 5986
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
5987 5988
	*position = vaddr;

5989
	return i ? i : err;
D
David Gibson 已提交
5990
}
5991

5992
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5993 5994 5995 5996 5997 5998
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
5999
	struct hstate *h = hstate_vma(vma);
6000
	unsigned long pages = 0;
6001
	bool shared_pmd = false;
6002
	struct mmu_notifier_range range;
6003 6004 6005

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
6006
	 * start/end.  Set range.start/range.end to cover the maximum possible
6007 6008
	 * range if PMD sharing is possible.
	 */
6009 6010
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
6011
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6012 6013

	BUG_ON(address >= end);
6014
	flush_cache_range(vma, range.start, range.end);
6015

6016
	mmu_notifier_invalidate_range_start(&range);
6017
	i_mmap_lock_write(vma->vm_file->f_mapping);
6018
	for (; address < end; address += huge_page_size(h)) {
6019
		spinlock_t *ptl;
6020
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6021 6022
		if (!ptep)
			continue;
6023
		ptl = huge_pte_lock(h, mm, ptep);
6024
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6025
			pages++;
6026
			spin_unlock(ptl);
6027
			shared_pmd = true;
6028
			continue;
6029
		}
6030 6031 6032 6033 6034 6035 6036 6037
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

6038
			if (is_writable_migration_entry(entry)) {
6039 6040
				pte_t newpte;

6041 6042
				entry = make_readable_migration_entry(
							swp_offset(entry));
6043
				newpte = swp_entry_to_pte(entry);
6044 6045
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
6046 6047 6048 6049 6050 6051
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
6052
			pte_t old_pte;
6053
			unsigned int shift = huge_page_shift(hstate_vma(vma));
6054 6055 6056

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6057
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6058
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6059
			pages++;
6060
		}
6061
		spin_unlock(ptl);
6062
	}
6063
	/*
6064
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6065
	 * may have cleared our pud entry and done put_page on the page table:
6066
	 * once we release i_mmap_rwsem, another task can do the final put_page
6067 6068
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
6069
	 */
6070
	if (shared_pmd)
6071
		flush_hugetlb_tlb_range(vma, range.start, range.end);
6072 6073
	else
		flush_hugetlb_tlb_range(vma, start, end);
6074 6075 6076 6077
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
6078
	 * See Documentation/vm/mmu_notifier.rst
6079
	 */
6080
	i_mmap_unlock_write(vma->vm_file->f_mapping);
6081
	mmu_notifier_invalidate_range_end(&range);
6082 6083

	return pages << h->order;
6084 6085
}

6086 6087
/* Return true if reservation was successful, false otherwise.  */
bool hugetlb_reserve_pages(struct inode *inode,
6088
					long from, long to,
6089
					struct vm_area_struct *vma,
6090
					vm_flags_t vm_flags)
6091
{
6092
	long chg, add = -1;
6093
	struct hstate *h = hstate_inode(inode);
6094
	struct hugepage_subpool *spool = subpool_inode(inode);
6095
	struct resv_map *resv_map;
6096
	struct hugetlb_cgroup *h_cg = NULL;
6097
	long gbl_reserve, regions_needed = 0;
6098

6099 6100 6101
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
6102
		return false;
6103 6104
	}

6105 6106 6107
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
6108
	 * without using reserves
6109
	 */
6110
	if (vm_flags & VM_NORESERVE)
6111
		return true;
6112

6113 6114 6115 6116 6117 6118
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
6119
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6120 6121 6122 6123 6124
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
6125
		resv_map = inode_resv_map(inode);
6126

6127
		chg = region_chg(resv_map, from, to, &regions_needed);
6128 6129

	} else {
6130
		/* Private mapping. */
6131
		resv_map = resv_map_alloc();
6132
		if (!resv_map)
6133
			return false;
6134

6135
		chg = to - from;
6136

6137 6138 6139 6140
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

6141
	if (chg < 0)
6142
		goto out_err;
6143

6144 6145
	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
				chg * pages_per_huge_page(h), &h_cg) < 0)
6146 6147 6148 6149 6150 6151 6152 6153 6154
		goto out_err;

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

6155 6156 6157 6158 6159 6160
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6161
	if (gbl_reserve < 0)
6162
		goto out_uncharge_cgroup;
6163 6164

	/*
6165
	 * Check enough hugepages are available for the reservation.
6166
	 * Hand the pages back to the subpool if there are not
6167
	 */
6168
	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6169
		goto out_put_pages;
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
6182
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6183
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6184 6185 6186

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
6187
			goto out_put_pages;
6188
		} else if (unlikely(chg > add)) {
6189 6190 6191 6192 6193 6194 6195 6196 6197
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

6198 6199 6200 6201
			/*
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
			 * reference to h_cg->css. See comment below for detail.
			 */
6202 6203 6204 6205
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

6206 6207 6208
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
6209 6210 6211 6212 6213 6214 6215 6216
		} else if (h_cg) {
			/*
			 * The file_regions will hold their own reference to
			 * h_cg->css. So we should release the reference held
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
			 * done.
			 */
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6217 6218
		}
	}
6219 6220
	return true;

6221 6222 6223 6224 6225 6226
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
6227
out_err:
6228
	if (!vma || vma->vm_flags & VM_MAYSHARE)
6229 6230 6231 6232 6233
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
6234 6235
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
6236
	return false;
6237 6238
}

6239 6240
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
6241
{
6242
	struct hstate *h = hstate_inode(inode);
6243
	struct resv_map *resv_map = inode_resv_map(inode);
6244
	long chg = 0;
6245
	struct hugepage_subpool *spool = subpool_inode(inode);
6246
	long gbl_reserve;
K
Ken Chen 已提交
6247

6248 6249 6250 6251
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
6263
	spin_lock(&inode->i_lock);
6264
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
6265 6266
	spin_unlock(&inode->i_lock);

6267 6268 6269
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
6270 6271 6272
	 *
	 * Note that !resv_map implies freed == 0. So (chg - freed)
	 * won't go negative.
6273 6274 6275
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
6276 6277

	return 0;
6278
}
6279

6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
6291 6292
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6293 6294 6295 6296 6297 6298 6299

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
6300
	    !range_in_vma(svma, sbase, s_end))
6301 6302 6303 6304 6305
		return 0;

	return saddr;
}

6306
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6307 6308 6309 6310 6311 6312 6313
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
6314
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6315 6316
		return true;
	return false;
6317 6318
}

6319 6320 6321 6322 6323 6324 6325 6326 6327
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
#ifdef CONFIG_USERFAULTFD
	if (uffd_disable_huge_pmd_share(vma))
		return false;
#endif
	return vma_shareable(vma, addr);
}

6328 6329 6330 6331 6332 6333 6334 6335
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
6336 6337
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6338

6339
	/*
I
Ingo Molnar 已提交
6340 6341
	 * vma needs to span at least one aligned PUD size, and the range
	 * must be at least partially within in.
6342 6343 6344
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
6345 6346
		return;

6347
	/* Extend the range to be PUD aligned for a worst case scenario */
6348 6349
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
6350

6351 6352
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
6353 6354
}

6355 6356 6357 6358
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
6359 6360
 * code much cleaner.
 *
6361 6362 6363 6364
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
6365
 */
6366 6367
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6368 6369 6370 6371 6372 6373 6374 6375
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
6376
	spinlock_t *ptl;
6377

6378
	i_mmap_assert_locked(mapping);
6379 6380 6381 6382 6383 6384
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
6385 6386
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

6397
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6398
	if (pud_none(*pud)) {
6399 6400
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6401
		mm_inc_nr_pmds(mm);
6402
	} else {
6403
		put_page(virt_to_page(spte));
6404
	}
6405
	spin_unlock(ptl);
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
6418
 * Called with page table lock held and i_mmap_rwsem held in write mode.
6419 6420 6421 6422
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
6423 6424
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
6425 6426
{
	pgd_t *pgd = pgd_offset(mm, *addr);
6427 6428
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
6429

6430
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6431 6432 6433 6434 6435 6436
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
6437
	mm_dec_nr_pmds(mm);
6438 6439 6440
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
6441

6442
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6443 6444
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6445 6446 6447
{
	return NULL;
}
6448

6449 6450
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
6451 6452 6453
{
	return 0;
}
6454 6455 6456 6457 6458

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
6459 6460 6461 6462 6463

bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
	return false;
}
6464 6465
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

6466
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6467
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6468 6469 6470
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
6471
	p4d_t *p4d;
6472 6473 6474 6475
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
6476 6477 6478
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
6479
	pud = pud_alloc(mm, p4d, addr);
6480 6481 6482 6483 6484
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
6485
			if (want_pmd_share(vma, addr) && pud_none(*pud))
6486
				pte = huge_pmd_share(mm, vma, addr, pud);
6487 6488 6489 6490
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
6491
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6492 6493 6494 6495

	return pte;
}

6496 6497 6498 6499
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
6500 6501
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6502 6503 6504
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
6505 6506
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
6507 6508
{
	pgd_t *pgd;
6509
	p4d_t *p4d;
6510 6511
	pud_t *pud;
	pmd_t *pmd;
6512 6513

	pgd = pgd_offset(mm, addr);
6514 6515 6516 6517 6518
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
6519

6520
	pud = pud_offset(p4d, addr);
6521 6522
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
6523
		return (pte_t *)pud;
6524
	if (!pud_present(*pud))
6525
		return NULL;
6526
	/* must have a valid entry and size to go further */
6527

6528 6529 6530
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

6546 6547 6548 6549 6550 6551 6552 6553
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

