hugetlb.c 155.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static inline bool PageHugeFreed(struct page *head)
{
	return page_private(head + 4) == -1UL;
}

static inline void SetPageHugeFreed(struct page *head)
{
	set_page_private(head + 4, -1UL);
}

static inline void ClearPageHugeFreed(struct page *head)
{
	set_page_private(head + 4, 0);
}

97 98 99
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

100
static inline bool subpool_is_free(struct hugepage_subpool *spool)
101
{
102 103 104 105 106 107 108 109 110
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
111

112 113
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
114 115 116
	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
117
	 * remain, give up any reservations based on minimum size and
118
	 * free the subpool */
119
	if (subpool_is_free(spool)) {
120 121 122
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
123
		kfree(spool);
124
	}
125 126
}

127 128
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
129 130 131
{
	struct hugepage_subpool *spool;

132
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 134 135 136 137
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
138 139 140 141 142 143 144 145 146
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
147 148 149 150 151 152 153 154 155 156 157 158

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

159 160 161
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
162
 * request.  Otherwise, return the number of pages by which the
163 164
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
165
 * a subpool minimum size must be maintained.
166 167
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
168 169
				      long delta)
{
170
	long ret = delta;
171 172

	if (!spool)
173
		return ret;
174 175

	spin_lock(&spool->lock);
176 177 178 179 180 181 182 183

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
184 185
	}

186 187
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
203 204 205
	return ret;
}

206 207 208 209 210 211 212
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
213 214
				       long delta)
{
215 216
	long ret = delta;

217
	if (!spool)
218
		return delta;
219 220

	spin_lock(&spool->lock);
221 222 223 224

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

225 226
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
241
	unlock_or_release_subpool(spool);
242 243

	return ret;
244 245 246 247 248 249 250 251 252
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
253
	return subpool_inode(file_inode(vma->vm_file));
254 255
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

336
		rg = prg;
337 338 339 340 341 342 343 344 345 346 347 348
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);
	}
}

349 350 351 352 353 354 355
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
356 357
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
358
				     struct hugetlb_cgroup *h_cg,
359
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
360
{
361
	long add = 0;
M
Mina Almasry 已提交
362
	struct list_head *head = &resv->regions;
363
	long last_accounted_offset = f;
M
Mina Almasry 已提交
364 365
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

366 367
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
383

384 385 386
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
387 388 389
		if (rg->from > t)
			break;

390 391 392 393 394
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
395
			if (!regions_needed) {
396 397
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
398 399
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
400
				list_add(&nrg->link, rg->link.prev);
401
				coalesce_file_region(resv, nrg);
402
			} else
403 404 405 406 407 408 409 410 411 412 413
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
414
		if (!regions_needed) {
415 416
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
417
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
418
			list_add(&nrg->link, rg->link.prev);
419
			coalesce_file_region(resv, nrg);
420
		} else
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
459
		 */
460 461 462 463 464 465 466 467
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
468 469
		}

470 471
		spin_lock(&resv->lock);

472 473
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
474 475
	}

476
	return 0;
M
Mina Almasry 已提交
477

478 479 480 481 482 483
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
484 485
}

486 487
/*
 * Add the huge page range represented by [f, t) to the reserve
488 489 490 491 492
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
493
 *
494 495 496 497
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
498
 * this operation and we were not able to allocate, it returns -ENOMEM.
499 500 501
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
502
 */
503
static long region_add(struct resv_map *resv, long f, long t,
504 505
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
506
{
507
	long add = 0, actual_regions_needed = 0;
508

509
	spin_lock(&resv->lock);
510 511 512
retry:

	/* Count how many regions are actually needed to execute this add. */
513 514
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
515

516
	/*
517 518 519 520 521 522 523
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
524
	 */
525 526 527 528 529 530 531 532
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
533

534 535 536 537
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
538

539
		goto retry;
540 541
	}

542
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
543 544

	resv->adds_in_progress -= in_regions_needed;
545

546
	spin_unlock(&resv->lock);
547 548
	VM_BUG_ON(add < 0);
	return add;
549 550
}

551 552 553 554 555 556 557
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
558 559 560 561 562 563 564
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
565 566 567 568 569
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
570
 */
571 572
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
573 574 575
{
	long chg = 0;

576
	spin_lock(&resv->lock);
577

578
	/* Count how many hugepages in this range are NOT represented. */
579
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
580
				       out_regions_needed);
581

582 583
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
584

585 586
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
587

588
	resv->adds_in_progress += *out_regions_needed;
589 590

	spin_unlock(&resv->lock);
591 592 593
	return chg;
}

594 595 596 597 598
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
599 600 601
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
602 603 604 605 606
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
607 608
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
609 610 611
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
612
	resv->adds_in_progress -= regions_needed;
613 614 615
	spin_unlock(&resv->lock);
}

616
/*
617 618 619 620 621 622 623 624 625 626 627 628
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
629
 */
630
static long region_del(struct resv_map *resv, long f, long t)
631
{
632
	struct list_head *head = &resv->regions;
633
	struct file_region *rg, *trg;
634 635
	struct file_region *nrg = NULL;
	long del = 0;
636

637
retry:
638
	spin_lock(&resv->lock);
639
	list_for_each_entry_safe(rg, trg, head, link) {
640 641 642 643 644 645 646 647
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
648
			continue;
649

650
		if (rg->from >= t)
651 652
			break;

653 654 655 656 657 658 659 660 661 662 663 664 665
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
666

667 668 669 670 671 672 673 674 675
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
676 677
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, t - f);
678 679 680 681

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
682 683 684

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

685 686 687 688 689 690 691
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
692
			break;
693 694 695 696
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
697 698
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
699 700 701 702 703 704
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
705 706 707
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);

708 709 710
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
711 712
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
713 714 715

			del += rg->to - f;
			rg->to = f;
716
		}
717
	}
718 719

	spin_unlock(&resv->lock);
720 721
	kfree(nrg);
	return del;
722 723
}

724 725 726 727 728 729 730 731 732
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
733
void hugetlb_fix_reserve_counts(struct inode *inode)
734 735 736 737 738
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
739
	if (rsv_adjust) {
740 741 742 743 744 745
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

746 747 748 749
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
750
static long region_count(struct resv_map *resv, long f, long t)
751
{
752
	struct list_head *head = &resv->regions;
753 754 755
	struct file_region *rg;
	long chg = 0;

756
	spin_lock(&resv->lock);
757 758
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
759 760
		long seg_from;
		long seg_to;
761 762 763 764 765 766 767 768 769 770 771

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
772
	spin_unlock(&resv->lock);
773 774 775 776

	return chg;
}

777 778 779 780
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
781 782
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
783
{
784 785
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
786 787
}

788 789 790 791 792
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
793
EXPORT_SYMBOL_GPL(linear_hugepage_index);
794

795 796 797 798 799 800
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
801 802 803
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
804
}
805
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
806

807 808 809
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
810 811
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
812
 */
813
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
814 815 816 817
{
	return vma_kernel_pagesize(vma);
}

818 819 820 821 822 823 824
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
825
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
826

827 828 829 830 831 832 833 834 835
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
836 837 838 839 840 841 842 843 844
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
845
 */
846 847 848 849 850 851 852 853 854 855 856
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

876
struct resv_map *resv_map_alloc(void)
877 878
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
879 880 881 882 883
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
884
		return NULL;
885
	}
886 887

	kref_init(&resv_map->refs);
888
	spin_lock_init(&resv_map->lock);
889 890
	INIT_LIST_HEAD(&resv_map->regions);

891
	resv_map->adds_in_progress = 0;
892 893 894 895 896 897 898
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
899 900 901 902 903

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

904 905 906
	return resv_map;
}

907
void resv_map_release(struct kref *ref)
908 909
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
910 911
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
912 913

	/* Clear out any active regions before we release the map. */
914
	region_del(resv_map, 0, LONG_MAX);
915 916 917 918 919 920 921 922 923

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

924 925 926
	kfree(resv_map);
}

927 928
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
929 930 931 932 933 934 935 936 937
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
938 939
}

940
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
941
{
942
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943 944 945 946 947 948 949
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
950 951
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
952
	}
953 954
}

955
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
956
{
957 958
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
959

960 961
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
962 963 964 965
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
966 967
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
968 969

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
970 971 972 973
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
974
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975 976

	return (get_vma_private_data(vma) & flag) != 0;
977 978
}

979
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
980 981
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
982
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
983
	if (!(vma->vm_flags & VM_MAYSHARE))
984 985 986 987
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
988
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
989
{
990 991 992 993 994 995 996 997 998 999 1000
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1001
			return true;
1002
		else
1003
			return false;
1004
	}
1005 1006

	/* Shared mappings always use reserves */
1007 1008 1009 1010 1011
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1012
		 * fallocate.  In this case, there really are no reserves to
1013 1014 1015 1016 1017 1018 1019
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1020 1021 1022 1023 1024

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1046

1047
	return false;
1048 1049
}

1050
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1051 1052
{
	int nid = page_to_nid(page);
1053
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1054 1055
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1056
	SetPageHugeFreed(page);
L
Linus Torvalds 已提交
1057 1058
}

1059
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1060 1061
{
	struct page *page;
1062 1063 1064 1065 1066
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1067

1068 1069 1070 1071 1072
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1073
		ClearPageHugeFreed(page);
1074 1075 1076
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1077 1078
	}

1079
	return NULL;
1080 1081
}

1082 1083
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1084
{
1085 1086 1087 1088
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1089
	int node = NUMA_NO_NODE;
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1107 1108 1109 1110 1111

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1112 1113 1114
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1115 1116 1117
	return NULL;
}

1118 1119
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1120 1121
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1122
{
1123
	struct page *page;
1124
	struct mempolicy *mpol;
1125
	gfp_t gfp_mask;
1126
	nodemask_t *nodemask;
1127
	int nid;
L
Linus Torvalds 已提交
1128

1129 1130 1131 1132 1133
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1134
	if (!vma_has_reserves(vma, chg) &&
1135
			h->free_huge_pages - h->resv_huge_pages == 0)
1136
		goto err;
1137

1138
	/* If reserves cannot be used, ensure enough pages are in the pool */
1139
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1140
		goto err;
1141

1142 1143
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1144 1145
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1146
		SetHPageRestoreReserve(page);
1147
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1148
	}
1149

1150
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1151
	return page;
1152 1153 1154

err:
	return NULL;
L
Linus Torvalds 已提交
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1166
	nid = next_node_in(nid, *nodes_allowed);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1228
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1229
static void destroy_compound_gigantic_page(struct page *page,
1230
					unsigned int order)
1231 1232 1233 1234 1235
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1236
	atomic_set(compound_mapcount_ptr(page), 0);
1237
	atomic_set(compound_pincount_ptr(page), 0);
1238

1239
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1240
		clear_compound_head(p);
1241 1242 1243 1244
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
1245
	page[1].compound_nr = 0;
1246 1247 1248
	__ClearPageHead(page);
}

1249
static void free_gigantic_page(struct page *page, unsigned int order)
1250
{
1251 1252 1253 1254
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1255 1256
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1257
		return;
1258
#endif
1259

1260 1261 1262
	free_contig_range(page_to_pfn(page), 1 << order);
}

1263
#ifdef CONFIG_CONTIG_ALLOC
1264 1265
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1266
{
1267
	unsigned long nr_pages = 1UL << huge_page_order(h);
1268 1269
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1270

1271 1272
#ifdef CONFIG_CMA
	{
1273 1274 1275
		struct page *page;
		int node;

1276 1277 1278
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1279 1280 1281
			if (page)
				return page;
		}
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1294
	}
1295
#endif
1296

1297
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1298 1299 1300
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1301
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1302 1303 1304 1305 1306 1307 1308
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1309

1310
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1311
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1312 1313 1314 1315
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1316
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1317
static inline void destroy_compound_gigantic_page(struct page *page,
1318
						unsigned int order) { }
1319 1320
#endif

1321
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1322 1323
{
	int i;
1324
	struct page *subpage = page;
1325

1326
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1327
		return;
1328

1329 1330
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
1331 1332 1333
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1334
				1 << PG_referenced | 1 << PG_dirty |
1335 1336
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1337
	}
1338
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1339
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1340
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1341
	set_page_refcounted(page);
1342
	if (hstate_is_gigantic(h)) {
1343 1344 1345 1346 1347
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1348 1349
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1350
		spin_lock(&hugetlb_lock);
1351 1352 1353
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1389
static void __free_huge_page(struct page *page)
1390
{
1391 1392 1393 1394
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1395
	struct hstate *h = page_hstate(page);
1396
	int nid = page_to_nid(page);
1397
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1398
	bool restore_reserve;
1399

1400 1401
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1402

1403
	hugetlb_set_page_subpool(page, NULL);
1404
	page->mapping = NULL;
1405 1406
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1407

1408
	/*
1409
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1410 1411 1412
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1413
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1414
	 * remove the reserved page from the subpool.
1415
	 */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1426

1427
	spin_lock(&hugetlb_lock);
1428
	ClearHPageMigratable(page);
1429 1430
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1431 1432
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1433 1434 1435
	if (restore_reserve)
		h->resv_huge_pages++;

1436 1437 1438 1439 1440
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1441 1442
		/* remove the page from active list */
		list_del(&page->lru);
1443 1444 1445
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1446
	} else {
1447
		arch_clear_hugepage_flags(page);
1448
		enqueue_huge_page(h, page);
1449
	}
1450 1451 1452
	spin_unlock(&hugetlb_lock);
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1501
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1502
{
1503
	INIT_LIST_HEAD(&page->lru);
1504
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505
	set_hugetlb_cgroup(page, NULL);
1506
	set_hugetlb_cgroup_rsvd(page, NULL);
1507
	spin_lock(&hugetlb_lock);
1508 1509
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1510
	ClearPageHugeFreed(page);
1511 1512 1513
	spin_unlock(&hugetlb_lock);
}

1514
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1515 1516 1517 1518 1519 1520 1521
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1522
	__ClearPageReserved(page);
1523
	__SetPageHead(page);
1524
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1525 1526 1527 1528
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1529
		 * too.  Otherwise drivers using get_user_pages() to access tail
1530 1531 1532 1533 1534 1535 1536 1537
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1538
		set_page_count(p, 0);
1539
		set_compound_head(p, page);
1540
	}
1541
	atomic_set(compound_mapcount_ptr(page), -1);
1542
	atomic_set(compound_pincount_ptr(page), 0);
1543 1544
}

A
Andrew Morton 已提交
1545 1546 1547 1548 1549
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1550 1551 1552 1553 1554 1555
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1556
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557
}
1558 1559
EXPORT_SYMBOL_GPL(PageHuge);

1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1569
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1570 1571
}

1572 1573 1574
/*
 * Find and lock address space (mapping) in write mode.
 *
1575 1576 1577
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1578 1579 1580
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1581
	struct address_space *mapping = page_mapping(hpage);
1582 1583 1584 1585 1586 1587 1588

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1589
	return NULL;
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1609
static struct page *alloc_buddy_huge_page(struct hstate *h,
1610 1611
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1612
{
1613
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1614
	struct page *page;
1615
	bool alloc_try_hard = true;
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1629 1630 1631 1632 1633 1634 1635
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1653 1654 1655
	return page;
}

1656 1657 1658 1659 1660
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1661 1662
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1663 1664 1665 1666 1667 1668 1669
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1670
				nid, nmask, node_alloc_noretry);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1681 1682 1683 1684
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1685 1686
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1687 1688 1689
{
	struct page *page;
	int nr_nodes, node;
1690
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1691 1692

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1693 1694
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1695
		if (page)
1696 1697 1698
			break;
	}

1699 1700
	if (!page)
		return 0;
1701

1702 1703 1704
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1705 1706
}

1707 1708 1709 1710 1711 1712
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1713 1714
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1715
{
1716
	int nr_nodes, node;
1717 1718
	int ret = 0;

1719
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1720 1721 1722 1723
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1724 1725
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1726
			struct page *page =
1727
				list_entry(h->hugepage_freelists[node].next,
1728 1729 1730
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1731
			h->free_huge_pages_node[node]--;
1732 1733
			if (acct_surplus) {
				h->surplus_huge_pages--;
1734
				h->surplus_huge_pages_node[node]--;
1735
			}
1736 1737
			update_and_free_page(h, page);
			ret = 1;
1738
			break;
1739
		}
1740
	}
1741 1742 1743 1744

	return ret;
}

1745 1746
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1747 1748 1749 1750 1751 1752 1753
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1754
 */
1755
int dissolve_free_huge_page(struct page *page)
1756
{
1757
	int rc = -EBUSY;
1758

1759
retry:
1760 1761 1762 1763
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1764
	spin_lock(&hugetlb_lock);
1765 1766 1767 1768 1769 1770
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1771 1772 1773
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1774
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1775
			goto out;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
		if (unlikely(!PageHugeFreed(head))) {
			spin_unlock(&hugetlb_lock);
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

1796 1797 1798 1799 1800 1801 1802 1803
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1804
		list_del(&head->lru);
1805 1806
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1807
		h->max_huge_pages--;
1808
		update_and_free_page(h, head);
1809
		rc = 0;
1810
	}
1811
out:
1812
	spin_unlock(&hugetlb_lock);
1813
	return rc;
1814 1815 1816 1817 1818
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1819 1820
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1821 1822
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1823
 */
1824
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1825 1826
{
	unsigned long pfn;
1827
	struct page *page;
1828
	int rc = 0;
1829

1830
	if (!hugepages_supported())
1831
		return rc;
1832

1833 1834
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1835 1836 1837
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1838
	}
1839 1840

	return rc;
1841 1842
}

1843 1844 1845
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1846
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1847
		int nid, nodemask_t *nmask)
1848
{
1849
	struct page *page = NULL;
1850

1851
	if (hstate_is_gigantic(h))
1852 1853
		return NULL;

1854
	spin_lock(&hugetlb_lock);
1855 1856
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1857 1858
	spin_unlock(&hugetlb_lock);

1859
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1860
	if (!page)
1861
		return NULL;
1862 1863

	spin_lock(&hugetlb_lock);
1864 1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1873
		spin_unlock(&hugetlb_lock);
1874
		put_page(page);
1875
		return NULL;
1876 1877
	} else {
		h->surplus_huge_pages++;
1878
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1879
	}
1880 1881

out_unlock:
1882
	spin_unlock(&hugetlb_lock);
1883 1884 1885 1886

	return page;
}

1887
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1888
				     int nid, nodemask_t *nmask)
1889 1890 1891 1892 1893 1894
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1895
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1908 1909 1910
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1911
static
1912
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1913 1914
		struct vm_area_struct *vma, unsigned long addr)
{
1915 1916 1917 1918 1919 1920 1921
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1922
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1923 1924 1925
	mpol_cond_put(mpol);

	return page;
1926 1927
}

1928
/* page migration callback function */
1929
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1930
		nodemask_t *nmask, gfp_t gfp_mask)
1931 1932 1933
{
	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1934 1935 1936 1937 1938 1939
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1940 1941 1942 1943
		}
	}
	spin_unlock(&hugetlb_lock);

1944
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1945 1946
}

1947
/* mempolicy aware migration callback */
1948 1949
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1950 1951 1952 1953 1954 1955 1956 1957 1958
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1959
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1960 1961 1962 1963 1964
	mpol_cond_put(mpol);

	return page;
}

1965
/*
L
Lucas De Marchi 已提交
1966
 * Increase the hugetlb pool such that it can accommodate a reservation
1967 1968
 * of size 'delta'.
 */
1969
static int gather_surplus_pages(struct hstate *h, long delta)
1970
	__must_hold(&hugetlb_lock)
1971 1972 1973
{
	struct list_head surplus_list;
	struct page *page, *tmp;
1974 1975 1976
	int ret;
	long i;
	long needed, allocated;
1977
	bool alloc_ok = true;
1978

1979
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1980
	if (needed <= 0) {
1981
		h->resv_huge_pages += delta;
1982
		return 0;
1983
	}
1984 1985 1986 1987 1988 1989 1990 1991

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1992
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1993
				NUMA_NO_NODE, NULL);
1994 1995 1996 1997
		if (!page) {
			alloc_ok = false;
			break;
		}
1998
		list_add(&page->lru, &surplus_list);
1999
		cond_resched();
2000
	}
2001
	allocated += i;
2002 2003 2004 2005 2006 2007

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
2008 2009
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2020 2021
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2022
	 * needed to accommodate the reservation.  Add the appropriate number
2023
	 * of pages to the hugetlb pool and free the extras back to the buddy
2024 2025 2026
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2027 2028
	 */
	needed += allocated;
2029
	h->resv_huge_pages += delta;
2030
	ret = 0;
2031

2032
	/* Free the needed pages to the hugetlb pool */
2033
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2034 2035
		int zeroed;

2036 2037
		if ((--needed) < 0)
			break;
2038 2039 2040 2041
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
2042 2043
		zeroed = put_page_testzero(page);
		VM_BUG_ON_PAGE(!zeroed, page);
2044
		enqueue_huge_page(h, page);
2045
	}
2046
free:
2047
	spin_unlock(&hugetlb_lock);
2048 2049

	/* Free unnecessary surplus pages to the buddy allocator */
2050 2051
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2052
	spin_lock(&hugetlb_lock);
2053 2054 2055 2056 2057

	return ret;
}

/*
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2070
 */
2071 2072
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2073 2074 2075
{
	unsigned long nr_pages;

2076
	/* Cannot return gigantic pages currently */
2077
	if (hstate_is_gigantic(h))
2078
		goto out;
2079

2080 2081 2082 2083
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2084
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2085

2086 2087
	/*
	 * We want to release as many surplus pages as possible, spread
2088 2089 2090
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2091
	 * free_pool_huge_page() will balance the freed pages across the
2092
	 * on-line nodes with memory and will handle the hstate accounting.
2093 2094 2095 2096
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2097 2098
	 */
	while (nr_pages--) {
2099 2100
		h->resv_huge_pages--;
		unused_resv_pages--;
2101
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2102
			goto out;
2103
		cond_resched_lock(&hugetlb_lock);
2104
	}
2105 2106 2107 2108

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2109 2110
}

2111

2112
/*
2113
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2114
 * are used by the huge page allocation routines to manage reservations.
2115 2116 2117 2118 2119 2120
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2121 2122 2123
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2124 2125 2126 2127 2128 2129
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2130 2131 2132 2133 2134
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2135
 */
2136 2137 2138
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2139
	VMA_END_RESV,
2140
	VMA_ADD_RESV,
2141
};
2142 2143
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2144
				enum vma_resv_mode mode)
2145
{
2146 2147
	struct resv_map *resv;
	pgoff_t idx;
2148
	long ret;
2149
	long dummy_out_regions_needed;
2150

2151 2152
	resv = vma_resv_map(vma);
	if (!resv)
2153
		return 1;
2154

2155
	idx = vma_hugecache_offset(h, vma, addr);
2156 2157
	switch (mode) {
	case VMA_NEEDS_RESV:
2158 2159 2160 2161 2162 2163
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2164 2165
		break;
	case VMA_COMMIT_RESV:
2166
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2167 2168
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2169
		break;
2170
	case VMA_END_RESV:
2171
		region_abort(resv, idx, idx + 1, 1);
2172 2173
		ret = 0;
		break;
2174
	case VMA_ADD_RESV:
2175
		if (vma->vm_flags & VM_MAYSHARE) {
2176
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2177 2178 2179 2180
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2181 2182 2183
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2184 2185 2186
	default:
		BUG();
	}
2187

2188
	if (vma->vm_flags & VM_MAYSHARE)
2189
		return ret;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2209
	else
2210
		return ret < 0 ? ret : 0;
2211
}
2212 2213

static long vma_needs_reservation(struct hstate *h,
2214
			struct vm_area_struct *vma, unsigned long addr)
2215
{
2216
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2217
}
2218

2219 2220 2221
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2222 2223 2224
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2225
static void vma_end_reservation(struct hstate *h,
2226 2227
			struct vm_area_struct *vma, unsigned long addr)
{
2228
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
2241 2242 2243 2244 2245 2246
 * alloc_huge_page would have consumed the reservation and set
 * HPageRestoreReserve in the newly allocated page.  When the page is freed
 * via free_huge_page, the global reservation count will be incremented if
 * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
 * reserve map.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.
2247 2248 2249 2250 2251
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
2252
	if (unlikely(HPageRestoreReserve(page))) {
2253 2254 2255 2256 2257
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
2258
			 * manipulation.  Clear HPageRestoreReserve so that
2259 2260 2261 2262 2263 2264 2265 2266
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2267
			ClearHPageRestoreReserve(page);
2268 2269 2270 2271 2272 2273 2274
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
2275
				ClearHPageRestoreReserve(page);
2276 2277 2278 2279 2280
		} else
			vma_end_reservation(h, vma, address);
	}
}

2281
struct page *alloc_huge_page(struct vm_area_struct *vma,
2282
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2283
{
2284
	struct hugepage_subpool *spool = subpool_vma(vma);
2285
	struct hstate *h = hstate_vma(vma);
2286
	struct page *page;
2287 2288
	long map_chg, map_commit;
	long gbl_chg;
2289 2290
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2291
	bool deferred_reserve;
2292

2293
	idx = hstate_index(h);
2294
	/*
2295 2296 2297
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2298
	 */
2299 2300
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2301
		return ERR_PTR(-ENOMEM);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2313
			vma_end_reservation(h, vma, addr);
2314
			return ERR_PTR(-ENOSPC);
2315
		}
L
Linus Torvalds 已提交
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2339
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2340
	if (ret)
2341
		goto out_uncharge_cgroup_reservation;
2342

L
Linus Torvalds 已提交
2343
	spin_lock(&hugetlb_lock);
2344 2345 2346 2347 2348 2349
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2350
	if (!page) {
2351
		spin_unlock(&hugetlb_lock);
2352
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2353 2354
		if (!page)
			goto out_uncharge_cgroup;
2355
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2356
			SetHPageRestoreReserve(page);
2357 2358
			h->resv_huge_pages--;
		}
2359
		spin_lock(&hugetlb_lock);
2360
		list_add(&page->lru, &h->hugepage_activelist);
2361
		/* Fall through */
K
Ken Chen 已提交
2362
	}
2363
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2364 2365 2366 2367 2368 2369 2370 2371
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2372
	spin_unlock(&hugetlb_lock);
2373

2374
	hugetlb_set_page_subpool(page, spool);
2375

2376 2377
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2391 2392 2393
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2394
	}
2395
	return page;
2396 2397 2398

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2399 2400 2401 2402
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2403
out_subpool_put:
2404
	if (map_chg || avoid_reserve)
2405
		hugepage_subpool_put_pages(spool, 1);
2406
	vma_end_reservation(h, vma, addr);
2407
	return ERR_PTR(-ENOSPC);
2408 2409
}

2410 2411 2412
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2413 2414
{
	struct huge_bootmem_page *m;
2415
	int nr_nodes, node;
2416

2417
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2418 2419
		void *addr;

2420
		addr = memblock_alloc_try_nid_raw(
2421
				huge_page_size(h), huge_page_size(h),
2422
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2423 2424 2425 2426 2427 2428 2429
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2430
			goto found;
2431 2432 2433 2434 2435
		}
	}
	return 0;

found:
2436
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2437
	/* Put them into a private list first because mem_map is not up yet */
2438
	INIT_LIST_HEAD(&m->list);
2439 2440 2441 2442 2443
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2444 2445
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2446 2447 2448 2449 2450 2451 2452
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2453 2454 2455 2456 2457 2458
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2459
		struct page *page = virt_to_page(m);
2460
		struct hstate *h = m->hstate;
2461

2462
		WARN_ON(page_count(page) != 1);
2463
		prep_compound_huge_page(page, huge_page_order(h));
2464
		WARN_ON(PageReserved(page));
2465
		prep_new_huge_page(h, page, page_to_nid(page));
2466 2467
		put_page(page); /* free it into the hugepage allocator */

2468 2469 2470 2471 2472 2473
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2474
		if (hstate_is_gigantic(h))
2475
			adjust_managed_page_count(page, pages_per_huge_page(h));
2476
		cond_resched();
2477 2478 2479
	}
}

2480
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2481 2482
{
	unsigned long i;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2502

2503
	for (i = 0; i < h->max_huge_pages; ++i) {
2504
		if (hstate_is_gigantic(h)) {
2505
			if (hugetlb_cma_size) {
2506
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2507
				goto free;
2508
			}
2509 2510
			if (!alloc_bootmem_huge_page(h))
				break;
2511
		} else if (!alloc_pool_huge_page(h,
2512 2513
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2514
			break;
2515
		cond_resched();
L
Linus Torvalds 已提交
2516
	}
2517 2518 2519
	if (i < h->max_huge_pages) {
		char buf[32];

2520
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2521 2522 2523 2524
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2525
free:
2526
	kfree(node_alloc_noretry);
2527 2528 2529 2530 2531 2532 2533
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2534 2535 2536
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2537
		/* oversize hugepages were init'ed in early boot */
2538
		if (!hstate_is_gigantic(h))
2539
			hugetlb_hstate_alloc_pages(h);
2540
	}
2541
	VM_BUG_ON(minimum_order == UINT_MAX);
2542 2543 2544 2545 2546 2547 2548
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2549
		char buf[32];
2550 2551

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2552
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2553
			buf, h->free_huge_pages);
2554 2555 2556
	}
}

L
Linus Torvalds 已提交
2557
#ifdef CONFIG_HIGHMEM
2558 2559
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2560
{
2561 2562
	int i;

2563
	if (hstate_is_gigantic(h))
2564 2565
		return;

2566
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2567
		struct page *page, *next;
2568 2569 2570
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2571
				return;
L
Linus Torvalds 已提交
2572 2573 2574
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2575
			update_and_free_page(h, page);
2576 2577
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2578 2579 2580 2581
		}
	}
}
#else
2582 2583
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2584 2585 2586 2587
{
}
#endif

2588 2589 2590 2591 2592
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2593 2594
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2595
{
2596
	int nr_nodes, node;
2597 2598 2599

	VM_BUG_ON(delta != -1 && delta != 1);

2600 2601 2602 2603
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2604
		}
2605 2606 2607 2608 2609
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2610
		}
2611 2612
	}
	return 0;
2613

2614 2615 2616 2617
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2618 2619
}

2620
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2621
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2622
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2623
{
2624
	unsigned long min_count, ret;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2636

2637 2638
	spin_lock(&hugetlb_lock);

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2669
			NODEMASK_FREE(node_alloc_noretry);
2670 2671 2672 2673
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2674

2675 2676 2677 2678
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2679
	 *
2680
	 * We might race with alloc_surplus_huge_page() here and be unable
2681 2682 2683 2684
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2685
	 */
2686
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2687
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2688 2689 2690
			break;
	}

2691
	while (count > persistent_huge_pages(h)) {
2692 2693 2694 2695 2696 2697
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2698 2699 2700 2701

		/* yield cpu to avoid soft lockup */
		cond_resched();

2702 2703
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2704 2705 2706 2707
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2708 2709 2710
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2711 2712 2713 2714 2715 2716 2717 2718
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2719 2720 2721 2722
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2723
	 * alloc_surplus_huge_page() is checking the global counter,
2724 2725 2726
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2727
	 */
2728
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2729
	min_count = max(count, min_count);
2730
	try_to_free_low(h, min_count, nodes_allowed);
2731
	while (min_count < persistent_huge_pages(h)) {
2732
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2733
			break;
2734
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2735
	}
2736
	while (count < persistent_huge_pages(h)) {
2737
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2738 2739 2740
			break;
	}
out:
2741
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2742
	spin_unlock(&hugetlb_lock);
2743

2744 2745
	NODEMASK_FREE(node_alloc_noretry);

2746
	return 0;
L
Linus Torvalds 已提交
2747 2748
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2759 2760 2761
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2762 2763
{
	int i;
2764

2765
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2766 2767 2768
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2769
			return &hstates[i];
2770 2771 2772
		}

	return kobj_to_node_hstate(kobj, nidp);
2773 2774
}

2775
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2776 2777
					struct kobj_attribute *attr, char *buf)
{
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

2788
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2789
}
2790

2791 2792 2793
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2794 2795
{
	int err;
2796
	nodemask_t nodes_allowed, *n_mask;
2797

2798 2799
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2800

2801 2802 2803 2804 2805
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2806 2807 2808 2809 2810
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2811
		/*
2812 2813
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2814
		 */
2815 2816
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2817
	}
2818

2819
	err = set_max_huge_pages(h, count, nid, n_mask);
2820

2821
	return err ? err : len;
2822 2823
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2841 2842 2843 2844 2845 2846 2847 2848 2849
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2850
	return nr_hugepages_store_common(false, kobj, buf, len);
2851 2852 2853
}
HSTATE_ATTR(nr_hugepages);

2854 2855 2856 2857 2858 2859 2860
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2861 2862
					   struct kobj_attribute *attr,
					   char *buf)
2863 2864 2865 2866 2867 2868 2869
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2870
	return nr_hugepages_store_common(true, kobj, buf, len);
2871 2872 2873 2874 2875
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2876 2877 2878
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2879
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2880
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2881
}
2882

2883 2884 2885 2886 2887
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2888
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2889

2890
	if (hstate_is_gigantic(h))
2891 2892
		return -EINVAL;

2893
	err = kstrtoul(buf, 10, &input);
2894
	if (err)
2895
		return err;
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

2918
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2919 2920 2921 2922 2923 2924
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2925
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2926
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2927 2928 2929 2930 2931 2932
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

2943
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2944 2945 2946 2947 2948 2949 2950 2951 2952
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2953 2954 2955
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2956 2957 2958
	NULL,
};

2959
static const struct attribute_group hstate_attr_group = {
2960 2961 2962
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2963 2964
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2965
				    const struct attribute_group *hstate_attr_group)
2966 2967
{
	int retval;
2968
	int hi = hstate_index(h);
2969

2970 2971
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2972 2973
		return -ENOMEM;

2974
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2975
	if (retval) {
2976
		kobject_put(hstate_kobjs[hi]);
2977 2978
		hstate_kobjs[hi] = NULL;
	}
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2993 2994
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2995
		if (err)
2996
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2997 2998 2999
	}
}

3000 3001 3002 3003
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3004 3005 3006
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3007 3008 3009 3010 3011 3012
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3013
static struct node_hstate node_hstates[MAX_NUMNODES];
3014 3015

/*
3016
 * A subset of global hstate attributes for node devices
3017 3018 3019 3020 3021 3022 3023 3024
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3025
static const struct attribute_group per_node_hstate_attr_group = {
3026 3027 3028 3029
	.attrs = per_node_hstate_attrs,
};

/*
3030
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3053
 * Unregister hstate attributes from a single node device.
3054 3055
 * No-op if no hstate attributes attached.
 */
3056
static void hugetlb_unregister_node(struct node *node)
3057 3058
{
	struct hstate *h;
3059
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3060 3061

	if (!nhs->hugepages_kobj)
3062
		return;		/* no hstate attributes */
3063

3064 3065 3066 3067 3068
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3069
		}
3070
	}
3071 3072 3073 3074 3075 3076 3077

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3078
 * Register hstate attributes for a single node device.
3079 3080
 * No-op if attributes already registered.
 */
3081
static void hugetlb_register_node(struct node *node)
3082 3083
{
	struct hstate *h;
3084
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3085 3086 3087 3088 3089 3090
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3091
							&node->dev.kobj);
3092 3093 3094 3095 3096 3097 3098 3099
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3100
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3101
				h->name, node->dev.id);
3102 3103 3104 3105 3106 3107 3108
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3109
 * hugetlb init time:  register hstate attributes for all registered node
3110 3111
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3112
 */
3113
static void __init hugetlb_register_all_nodes(void)
3114 3115 3116
{
	int nid;

3117
	for_each_node_state(nid, N_MEMORY) {
3118
		struct node *node = node_devices[nid];
3119
		if (node->dev.id == nid)
3120 3121 3122 3123
			hugetlb_register_node(node);
	}

	/*
3124
	 * Let the node device driver know we're here so it can
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3144 3145
static int __init hugetlb_init(void)
{
3146 3147
	int i;

3148 3149 3150
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3151 3152 3153
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3154
		return 0;
3155
	}
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3185
		}
3186
	}
3187

3188
	hugetlb_cma_check();
3189
	hugetlb_init_hstates();
3190
	gather_bootmem_prealloc();
3191 3192 3193
	report_hugepages();

	hugetlb_sysfs_init();
3194
	hugetlb_register_all_nodes();
3195
	hugetlb_cgroup_file_init();
3196

3197 3198 3199 3200 3201
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3202
	hugetlb_fault_mutex_table =
3203 3204
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3205
	BUG_ON(!hugetlb_fault_mutex_table);
3206 3207

	for (i = 0; i < num_fault_mutexes; i++)
3208
		mutex_init(&hugetlb_fault_mutex_table[i]);
3209 3210
	return 0;
}
3211
subsys_initcall(hugetlb_init);
3212

3213 3214
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3215
{
3216
	return size == HPAGE_SIZE;
3217 3218
}

3219
void __init hugetlb_add_hstate(unsigned int order)
3220 3221
{
	struct hstate *h;
3222 3223
	unsigned long i;

3224 3225 3226
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3227
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3228
	BUG_ON(order == 0);
3229
	h = &hstates[hugetlb_max_hstate++];
3230
	h->order = order;
3231
	h->mask = ~(huge_page_size(h) - 1);
3232 3233
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3234
	INIT_LIST_HEAD(&h->hugepage_activelist);
3235 3236
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3237 3238
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3239

3240 3241 3242
	parsed_hstate = h;
}

3243 3244 3245 3246 3247 3248 3249 3250
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3251 3252
{
	unsigned long *mhp;
3253
	static unsigned long *last_mhp;
3254

3255
	if (!parsed_valid_hugepagesz) {
3256
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3257
		parsed_valid_hugepagesz = true;
3258
		return 0;
3259
	}
3260

3261
	/*
3262 3263 3264 3265
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3266
	 */
3267
	else if (!hugetlb_max_hstate)
3268 3269 3270 3271
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3272
	if (mhp == last_mhp) {
3273 3274
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3275 3276
	}

3277 3278 3279
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3280 3281 3282 3283 3284
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3285
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3286 3287 3288 3289
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3290 3291
	return 1;
}
3292
__setup("hugepages=", hugepages_setup);
3293

3294 3295 3296 3297 3298 3299 3300
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3301
static int __init hugepagesz_setup(char *s)
3302
{
3303
	unsigned long size;
3304 3305 3306
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3307 3308 3309
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3310
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3311 3312 3313
		return 0;
	}

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3337 3338
	}

3339
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3340
	parsed_valid_hugepagesz = true;
3341 3342
	return 1;
}
3343 3344
__setup("hugepagesz=", hugepagesz_setup);

3345 3346 3347 3348
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3349
static int __init default_hugepagesz_setup(char *s)
3350
{
3351 3352
	unsigned long size;

3353 3354 3355 3356 3357 3358
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3359 3360 3361
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3362
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3363 3364 3365
		return 0;
	}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3385 3386
	return 1;
}
3387
__setup("default_hugepagesz=", default_hugepagesz_setup);
3388

3389
static unsigned int allowed_mems_nr(struct hstate *h)
3390 3391 3392
{
	int node;
	unsigned int nr = 0;
3393 3394 3395 3396 3397
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3398

3399
	for_each_node_mask(node, cpuset_current_mems_allowed) {
3400
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3401 3402
			nr += array[node];
	}
3403 3404 3405 3406 3407

	return nr;
}

#ifdef CONFIG_SYSCTL
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3424 3425
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3426
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3427
{
3428
	struct hstate *h = &default_hstate;
3429
	unsigned long tmp = h->max_huge_pages;
3430
	int ret;
3431

3432
	if (!hugepages_supported())
3433
		return -EOPNOTSUPP;
3434

3435 3436
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3437 3438
	if (ret)
		goto out;
3439

3440 3441 3442
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3443 3444
out:
	return ret;
L
Linus Torvalds 已提交
3445
}
3446

3447
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3448
			  void *buffer, size_t *length, loff_t *ppos)
3449 3450 3451 3452 3453 3454 3455 3456
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3457
			  void *buffer, size_t *length, loff_t *ppos)
3458 3459 3460 3461 3462 3463
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3464
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3465
		void *buffer, size_t *length, loff_t *ppos)
3466
{
3467
	struct hstate *h = &default_hstate;
3468
	unsigned long tmp;
3469
	int ret;
3470

3471
	if (!hugepages_supported())
3472
		return -EOPNOTSUPP;
3473

3474
	tmp = h->nr_overcommit_huge_pages;
3475

3476
	if (write && hstate_is_gigantic(h))
3477 3478
		return -EINVAL;

3479 3480
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3481 3482
	if (ret)
		goto out;
3483 3484 3485 3486 3487 3488

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3489 3490
out:
	return ret;
3491 3492
}

L
Linus Torvalds 已提交
3493 3494
#endif /* CONFIG_SYSCTL */

3495
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3496
{
3497 3498 3499
	struct hstate *h;
	unsigned long total = 0;

3500 3501
	if (!hugepages_supported())
		return;
3502 3503 3504 3505

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

3506
		total += huge_page_size(h) * count;
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
3519
				   huge_page_size(h) / SZ_1K);
3520 3521
	}

3522
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
3523 3524
}

3525
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
3526
{
3527
	struct hstate *h = &default_hstate;
3528

3529 3530
	if (!hugepages_supported())
		return 0;
3531 3532 3533 3534 3535 3536 3537 3538

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3539 3540
}

3541 3542 3543 3544 3545
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3546 3547 3548
	if (!hugepages_supported())
		return;

3549 3550 3551 3552 3553 3554 3555
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
3556
				huge_page_size(h) / SZ_1K);
3557 3558
}

3559 3560 3561 3562 3563 3564
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3565 3566 3567
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3568 3569 3570 3571 3572 3573
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3574 3575
}

3576
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3577 3578 3579
{
	int ret = -ENOMEM;

3580 3581 3582
	if (!delta)
		return 0;

M
Mel Gorman 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3600 3601 3602 3603 3604 3605
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3606 3607
	 */
	if (delta > 0) {
3608
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3609 3610
			goto out;

3611
		if (delta > allowed_mems_nr(h)) {
3612
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3613 3614 3615 3616 3617 3618
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3619
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3620 3621 3622 3623 3624 3625

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3626 3627
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3628
	struct resv_map *resv = vma_resv_map(vma);
3629 3630 3631 3632 3633

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3634
	 * has a reference to the reservation map it cannot disappear until
3635 3636 3637
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3638
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3639
		kref_get(&resv->refs);
3640 3641
}

3642 3643
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3644
	struct hstate *h = hstate_vma(vma);
3645
	struct resv_map *resv = vma_resv_map(vma);
3646
	struct hugepage_subpool *spool = subpool_vma(vma);
3647
	unsigned long reserve, start, end;
3648
	long gbl_reserve;
3649

3650 3651
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3652

3653 3654
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3655

3656
	reserve = (end - start) - region_count(resv, start, end);
3657
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3658
	if (reserve) {
3659 3660 3661 3662 3663 3664
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3665
	}
3666 3667

	kref_put(&resv->refs, resv_map_release);
3668 3669
}

3670 3671 3672 3673 3674 3675 3676
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3677 3678
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
3679
	return huge_page_size(hstate_vma(vma));
3680 3681
}

L
Linus Torvalds 已提交
3682 3683 3684
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
3685
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
3686 3687
 * this far.
 */
3688
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3689 3690
{
	BUG();
N
Nick Piggin 已提交
3691
	return 0;
L
Linus Torvalds 已提交
3692 3693
}

3694 3695 3696 3697 3698 3699 3700
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3701
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3702
	.fault = hugetlb_vm_op_fault,
3703
	.open = hugetlb_vm_op_open,
3704
	.close = hugetlb_vm_op_close,
3705
	.may_split = hugetlb_vm_op_split,
3706
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3707 3708
};

3709 3710
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3711 3712 3713
{
	pte_t entry;

3714
	if (writable) {
3715 3716
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3717
	} else {
3718 3719
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3720 3721 3722
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3723
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3724 3725 3726 3727

	return entry;
}

3728 3729 3730 3731 3732
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3733
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3734
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3735
		update_mmu_cache(vma, address, ptep);
3736 3737
}

3738
bool is_hugetlb_entry_migration(pte_t pte)
3739 3740 3741 3742
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3743
		return false;
3744
	swp = pte_to_swp_entry(pte);
3745
	if (is_migration_entry(swp))
3746
		return true;
3747
	else
3748
		return false;
3749 3750
}

3751
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3752 3753 3754 3755
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3756
		return false;
3757
	swp = pte_to_swp_entry(pte);
3758
	if (is_hwpoison_entry(swp))
3759
		return true;
3760
	else
3761
		return false;
3762
}
3763

D
David Gibson 已提交
3764 3765 3766
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3767
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3768
	struct page *ptepage;
3769
	unsigned long addr;
3770
	int cow;
3771 3772
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3773
	struct address_space *mapping = vma->vm_file->f_mapping;
3774
	struct mmu_notifier_range range;
3775
	int ret = 0;
3776 3777

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3778

3779
	if (cow) {
3780
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3781
					vma->vm_start,
3782 3783
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3784 3785 3786 3787 3788 3789 3790 3791
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3792
	}
3793

3794
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3795
		spinlock_t *src_ptl, *dst_ptl;
3796
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3797 3798
		if (!src_pte)
			continue;
3799
		dst_pte = huge_pte_alloc(dst, addr, sz);
3800 3801 3802 3803
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3804

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3816 3817
			continue;

3818 3819 3820
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3821
		entry = huge_ptep_get(src_pte);
3822 3823 3824 3825 3826 3827 3828
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3841 3842
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3843
			}
3844
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3845
		} else {
3846
			if (cow) {
3847 3848 3849 3850 3851
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3852
				 * See Documentation/vm/mmu_notifier.rst
3853
				 */
3854
				huge_ptep_set_wrprotect(src, addr, src_pte);
3855
			}
3856
			entry = huge_ptep_get(src_pte);
3857 3858
			ptepage = pte_page(entry);
			get_page(ptepage);
3859
			page_dup_rmap(ptepage, true);
3860
			set_huge_pte_at(dst, addr, dst_pte, entry);
3861
			hugetlb_count_add(pages_per_huge_page(h), dst);
3862
		}
3863 3864
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3865 3866
	}

3867
	if (cow)
3868
		mmu_notifier_invalidate_range_end(&range);
3869 3870
	else
		i_mmap_unlock_read(mapping);
3871 3872

	return ret;
D
David Gibson 已提交
3873 3874
}

3875 3876 3877
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3878 3879 3880
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3881
	pte_t *ptep;
D
David Gibson 已提交
3882
	pte_t pte;
3883
	spinlock_t *ptl;
D
David Gibson 已提交
3884
	struct page *page;
3885 3886
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3887
	struct mmu_notifier_range range;
3888

D
David Gibson 已提交
3889
	WARN_ON(!is_vm_hugetlb_page(vma));
3890 3891
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3892

3893 3894 3895 3896
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3897
	tlb_change_page_size(tlb, sz);
3898
	tlb_start_vma(tlb, vma);
3899 3900 3901 3902

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3903 3904
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3905 3906
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3907 3908
	address = start;
	for (; address < end; address += sz) {
3909
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3910
		if (!ptep)
3911 3912
			continue;

3913
		ptl = huge_pte_lock(h, mm, ptep);
3914
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3915
			spin_unlock(ptl);
3916 3917 3918 3919
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3920 3921
			continue;
		}
3922

3923
		pte = huge_ptep_get(ptep);
3924 3925 3926 3927
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3928 3929

		/*
3930 3931
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3932
		 */
3933
		if (unlikely(!pte_present(pte))) {
3934
			huge_pte_clear(mm, address, ptep, sz);
3935 3936
			spin_unlock(ptl);
			continue;
3937
		}
3938 3939

		page = pte_page(pte);
3940 3941 3942 3943 3944 3945
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3946 3947 3948 3949
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3950 3951 3952 3953 3954 3955 3956 3957
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3958
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3959
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3960
		if (huge_pte_dirty(pte))
3961
			set_page_dirty(page);
3962

3963
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3964
		page_remove_rmap(page, true);
3965

3966
		spin_unlock(ptl);
3967
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3968 3969 3970 3971 3972
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3973
	}
3974
	mmu_notifier_invalidate_range_end(&range);
3975
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3976
}
D
David Gibson 已提交
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3990
	 * is to clear it before releasing the i_mmap_rwsem. This works
3991
	 * because in the context this is called, the VMA is about to be
3992
	 * destroyed and the i_mmap_rwsem is held.
3993 3994 3995 3996
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3997
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3998
			  unsigned long end, struct page *ref_page)
3999
{
4000
	struct mmu_gather tlb;
4001

4002
	tlb_gather_mmu(&tlb, vma->vm_mm);
4003
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4004
	tlb_finish_mmu(&tlb);
4005 4006
}

4007 4008
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4009
 * mapping it owns the reserve page for. The intention is to unmap the page
4010 4011 4012
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4013 4014
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4015
{
4016
	struct hstate *h = hstate_vma(vma);
4017 4018 4019 4020 4021 4022 4023 4024
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4025
	address = address & huge_page_mask(h);
4026 4027
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4028
	mapping = vma->vm_file->f_mapping;
4029

4030 4031 4032 4033 4034
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4035
	i_mmap_lock_write(mapping);
4036
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4037 4038 4039 4040
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4041 4042 4043 4044 4045 4046 4047 4048
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4049 4050 4051 4052 4053 4054 4055 4056
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4057 4058
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4059
	}
4060
	i_mmap_unlock_write(mapping);
4061 4062
}

4063 4064
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4065 4066 4067
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4068
 */
4069
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4070
		       unsigned long address, pte_t *ptep,
4071
		       struct page *pagecache_page, spinlock_t *ptl)
4072
{
4073
	pte_t pte;
4074
	struct hstate *h = hstate_vma(vma);
4075
	struct page *old_page, *new_page;
4076 4077
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4078
	unsigned long haddr = address & huge_page_mask(h);
4079
	struct mmu_notifier_range range;
4080

4081
	pte = huge_ptep_get(ptep);
4082 4083
	old_page = pte_page(pte);

4084
retry_avoidcopy:
4085 4086
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4087
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4088
		page_move_anon_rmap(old_page, vma);
4089
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4090
		return 0;
4091 4092
	}

4093 4094 4095 4096 4097 4098 4099 4100 4101
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4102
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4103 4104 4105
			old_page != pagecache_page)
		outside_reserve = 1;

4106
	get_page(old_page);
4107

4108 4109 4110 4111
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4112
	spin_unlock(ptl);
4113
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4114

4115
	if (IS_ERR(new_page)) {
4116 4117 4118 4119 4120 4121 4122 4123
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4124 4125 4126 4127
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

4128
			put_page(old_page);
4129
			BUG_ON(huge_pte_none(pte));
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

4144
			unmap_ref_private(mm, vma, old_page, haddr);
4145 4146 4147

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4148
			spin_lock(ptl);
4149
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4150 4151 4152 4153 4154 4155 4156 4157
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4158 4159
		}

4160
		ret = vmf_error(PTR_ERR(new_page));
4161
		goto out_release_old;
4162 4163
	}

4164 4165 4166 4167
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4168
	if (unlikely(anon_vma_prepare(vma))) {
4169 4170
		ret = VM_FAULT_OOM;
		goto out_release_all;
4171
	}
4172

4173
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4174
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4175
	__SetPageUptodate(new_page);
4176

4177
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4178
				haddr + huge_page_size(h));
4179
	mmu_notifier_invalidate_range_start(&range);
4180

4181
	/*
4182
	 * Retake the page table lock to check for racing updates
4183 4184
	 * before the page tables are altered
	 */
4185
	spin_lock(ptl);
4186
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4187
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4188
		ClearHPageRestoreReserve(new_page);
4189

4190
		/* Break COW */
4191
		huge_ptep_clear_flush(vma, haddr, ptep);
4192
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4193
		set_huge_pte_at(mm, haddr, ptep,
4194
				make_huge_pte(vma, new_page, 1));
4195
		page_remove_rmap(old_page, true);
4196
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4197
		SetHPageMigratable(new_page);
4198 4199 4200
		/* Make the old page be freed below */
		new_page = old_page;
	}
4201
	spin_unlock(ptl);
4202
	mmu_notifier_invalidate_range_end(&range);
4203
out_release_all:
4204
	restore_reserve_on_error(h, vma, haddr, new_page);
4205
	put_page(new_page);
4206
out_release_old:
4207
	put_page(old_page);
4208

4209 4210
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4211 4212
}

4213
/* Return the pagecache page at a given address within a VMA */
4214 4215
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4216 4217
{
	struct address_space *mapping;
4218
	pgoff_t idx;
4219 4220

	mapping = vma->vm_file->f_mapping;
4221
	idx = vma_hugecache_offset(h, vma, address);
4222 4223 4224 4225

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4226 4227 4228 4229 4230
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4246 4247 4248 4249 4250 4251 4252 4253 4254
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
4255
	ClearHPageRestoreReserve(page);
4256

4257 4258 4259 4260 4261 4262
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4263 4264 4265 4266 4267 4268
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4269 4270 4271 4272
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4273
{
4274
	struct hstate *h = hstate_vma(vma);
4275
	vm_fault_t ret = VM_FAULT_SIGBUS;
4276
	int anon_rmap = 0;
A
Adam Litke 已提交
4277 4278
	unsigned long size;
	struct page *page;
4279
	pte_t new_pte;
4280
	spinlock_t *ptl;
4281
	unsigned long haddr = address & huge_page_mask(h);
4282
	bool new_page = false;
A
Adam Litke 已提交
4283

4284 4285 4286
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4287
	 * COW. Warn that such a situation has occurred as it may not be obvious
4288 4289
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4290
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4291
			   current->pid);
4292 4293 4294
		return ret;
	}

A
Adam Litke 已提交
4295
	/*
4296 4297 4298
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4299
	 */
4300 4301 4302 4303
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4304 4305 4306
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4307 4308 4309 4310 4311 4312 4313
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4314
				.address = haddr,
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4326 4327 4328
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4329
			 */
4330
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4331
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4332
			i_mmap_unlock_read(mapping);
4333
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4334
			i_mmap_lock_read(mapping);
4335 4336 4337 4338
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4339
		page = alloc_huge_page(vma, haddr, 0);
4340
		if (IS_ERR(page)) {
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4360
			ret = vmf_error(PTR_ERR(page));
4361 4362
			goto out;
		}
A
Andrea Arcangeli 已提交
4363
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4364
		__SetPageUptodate(page);
4365
		new_page = true;
4366

4367
		if (vma->vm_flags & VM_MAYSHARE) {
4368
			int err = huge_add_to_page_cache(page, mapping, idx);
4369 4370 4371 4372 4373 4374
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4375
		} else {
4376
			lock_page(page);
4377 4378 4379 4380
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4381
			anon_rmap = 1;
4382
		}
4383
	} else {
4384 4385 4386 4387 4388 4389
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4390
			ret = VM_FAULT_HWPOISON_LARGE |
4391
				VM_FAULT_SET_HINDEX(hstate_index(h));
4392 4393
			goto backout_unlocked;
		}
4394
	}
4395

4396 4397 4398 4399 4400 4401
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4402
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4403
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4404 4405 4406
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4407
		/* Just decrements count, does not deallocate */
4408
		vma_end_reservation(h, vma, haddr);
4409
	}
4410

4411
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4412
	ret = 0;
4413
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4414 4415
		goto backout;

4416
	if (anon_rmap) {
4417
		ClearHPageRestoreReserve(page);
4418
		hugepage_add_new_anon_rmap(page, vma, haddr);
4419
	} else
4420
		page_dup_rmap(page, true);
4421 4422
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4423
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4424

4425
	hugetlb_count_add(pages_per_huge_page(h), mm);
4426
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4427
		/* Optimization, do the COW without a second fault */
4428
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4429 4430
	}

4431
	spin_unlock(ptl);
4432 4433

	/*
4434 4435 4436
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
4437 4438
	 */
	if (new_page)
4439
		SetHPageMigratable(page);
4440

A
Adam Litke 已提交
4441 4442
	unlock_page(page);
out:
4443
	return ret;
A
Adam Litke 已提交
4444 4445

backout:
4446
	spin_unlock(ptl);
4447
backout_unlocked:
A
Adam Litke 已提交
4448
	unlock_page(page);
4449
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4450 4451
	put_page(page);
	goto out;
4452 4453
}

4454
#ifdef CONFIG_SMP
4455
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4456 4457 4458 4459
{
	unsigned long key[2];
	u32 hash;

4460 4461
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4462

4463
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4464 4465 4466 4467 4468

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
4469
 * For uniprocessor systems we always use a single mutex, so just
4470 4471
 * return 0 and avoid the hashing overhead.
 */
4472
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4473 4474 4475 4476 4477
{
	return 0;
}
#endif

4478
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4479
			unsigned long address, unsigned int flags)
4480
{
4481
	pte_t *ptep, entry;
4482
	spinlock_t *ptl;
4483
	vm_fault_t ret;
4484 4485
	u32 hash;
	pgoff_t idx;
4486
	struct page *page = NULL;
4487
	struct page *pagecache_page = NULL;
4488
	struct hstate *h = hstate_vma(vma);
4489
	struct address_space *mapping;
4490
	int need_wait_lock = 0;
4491
	unsigned long haddr = address & huge_page_mask(h);
4492

4493
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4494
	if (ptep) {
4495 4496 4497 4498 4499
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4500
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4501
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4502
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4503 4504
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4505
			return VM_FAULT_HWPOISON_LARGE |
4506
				VM_FAULT_SET_HINDEX(hstate_index(h));
4507 4508
	}

4509 4510
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4511 4512 4513 4514
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4515 4516 4517 4518 4519
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4520
	mapping = vma->vm_file->f_mapping;
4521 4522 4523 4524 4525 4526
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4527

4528 4529 4530 4531 4532
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4533
	idx = vma_hugecache_offset(h, vma, haddr);
4534
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4535
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4536

4537 4538
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4539
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4540
		goto out_mutex;
4541
	}
4542

N
Nick Piggin 已提交
4543
	ret = 0;
4544

4545 4546 4547
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4548 4549 4550
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4551 4552 4553 4554
	 */
	if (!pte_present(entry))
		goto out_mutex;

4555 4556 4557 4558 4559 4560 4561 4562
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4563
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4564
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4565
			ret = VM_FAULT_OOM;
4566
			goto out_mutex;
4567
		}
4568
		/* Just decrements count, does not deallocate */
4569
		vma_end_reservation(h, vma, haddr);
4570

4571
		if (!(vma->vm_flags & VM_MAYSHARE))
4572
			pagecache_page = hugetlbfs_pagecache_page(h,
4573
								vma, haddr);
4574 4575
	}

4576 4577 4578 4579 4580 4581
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4582 4583 4584 4585 4586 4587 4588
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4589 4590 4591 4592
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4593

4594
	get_page(page);
4595

4596
	if (flags & FAULT_FLAG_WRITE) {
4597
		if (!huge_pte_write(entry)) {
4598
			ret = hugetlb_cow(mm, vma, address, ptep,
4599
					  pagecache_page, ptl);
4600
			goto out_put_page;
4601
		}
4602
		entry = huge_pte_mkdirty(entry);
4603 4604
	}
	entry = pte_mkyoung(entry);
4605
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4606
						flags & FAULT_FLAG_WRITE))
4607
		update_mmu_cache(vma, haddr, ptep);
4608 4609 4610 4611
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4612 4613
out_ptl:
	spin_unlock(ptl);
4614 4615 4616 4617 4618

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4619
out_mutex:
4620
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4621
	i_mmap_unlock_read(mapping);
4622 4623 4624 4625 4626 4627 4628 4629 4630
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4631
	return ret;
4632 4633
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4645 4646 4647
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4648
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4663
						pages_per_huge_page(h), false);
4664

4665
		/* fallback to copy_from_user outside mmap_lock */
4666
		if (unlikely(ret)) {
4667
			ret = -ENOENT;
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4684 4685 4686
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4687 4688 4689 4690
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4691 4692 4693 4694
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4695

4696 4697 4698 4699 4700 4701
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4702 4703 4704 4705 4706
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4707 4708 4709
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4724 4725 4726 4727
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4728 4729 4730
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
4731
		ClearHPageRestoreReserve(page);
4732 4733
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4750
	SetHPageMigratable(page);
4751 4752
	if (vm_shared)
		unlock_page(page);
4753 4754 4755 4756 4757
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4758 4759
	if (vm_shared)
		unlock_page(page);
4760
out_release_nounlock:
4761 4762 4763 4764
	put_page(page);
	goto out;
}

4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

4779 4780 4781
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4782
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4783
{
4784 4785
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4786
	unsigned long remainder = *nr_pages;
4787
	struct hstate *h = hstate_vma(vma);
4788
	int err = -EFAULT, refs;
D
David Gibson 已提交
4789 4790

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4791
		pte_t *pte;
4792
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4793
		int absent;
A
Adam Litke 已提交
4794
		struct page *page;
D
David Gibson 已提交
4795

4796 4797 4798 4799
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4800
		if (fatal_signal_pending(current)) {
4801 4802 4803 4804
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4805 4806
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4807
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4808
		 * first, for the page indexing below to work.
4809 4810
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4811
		 */
4812 4813
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4814 4815
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4816 4817 4818 4819
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4820 4821 4822 4823
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4824
		 */
H
Hugh Dickins 已提交
4825 4826
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4827 4828
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4829 4830 4831
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4832

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4844 4845
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4846
			vm_fault_t ret;
4847
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4848

4849 4850
			if (pte)
				spin_unlock(ptl);
4851 4852
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4853
			if (locked)
4854 4855
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4856 4857 4858 4859
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4860 4861 4862 4863
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4864 4865 4866 4867
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4868
				err = vm_fault_to_errno(ret, flags);
4869 4870 4871 4872
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4873
				if (locked &&
4874
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4875
					*locked = 0;
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4889 4890
		}

4891
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4892
		page = pte_page(huge_ptep_get(pte));
4893

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4908 4909
		refs = min3(pages_per_huge_page(h) - pfn_offset,
			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4910

4911 4912 4913 4914 4915
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
4916

4917
		if (pages) {
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
			/*
			 * try_grab_compound_head() should always succeed here,
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
4928
			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4929 4930 4931 4932 4933 4934 4935
								 refs,
								 flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4936
		}
4937 4938 4939 4940 4941

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

4942
		spin_unlock(ptl);
D
David Gibson 已提交
4943
	}
4944
	*nr_pages = remainder;
4945 4946 4947 4948 4949
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4950 4951
	*position = vaddr;

4952
	return i ? i : err;
D
David Gibson 已提交
4953
}
4954

4955 4956 4957 4958 4959 4960 4961 4962
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4963
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4964 4965 4966 4967 4968 4969
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4970
	struct hstate *h = hstate_vma(vma);
4971
	unsigned long pages = 0;
4972
	bool shared_pmd = false;
4973
	struct mmu_notifier_range range;
4974 4975 4976

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4977
	 * start/end.  Set range.start/range.end to cover the maximum possible
4978 4979
	 * range if PMD sharing is possible.
	 */
4980 4981
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
4982
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4983 4984

	BUG_ON(address >= end);
4985
	flush_cache_range(vma, range.start, range.end);
4986

4987
	mmu_notifier_invalidate_range_start(&range);
4988
	i_mmap_lock_write(vma->vm_file->f_mapping);
4989
	for (; address < end; address += huge_page_size(h)) {
4990
		spinlock_t *ptl;
4991
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4992 4993
		if (!ptep)
			continue;
4994
		ptl = huge_pte_lock(h, mm, ptep);
4995
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4996
			pages++;
4997
			spin_unlock(ptl);
4998
			shared_pmd = true;
4999
			continue;
5000
		}
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5014 5015
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5016 5017 5018 5019 5020 5021
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5022 5023 5024 5025
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5026
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5027
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5028
			pages++;
5029
		}
5030
		spin_unlock(ptl);
5031
	}
5032
	/*
5033
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5034
	 * may have cleared our pud entry and done put_page on the page table:
5035
	 * once we release i_mmap_rwsem, another task can do the final put_page
5036 5037
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5038
	 */
5039
	if (shared_pmd)
5040
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5041 5042
	else
		flush_hugetlb_tlb_range(vma, start, end);
5043 5044 5045 5046
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5047
	 * See Documentation/vm/mmu_notifier.rst
5048
	 */
5049
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5050
	mmu_notifier_invalidate_range_end(&range);
5051 5052

	return pages << h->order;
5053 5054
}

5055 5056
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5057
					struct vm_area_struct *vma,
5058
					vm_flags_t vm_flags)
5059
{
5060
	long ret, chg, add = -1;
5061
	struct hstate *h = hstate_inode(inode);
5062
	struct hugepage_subpool *spool = subpool_inode(inode);
5063
	struct resv_map *resv_map;
5064
	struct hugetlb_cgroup *h_cg = NULL;
5065
	long gbl_reserve, regions_needed = 0;
5066

5067 5068 5069 5070 5071 5072
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5073 5074 5075
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5076
	 * without using reserves
5077
	 */
5078
	if (vm_flags & VM_NORESERVE)
5079 5080
		return 0;

5081 5082 5083 5084 5085 5086
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5087
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5088 5089 5090 5091 5092
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5093
		resv_map = inode_resv_map(inode);
5094

5095
		chg = region_chg(resv_map, from, to, &regions_needed);
5096 5097

	} else {
5098
		/* Private mapping. */
5099
		resv_map = resv_map_alloc();
5100 5101 5102
		if (!resv_map)
			return -ENOMEM;

5103
		chg = to - from;
5104

5105 5106 5107 5108
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5109 5110 5111 5112
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5113

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5129 5130 5131 5132 5133 5134 5135
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5136
		ret = -ENOSPC;
5137
		goto out_uncharge_cgroup;
5138
	}
5139 5140

	/*
5141
	 * Check enough hugepages are available for the reservation.
5142
	 * Hand the pages back to the subpool if there are not
5143
	 */
5144
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5145
	if (ret < 0) {
5146
		goto out_put_pages;
K
Ken Chen 已提交
5147
	}
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5160
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5161
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5162 5163 5164

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5165
			ret = add;
5166
			goto out_put_pages;
5167
		} else if (unlikely(chg > add)) {
5168 5169 5170 5171 5172 5173 5174 5175 5176
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5177 5178 5179 5180
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5181 5182 5183 5184 5185
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5186
	return 0;
5187 5188 5189 5190 5191 5192
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5193
out_err:
5194
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5195 5196 5197 5198 5199
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5200 5201
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5202
	return ret;
5203 5204
}

5205 5206
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5207
{
5208
	struct hstate *h = hstate_inode(inode);
5209
	struct resv_map *resv_map = inode_resv_map(inode);
5210
	long chg = 0;
5211
	struct hugepage_subpool *spool = subpool_inode(inode);
5212
	long gbl_reserve;
K
Ken Chen 已提交
5213

5214 5215 5216 5217
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5229
	spin_lock(&inode->i_lock);
5230
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5231 5232
	spin_unlock(&inode->i_lock);

5233 5234 5235 5236 5237 5238
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5239 5240

	return 0;
5241
}
5242

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5254 5255
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5256 5257 5258 5259 5260 5261 5262

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
5263
	    !range_in_vma(svma, sbase, s_end))
5264 5265 5266 5267 5268
		return 0;

	return saddr;
}

5269
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5270 5271 5272 5273 5274 5275 5276
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5277
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5278 5279
		return true;
	return false;
5280 5281
}

5282 5283 5284 5285 5286 5287 5288 5289
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5290 5291
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5292

5293 5294 5295 5296 5297 5298
	/*
	 * vma need span at least one aligned PUD size and the start,end range
	 * must at least partialy within it.
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
5299 5300
		return;

5301
	/* Extend the range to be PUD aligned for a worst case scenario */
5302 5303
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
5304

5305 5306
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
5307 5308
}

5309 5310 5311 5312
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5313 5314
 * code much cleaner.
 *
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
 *
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 * huge_pte_alloc know that sharing is not possible and do not take
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 * only required for subsequent processing.
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5336
	spinlock_t *ptl;
5337 5338 5339 5340

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

5341
	i_mmap_assert_locked(mapping);
5342 5343 5344 5345 5346 5347
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5348 5349
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5360
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5361
	if (pud_none(*pud)) {
5362 5363
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5364
		mm_inc_nr_pmds(mm);
5365
	} else {
5366
		put_page(virt_to_page(spte));
5367
	}
5368
	spin_unlock(ptl);
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5381
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5382 5383 5384 5385
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5386 5387
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5388 5389
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5390 5391
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5392

5393
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5394 5395 5396 5397 5398 5399
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5400
	mm_dec_nr_pmds(mm);
5401 5402 5403
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5404 5405 5406 5407 5408 5409
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5410

5411 5412
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5413 5414 5415
{
	return 0;
}
5416 5417 5418 5419 5420

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5421
#define want_pmd_share()	(0)
5422 5423
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5424 5425 5426 5427 5428
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5429
	p4d_t *p4d;
5430 5431 5432 5433
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5434 5435 5436
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5437
	pud = pud_alloc(mm, p4d, addr);
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5449
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5450 5451 5452 5453

	return pte;
}

5454 5455 5456 5457
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5458 5459
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5460 5461 5462
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5463 5464
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5465 5466
{
	pgd_t *pgd;
5467
	p4d_t *p4d;
5468 5469
	pud_t *pud;
	pmd_t *pmd;
5470 5471

	pgd = pgd_offset(mm, addr);
5472 5473 5474 5475 5476
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5477

5478
	pud = pud_offset(p4d, addr);
5479 5480
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5481
		return (pte_t *)pud;
5482
	if (!pud_present(*pud))
5483
		return NULL;
5484
	/* must have a valid entry and size to go further */
5485

5486 5487 5488
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5489 5490
}

5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5504 5505 5506 5507 5508 5509 5510 5511
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5512
struct page * __weak
5513
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5514
		pmd_t *pmd, int flags)
5515
{
5516 5517
	struct page *page = NULL;
	spinlock_t *ptl;
5518
	pte_t pte;
J
John Hubbard 已提交
5519 5520 5521 5522 5523 5524

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5525 5526 5527 5528 5529 5530 5531 5532 5533
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5534 5535
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5536
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5549
	} else {
5550
		if (is_hugetlb_entry_migration(pte)) {
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5562 5563 5564
	return page;
}

5565
struct page * __weak
5566
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5567
		pud_t *pud, int flags)
5568
{
J
John Hubbard 已提交
5569
	if (flags & (FOLL_GET | FOLL_PIN))
5570
		return NULL;
5571

5572
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5573 5574
}

5575 5576 5577
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5578
	if (flags & (FOLL_GET | FOLL_PIN))
5579 5580 5581 5582 5583
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5584 5585
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5586 5587
	bool ret = true;

5588
	spin_lock(&hugetlb_lock);
5589 5590
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
5591
	    !get_page_unless_zero(page)) {
5592 5593 5594
		ret = false;
		goto unlock;
	}
5595
	ClearHPageMigratable(page);
5596
	list_move_tail(&page->lru, list);
5597
unlock:
5598
	spin_unlock(&hugetlb_lock);
5599
	return ret;
5600 5601 5602 5603 5604
}

void putback_active_hugepage(struct page *page)
{
	spin_lock(&hugetlb_lock);
5605
	SetHPageMigratable(page);
5606 5607 5608 5609
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5682
		char name[CMA_MAX_NAME];
5683 5684 5685 5686

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5687
		snprintf(name, sizeof(name), "hugetlb%d", nid);
5688
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5689
						 0, false, name,
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */