hugetlb.c 137.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/mmdebug.h>
23
#include <linux/sched/signal.h>
24
#include <linux/rmap.h>
25
#include <linux/string_helpers.h>
26 27
#include <linux/swap.h>
#include <linux/swapops.h>
28
#include <linux/jhash.h>
29
#include <linux/numa.h>
30
#include <linux/llist.h>
31

D
David Gibson 已提交
32 33
#include <asm/page.h>
#include <asm/pgtable.h>
34
#include <asm/tlb.h>
D
David Gibson 已提交
35

36
#include <linux/io.h>
D
David Gibson 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/hugetlb_cgroup.h>
39
#include <linux/node.h>
40
#include <linux/userfaultfd_k.h>
41
#include <linux/page_owner.h>
42
#include "internal.h"
L
Linus Torvalds 已提交
43

44
int hugetlb_max_hstate __read_mostly;
45 46
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
47 48 49 50 51
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
52

53 54
__initdata LIST_HEAD(huge_boot_pages);

55 56 57
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
58
static unsigned long __initdata default_hstate_size;
59
static bool __initdata parsed_valid_hugepagesz = true;
60

61
/*
62 63
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
64
 */
65
DEFINE_SPINLOCK(hugetlb_lock);
66

67 68 69 70 71
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
72
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73

74 75 76
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

77 78 79 80 81 82 83
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
84 85 86 87 88 89
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
90
		kfree(spool);
91
	}
92 93
}

94 95
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
96 97 98
{
	struct hugepage_subpool *spool;

99
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 101 102 103 104
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
105 106 107 108 109 110 111 112 113
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
114 115 116 117 118 119 120 121 122 123 124 125

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

126 127 128 129 130 131 132 133 134
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 136
				      long delta)
{
137
	long ret = delta;
138 139

	if (!spool)
140
		return ret;
141 142

	spin_lock(&spool->lock);
143 144 145 146 147 148 149 150

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
151 152
	}

153 154
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
170 171 172
	return ret;
}

173 174 175 176 177 178 179
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 181
				       long delta)
{
182 183
	long ret = delta;

184
	if (!spool)
185
		return delta;
186 187

	spin_lock(&spool->lock);
188 189 190 191

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

192 193
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
208
	unlock_or_release_subpool(spool);
209 210

	return ret;
211 212 213 214 215 216 217 218 219
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
220
	return subpool_inode(file_inode(vma->vm_file));
221 222
}

223 224 225
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
226
 *
227 228 229 230 231 232 233 234 235 236 237 238 239 240
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
241 242 243 244 245 246 247
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

M
Mina Almasry 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/* Must be called with resv->lock held. Calling this with count_only == true
 * will count the number of pages to be added but will not modify the linked
 * list.
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
				     bool count_only)
{
	long chg = 0;
	struct list_head *head = &resv->regions;
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* We overlap with this area, if it extends further than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation.
		 */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;

		if (!count_only && rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}

	if (!count_only) {
		nrg->from = f;
		nrg->to = t;
	}

	return chg;
}

302 303
/*
 * Add the huge page range represented by [f, t) to the reserve
304 305 306 307
 * map.  Existing regions will be expanded to accommodate the specified
 * range, or a region will be taken from the cache.  Sufficient regions
 * must exist in the cache due to the previous call to region_chg with
 * the same range.
308 309 310
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
311
 */
312
static long region_add(struct resv_map *resv, long f, long t)
313
{
314
	struct list_head *head = &resv->regions;
M
Mina Almasry 已提交
315
	struct file_region *rg, *nrg;
316
	long add = 0;
317

318
	spin_lock(&resv->lock);
319 320 321 322 323
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

324 325
	/*
	 * If no region exists which can be expanded to include the
326 327
	 * specified range, pull a region descriptor from the cache
	 * and use it for this range.
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

M
Mina Almasry 已提交
345
	add = add_reservation_in_range(resv, f, t, false);
346

347 348
out_locked:
	resv->adds_in_progress--;
349
	spin_unlock(&resv->lock);
350 351
	VM_BUG_ON(add < 0);
	return add;
352 353
}

354 355 356 357 358 359 360
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
361 362 363
 * map.  A new file_region structure is added to the cache
 * as a placeholder, so that the subsequent region_add
 * call will have all the regions it needs and will not fail.
364 365 366 367 368
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
369
 */
370
static long region_chg(struct resv_map *resv, long f, long t)
371 372 373
{
	long chg = 0;

374
	spin_lock(&resv->lock);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
391
		if (!trg)
392 393 394 395 396 397 398 399
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

M
Mina Almasry 已提交
400
	chg = add_reservation_in_range(resv, f, t, true);
401 402

	spin_unlock(&resv->lock);
403 404 405
	return chg;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

425
/*
426 427 428 429 430 431 432 433 434 435 436 437
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
438
 */
439
static long region_del(struct resv_map *resv, long f, long t)
440
{
441
	struct list_head *head = &resv->regions;
442
	struct file_region *rg, *trg;
443 444
	struct file_region *nrg = NULL;
	long del = 0;
445

446
retry:
447
	spin_lock(&resv->lock);
448
	list_for_each_entry_safe(rg, trg, head, link) {
449 450 451 452 453 454 455 456
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
457
			continue;
458

459
		if (rg->from >= t)
460 461
			break;

462 463 464 465 466 467 468 469 470 471 472 473 474
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
496
			break;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
513
	}
514 515

	spin_unlock(&resv->lock);
516 517
	kfree(nrg);
	return del;
518 519
}

520 521 522 523 524 525 526 527 528
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
529
void hugetlb_fix_reserve_counts(struct inode *inode)
530 531 532 533 534
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
535
	if (rsv_adjust) {
536 537 538 539 540 541
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

542 543 544 545
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
546
static long region_count(struct resv_map *resv, long f, long t)
547
{
548
	struct list_head *head = &resv->regions;
549 550 551
	struct file_region *rg;
	long chg = 0;

552
	spin_lock(&resv->lock);
553 554
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
555 556
		long seg_from;
		long seg_to;
557 558 559 560 561 562 563 564 565 566 567

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
568
	spin_unlock(&resv->lock);
569 570 571 572

	return chg;
}

573 574 575 576
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
577 578
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
579
{
580 581
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
582 583
}

584 585 586 587 588
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
589
EXPORT_SYMBOL_GPL(linear_hugepage_index);
590

591 592 593 594 595 596
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
597 598 599
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
600
}
601
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
602

603 604 605
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
606 607
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
608
 */
609
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
610 611 612 613
{
	return vma_kernel_pagesize(vma);
}

614 615 616 617 618 619 620
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
621
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
622

623 624 625 626 627 628 629 630 631
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
632 633 634 635 636 637 638 639 640
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
641
 */
642 643 644 645 646 647 648 649 650 651 652
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

653
struct resv_map *resv_map_alloc(void)
654 655
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
656 657 658 659 660
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
661
		return NULL;
662
	}
663 664

	kref_init(&resv_map->refs);
665
	spin_lock_init(&resv_map->lock);
666 667
	INIT_LIST_HEAD(&resv_map->regions);

668 669 670 671 672 673
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

674 675 676
	return resv_map;
}

677
void resv_map_release(struct kref *ref)
678 679
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
680 681
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
682 683

	/* Clear out any active regions before we release the map. */
684
	region_del(resv_map, 0, LONG_MAX);
685 686 687 688 689 690 691 692 693

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

694 695 696
	kfree(resv_map);
}

697 698
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
699 700 701 702 703 704 705 706 707
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
708 709
}

710
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
711
{
712
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
713 714 715 716 717 718 719
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
720 721
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
722
	}
723 724
}

725
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
726
{
727 728
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
729

730 731
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
732 733 734 735
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
736 737
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
738 739

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
740 741 742 743
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
744
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
745 746

	return (get_vma_private_data(vma) & flag) != 0;
747 748
}

749
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
750 751
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
752
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753
	if (!(vma->vm_flags & VM_MAYSHARE))
754 755 756 757
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
758
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
759
{
760 761 762 763 764 765 766 767 768 769 770
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
771
			return true;
772
		else
773
			return false;
774
	}
775 776

	/* Shared mappings always use reserves */
777 778 779 780 781 782 783 784 785 786 787 788 789
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
790 791 792 793 794

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
816

817
	return false;
818 819
}

820
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
821 822
{
	int nid = page_to_nid(page);
823
	list_move(&page->lru, &h->hugepage_freelists[nid]);
824 825
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
826 827
}

828
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
829 830 831
{
	struct page *page;

832
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
833
		if (!PageHWPoison(page))
834 835 836 837 838 839
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
840
		return NULL;
841
	list_move(&page->lru, &h->hugepage_activelist);
842
	set_page_refcounted(page);
843 844 845 846 847
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

848 849
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
850
{
851 852 853 854
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
855
	int node = NUMA_NO_NODE;
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
873 874 875 876 877

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
878 879 880
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

881 882 883
	return NULL;
}

884 885 886
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
887
	if (hugepage_movable_supported(h))
888 889 890 891 892
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

893 894
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
895 896
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
897
{
898
	struct page *page;
899
	struct mempolicy *mpol;
900
	gfp_t gfp_mask;
901
	nodemask_t *nodemask;
902
	int nid;
L
Linus Torvalds 已提交
903

904 905 906 907 908
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
909
	if (!vma_has_reserves(vma, chg) &&
910
			h->free_huge_pages - h->resv_huge_pages == 0)
911
		goto err;
912

913
	/* If reserves cannot be used, ensure enough pages are in the pool */
914
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
915
		goto err;
916

917 918
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
919 920 921 922
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
923
	}
924

925
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
926
	return page;
927 928 929

err:
	return NULL;
L
Linus Torvalds 已提交
930 931
}

932 933 934 935 936 937 938 939 940
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
941
	nid = next_node_in(nid, *nodes_allowed);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1003
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1004
static void destroy_compound_gigantic_page(struct page *page,
1005
					unsigned int order)
1006 1007 1008 1009 1010
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1011
	atomic_set(compound_mapcount_ptr(page), 0);
1012 1013 1014
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);

1015
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1016
		clear_compound_head(p);
1017 1018 1019 1020 1021 1022 1023
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1024
static void free_gigantic_page(struct page *page, unsigned int order)
1025 1026 1027 1028
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

1029
#ifdef CONFIG_CONTIG_ALLOC
1030 1031
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1032
{
1033
	unsigned long nr_pages = 1UL << huge_page_order(h);
1034

1035
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1036 1037 1038
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1039
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1040 1041 1042 1043 1044 1045 1046
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1047

1048
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1049
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1050 1051 1052 1053
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1054
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1055
static inline void destroy_compound_gigantic_page(struct page *page,
1056
						unsigned int order) { }
1057 1058
#endif

1059
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1060 1061
{
	int i;
1062

1063
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1064
		return;
1065

1066 1067 1068
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1069 1070
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1071 1072
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1073
	}
1074
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1075
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1076
	set_page_refcounted(page);
1077 1078 1079 1080 1081 1082
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1143
static void __free_huge_page(struct page *page)
1144
{
1145 1146 1147 1148
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1149
	struct hstate *h = page_hstate(page);
1150
	int nid = page_to_nid(page);
1151 1152
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1153
	bool restore_reserve;
1154

1155 1156
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1157 1158 1159

	set_page_private(page, 0);
	page->mapping = NULL;
1160
	restore_reserve = PagePrivate(page);
1161
	ClearPagePrivate(page);
1162

1163
	/*
1164 1165 1166 1167 1168 1169
	 * If PagePrivate() was set on page, page allocation consumed a
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1170
	 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1181

1182
	spin_lock(&hugetlb_lock);
1183
	clear_page_huge_active(page);
1184 1185
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1186 1187 1188
	if (restore_reserve)
		h->resv_huge_pages++;

1189 1190 1191 1192 1193
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1194 1195
		/* remove the page from active list */
		list_del(&page->lru);
1196 1197 1198
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1199
	} else {
1200
		arch_clear_hugepage_flags(page);
1201
		enqueue_huge_page(h, page);
1202
	}
1203 1204 1205
	spin_unlock(&hugetlb_lock);
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1254
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1255
{
1256
	INIT_LIST_HEAD(&page->lru);
1257
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1258
	spin_lock(&hugetlb_lock);
1259
	set_hugetlb_cgroup(page, NULL);
1260 1261
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1262 1263 1264
	spin_unlock(&hugetlb_lock);
}

1265
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1266 1267 1268 1269 1270 1271 1272
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1273
	__ClearPageReserved(page);
1274
	__SetPageHead(page);
1275
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1289
		set_page_count(p, 0);
1290
		set_compound_head(p, page);
1291
	}
1292
	atomic_set(compound_mapcount_ptr(page), -1);
1293 1294 1295

	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
1296 1297
}

A
Andrew Morton 已提交
1298 1299 1300 1301 1302
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1303 1304 1305 1306 1307 1308
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1309
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1310
}
1311 1312
EXPORT_SYMBOL_GPL(PageHuge);

1313 1314 1315 1316 1317 1318 1319 1320 1321
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1322
	return get_compound_page_dtor(page_head) == free_huge_page;
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1342
static struct page *alloc_buddy_huge_page(struct hstate *h,
1343 1344
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1345
{
1346
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1347
	struct page *page;
1348
	bool alloc_try_hard = true;
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1362 1363 1364 1365 1366 1367 1368
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1386 1387 1388
	return page;
}

1389 1390 1391 1392 1393
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1394 1395
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1396 1397 1398 1399 1400 1401 1402
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1403
				nid, nmask, node_alloc_noretry);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1414 1415 1416 1417
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1418 1419
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1420 1421 1422
{
	struct page *page;
	int nr_nodes, node;
1423
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1424 1425

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1426 1427
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1428
		if (page)
1429 1430 1431
			break;
	}

1432 1433
	if (!page)
		return 0;
1434

1435 1436 1437
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1438 1439
}

1440 1441 1442 1443 1444 1445
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1446 1447
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1448
{
1449
	int nr_nodes, node;
1450 1451
	int ret = 0;

1452
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1453 1454 1455 1456
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1457 1458
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1459
			struct page *page =
1460
				list_entry(h->hugepage_freelists[node].next,
1461 1462 1463
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1464
			h->free_huge_pages_node[node]--;
1465 1466
			if (acct_surplus) {
				h->surplus_huge_pages--;
1467
				h->surplus_huge_pages_node[node]--;
1468
			}
1469 1470
			update_and_free_page(h, page);
			ret = 1;
1471
			break;
1472
		}
1473
	}
1474 1475 1476 1477

	return ret;
}

1478 1479
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1480 1481 1482 1483 1484 1485 1486
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1487
 */
1488
int dissolve_free_huge_page(struct page *page)
1489
{
1490
	int rc = -EBUSY;
1491

1492 1493 1494 1495
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1496
	spin_lock(&hugetlb_lock);
1497 1498 1499 1500 1501 1502
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1503 1504 1505
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1506
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1507
			goto out;
1508 1509 1510 1511 1512 1513 1514 1515
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1516
		list_del(&head->lru);
1517 1518
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1519
		h->max_huge_pages--;
1520
		update_and_free_page(h, head);
1521
		rc = 0;
1522
	}
1523
out:
1524
	spin_unlock(&hugetlb_lock);
1525
	return rc;
1526 1527 1528 1529 1530
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1531 1532
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1533 1534
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1535
 */
1536
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537 1538
{
	unsigned long pfn;
1539
	struct page *page;
1540
	int rc = 0;
1541

1542
	if (!hugepages_supported())
1543
		return rc;
1544

1545 1546
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1547 1548 1549
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1550
	}
1551 1552

	return rc;
1553 1554
}

1555 1556 1557
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1558
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1559
		int nid, nodemask_t *nmask)
1560
{
1561
	struct page *page = NULL;
1562

1563
	if (hstate_is_gigantic(h))
1564 1565
		return NULL;

1566
	spin_lock(&hugetlb_lock);
1567 1568
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1569 1570
	spin_unlock(&hugetlb_lock);

1571
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1572
	if (!page)
1573
		return NULL;
1574 1575

	spin_lock(&hugetlb_lock);
1576 1577 1578 1579 1580 1581 1582 1583 1584
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1585
		spin_unlock(&hugetlb_lock);
1586
		put_page(page);
1587
		return NULL;
1588 1589
	} else {
		h->surplus_huge_pages++;
1590
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1591
	}
1592 1593

out_unlock:
1594
	spin_unlock(&hugetlb_lock);
1595 1596 1597 1598

	return page;
}

1599 1600
struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
				     int nid, nodemask_t *nmask)
1601 1602 1603 1604 1605 1606
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1607
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1620 1621 1622
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1623
static
1624
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1625 1626
		struct vm_area_struct *vma, unsigned long addr)
{
1627 1628 1629 1630 1631 1632 1633
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1634
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1635 1636 1637
	mpol_cond_put(mpol);

	return page;
1638 1639
}

1640
/* page migration callback function */
1641 1642
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1643
	gfp_t gfp_mask = htlb_alloc_mask(h);
1644
	struct page *page = NULL;
1645

1646 1647 1648
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1649
	spin_lock(&hugetlb_lock);
1650
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1651
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1652 1653
	spin_unlock(&hugetlb_lock);

1654
	if (!page)
1655
		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1656 1657 1658 1659

	return page;
}

1660
/* page migration callback function */
1661 1662
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1663
{
1664
	gfp_t gfp_mask = htlb_alloc_mask(h);
1665 1666 1667

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1668 1669 1670 1671 1672 1673
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1674 1675 1676 1677
		}
	}
	spin_unlock(&hugetlb_lock);

1678
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1679 1680
}

1681
/* mempolicy aware migration callback */
1682 1683
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	page = alloc_huge_page_nodemask(h, node, nodemask);
	mpol_cond_put(mpol);

	return page;
}

1699
/*
L
Lucas De Marchi 已提交
1700
 * Increase the hugetlb pool such that it can accommodate a reservation
1701 1702
 * of size 'delta'.
 */
1703
static int gather_surplus_pages(struct hstate *h, int delta)
1704 1705 1706 1707 1708
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1709
	bool alloc_ok = true;
1710

1711
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1712
	if (needed <= 0) {
1713
		h->resv_huge_pages += delta;
1714
		return 0;
1715
	}
1716 1717 1718 1719 1720 1721 1722 1723

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1724
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1725
				NUMA_NO_NODE, NULL);
1726 1727 1728 1729
		if (!page) {
			alloc_ok = false;
			break;
		}
1730
		list_add(&page->lru, &surplus_list);
1731
		cond_resched();
1732
	}
1733
	allocated += i;
1734 1735 1736 1737 1738 1739

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1740 1741
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1752 1753
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1754
	 * needed to accommodate the reservation.  Add the appropriate number
1755
	 * of pages to the hugetlb pool and free the extras back to the buddy
1756 1757 1758
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1759 1760
	 */
	needed += allocated;
1761
	h->resv_huge_pages += delta;
1762
	ret = 0;
1763

1764
	/* Free the needed pages to the hugetlb pool */
1765
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1766 1767
		if ((--needed) < 0)
			break;
1768 1769 1770 1771 1772
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1773
		VM_BUG_ON_PAGE(page_count(page), page);
1774
		enqueue_huge_page(h, page);
1775
	}
1776
free:
1777
	spin_unlock(&hugetlb_lock);
1778 1779

	/* Free unnecessary surplus pages to the buddy allocator */
1780 1781
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1782
	spin_lock(&hugetlb_lock);
1783 1784 1785 1786 1787

	return ret;
}

/*
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1800
 */
1801 1802
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1803 1804 1805
{
	unsigned long nr_pages;

1806
	/* Cannot return gigantic pages currently */
1807
	if (hstate_is_gigantic(h))
1808
		goto out;
1809

1810 1811 1812 1813
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1814
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1815

1816 1817
	/*
	 * We want to release as many surplus pages as possible, spread
1818 1819 1820 1821 1822
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1823 1824 1825 1826
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1827 1828
	 */
	while (nr_pages--) {
1829 1830
		h->resv_huge_pages--;
		unused_resv_pages--;
1831
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1832
			goto out;
1833
		cond_resched_lock(&hugetlb_lock);
1834
	}
1835 1836 1837 1838

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1839 1840
}

1841

1842
/*
1843
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1844
 * are used by the huge page allocation routines to manage reservations.
1845 1846 1847 1848 1849 1850
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1851 1852 1853
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1854 1855 1856 1857 1858 1859
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1860 1861 1862 1863 1864
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1865
 */
1866 1867 1868
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1869
	VMA_END_RESV,
1870
	VMA_ADD_RESV,
1871
};
1872 1873
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1874
				enum vma_resv_mode mode)
1875
{
1876 1877
	struct resv_map *resv;
	pgoff_t idx;
1878
	long ret;
1879

1880 1881
	resv = vma_resv_map(vma);
	if (!resv)
1882
		return 1;
1883

1884
	idx = vma_hugecache_offset(h, vma, addr);
1885 1886
	switch (mode) {
	case VMA_NEEDS_RESV:
1887
		ret = region_chg(resv, idx, idx + 1);
1888 1889 1890 1891
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1892
	case VMA_END_RESV:
1893 1894 1895
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1896 1897 1898 1899 1900 1901 1902 1903
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1904 1905 1906
	default:
		BUG();
	}
1907

1908
	if (vma->vm_flags & VM_MAYSHARE)
1909
		return ret;
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1929
	else
1930
		return ret < 0 ? ret : 0;
1931
}
1932 1933

static long vma_needs_reservation(struct hstate *h,
1934
			struct vm_area_struct *vma, unsigned long addr)
1935
{
1936
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1937
}
1938

1939 1940 1941
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1942 1943 1944
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1945
static void vma_end_reservation(struct hstate *h,
1946 1947
			struct vm_area_struct *vma, unsigned long addr)
{
1948
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2001
struct page *alloc_huge_page(struct vm_area_struct *vma,
2002
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2003
{
2004
	struct hugepage_subpool *spool = subpool_vma(vma);
2005
	struct hstate *h = hstate_vma(vma);
2006
	struct page *page;
2007 2008
	long map_chg, map_commit;
	long gbl_chg;
2009 2010
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2011

2012
	idx = hstate_index(h);
2013
	/*
2014 2015 2016
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2017
	 */
2018 2019
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2020
		return ERR_PTR(-ENOMEM);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2032
			vma_end_reservation(h, vma, addr);
2033
			return ERR_PTR(-ENOSPC);
2034
		}
L
Linus Torvalds 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2048
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2049 2050 2051
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2052
	spin_lock(&hugetlb_lock);
2053 2054 2055 2056 2057 2058
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2059
	if (!page) {
2060
		spin_unlock(&hugetlb_lock);
2061
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2062 2063
		if (!page)
			goto out_uncharge_cgroup;
2064 2065 2066 2067
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2068 2069
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2070
		/* Fall through */
K
Ken Chen 已提交
2071
	}
2072 2073
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2074

2075
	set_page_private(page, (unsigned long)spool);
2076

2077 2078
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2093
	return page;
2094 2095 2096 2097

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2098
	if (map_chg || avoid_reserve)
2099
		hugepage_subpool_put_pages(spool, 1);
2100
	vma_end_reservation(h, vma, addr);
2101
	return ERR_PTR(-ENOSPC);
2102 2103
}

2104 2105 2106
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2107 2108
{
	struct huge_bootmem_page *m;
2109
	int nr_nodes, node;
2110

2111
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2112 2113
		void *addr;

2114
		addr = memblock_alloc_try_nid_raw(
2115
				huge_page_size(h), huge_page_size(h),
2116
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2117 2118 2119 2120 2121 2122 2123
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2124
			goto found;
2125 2126 2127 2128 2129
		}
	}
	return 0;

found:
2130
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2131
	/* Put them into a private list first because mem_map is not up yet */
2132
	INIT_LIST_HEAD(&m->list);
2133 2134 2135 2136 2137
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2138 2139
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2140 2141 2142 2143 2144 2145 2146
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2147 2148 2149 2150 2151 2152
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2153
		struct page *page = virt_to_page(m);
2154
		struct hstate *h = m->hstate;
2155

2156
		WARN_ON(page_count(page) != 1);
2157
		prep_compound_huge_page(page, h->order);
2158
		WARN_ON(PageReserved(page));
2159
		prep_new_huge_page(h, page, page_to_nid(page));
2160 2161
		put_page(page); /* free it into the hugepage allocator */

2162 2163 2164 2165 2166 2167
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2168
		if (hstate_is_gigantic(h))
2169
			adjust_managed_page_count(page, 1 << h->order);
2170
		cond_resched();
2171 2172 2173
	}
}

2174
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2175 2176
{
	unsigned long i;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2196

2197
	for (i = 0; i < h->max_huge_pages; ++i) {
2198
		if (hstate_is_gigantic(h)) {
2199 2200
			if (!alloc_bootmem_huge_page(h))
				break;
2201
		} else if (!alloc_pool_huge_page(h,
2202 2203
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2204
			break;
2205
		cond_resched();
L
Linus Torvalds 已提交
2206
	}
2207 2208 2209
	if (i < h->max_huge_pages) {
		char buf[32];

2210
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211 2212 2213 2214
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2215 2216

	kfree(node_alloc_noretry);
2217 2218 2219 2220 2221 2222 2223
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2224 2225 2226
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2227
		/* oversize hugepages were init'ed in early boot */
2228
		if (!hstate_is_gigantic(h))
2229
			hugetlb_hstate_alloc_pages(h);
2230
	}
2231
	VM_BUG_ON(minimum_order == UINT_MAX);
2232 2233 2234 2235 2236 2237 2238
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2239
		char buf[32];
2240 2241

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2242
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2243
			buf, h->free_huge_pages);
2244 2245 2246
	}
}

L
Linus Torvalds 已提交
2247
#ifdef CONFIG_HIGHMEM
2248 2249
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2250
{
2251 2252
	int i;

2253
	if (hstate_is_gigantic(h))
2254 2255
		return;

2256
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2257
		struct page *page, *next;
2258 2259 2260
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2261
				return;
L
Linus Torvalds 已提交
2262 2263 2264
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2265
			update_and_free_page(h, page);
2266 2267
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2268 2269 2270 2271
		}
	}
}
#else
2272 2273
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2274 2275 2276 2277
{
}
#endif

2278 2279 2280 2281 2282
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2283 2284
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2285
{
2286
	int nr_nodes, node;
2287 2288 2289

	VM_BUG_ON(delta != -1 && delta != 1);

2290 2291 2292 2293
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2294
		}
2295 2296 2297 2298 2299
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2300
		}
2301 2302
	}
	return 0;
2303

2304 2305 2306 2307
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2308 2309
}

2310
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2311
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2312
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2313
{
2314
	unsigned long min_count, ret;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2326

2327 2328
	spin_lock(&hugetlb_lock);

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2359
			NODEMASK_FREE(node_alloc_noretry);
2360 2361 2362 2363
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2364

2365 2366 2367 2368
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2369
	 *
2370
	 * We might race with alloc_surplus_huge_page() here and be unable
2371 2372 2373 2374
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2375
	 */
2376
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2377
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2378 2379 2380
			break;
	}

2381
	while (count > persistent_huge_pages(h)) {
2382 2383 2384 2385 2386 2387
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2388 2389 2390 2391

		/* yield cpu to avoid soft lockup */
		cond_resched();

2392 2393
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2394 2395 2396 2397
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2398 2399 2400
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2401 2402 2403 2404 2405 2406 2407 2408
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2409 2410 2411 2412
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2413
	 * alloc_surplus_huge_page() is checking the global counter,
2414 2415 2416
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2417
	 */
2418
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2419
	min_count = max(count, min_count);
2420
	try_to_free_low(h, min_count, nodes_allowed);
2421
	while (min_count < persistent_huge_pages(h)) {
2422
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2423
			break;
2424
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2425
	}
2426
	while (count < persistent_huge_pages(h)) {
2427
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2428 2429 2430
			break;
	}
out:
2431
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2432
	spin_unlock(&hugetlb_lock);
2433

2434 2435
	NODEMASK_FREE(node_alloc_noretry);

2436
	return 0;
L
Linus Torvalds 已提交
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2449 2450 2451
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2452 2453
{
	int i;
2454

2455
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2456 2457 2458
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2459
			return &hstates[i];
2460 2461 2462
		}

	return kobj_to_node_hstate(kobj, nidp);
2463 2464
}

2465
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2466 2467
					struct kobj_attribute *attr, char *buf)
{
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2479
}
2480

2481 2482 2483
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2484 2485
{
	int err;
2486
	nodemask_t nodes_allowed, *n_mask;
2487

2488 2489
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2490

2491 2492 2493 2494 2495
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2496 2497 2498 2499 2500
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2501
		/*
2502 2503
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2504
		 */
2505 2506
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2507
	}
2508

2509
	err = set_max_huge_pages(h, count, nid, n_mask);
2510

2511
	return err ? err : len;
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2531 2532 2533 2534 2535 2536 2537 2538 2539
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2540
	return nr_hugepages_store_common(false, kobj, buf, len);
2541 2542 2543
}
HSTATE_ATTR(nr_hugepages);

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2559
	return nr_hugepages_store_common(true, kobj, buf, len);
2560 2561 2562 2563 2564
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2565 2566 2567
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2568
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2569 2570
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2571

2572 2573 2574 2575 2576
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2577
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2578

2579
	if (hstate_is_gigantic(h))
2580 2581
		return -EINVAL;

2582
	err = kstrtoul(buf, 10, &input);
2583
	if (err)
2584
		return err;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2608 2609 2610 2611 2612 2613
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2614
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2615 2616 2617 2618 2619 2620 2621
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2633 2634 2635 2636 2637 2638 2639 2640 2641
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2642 2643 2644
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2645 2646 2647
	NULL,
};

2648
static const struct attribute_group hstate_attr_group = {
2649 2650 2651
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2652 2653
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2654
				    const struct attribute_group *hstate_attr_group)
2655 2656
{
	int retval;
2657
	int hi = hstate_index(h);
2658

2659 2660
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2661 2662
		return -ENOMEM;

2663
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2664
	if (retval)
2665
		kobject_put(hstate_kobjs[hi]);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2680 2681
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2682
		if (err)
2683
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2684 2685 2686
	}
}

2687 2688 2689 2690
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2691 2692 2693
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2694 2695 2696 2697 2698 2699
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2700
static struct node_hstate node_hstates[MAX_NUMNODES];
2701 2702

/*
2703
 * A subset of global hstate attributes for node devices
2704 2705 2706 2707 2708 2709 2710 2711
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2712
static const struct attribute_group per_node_hstate_attr_group = {
2713 2714 2715 2716
	.attrs = per_node_hstate_attrs,
};

/*
2717
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2740
 * Unregister hstate attributes from a single node device.
2741 2742
 * No-op if no hstate attributes attached.
 */
2743
static void hugetlb_unregister_node(struct node *node)
2744 2745
{
	struct hstate *h;
2746
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2747 2748

	if (!nhs->hugepages_kobj)
2749
		return;		/* no hstate attributes */
2750

2751 2752 2753 2754 2755
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2756
		}
2757
	}
2758 2759 2760 2761 2762 2763 2764

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2765
 * Register hstate attributes for a single node device.
2766 2767
 * No-op if attributes already registered.
 */
2768
static void hugetlb_register_node(struct node *node)
2769 2770
{
	struct hstate *h;
2771
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2772 2773 2774 2775 2776 2777
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2778
							&node->dev.kobj);
2779 2780 2781 2782 2783 2784 2785 2786
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2787 2788
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2789 2790 2791 2792 2793 2794 2795
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2796
 * hugetlb init time:  register hstate attributes for all registered node
2797 2798
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2799
 */
2800
static void __init hugetlb_register_all_nodes(void)
2801 2802 2803
{
	int nid;

2804
	for_each_node_state(nid, N_MEMORY) {
2805
		struct node *node = node_devices[nid];
2806
		if (node->dev.id == nid)
2807 2808 2809 2810
			hugetlb_register_node(node);
	}

	/*
2811
	 * Let the node device driver know we're here so it can
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2831 2832
static int __init hugetlb_init(void)
{
2833 2834
	int i;

2835
	if (!hugepages_supported())
2836
		return 0;
2837

2838
	if (!size_to_hstate(default_hstate_size)) {
2839 2840 2841 2842 2843
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2844 2845 2846
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2847
	}
2848
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2849 2850 2851 2852
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2853 2854

	hugetlb_init_hstates();
2855
	gather_bootmem_prealloc();
2856 2857 2858
	report_hugepages();

	hugetlb_sysfs_init();
2859
	hugetlb_register_all_nodes();
2860
	hugetlb_cgroup_file_init();
2861

2862 2863 2864 2865 2866
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2867
	hugetlb_fault_mutex_table =
2868 2869
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
2870
	BUG_ON(!hugetlb_fault_mutex_table);
2871 2872

	for (i = 0; i < num_fault_mutexes; i++)
2873
		mutex_init(&hugetlb_fault_mutex_table[i]);
2874 2875
	return 0;
}
2876
subsys_initcall(hugetlb_init);
2877 2878

/* Should be called on processing a hugepagesz=... option */
2879 2880 2881 2882 2883
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2884
void __init hugetlb_add_hstate(unsigned int order)
2885 2886
{
	struct hstate *h;
2887 2888
	unsigned long i;

2889
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2890
		pr_warn("hugepagesz= specified twice, ignoring\n");
2891 2892
		return;
	}
2893
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2894
	BUG_ON(order == 0);
2895
	h = &hstates[hugetlb_max_hstate++];
2896 2897
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2898 2899 2900 2901
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2902
	INIT_LIST_HEAD(&h->hugepage_activelist);
2903 2904
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2905 2906
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2907

2908 2909 2910
	parsed_hstate = h;
}

2911
static int __init hugetlb_nrpages_setup(char *s)
2912 2913
{
	unsigned long *mhp;
2914
	static unsigned long *last_mhp;
2915

2916 2917 2918 2919 2920 2921
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2922
	/*
2923
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2924 2925
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2926
	else if (!hugetlb_max_hstate)
2927 2928 2929 2930
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2931
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2932
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2933 2934 2935
		return 1;
	}

2936 2937 2938
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2939 2940 2941 2942 2943
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2944
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2945 2946 2947 2948
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2949 2950
	return 1;
}
2951 2952 2953 2954 2955 2956 2957 2958
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2972 2973 2974
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2975
{
2976
	struct hstate *h = &default_hstate;
2977
	unsigned long tmp = h->max_huge_pages;
2978
	int ret;
2979

2980
	if (!hugepages_supported())
2981
		return -EOPNOTSUPP;
2982

2983 2984
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2985 2986 2987
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2988

2989 2990 2991
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2992 2993
out:
	return ret;
L
Linus Torvalds 已提交
2994
}
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3013
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3014
			void __user *buffer,
3015 3016
			size_t *length, loff_t *ppos)
{
3017
	struct hstate *h = &default_hstate;
3018
	unsigned long tmp;
3019
	int ret;
3020

3021
	if (!hugepages_supported())
3022
		return -EOPNOTSUPP;
3023

3024
	tmp = h->nr_overcommit_huge_pages;
3025

3026
	if (write && hstate_is_gigantic(h))
3027 3028
		return -EINVAL;

3029 3030
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
3031 3032 3033
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3034 3035 3036 3037 3038 3039

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3040 3041
out:
	return ret;
3042 3043
}

L
Linus Torvalds 已提交
3044 3045
#endif /* CONFIG_SYSCTL */

3046
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3047
{
3048 3049 3050
	struct hstate *h;
	unsigned long total = 0;

3051 3052
	if (!hugepages_supported())
		return;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3074 3075 3076 3077
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3078
	struct hstate *h = &default_hstate;
3079 3080
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3081 3082
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3083 3084
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3085 3086 3087
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3088 3089
}

3090 3091 3092 3093 3094
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3095 3096 3097
	if (!hugepages_supported())
		return;

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3108 3109 3110 3111 3112 3113
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3114 3115 3116
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3117 3118 3119 3120 3121 3122
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3123 3124
}

3125
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3148
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3149 3150
			goto out;

3151 3152
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3153 3154 3155 3156 3157 3158
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3159
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3160 3161 3162 3163 3164 3165

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3166 3167
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3168
	struct resv_map *resv = vma_resv_map(vma);
3169 3170 3171 3172 3173

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3174
	 * has a reference to the reservation map it cannot disappear until
3175 3176 3177
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3178
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3179
		kref_get(&resv->refs);
3180 3181
}

3182 3183
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3184
	struct hstate *h = hstate_vma(vma);
3185
	struct resv_map *resv = vma_resv_map(vma);
3186
	struct hugepage_subpool *spool = subpool_vma(vma);
3187
	unsigned long reserve, start, end;
3188
	long gbl_reserve;
3189

3190 3191
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3192

3193 3194
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3195

3196
	reserve = (end - start) - region_count(resv, start, end);
3197

3198 3199 3200
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3201 3202 3203 3204 3205 3206
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3207
	}
3208 3209
}

3210 3211 3212 3213 3214 3215 3216
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3217 3218 3219 3220 3221 3222 3223
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3224 3225 3226 3227 3228 3229
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3230
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3231 3232
{
	BUG();
N
Nick Piggin 已提交
3233
	return 0;
L
Linus Torvalds 已提交
3234 3235
}

3236 3237 3238 3239 3240 3241 3242
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3243
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3244
	.fault = hugetlb_vm_op_fault,
3245
	.open = hugetlb_vm_op_open,
3246
	.close = hugetlb_vm_op_close,
3247
	.split = hugetlb_vm_op_split,
3248
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3249 3250
};

3251 3252
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3253 3254 3255
{
	pte_t entry;

3256
	if (writable) {
3257 3258
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3259
	} else {
3260 3261
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3262 3263 3264
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3265
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3266 3267 3268 3269

	return entry;
}

3270 3271 3272 3273 3274
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3275
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3276
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3277
		update_mmu_cache(vma, address, ptep);
3278 3279
}

3280
bool is_hugetlb_entry_migration(pte_t pte)
3281 3282 3283 3284
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3285
		return false;
3286 3287
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3288
		return true;
3289
	else
3290
		return false;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3305

D
David Gibson 已提交
3306 3307 3308
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3309
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3310
	struct page *ptepage;
3311
	unsigned long addr;
3312
	int cow;
3313 3314
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3315
	struct mmu_notifier_range range;
3316
	int ret = 0;
3317 3318

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3319

3320
	if (cow) {
3321
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3322
					vma->vm_start,
3323 3324 3325
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
	}
3326

3327
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3328
		spinlock_t *src_ptl, *dst_ptl;
3329
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3330 3331
		if (!src_pte)
			continue;
3332
		dst_pte = huge_pte_alloc(dst, addr, sz);
3333 3334 3335 3336
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3349 3350
			continue;

3351 3352 3353
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3354
		entry = huge_ptep_get(src_pte);
3355 3356 3357 3358 3359 3360 3361
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3374 3375
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3376
			}
3377
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3378
		} else {
3379
			if (cow) {
3380 3381 3382 3383 3384
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3385
				 * See Documentation/vm/mmu_notifier.rst
3386
				 */
3387
				huge_ptep_set_wrprotect(src, addr, src_pte);
3388
			}
3389
			entry = huge_ptep_get(src_pte);
3390 3391
			ptepage = pte_page(entry);
			get_page(ptepage);
3392
			page_dup_rmap(ptepage, true);
3393
			set_huge_pte_at(dst, addr, dst_pte, entry);
3394
			hugetlb_count_add(pages_per_huge_page(h), dst);
3395
		}
3396 3397
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3398 3399
	}

3400
	if (cow)
3401
		mmu_notifier_invalidate_range_end(&range);
3402 3403

	return ret;
D
David Gibson 已提交
3404 3405
}

3406 3407 3408
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3409 3410 3411
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3412
	pte_t *ptep;
D
David Gibson 已提交
3413
	pte_t pte;
3414
	spinlock_t *ptl;
D
David Gibson 已提交
3415
	struct page *page;
3416 3417
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3418
	struct mmu_notifier_range range;
3419

D
David Gibson 已提交
3420
	WARN_ON(!is_vm_hugetlb_page(vma));
3421 3422
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3423

3424 3425 3426 3427
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3428
	tlb_change_page_size(tlb, sz);
3429
	tlb_start_vma(tlb, vma);
3430 3431 3432 3433

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3434 3435
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3436 3437
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3438 3439
	address = start;
	for (; address < end; address += sz) {
3440
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3441
		if (!ptep)
3442 3443
			continue;

3444
		ptl = huge_pte_lock(h, mm, ptep);
3445 3446
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
3447 3448 3449 3450
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3451 3452
			continue;
		}
3453

3454
		pte = huge_ptep_get(ptep);
3455 3456 3457 3458
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3459 3460

		/*
3461 3462
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3463
		 */
3464
		if (unlikely(!pte_present(pte))) {
3465
			huge_pte_clear(mm, address, ptep, sz);
3466 3467
			spin_unlock(ptl);
			continue;
3468
		}
3469 3470

		page = pte_page(pte);
3471 3472 3473 3474 3475 3476
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3477 3478 3479 3480
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3481 3482 3483 3484 3485 3486 3487 3488
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3489
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3490
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3491
		if (huge_pte_dirty(pte))
3492
			set_page_dirty(page);
3493

3494
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3495
		page_remove_rmap(page, true);
3496

3497
		spin_unlock(ptl);
3498
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3499 3500 3501 3502 3503
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3504
	}
3505
	mmu_notifier_invalidate_range_end(&range);
3506
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3507
}
D
David Gibson 已提交
3508

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3521
	 * is to clear it before releasing the i_mmap_rwsem. This works
3522
	 * because in the context this is called, the VMA is about to be
3523
	 * destroyed and the i_mmap_rwsem is held.
3524 3525 3526 3527
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3528
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3529
			  unsigned long end, struct page *ref_page)
3530
{
3531 3532
	struct mm_struct *mm;
	struct mmu_gather tlb;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3544 3545 3546

	mm = vma->vm_mm;

3547
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3548
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3549
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3550 3551
}

3552 3553 3554 3555 3556 3557
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3558 3559
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3560
{
3561
	struct hstate *h = hstate_vma(vma);
3562 3563 3564 3565 3566 3567 3568 3569
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3570
	address = address & huge_page_mask(h);
3571 3572
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3573
	mapping = vma->vm_file->f_mapping;
3574

3575 3576 3577 3578 3579
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3580
	i_mmap_lock_write(mapping);
3581
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3582 3583 3584 3585
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3586 3587 3588 3589 3590 3591 3592 3593
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3594 3595 3596 3597 3598 3599 3600 3601
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3602 3603
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3604
	}
3605
	i_mmap_unlock_write(mapping);
3606 3607
}

3608 3609
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3610 3611 3612
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3613
 */
3614
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3615
		       unsigned long address, pte_t *ptep,
3616
		       struct page *pagecache_page, spinlock_t *ptl)
3617
{
3618
	pte_t pte;
3619
	struct hstate *h = hstate_vma(vma);
3620
	struct page *old_page, *new_page;
3621 3622
	int outside_reserve = 0;
	vm_fault_t ret = 0;
3623
	unsigned long haddr = address & huge_page_mask(h);
3624
	struct mmu_notifier_range range;
3625

3626
	pte = huge_ptep_get(ptep);
3627 3628
	old_page = pte_page(pte);

3629
retry_avoidcopy:
3630 3631
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3632
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3633
		page_move_anon_rmap(old_page, vma);
3634
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
3635
		return 0;
3636 3637
	}

3638 3639 3640 3641 3642 3643 3644 3645 3646
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3647
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3648 3649 3650
			old_page != pagecache_page)
		outside_reserve = 1;

3651
	get_page(old_page);
3652

3653 3654 3655 3656
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3657
	spin_unlock(ptl);
3658
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3659

3660
	if (IS_ERR(new_page)) {
3661 3662 3663 3664 3665 3666 3667 3668
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3669
			put_page(old_page);
3670
			BUG_ON(huge_pte_none(pte));
3671
			unmap_ref_private(mm, vma, old_page, haddr);
3672 3673
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3674
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3675 3676 3677 3678 3679 3680 3681 3682
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3683 3684
		}

3685
		ret = vmf_error(PTR_ERR(new_page));
3686
		goto out_release_old;
3687 3688
	}

3689 3690 3691 3692
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3693
	if (unlikely(anon_vma_prepare(vma))) {
3694 3695
		ret = VM_FAULT_OOM;
		goto out_release_all;
3696
	}
3697

3698
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
3699
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3700
	__SetPageUptodate(new_page);
3701

3702
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3703
				haddr + huge_page_size(h));
3704
	mmu_notifier_invalidate_range_start(&range);
3705

3706
	/*
3707
	 * Retake the page table lock to check for racing updates
3708 3709
	 * before the page tables are altered
	 */
3710
	spin_lock(ptl);
3711
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3712
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3713 3714
		ClearPagePrivate(new_page);

3715
		/* Break COW */
3716
		huge_ptep_clear_flush(vma, haddr, ptep);
3717
		mmu_notifier_invalidate_range(mm, range.start, range.end);
3718
		set_huge_pte_at(mm, haddr, ptep,
3719
				make_huge_pte(vma, new_page, 1));
3720
		page_remove_rmap(old_page, true);
3721
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3722
		set_page_huge_active(new_page);
3723 3724 3725
		/* Make the old page be freed below */
		new_page = old_page;
	}
3726
	spin_unlock(ptl);
3727
	mmu_notifier_invalidate_range_end(&range);
3728
out_release_all:
3729
	restore_reserve_on_error(h, vma, haddr, new_page);
3730
	put_page(new_page);
3731
out_release_old:
3732
	put_page(old_page);
3733

3734 3735
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3736 3737
}

3738
/* Return the pagecache page at a given address within a VMA */
3739 3740
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3741 3742
{
	struct address_space *mapping;
3743
	pgoff_t idx;
3744 3745

	mapping = vma->vm_file->f_mapping;
3746
	idx = vma_hugecache_offset(h, vma, address);
3747 3748 3749 3750

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3751 3752 3753 3754 3755
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

3782 3783 3784 3785 3786 3787
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

3788 3789 3790 3791 3792 3793
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3794 3795 3796 3797
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
3798
{
3799
	struct hstate *h = hstate_vma(vma);
3800
	vm_fault_t ret = VM_FAULT_SIGBUS;
3801
	int anon_rmap = 0;
A
Adam Litke 已提交
3802 3803
	unsigned long size;
	struct page *page;
3804
	pte_t new_pte;
3805
	spinlock_t *ptl;
3806
	unsigned long haddr = address & huge_page_mask(h);
3807
	bool new_page = false;
A
Adam Litke 已提交
3808

3809 3810 3811
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3812
	 * COW. Warn that such a situation has occurred as it may not be obvious
3813 3814
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3815
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3816
			   current->pid);
3817 3818 3819
		return ret;
	}

A
Adam Litke 已提交
3820
	/*
3821 3822
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
A
Adam Litke 已提交
3823
	 */
3824 3825 3826
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3827 3828 3829 3830
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

3831 3832 3833 3834 3835 3836 3837
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
3838
				.address = haddr,
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
3850 3851 3852
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
3853
			 */
3854
			hash = hugetlb_fault_mutex_hash(mapping, idx);
3855 3856 3857 3858 3859 3860
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3861
		page = alloc_huge_page(vma, haddr, 0);
3862
		if (IS_ERR(page)) {
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
3882
			ret = vmf_error(PTR_ERR(page));
3883 3884
			goto out;
		}
A
Andrea Arcangeli 已提交
3885
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3886
		__SetPageUptodate(page);
3887
		new_page = true;
3888

3889
		if (vma->vm_flags & VM_MAYSHARE) {
3890
			int err = huge_add_to_page_cache(page, mapping, idx);
3891 3892 3893 3894 3895 3896
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3897
		} else {
3898
			lock_page(page);
3899 3900 3901 3902
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3903
			anon_rmap = 1;
3904
		}
3905
	} else {
3906 3907 3908 3909 3910 3911
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3912
			ret = VM_FAULT_HWPOISON |
3913
				VM_FAULT_SET_HINDEX(hstate_index(h));
3914 3915
			goto backout_unlocked;
		}
3916
	}
3917

3918 3919 3920 3921 3922 3923
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3924
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3925
		if (vma_needs_reservation(h, vma, haddr) < 0) {
3926 3927 3928
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3929
		/* Just decrements count, does not deallocate */
3930
		vma_end_reservation(h, vma, haddr);
3931
	}
3932

3933
	ptl = huge_pte_lock(h, mm, ptep);
3934 3935 3936
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;
A
Adam Litke 已提交
3937

N
Nick Piggin 已提交
3938
	ret = 0;
3939
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3940 3941
		goto backout;

3942 3943
	if (anon_rmap) {
		ClearPagePrivate(page);
3944
		hugepage_add_new_anon_rmap(page, vma, haddr);
3945
	} else
3946
		page_dup_rmap(page, true);
3947 3948
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
3949
	set_huge_pte_at(mm, haddr, ptep, new_pte);
3950

3951
	hugetlb_count_add(pages_per_huge_page(h), mm);
3952
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3953
		/* Optimization, do the COW without a second fault */
3954
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3955 3956
	}

3957
	spin_unlock(ptl);
3958 3959 3960 3961 3962 3963 3964 3965 3966

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
3967 3968
	unlock_page(page);
out:
3969
	return ret;
A
Adam Litke 已提交
3970 3971

backout:
3972
	spin_unlock(ptl);
3973
backout_unlocked:
A
Adam Litke 已提交
3974
	unlock_page(page);
3975
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
3976 3977
	put_page(page);
	goto out;
3978 3979
}

3980
#ifdef CONFIG_SMP
3981
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3982 3983 3984 3985
{
	unsigned long key[2];
	u32 hash;

3986 3987
	key[0] = (unsigned long) mapping;
	key[1] = idx;
3988

3989
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3990 3991 3992 3993 3994 3995 3996 3997

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3998
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3999 4000 4001 4002 4003
{
	return 0;
}
#endif

4004
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4005
			unsigned long address, unsigned int flags)
4006
{
4007
	pte_t *ptep, entry;
4008
	spinlock_t *ptl;
4009
	vm_fault_t ret;
4010 4011
	u32 hash;
	pgoff_t idx;
4012
	struct page *page = NULL;
4013
	struct page *pagecache_page = NULL;
4014
	struct hstate *h = hstate_vma(vma);
4015
	struct address_space *mapping;
4016
	int need_wait_lock = 0;
4017
	unsigned long haddr = address & huge_page_mask(h);
4018

4019
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4020 4021
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4022
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4023
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4024 4025
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4026
			return VM_FAULT_HWPOISON_LARGE |
4027
				VM_FAULT_SET_HINDEX(hstate_index(h));
4028 4029 4030 4031
	} else {
		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
4032 4033
	}

4034
	mapping = vma->vm_file->f_mapping;
4035
	idx = vma_hugecache_offset(h, vma, haddr);
4036

4037 4038 4039 4040 4041
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4042
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4043
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4044

4045 4046
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4047
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4048
		goto out_mutex;
4049
	}
4050

N
Nick Piggin 已提交
4051
	ret = 0;
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

4063 4064 4065 4066 4067 4068 4069 4070
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4071
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4072
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4073
			ret = VM_FAULT_OOM;
4074
			goto out_mutex;
4075
		}
4076
		/* Just decrements count, does not deallocate */
4077
		vma_end_reservation(h, vma, haddr);
4078

4079
		if (!(vma->vm_flags & VM_MAYSHARE))
4080
			pagecache_page = hugetlbfs_pagecache_page(h,
4081
								vma, haddr);
4082 4083
	}

4084 4085 4086 4087 4088 4089
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4090 4091 4092 4093 4094 4095 4096
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4097 4098 4099 4100
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4101

4102
	get_page(page);
4103

4104
	if (flags & FAULT_FLAG_WRITE) {
4105
		if (!huge_pte_write(entry)) {
4106
			ret = hugetlb_cow(mm, vma, address, ptep,
4107
					  pagecache_page, ptl);
4108
			goto out_put_page;
4109
		}
4110
		entry = huge_pte_mkdirty(entry);
4111 4112
	}
	entry = pte_mkyoung(entry);
4113
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4114
						flags & FAULT_FLAG_WRITE))
4115
		update_mmu_cache(vma, haddr, ptep);
4116 4117 4118 4119
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4120 4121
out_ptl:
	spin_unlock(ptl);
4122 4123 4124 4125 4126

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4127
out_mutex:
4128
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4129 4130 4131 4132 4133 4134 4135 4136 4137
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4138
	return ret;
4139 4140
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4152 4153 4154
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4155
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4170
						pages_per_huge_page(h), false);
4171 4172 4173

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
4174
			ret = -ENOENT;
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4191 4192 4193
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4194 4195 4196 4197
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4198 4199 4200 4201
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4202

4203 4204 4205 4206 4207 4208
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4209 4210 4211 4212 4213
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4214 4215 4216
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4231 4232 4233 4234
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4235 4236 4237 4238 4239 4240
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4257
	set_page_huge_active(page);
4258 4259
	if (vm_shared)
		unlock_page(page);
4260 4261 4262 4263 4264
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4265 4266
	if (vm_shared)
		unlock_page(page);
4267
out_release_nounlock:
4268 4269 4270 4271
	put_page(page);
	goto out;
}

4272 4273 4274
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4275
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4276
{
4277 4278
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4279
	unsigned long remainder = *nr_pages;
4280
	struct hstate *h = hstate_vma(vma);
4281
	int err = -EFAULT;
D
David Gibson 已提交
4282 4283

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4284
		pte_t *pte;
4285
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4286
		int absent;
A
Adam Litke 已提交
4287
		struct page *page;
D
David Gibson 已提交
4288

4289 4290 4291 4292
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4293
		if (fatal_signal_pending(current)) {
4294 4295 4296 4297
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4298 4299
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4300
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4301
		 * first, for the page indexing below to work.
4302 4303
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4304
		 */
4305 4306
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4307 4308
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4309 4310 4311 4312
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4313 4314 4315 4316
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4317
		 */
H
Hugh Dickins 已提交
4318 4319
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4320 4321
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4322 4323 4324
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4337 4338
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4339
			vm_fault_t ret;
4340
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4341

4342 4343
			if (pte)
				spin_unlock(ptl);
4344 4345
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4346
			if (locked)
4347 4348 4349 4350 4351
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4352 4353 4354 4355
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4356 4357 4358 4359
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4360
				err = vm_fault_to_errno(ret, flags);
4361 4362 4363 4364
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4365
				if (locked &&
4366
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4367
					*locked = 0;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4381 4382
		}

4383
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4384
		page = pte_page(huge_ptep_get(pte));
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4400
same_page:
4401
		if (pages) {
H
Hugh Dickins 已提交
4402
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4419
		}
D
David Gibson 已提交
4420 4421 4422 4423 4424

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4425
		++pfn_offset;
D
David Gibson 已提交
4426 4427
		--remainder;
		++i;
4428
		if (vaddr < vma->vm_end && remainder &&
4429
				pfn_offset < pages_per_huge_page(h)) {
4430 4431 4432 4433 4434 4435
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4436
		spin_unlock(ptl);
D
David Gibson 已提交
4437
	}
4438
	*nr_pages = remainder;
4439 4440 4441 4442 4443
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4444 4445
	*position = vaddr;

4446
	return i ? i : err;
D
David Gibson 已提交
4447
}
4448

4449 4450 4451 4452 4453 4454 4455 4456
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4457
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4458 4459 4460 4461 4462 4463
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4464
	struct hstate *h = hstate_vma(vma);
4465
	unsigned long pages = 0;
4466
	bool shared_pmd = false;
4467
	struct mmu_notifier_range range;
4468 4469 4470

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4471
	 * start/end.  Set range.start/range.end to cover the maximum possible
4472 4473
	 * range if PMD sharing is possible.
	 */
4474 4475
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
4476
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4477 4478

	BUG_ON(address >= end);
4479
	flush_cache_range(vma, range.start, range.end);
4480

4481
	mmu_notifier_invalidate_range_start(&range);
4482
	i_mmap_lock_write(vma->vm_file->f_mapping);
4483
	for (; address < end; address += huge_page_size(h)) {
4484
		spinlock_t *ptl;
4485
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4486 4487
		if (!ptep)
			continue;
4488
		ptl = huge_pte_lock(h, mm, ptep);
4489 4490
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4491
			spin_unlock(ptl);
4492
			shared_pmd = true;
4493
			continue;
4494
		}
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4508 4509
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4510 4511 4512 4513 4514 4515
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4516 4517 4518 4519
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4520
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4521
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4522
			pages++;
4523
		}
4524
		spin_unlock(ptl);
4525
	}
4526
	/*
4527
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4528
	 * may have cleared our pud entry and done put_page on the page table:
4529
	 * once we release i_mmap_rwsem, another task can do the final put_page
4530 4531
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
4532
	 */
4533
	if (shared_pmd)
4534
		flush_hugetlb_tlb_range(vma, range.start, range.end);
4535 4536
	else
		flush_hugetlb_tlb_range(vma, start, end);
4537 4538 4539 4540
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
4541
	 * See Documentation/vm/mmu_notifier.rst
4542
	 */
4543
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4544
	mmu_notifier_invalidate_range_end(&range);
4545 4546

	return pages << h->order;
4547 4548
}

4549 4550
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4551
					struct vm_area_struct *vma,
4552
					vm_flags_t vm_flags)
4553
{
4554
	long ret, chg;
4555
	struct hstate *h = hstate_inode(inode);
4556
	struct hugepage_subpool *spool = subpool_inode(inode);
4557
	struct resv_map *resv_map;
4558
	long gbl_reserve;
4559

4560 4561 4562 4563 4564 4565
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

4566 4567 4568
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4569
	 * without using reserves
4570
	 */
4571
	if (vm_flags & VM_NORESERVE)
4572 4573
		return 0;

4574 4575 4576 4577 4578 4579
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4580
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4581 4582 4583 4584 4585
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
4586
		resv_map = inode_resv_map(inode);
4587

4588
		chg = region_chg(resv_map, from, to);
4589 4590 4591

	} else {
		resv_map = resv_map_alloc();
4592 4593 4594
		if (!resv_map)
			return -ENOMEM;

4595
		chg = to - from;
4596

4597 4598 4599 4600
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4601 4602 4603 4604
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4605

4606 4607 4608 4609 4610 4611 4612
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4613 4614 4615
		ret = -ENOSPC;
		goto out_err;
	}
4616 4617

	/*
4618
	 * Check enough hugepages are available for the reservation.
4619
	 * Hand the pages back to the subpool if there are not
4620
	 */
4621
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4622
	if (ret < 0) {
4623 4624
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4625
		goto out_err;
K
Ken Chen 已提交
4626
	}
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4657
	return 0;
4658
out_err:
4659
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4660 4661 4662
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4663 4664
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4665
	return ret;
4666 4667
}

4668 4669
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4670
{
4671
	struct hstate *h = hstate_inode(inode);
4672
	struct resv_map *resv_map = inode_resv_map(inode);
4673
	long chg = 0;
4674
	struct hugepage_subpool *spool = subpool_inode(inode);
4675
	long gbl_reserve;
K
Ken Chen 已提交
4676

4677 4678 4679 4680
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4692
	spin_lock(&inode->i_lock);
4693
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4694 4695
	spin_unlock(&inode->i_lock);

4696 4697 4698 4699 4700 4701
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4702 4703

	return 0;
4704
}
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4717 4718
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4732
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4733 4734 4735 4736 4737 4738 4739
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
4740
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4741 4742
		return true;
	return false;
4743 4744
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
	unsigned long check_addr = *start;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
		unsigned long a_start = check_addr & PUD_MASK;
		unsigned long a_end = a_start + PUD_SIZE;

		/*
		 * If sharing is possible, adjust start/end if necessary.
		 */
		if (range_in_vma(vma, a_start, a_end)) {
			if (a_start < *start)
				*start = a_start;
			if (a_end > *end)
				*end = a_end;
		}
	}
}

4774 4775 4776 4777
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
4778 4779 4780 4781
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4793
	spinlock_t *ptl;
4794 4795 4796 4797

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4798
	i_mmap_lock_read(mapping);
4799 4800 4801 4802 4803 4804
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4805 4806
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4817
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4818
	if (pud_none(*pud)) {
4819 4820
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4821
		mm_inc_nr_pmds(mm);
4822
	} else {
4823
		put_page(virt_to_page(spte));
4824
	}
4825
	spin_unlock(ptl);
4826 4827
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4828
	i_mmap_unlock_read(mapping);
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4839
 * called with page table lock held.
4840 4841 4842 4843 4844 4845 4846
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4847 4848
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4849 4850 4851 4852 4853 4854 4855

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4856
	mm_dec_nr_pmds(mm);
4857 4858 4859
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4860 4861 4862 4863 4864 4865
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4866 4867 4868 4869 4870

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4871 4872 4873 4874 4875

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
4876
#define want_pmd_share()	(0)
4877 4878
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4879 4880 4881 4882 4883
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4884
	p4d_t *p4d;
4885 4886 4887 4888
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4889 4890 4891
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
4892
	pud = pud_alloc(mm, p4d, addr);
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4904
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4905 4906 4907 4908

	return pte;
}

4909 4910 4911 4912 4913 4914 4915 4916 4917
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
4918 4919
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4920 4921
{
	pgd_t *pgd;
4922
	p4d_t *p4d;
4923
	pud_t *pud;
4924
	pmd_t *pmd;
4925 4926

	pgd = pgd_offset(mm, addr);
4927 4928 4929 4930 4931
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
4932

4933
	pud = pud_offset(p4d, addr);
4934
	if (sz != PUD_SIZE && pud_none(*pud))
4935
		return NULL;
4936 4937
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
4938
		return (pte_t *)pud;
4939

4940
	pmd = pmd_offset(pud, addr);
4941 4942 4943 4944 4945 4946 4947
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
4948 4949
}

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4963 4964 4965 4966 4967 4968 4969 4970
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4971
struct page * __weak
4972
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4973
		pmd_t *pmd, int flags)
4974
{
4975 4976
	struct page *page = NULL;
	spinlock_t *ptl;
4977
	pte_t pte;
J
John Hubbard 已提交
4978 4979 4980 4981 4982 4983

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

4984 4985 4986 4987 4988 4989 4990 4991 4992
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4993 4994
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4995
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5008
	} else {
5009
		if (is_hugetlb_entry_migration(pte)) {
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5021 5022 5023
	return page;
}

5024
struct page * __weak
5025
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5026
		pud_t *pud, int flags)
5027
{
J
John Hubbard 已提交
5028
	if (flags & (FOLL_GET | FOLL_PIN))
5029
		return NULL;
5030

5031
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5032 5033
}

5034 5035 5036
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5037
	if (flags & (FOLL_GET | FOLL_PIN))
5038 5039 5040 5041 5042
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5043 5044
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5045 5046
	bool ret = true;

5047
	VM_BUG_ON_PAGE(!PageHead(page), page);
5048
	spin_lock(&hugetlb_lock);
5049 5050 5051 5052 5053
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
5054
	list_move_tail(&page->lru, list);
5055
unlock:
5056
	spin_unlock(&hugetlb_lock);
5057
	return ret;
5058 5059 5060 5061
}

void putback_active_hugepage(struct page *page)
{
5062
	VM_BUG_ON_PAGE(!PageHead(page), page);
5063
	spin_lock(&hugetlb_lock);
5064
	set_page_huge_active(page);
5065 5066 5067 5068
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}