6554
struct page * __weak
6555
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6556
		pmd_t *pmd, int flags)
6557
{
6558 6559
	struct page *page = NULL;
	spinlock_t *ptl;
6560
	pte_t pte;
J
John Hubbard 已提交
6561 6562 6563 6564 6565 6566

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

6567 6568 6569 6570 6571 6572 6573 6574 6575
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
6576 6577
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
6578
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
6591
	} else {
6592
		if (is_hugetlb_entry_migration(pte)) {
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
6604 6605 6606
	return page;
}

6607
struct page * __weak
6608
follow_huge_pud(struct mm_struct *mm, unsigned long address,
6609
		pud_t *pud, int flags)
6610
{
J
John Hubbard 已提交
6611
	if (flags & (FOLL_GET | FOLL_PIN))
6612
		return NULL;
6613

6614
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6615 6616
}

6617 6618 6619
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
6620
	if (flags & (FOLL_GET | FOLL_PIN))
6621 6622 6623 6624 6625
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

6626 6627
bool isolate_huge_page(struct page *page, struct list_head *list)
{
6628 6629
	bool ret = true;

6630
	spin_lock_irq(&hugetlb_lock);
6631 6632
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
6633
	    !get_page_unless_zero(page)) {
6634 6635 6636
		ret = false;
		goto unlock;
	}
6637
	ClearHPageMigratable(page);
6638
	list_move_tail(&page->lru, list);
6639
unlock:
6640
	spin_unlock_irq(&hugetlb_lock);
6641
	return ret;
6642 6643
}

6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
{
	int ret = 0;

	*hugetlb = false;
	spin_lock_irq(&hugetlb_lock);
	if (PageHeadHuge(page)) {
		*hugetlb = true;
		if (HPageFreed(page) || HPageMigratable(page))
			ret = get_page_unless_zero(page);
6654 6655
		else
			ret = -EBUSY;
6656 6657 6658 6659 6660
	}
	spin_unlock_irq(&hugetlb_lock);
	return ret;
}

6661 6662
void putback_active_hugepage(struct page *page)
{
6663
	spin_lock_irq(&hugetlb_lock);
6664
	SetHPageMigratable(page);
6665
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6666
	spin_unlock_irq(&hugetlb_lock);
6667 6668
	put_page(page);
}
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
6687
	if (HPageTemporary(newpage)) {
6688 6689 6690
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

6691 6692
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
6693

6694 6695 6696 6697 6698 6699
		/*
		 * There is no need to transfer the per-node surplus state
		 * when we do not cross the node.
		 */
		if (new_nid == old_nid)
			return;
6700
		spin_lock_irq(&hugetlb_lock);
6701 6702 6703 6704
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
6705
		spin_unlock_irq(&hugetlb_lock);
6706 6707
	}
}
6708

6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
/*
 * This function will unconditionally remove all the shared pmd pgtable entries
 * within the specific vma for a hugetlbfs memory range.
 */
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_notifier_range range;
	unsigned long address, start, end;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	start = ALIGN(vma->vm_start, PUD_SIZE);
	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);

	if (start >= end)
		return;

	/*
	 * No need to call adjust_range_if_pmd_sharing_possible(), because
	 * we have already done the PUD_SIZE alignment.
	 */
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
				start, end);
	mmu_notifier_invalidate_range_start(&range);
	i_mmap_lock_write(vma->vm_file->f_mapping);
	for (address = start; address < end; address += PUD_SIZE) {
		unsigned long tmp = address;

		ptep = huge_pte_offset(mm, address, sz);
		if (!ptep)
			continue;
		ptl = huge_pte_lock(h, mm, ptep);
		/* We don't want 'address' to be changed */
		huge_pmd_unshare(mm, vma, &tmp, ptep);
		spin_unlock(ptl);
	}
	flush_hugetlb_tlb_range(vma, start, end);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	/*
	 * No need to call mmu_notifier_invalidate_range(), see
	 * Documentation/vm/mmu_notifier.rst.
	 */
	mmu_notifier_invalidate_range_end(&range);
}

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
6784
		hugetlb_cma_size = 0;
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
6799
		char name[CMA_MAX_NAME];
6800 6801 6802 6803

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

6804
		snprintf(name, sizeof(name), "hugetlb%d", nid);
6805 6806 6807 6808 6809 6810 6811
		/*
		 * Note that 'order per bit' is based on smallest size that
		 * may be returned to CMA allocator in the case of
		 * huge page demotion.
		 */
		res = cma_declare_contiguous_nid(0, size, 0,
						PAGE_SIZE << HUGETLB_PAGE_ORDER,
6812
						 0, false, name,
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
6827 6828 6829 6830 6831 6832 6833

	if (!reserved)
		/*
		 * hugetlb_cma_size is used to determine if allocations from
		 * cma are possible.  Set to zero if no cma regions are set up.
		 */
		hugetlb_cma_size = 0;
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */