hugetlb.c 156.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/mmdebug.h>
23
#include <linux/sched/signal.h>
24
#include <linux/rmap.h>
25
#include <linux/string_helpers.h>
26 27
#include <linux/swap.h>
#include <linux/swapops.h>
28
#include <linux/jhash.h>
29
#include <linux/numa.h>
30
#include <linux/llist.h>
31
#include <linux/cma.h>
32

D
David Gibson 已提交
33 34
#include <asm/page.h>
#include <asm/pgtable.h>
35
#include <asm/tlb.h>
D
David Gibson 已提交
36

37
#include <linux/io.h>
D
David Gibson 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/node.h>
41
#include <linux/userfaultfd_k.h>
42
#include <linux/page_owner.h>
43
#include "internal.h"
L
Linus Torvalds 已提交
44

45
int hugetlb_max_hstate __read_mostly;
46 47
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
48 49 50

static struct cma *hugetlb_cma[MAX_NUMNODES];

51 52 53 54 55
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
56

57 58
__initdata LIST_HEAD(huge_boot_pages);

59 60 61
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
62
static bool __initdata parsed_valid_hugepagesz = true;
63
static bool __initdata parsed_default_hugepagesz;
64

65
/*
66 67
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
68
 */
69
DEFINE_SPINLOCK(hugetlb_lock);
70

71 72 73 74 75
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
76
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
77

78 79 80
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

81 82 83 84 85 86 87
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
88 89 90 91 92 93
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
94
		kfree(spool);
95
	}
96 97
}

98 99
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
100 101 102
{
	struct hugepage_subpool *spool;

103
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
104 105 106 107 108
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
109 110 111 112 113 114 115 116 117
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
118 119 120 121 122 123 124 125 126 127 128 129

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

130 131 132 133 134 135 136 137 138
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139 140
				      long delta)
{
141
	long ret = delta;
142 143

	if (!spool)
144
		return ret;
145 146

	spin_lock(&spool->lock);
147 148 149 150 151 152 153 154

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
155 156
	}

157 158
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
174 175 176
	return ret;
}

177 178 179 180 181 182 183
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184 185
				       long delta)
{
186 187
	long ret = delta;

188
	if (!spool)
189
		return delta;
190 191

	spin_lock(&spool->lock);
192 193 194 195

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

196 197
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
198 199 200 201 202 203 204 205 206 207 208 209 210 211
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
212
	unlock_or_release_subpool(spool);
213 214

	return ret;
215 216 217 218 219 220 221 222 223
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
224
	return subpool_inode(file_inode(vma->vm_file));
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	VM_BUG_ON(!nrg);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

		coalesce_file_region(resv, prg);
		return;
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);

		coalesce_file_region(resv, nrg);
		return;
	}
}

M
Mina Almasry 已提交
325 326
/* Must be called with resv->lock held. Calling this with count_only == true
 * will count the number of pages to be added but will not modify the linked
327 328 329
 * list. If regions_needed != NULL and count_only == true, then regions_needed
 * will indicate the number of file_regions needed in the cache to carry out to
 * add the regions for this range.
M
Mina Almasry 已提交
330 331
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
332 333 334
				     struct hugetlb_cgroup *h_cg,
				     struct hstate *h, long *regions_needed,
				     bool count_only)
M
Mina Almasry 已提交
335
{
336
	long add = 0;
M
Mina Almasry 已提交
337
	struct list_head *head = &resv->regions;
338
	long last_accounted_offset = f;
M
Mina Almasry 已提交
339 340
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

341 342
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
358

359 360 361
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
362 363 364
		if (rg->from > t)
			break;

365 366 367 368 369 370 371 372
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
			if (!count_only) {
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
373 374
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
375
				list_add(&nrg->link, rg->link.prev);
376
				coalesce_file_region(resv, nrg);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
			} else if (regions_needed)
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
		if (!count_only) {
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
392
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393
			list_add(&nrg->link, rg->link.prev);
394
			coalesce_file_region(resv, nrg);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		} else if (regions_needed)
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
434
		 */
435 436 437 438 439 440 441 442
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
443 444
		}

445 446 447
		spin_lock(&resv->lock);

		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
M
Mina Almasry 已提交
448
			list_del(&rg->link);
449 450
			list_add(&rg->link, &resv->region_cache);
			resv->region_cache_count++;
M
Mina Almasry 已提交
451 452 453
		}
	}

454
	return 0;
M
Mina Almasry 已提交
455

456 457 458 459 460 461
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
462 463
}

464 465
/*
 * Add the huge page range represented by [f, t) to the reserve
466 467 468 469 470
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
471
 *
472 473 474 475 476 477 478 479
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
 * this operation and we were not able to allocate, it ruturns -ENOMEM.
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
480
 */
481
static long region_add(struct resv_map *resv, long f, long t,
482 483
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
484
{
485
	long add = 0, actual_regions_needed = 0;
486

487
	spin_lock(&resv->lock);
488 489 490
retry:

	/* Count how many regions are actually needed to execute this add. */
491 492
	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
				 true);
493

494
	/*
495 496 497 498 499 500 501
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
502
	 */
503 504 505 506 507 508 509 510
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
511

512 513 514 515
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
516

517
		goto retry;
518 519
	}

520
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
521 522

	resv->adds_in_progress -= in_regions_needed;
523

524
	spin_unlock(&resv->lock);
525 526
	VM_BUG_ON(add < 0);
	return add;
527 528
}

529 530 531 532 533 534 535
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
536 537 538 539 540 541 542
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
543 544 545 546 547
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
548
 */
549 550
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
551 552 553
{
	long chg = 0;

554
	spin_lock(&resv->lock);
555

556
	/* Count how many hugepages in this range are NOT respresented. */
557 558
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
				       out_regions_needed, true);
559

560 561
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
562

563 564
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
565

566
	resv->adds_in_progress += *out_regions_needed;
567 568

	spin_unlock(&resv->lock);
569 570 571
	return chg;
}

572 573 574 575 576
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
577 578 579
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
580 581 582 583 584
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
585 586
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
587 588 589
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
590
	resv->adds_in_progress -= regions_needed;
591 592 593
	spin_unlock(&resv->lock);
}

594
/*
595 596 597 598 599 600 601 602 603 604 605 606
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
607
 */
608
static long region_del(struct resv_map *resv, long f, long t)
609
{
610
	struct list_head *head = &resv->regions;
611
	struct file_region *rg, *trg;
612 613
	struct file_region *nrg = NULL;
	long del = 0;
614

615
retry:
616
	spin_lock(&resv->lock);
617
	list_for_each_entry_safe(rg, trg, head, link) {
618 619 620 621 622 623 624 625
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
626
			continue;
627

628
		if (rg->from >= t)
629 630
			break;

631 632 633 634 635 636 637 638 639 640 641 642 643
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
644

645 646 647 648 649 650 651 652 653 654 655 656 657
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
658 659 660

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

661 662 663 664 665
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

666 667 668
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, nrg->to - nrg->from);

669 670
			list_add(&nrg->link, &rg->link);
			nrg = NULL;
671
			break;
672 673 674 675
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
676 677
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
678 679 680 681 682 683 684 685
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
686 687 688

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);
689 690 691
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
692 693 694

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
695
		}
696
	}
697 698

	spin_unlock(&resv->lock);
699 700
	kfree(nrg);
	return del;
701 702
}

703 704 705 706 707 708 709 710 711
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
712
void hugetlb_fix_reserve_counts(struct inode *inode)
713 714 715 716 717
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
718
	if (rsv_adjust) {
719 720 721 722 723 724
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

725 726 727 728
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
729
static long region_count(struct resv_map *resv, long f, long t)
730
{
731
	struct list_head *head = &resv->regions;
732 733 734
	struct file_region *rg;
	long chg = 0;

735
	spin_lock(&resv->lock);
736 737
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
738 739
		long seg_from;
		long seg_to;
740 741 742 743 744 745 746 747 748 749 750

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
751
	spin_unlock(&resv->lock);
752 753 754 755

	return chg;
}

756 757 758 759
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
760 761
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
762
{
763 764
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
765 766
}

767 768 769 770 771
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
772
EXPORT_SYMBOL_GPL(linear_hugepage_index);
773

774 775 776 777 778 779
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
780 781 782
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
783
}
784
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
785

786 787 788
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
789 790
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
791
 */
792
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
793 794 795 796
{
	return vma_kernel_pagesize(vma);
}

797 798 799 800 801 802 803
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
804
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
805

806 807 808 809 810 811 812 813 814
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
815 816 817 818 819 820 821 822 823
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
824
 */
825 826 827 828 829 830 831 832 833 834 835
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

855
struct resv_map *resv_map_alloc(void)
856 857
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
858 859 860 861 862
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
863
		return NULL;
864
	}
865 866

	kref_init(&resv_map->refs);
867
	spin_lock_init(&resv_map->lock);
868 869
	INIT_LIST_HEAD(&resv_map->regions);

870
	resv_map->adds_in_progress = 0;
871 872 873 874 875 876 877
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
878 879 880 881 882

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

883 884 885
	return resv_map;
}

886
void resv_map_release(struct kref *ref)
887 888
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
889 890
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
891 892

	/* Clear out any active regions before we release the map. */
893
	region_del(resv_map, 0, LONG_MAX);
894 895 896 897 898 899 900 901 902

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

903 904 905
	kfree(resv_map);
}

906 907
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
908 909 910 911 912 913 914 915 916
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
917 918
}

919
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
920
{
921
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
922 923 924 925 926 927 928
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
929 930
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
931
	}
932 933
}

934
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
935
{
936 937
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
938

939 940
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
941 942 943 944
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
945 946
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947 948

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
949 950 951 952
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
953
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
954 955

	return (get_vma_private_data(vma) & flag) != 0;
956 957
}

958
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
959 960
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
961
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962
	if (!(vma->vm_flags & VM_MAYSHARE))
963 964 965 966
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
967
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
968
{
969 970 971 972 973 974 975 976 977 978 979
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
980
			return true;
981
		else
982
			return false;
983
	}
984 985

	/* Shared mappings always use reserves */
986 987 988 989 990 991 992 993 994 995 996 997 998
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
999 1000 1001 1002 1003

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1025

1026
	return false;
1027 1028
}

1029
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1030 1031
{
	int nid = page_to_nid(page);
1032
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1033 1034
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
1035 1036
}

1037
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1038 1039 1040
{
	struct page *page;

1041
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1042
		if (!PageHWPoison(page))
1043 1044 1045 1046 1047 1048
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
1049
		return NULL;
1050
	list_move(&page->lru, &h->hugepage_activelist);
1051
	set_page_refcounted(page);
1052 1053 1054 1055 1056
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

1057 1058
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1059
{
1060 1061 1062 1063
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1064
	int node = NUMA_NO_NODE;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1082 1083 1084 1085 1086

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1087 1088 1089
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1090 1091 1092
	return NULL;
}

1093 1094 1095
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
1096
	if (hugepage_movable_supported(h))
1097 1098 1099 1100 1101
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

1102 1103
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1104 1105
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1106
{
1107
	struct page *page;
1108
	struct mempolicy *mpol;
1109
	gfp_t gfp_mask;
1110
	nodemask_t *nodemask;
1111
	int nid;
L
Linus Torvalds 已提交
1112

1113 1114 1115 1116 1117
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1118
	if (!vma_has_reserves(vma, chg) &&
1119
			h->free_huge_pages - h->resv_huge_pages == 0)
1120
		goto err;
1121

1122
	/* If reserves cannot be used, ensure enough pages are in the pool */
1123
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1124
		goto err;
1125

1126 1127
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1128 1129 1130 1131
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1132
	}
1133

1134
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1135
	return page;
1136 1137 1138

err:
	return NULL;
L
Linus Torvalds 已提交
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1150
	nid = next_node_in(nid, *nodes_allowed);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1212
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1213
static void destroy_compound_gigantic_page(struct page *page,
1214
					unsigned int order)
1215 1216 1217 1218 1219
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1220
	atomic_set(compound_mapcount_ptr(page), 0);
1221 1222 1223
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);

1224
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225
		clear_compound_head(p);
1226 1227 1228 1229 1230 1231 1232
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1233
static void free_gigantic_page(struct page *page, unsigned int order)
1234
{
1235 1236 1237 1238 1239 1240 1241 1242
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
	if (IS_ENABLED(CONFIG_CMA) &&
	    cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
		return;

1243 1244 1245
	free_contig_range(page_to_pfn(page), 1 << order);
}

1246
#ifdef CONFIG_CONTIG_ALLOC
1247 1248
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1249
{
1250
	unsigned long nr_pages = 1UL << huge_page_order(h);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	if (IS_ENABLED(CONFIG_CMA)) {
		struct page *page;
		int node;

		for_each_node_mask(node, *nodemask) {
			if (!hugetlb_cma[node])
				continue;

			page = cma_alloc(hugetlb_cma[node], nr_pages,
					 huge_page_order(h), true);
			if (page)
				return page;
		}
	}

1267
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1268 1269 1270
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1271
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1272 1273 1274 1275 1276 1277 1278
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1279

1280
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1281
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 1283 1284 1285
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1286
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1287
static inline void destroy_compound_gigantic_page(struct page *page,
1288
						unsigned int order) { }
1289 1290
#endif

1291
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1292 1293
{
	int i;
1294

1295
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1296
		return;
1297

1298 1299 1300
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1301 1302
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1303 1304
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1305
	}
1306
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1307
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1308
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1309
	set_page_refcounted(page);
1310
	if (hstate_is_gigantic(h)) {
1311 1312 1313 1314 1315
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1316 1317
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1318
		spin_lock(&hugetlb_lock);
1319 1320 1321
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1322 1323
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1382
static void __free_huge_page(struct page *page)
1383
{
1384 1385 1386 1387
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1388
	struct hstate *h = page_hstate(page);
1389
	int nid = page_to_nid(page);
1390 1391
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1392
	bool restore_reserve;
1393

1394 1395
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1396 1397 1398

	set_page_private(page, 0);
	page->mapping = NULL;
1399
	restore_reserve = PagePrivate(page);
1400
	ClearPagePrivate(page);
1401

1402
	/*
1403 1404 1405 1406 1407 1408
	 * If PagePrivate() was set on page, page allocation consumed a
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1409
	 */
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1420

1421
	spin_lock(&hugetlb_lock);
1422
	clear_page_huge_active(page);
1423 1424
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1425 1426
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1427 1428 1429
	if (restore_reserve)
		h->resv_huge_pages++;

1430 1431 1432 1433 1434
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1435 1436
		/* remove the page from active list */
		list_del(&page->lru);
1437 1438 1439
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1440
	} else {
1441
		arch_clear_hugepage_flags(page);
1442
		enqueue_huge_page(h, page);
1443
	}
1444 1445 1446
	spin_unlock(&hugetlb_lock);
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1495
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1496
{
1497
	INIT_LIST_HEAD(&page->lru);
1498
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1499
	spin_lock(&hugetlb_lock);
1500
	set_hugetlb_cgroup(page, NULL);
1501
	set_hugetlb_cgroup_rsvd(page, NULL);
1502 1503
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1504 1505 1506
	spin_unlock(&hugetlb_lock);
}

1507
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1508 1509 1510 1511 1512 1513 1514
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1515
	__ClearPageReserved(page);
1516
	__SetPageHead(page);
1517
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1531
		set_page_count(p, 0);
1532
		set_compound_head(p, page);
1533
	}
1534
	atomic_set(compound_mapcount_ptr(page), -1);
1535 1536 1537

	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
1538 1539
}

A
Andrew Morton 已提交
1540 1541 1542 1543 1544
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1545 1546 1547 1548 1549 1550
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1551
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1552
}
1553 1554
EXPORT_SYMBOL_GPL(PageHuge);

1555 1556 1557 1558 1559 1560 1561 1562 1563
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1564
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/*
 * Find address_space associated with hugetlbfs page.
 * Upon entry page is locked and page 'was' mapped although mapped state
 * could change.  If necessary, use anon_vma to find vma and associated
 * address space.  The returned mapping may be stale, but it can not be
 * invalid as page lock (which is held) is required to destroy mapping.
 */
static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
{
	struct anon_vma *anon_vma;
	pgoff_t pgoff_start, pgoff_end;
	struct anon_vma_chain *avc;
	struct address_space *mapping = page_mapping(hpage);

	/* Simple file based mapping */
	if (mapping)
		return mapping;

	/*
	 * Even anonymous hugetlbfs mappings are associated with an
	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
	 * code).  Find a vma associated with the anonymous vma, and
	 * use the file pointer to get address_space.
	 */
	anon_vma = page_lock_anon_vma_read(hpage);
	if (!anon_vma)
		return mapping;  /* NULL */

	/* Use first found vma */
	pgoff_start = page_to_pgoff(hpage);
	pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
					pgoff_start, pgoff_end) {
		struct vm_area_struct *vma = avc->vma;

		mapping = vma->vm_file->f_mapping;
		break;
	}

	anon_vma_unlock_read(anon_vma);
	return mapping;
}

/*
 * Find and lock address space (mapping) in write mode.
 *
 * Upon entry, the page is locked which allows us to find the mapping
 * even in the case of an anon page.  However, locking order dictates
 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
 * specific.  So, we first try to lock the sema while still holding the
 * page lock.  If this works, great!  If not, then we need to drop the
 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
 * course, need to revalidate state along the way.
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
	struct address_space *mapping, *mapping2;

	mapping = _get_hugetlb_page_mapping(hpage);
retry:
	if (!mapping)
		return mapping;

	/*
	 * If no contention, take lock and return
	 */
	if (i_mmap_trylock_write(mapping))
		return mapping;

	/*
	 * Must drop page lock and wait on mapping sema.
	 * Note:  Once page lock is dropped, mapping could become invalid.
	 * As a hack, increase map count until we lock page again.
	 */
	atomic_inc(&hpage->_mapcount);
	unlock_page(hpage);
	i_mmap_lock_write(mapping);
	lock_page(hpage);
	atomic_add_negative(-1, &hpage->_mapcount);

	/* verify page is still mapped */
	if (!page_mapped(hpage)) {
		i_mmap_unlock_write(mapping);
		return NULL;
	}

	/*
	 * Get address space again and verify it is the same one
	 * we locked.  If not, drop lock and retry.
	 */
	mapping2 = _get_hugetlb_page_mapping(hpage);
	if (mapping2 != mapping) {
		i_mmap_unlock_write(mapping);
		mapping = mapping2;
		goto retry;
	}

	return mapping;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1684
static struct page *alloc_buddy_huge_page(struct hstate *h,
1685 1686
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1687
{
1688
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1689
	struct page *page;
1690
	bool alloc_try_hard = true;
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1704 1705 1706 1707 1708 1709 1710
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1728 1729 1730
	return page;
}

1731 1732 1733 1734 1735
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1736 1737
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1738 1739 1740 1741 1742 1743 1744
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1745
				nid, nmask, node_alloc_noretry);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1756 1757 1758 1759
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1760 1761
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1762 1763 1764
{
	struct page *page;
	int nr_nodes, node;
1765
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1766 1767

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1768 1769
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1770
		if (page)
1771 1772 1773
			break;
	}

1774 1775
	if (!page)
		return 0;
1776

1777 1778 1779
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1780 1781
}

1782 1783 1784 1785 1786 1787
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1788 1789
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1790
{
1791
	int nr_nodes, node;
1792 1793
	int ret = 0;

1794
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1795 1796 1797 1798
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1799 1800
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1801
			struct page *page =
1802
				list_entry(h->hugepage_freelists[node].next,
1803 1804 1805
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1806
			h->free_huge_pages_node[node]--;
1807 1808
			if (acct_surplus) {
				h->surplus_huge_pages--;
1809
				h->surplus_huge_pages_node[node]--;
1810
			}
1811 1812
			update_and_free_page(h, page);
			ret = 1;
1813
			break;
1814
		}
1815
	}
1816 1817 1818 1819

	return ret;
}

1820 1821
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1822 1823 1824 1825 1826 1827 1828
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1829
 */
1830
int dissolve_free_huge_page(struct page *page)
1831
{
1832
	int rc = -EBUSY;
1833

1834 1835 1836 1837
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1838
	spin_lock(&hugetlb_lock);
1839 1840 1841 1842 1843 1844
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1845 1846 1847
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1848
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1849
			goto out;
1850 1851 1852 1853 1854 1855 1856 1857
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1858
		list_del(&head->lru);
1859 1860
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1861
		h->max_huge_pages--;
1862
		update_and_free_page(h, head);
1863
		rc = 0;
1864
	}
1865
out:
1866
	spin_unlock(&hugetlb_lock);
1867
	return rc;
1868 1869 1870 1871 1872
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1873 1874
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1875 1876
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1877
 */
1878
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1879 1880
{
	unsigned long pfn;
1881
	struct page *page;
1882
	int rc = 0;
1883

1884
	if (!hugepages_supported())
1885
		return rc;
1886

1887 1888
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1889 1890 1891
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1892
	}
1893 1894

	return rc;
1895 1896
}

1897 1898 1899
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1900
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1901
		int nid, nodemask_t *nmask)
1902
{
1903
	struct page *page = NULL;
1904

1905
	if (hstate_is_gigantic(h))
1906 1907
		return NULL;

1908
	spin_lock(&hugetlb_lock);
1909 1910
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1911 1912
	spin_unlock(&hugetlb_lock);

1913
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1914
	if (!page)
1915
		return NULL;
1916 1917

	spin_lock(&hugetlb_lock);
1918 1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1927
		spin_unlock(&hugetlb_lock);
1928
		put_page(page);
1929
		return NULL;
1930 1931
	} else {
		h->surplus_huge_pages++;
1932
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1933
	}
1934 1935

out_unlock:
1936
	spin_unlock(&hugetlb_lock);
1937 1938 1939 1940

	return page;
}

1941 1942
struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
				     int nid, nodemask_t *nmask)
1943 1944 1945 1946 1947 1948
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1949
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1962 1963 1964
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1965
static
1966
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1967 1968
		struct vm_area_struct *vma, unsigned long addr)
{
1969 1970 1971 1972 1973 1974 1975
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1976
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1977 1978 1979
	mpol_cond_put(mpol);

	return page;
1980 1981
}

1982
/* page migration callback function */
1983 1984
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1985
	gfp_t gfp_mask = htlb_alloc_mask(h);
1986
	struct page *page = NULL;
1987

1988 1989 1990
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1991
	spin_lock(&hugetlb_lock);
1992
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1993
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1994 1995
	spin_unlock(&hugetlb_lock);

1996
	if (!page)
1997
		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1998 1999 2000 2001

	return page;
}

2002
/* page migration callback function */
2003 2004
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
2005
{
2006
	gfp_t gfp_mask = htlb_alloc_mask(h);
2007 2008 2009

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2010 2011 2012 2013 2014 2015
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
2016 2017 2018 2019
		}
	}
	spin_unlock(&hugetlb_lock);

2020
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2021 2022
}

2023
/* mempolicy aware migration callback */
2024 2025
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	page = alloc_huge_page_nodemask(h, node, nodemask);
	mpol_cond_put(mpol);

	return page;
}

2041
/*
L
Lucas De Marchi 已提交
2042
 * Increase the hugetlb pool such that it can accommodate a reservation
2043 2044
 * of size 'delta'.
 */
2045
static int gather_surplus_pages(struct hstate *h, int delta)
2046
	__must_hold(&hugetlb_lock)
2047 2048 2049 2050 2051
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
2052
	bool alloc_ok = true;
2053

2054
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2055
	if (needed <= 0) {
2056
		h->resv_huge_pages += delta;
2057
		return 0;
2058
	}
2059 2060 2061 2062 2063 2064 2065 2066

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
2067
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2068
				NUMA_NO_NODE, NULL);
2069 2070 2071 2072
		if (!page) {
			alloc_ok = false;
			break;
		}
2073
		list_add(&page->lru, &surplus_list);
2074
		cond_resched();
2075
	}
2076
	allocated += i;
2077 2078 2079 2080 2081 2082

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
2083 2084
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2095 2096
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2097
	 * needed to accommodate the reservation.  Add the appropriate number
2098
	 * of pages to the hugetlb pool and free the extras back to the buddy
2099 2100 2101
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2102 2103
	 */
	needed += allocated;
2104
	h->resv_huge_pages += delta;
2105
	ret = 0;
2106

2107
	/* Free the needed pages to the hugetlb pool */
2108
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2109 2110
		if ((--needed) < 0)
			break;
2111 2112 2113 2114 2115
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
2116
		VM_BUG_ON_PAGE(page_count(page), page);
2117
		enqueue_huge_page(h, page);
2118
	}
2119
free:
2120
	spin_unlock(&hugetlb_lock);
2121 2122

	/* Free unnecessary surplus pages to the buddy allocator */
2123 2124
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2125
	spin_lock(&hugetlb_lock);
2126 2127 2128 2129 2130

	return ret;
}

/*
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2143
 */
2144 2145
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2146 2147 2148
{
	unsigned long nr_pages;

2149
	/* Cannot return gigantic pages currently */
2150
	if (hstate_is_gigantic(h))
2151
		goto out;
2152

2153 2154 2155 2156
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2157
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2158

2159 2160
	/*
	 * We want to release as many surplus pages as possible, spread
2161 2162 2163 2164 2165
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
2166 2167 2168 2169
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2170 2171
	 */
	while (nr_pages--) {
2172 2173
		h->resv_huge_pages--;
		unused_resv_pages--;
2174
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2175
			goto out;
2176
		cond_resched_lock(&hugetlb_lock);
2177
	}
2178 2179 2180 2181

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2182 2183
}

2184

2185
/*
2186
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2187
 * are used by the huge page allocation routines to manage reservations.
2188 2189 2190 2191 2192 2193
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2194 2195 2196
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2197 2198 2199 2200 2201 2202
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2203 2204 2205 2206 2207
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2208
 */
2209 2210 2211
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2212
	VMA_END_RESV,
2213
	VMA_ADD_RESV,
2214
};
2215 2216
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2217
				enum vma_resv_mode mode)
2218
{
2219 2220
	struct resv_map *resv;
	pgoff_t idx;
2221
	long ret;
2222
	long dummy_out_regions_needed;
2223

2224 2225
	resv = vma_resv_map(vma);
	if (!resv)
2226
		return 1;
2227

2228
	idx = vma_hugecache_offset(h, vma, addr);
2229 2230
	switch (mode) {
	case VMA_NEEDS_RESV:
2231 2232 2233 2234 2235 2236
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2237 2238
		break;
	case VMA_COMMIT_RESV:
2239
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2240 2241
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2242
		break;
2243
	case VMA_END_RESV:
2244
		region_abort(resv, idx, idx + 1, 1);
2245 2246
		ret = 0;
		break;
2247
	case VMA_ADD_RESV:
2248
		if (vma->vm_flags & VM_MAYSHARE) {
2249
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2250 2251 2252 2253
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2254 2255 2256
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2257 2258 2259
	default:
		BUG();
	}
2260

2261
	if (vma->vm_flags & VM_MAYSHARE)
2262
		return ret;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2282
	else
2283
		return ret < 0 ? ret : 0;
2284
}
2285 2286

static long vma_needs_reservation(struct hstate *h,
2287
			struct vm_area_struct *vma, unsigned long addr)
2288
{
2289
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2290
}
2291

2292 2293 2294
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2295 2296 2297
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2298
static void vma_end_reservation(struct hstate *h,
2299 2300
			struct vm_area_struct *vma, unsigned long addr)
{
2301
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2354
struct page *alloc_huge_page(struct vm_area_struct *vma,
2355
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2356
{
2357
	struct hugepage_subpool *spool = subpool_vma(vma);
2358
	struct hstate *h = hstate_vma(vma);
2359
	struct page *page;
2360 2361
	long map_chg, map_commit;
	long gbl_chg;
2362 2363
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2364
	bool deferred_reserve;
2365

2366
	idx = hstate_index(h);
2367
	/*
2368 2369 2370
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2371
	 */
2372 2373
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2374
		return ERR_PTR(-ENOMEM);
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2386
			vma_end_reservation(h, vma, addr);
2387
			return ERR_PTR(-ENOSPC);
2388
		}
L
Linus Torvalds 已提交
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2412
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2413
	if (ret)
2414
		goto out_uncharge_cgroup_reservation;
2415

L
Linus Torvalds 已提交
2416
	spin_lock(&hugetlb_lock);
2417 2418 2419 2420 2421 2422
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2423
	if (!page) {
2424
		spin_unlock(&hugetlb_lock);
2425
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2426 2427
		if (!page)
			goto out_uncharge_cgroup;
2428 2429 2430 2431
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2432 2433
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2434
		/* Fall through */
K
Ken Chen 已提交
2435
	}
2436
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2437 2438 2439 2440 2441 2442 2443 2444
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2445
	spin_unlock(&hugetlb_lock);
2446

2447
	set_page_private(page, (unsigned long)spool);
2448

2449 2450
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2465
	return page;
2466 2467 2468

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2469 2470 2471 2472
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2473
out_subpool_put:
2474
	if (map_chg || avoid_reserve)
2475
		hugepage_subpool_put_pages(spool, 1);
2476
	vma_end_reservation(h, vma, addr);
2477
	return ERR_PTR(-ENOSPC);
2478 2479
}

2480 2481 2482
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2483 2484
{
	struct huge_bootmem_page *m;
2485
	int nr_nodes, node;
2486

2487
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2488 2489
		void *addr;

2490
		addr = memblock_alloc_try_nid_raw(
2491
				huge_page_size(h), huge_page_size(h),
2492
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2493 2494 2495 2496 2497 2498 2499
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2500
			goto found;
2501 2502 2503 2504 2505
		}
	}
	return 0;

found:
2506
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2507
	/* Put them into a private list first because mem_map is not up yet */
2508
	INIT_LIST_HEAD(&m->list);
2509 2510 2511 2512 2513
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2514 2515
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2516 2517 2518 2519 2520 2521 2522
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2523 2524 2525 2526 2527 2528
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2529
		struct page *page = virt_to_page(m);
2530
		struct hstate *h = m->hstate;
2531

2532
		WARN_ON(page_count(page) != 1);
2533
		prep_compound_huge_page(page, h->order);
2534
		WARN_ON(PageReserved(page));
2535
		prep_new_huge_page(h, page, page_to_nid(page));
2536 2537
		put_page(page); /* free it into the hugepage allocator */

2538 2539 2540 2541 2542 2543
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2544
		if (hstate_is_gigantic(h))
2545
			adjust_managed_page_count(page, 1 << h->order);
2546
		cond_resched();
2547 2548 2549
	}
}

2550
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2551 2552
{
	unsigned long i;
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2572

2573
	for (i = 0; i < h->max_huge_pages; ++i) {
2574
		if (hstate_is_gigantic(h)) {
2575 2576 2577 2578
			if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
				break;
			}
2579 2580
			if (!alloc_bootmem_huge_page(h))
				break;
2581
		} else if (!alloc_pool_huge_page(h,
2582 2583
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2584
			break;
2585
		cond_resched();
L
Linus Torvalds 已提交
2586
	}
2587 2588 2589
	if (i < h->max_huge_pages) {
		char buf[32];

2590
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2591 2592 2593 2594
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2595 2596

	kfree(node_alloc_noretry);
2597 2598 2599 2600 2601 2602 2603
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2604 2605 2606
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2607
		/* oversize hugepages were init'ed in early boot */
2608
		if (!hstate_is_gigantic(h))
2609
			hugetlb_hstate_alloc_pages(h);
2610
	}
2611
	VM_BUG_ON(minimum_order == UINT_MAX);
2612 2613 2614 2615 2616 2617 2618
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2619
		char buf[32];
2620 2621

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2622
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2623
			buf, h->free_huge_pages);
2624 2625 2626
	}
}

L
Linus Torvalds 已提交
2627
#ifdef CONFIG_HIGHMEM
2628 2629
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2630
{
2631 2632
	int i;

2633
	if (hstate_is_gigantic(h))
2634 2635
		return;

2636
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2637
		struct page *page, *next;
2638 2639 2640
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2641
				return;
L
Linus Torvalds 已提交
2642 2643 2644
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2645
			update_and_free_page(h, page);
2646 2647
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2648 2649 2650 2651
		}
	}
}
#else
2652 2653
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2654 2655 2656 2657
{
}
#endif

2658 2659 2660 2661 2662
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2663 2664
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2665
{
2666
	int nr_nodes, node;
2667 2668 2669

	VM_BUG_ON(delta != -1 && delta != 1);

2670 2671 2672 2673
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2674
		}
2675 2676 2677 2678 2679
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2680
		}
2681 2682
	}
	return 0;
2683

2684 2685 2686 2687
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2688 2689
}

2690
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2691
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2692
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2693
{
2694
	unsigned long min_count, ret;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2706

2707 2708
	spin_lock(&hugetlb_lock);

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2739
			NODEMASK_FREE(node_alloc_noretry);
2740 2741 2742 2743
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2744

2745 2746 2747 2748
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2749
	 *
2750
	 * We might race with alloc_surplus_huge_page() here and be unable
2751 2752 2753 2754
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2755
	 */
2756
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2757
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2758 2759 2760
			break;
	}

2761
	while (count > persistent_huge_pages(h)) {
2762 2763 2764 2765 2766 2767
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2768 2769 2770 2771

		/* yield cpu to avoid soft lockup */
		cond_resched();

2772 2773
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2774 2775 2776 2777
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2778 2779 2780
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2781 2782 2783 2784 2785 2786 2787 2788
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2789 2790 2791 2792
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2793
	 * alloc_surplus_huge_page() is checking the global counter,
2794 2795 2796
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2797
	 */
2798
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2799
	min_count = max(count, min_count);
2800
	try_to_free_low(h, min_count, nodes_allowed);
2801
	while (min_count < persistent_huge_pages(h)) {
2802
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2803
			break;
2804
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2805
	}
2806
	while (count < persistent_huge_pages(h)) {
2807
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2808 2809 2810
			break;
	}
out:
2811
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2812
	spin_unlock(&hugetlb_lock);
2813

2814 2815
	NODEMASK_FREE(node_alloc_noretry);

2816
	return 0;
L
Linus Torvalds 已提交
2817 2818
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2829 2830 2831
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2832 2833
{
	int i;
2834

2835
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2836 2837 2838
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2839
			return &hstates[i];
2840 2841 2842
		}

	return kobj_to_node_hstate(kobj, nidp);
2843 2844
}

2845
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2846 2847
					struct kobj_attribute *attr, char *buf)
{
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2859
}
2860

2861 2862 2863
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2864 2865
{
	int err;
2866
	nodemask_t nodes_allowed, *n_mask;
2867

2868 2869
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2870

2871 2872 2873 2874 2875
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2876 2877 2878 2879 2880
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2881
		/*
2882 2883
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2884
		 */
2885 2886
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2887
	}
2888

2889
	err = set_max_huge_pages(h, count, nid, n_mask);
2890

2891
	return err ? err : len;
2892 2893
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2911 2912 2913 2914 2915 2916 2917 2918 2919
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2920
	return nr_hugepages_store_common(false, kobj, buf, len);
2921 2922 2923
}
HSTATE_ATTR(nr_hugepages);

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2939
	return nr_hugepages_store_common(true, kobj, buf, len);
2940 2941 2942 2943 2944
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2945 2946 2947
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2948
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2949 2950
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2951

2952 2953 2954 2955 2956
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2957
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2958

2959
	if (hstate_is_gigantic(h))
2960 2961
		return -EINVAL;

2962
	err = kstrtoul(buf, 10, &input);
2963
	if (err)
2964
		return err;
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2988 2989 2990 2991 2992 2993
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2994
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2995 2996 2997 2998 2999 3000 3001
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
3013 3014 3015 3016 3017 3018 3019 3020 3021
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3022 3023 3024
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3025 3026 3027
	NULL,
};

3028
static const struct attribute_group hstate_attr_group = {
3029 3030 3031
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
3032 3033
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3034
				    const struct attribute_group *hstate_attr_group)
3035 3036
{
	int retval;
3037
	int hi = hstate_index(h);
3038

3039 3040
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3041 3042
		return -ENOMEM;

3043
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3044
	if (retval)
3045
		kobject_put(hstate_kobjs[hi]);
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3060 3061
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3062
		if (err)
3063
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3064 3065 3066
	}
}

3067 3068 3069 3070
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3071 3072 3073
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3074 3075 3076 3077 3078 3079
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3080
static struct node_hstate node_hstates[MAX_NUMNODES];
3081 3082

/*
3083
 * A subset of global hstate attributes for node devices
3084 3085 3086 3087 3088 3089 3090 3091
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3092
static const struct attribute_group per_node_hstate_attr_group = {
3093 3094 3095 3096
	.attrs = per_node_hstate_attrs,
};

/*
3097
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3120
 * Unregister hstate attributes from a single node device.
3121 3122
 * No-op if no hstate attributes attached.
 */
3123
static void hugetlb_unregister_node(struct node *node)
3124 3125
{
	struct hstate *h;
3126
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3127 3128

	if (!nhs->hugepages_kobj)
3129
		return;		/* no hstate attributes */
3130

3131 3132 3133 3134 3135
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3136
		}
3137
	}
3138 3139 3140 3141 3142 3143 3144

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3145
 * Register hstate attributes for a single node device.
3146 3147
 * No-op if attributes already registered.
 */
3148
static void hugetlb_register_node(struct node *node)
3149 3150
{
	struct hstate *h;
3151
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3152 3153 3154 3155 3156 3157
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3158
							&node->dev.kobj);
3159 3160 3161 3162 3163 3164 3165 3166
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3167
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3168
				h->name, node->dev.id);
3169 3170 3171 3172 3173 3174 3175
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3176
 * hugetlb init time:  register hstate attributes for all registered node
3177 3178
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3179
 */
3180
static void __init hugetlb_register_all_nodes(void)
3181 3182 3183
{
	int nid;

3184
	for_each_node_state(nid, N_MEMORY) {
3185
		struct node *node = node_devices[nid];
3186
		if (node->dev.id == nid)
3187 3188 3189 3190
			hugetlb_register_node(node);
	}

	/*
3191
	 * Let the node device driver know we're here so it can
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3211 3212
static int __init hugetlb_init(void)
{
3213 3214
	int i;

3215 3216 3217
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3218
		return 0;
3219
	}
3220

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3249
		}
3250
	}
3251

3252
	hugetlb_cma_check();
3253
	hugetlb_init_hstates();
3254
	gather_bootmem_prealloc();
3255 3256 3257
	report_hugepages();

	hugetlb_sysfs_init();
3258
	hugetlb_register_all_nodes();
3259
	hugetlb_cgroup_file_init();
3260

3261 3262 3263 3264 3265
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3266
	hugetlb_fault_mutex_table =
3267 3268
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3269
	BUG_ON(!hugetlb_fault_mutex_table);
3270 3271

	for (i = 0; i < num_fault_mutexes; i++)
3272
		mutex_init(&hugetlb_fault_mutex_table[i]);
3273 3274
	return 0;
}
3275
subsys_initcall(hugetlb_init);
3276

3277 3278
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3279
{
3280
	return size == HPAGE_SIZE;
3281 3282
}

3283
void __init hugetlb_add_hstate(unsigned int order)
3284 3285
{
	struct hstate *h;
3286 3287
	unsigned long i;

3288 3289 3290
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3291
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3292
	BUG_ON(order == 0);
3293
	h = &hstates[hugetlb_max_hstate++];
3294 3295
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3296 3297 3298 3299
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3300
	INIT_LIST_HEAD(&h->hugepage_activelist);
3301 3302
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3303 3304
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3305

3306 3307 3308
	parsed_hstate = h;
}

3309 3310 3311 3312 3313 3314 3315 3316
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3317 3318
{
	unsigned long *mhp;
3319
	static unsigned long *last_mhp;
3320

3321
	if (!parsed_valid_hugepagesz) {
3322
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3323
		parsed_valid_hugepagesz = true;
3324
		return 0;
3325
	}
3326

3327
	/*
3328 3329 3330 3331
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3332
	 */
3333
	else if (!hugetlb_max_hstate)
3334 3335 3336 3337
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3338
	if (mhp == last_mhp) {
3339 3340
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3341 3342
	}

3343 3344 3345
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3346 3347 3348 3349 3350
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3351
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3352 3353 3354 3355
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3356 3357
	return 1;
}
3358
__setup("hugepages=", hugepages_setup);
3359

3360 3361 3362 3363 3364 3365 3366
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3367
static int __init hugepagesz_setup(char *s)
3368
{
3369
	unsigned long size;
3370 3371 3372
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3373 3374 3375
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3376
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3377 3378 3379
		return 0;
	}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3403 3404
	}

3405
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3406
	parsed_valid_hugepagesz = true;
3407 3408
	return 1;
}
3409 3410
__setup("hugepagesz=", hugepagesz_setup);

3411 3412 3413 3414
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3415
static int __init default_hugepagesz_setup(char *s)
3416
{
3417 3418
	unsigned long size;

3419 3420 3421 3422 3423 3424
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3425 3426 3427
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3428
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3429 3430 3431
		return 0;
	}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3451 3452
	return 1;
}
3453
__setup("default_hugepagesz=", default_hugepagesz_setup);
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
3467 3468
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3469
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3470
{
3471
	struct hstate *h = &default_hstate;
3472
	unsigned long tmp = h->max_huge_pages;
3473
	int ret;
3474

3475
	if (!hugepages_supported())
3476
		return -EOPNOTSUPP;
3477

3478 3479
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
3480 3481 3482
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3483

3484 3485 3486
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3487 3488
out:
	return ret;
L
Linus Torvalds 已提交
3489
}
3490

3491
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3492
			  void *buffer, size_t *length, loff_t *ppos)
3493 3494 3495 3496 3497 3498 3499 3500
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3501
			  void *buffer, size_t *length, loff_t *ppos)
3502 3503 3504 3505 3506 3507
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3508
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3509
		void *buffer, size_t *length, loff_t *ppos)
3510
{
3511
	struct hstate *h = &default_hstate;
3512
	unsigned long tmp;
3513
	int ret;
3514

3515
	if (!hugepages_supported())
3516
		return -EOPNOTSUPP;
3517

3518
	tmp = h->nr_overcommit_huge_pages;
3519

3520
	if (write && hstate_is_gigantic(h))
3521 3522
		return -EINVAL;

3523 3524
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
3525 3526 3527
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3528 3529 3530 3531 3532 3533

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3534 3535
out:
	return ret;
3536 3537
}

L
Linus Torvalds 已提交
3538 3539
#endif /* CONFIG_SYSCTL */

3540
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3541
{
3542 3543 3544
	struct hstate *h;
	unsigned long total = 0;

3545 3546
	if (!hugepages_supported())
		return;
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3568 3569 3570 3571
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3572
	struct hstate *h = &default_hstate;
3573 3574
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3575 3576
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3577 3578
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3579 3580 3581
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3582 3583
}

3584 3585 3586 3587 3588
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3589 3590 3591
	if (!hugepages_supported())
		return;

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3602 3603 3604 3605 3606 3607
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3608 3609 3610
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3611 3612 3613 3614 3615 3616
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3617 3618
}

3619
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3642
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3643 3644
			goto out;

3645 3646
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3647 3648 3649 3650 3651 3652
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3653
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3654 3655 3656 3657 3658 3659

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3660 3661
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3662
	struct resv_map *resv = vma_resv_map(vma);
3663 3664 3665 3666 3667

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3668
	 * has a reference to the reservation map it cannot disappear until
3669 3670 3671
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3672
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3673
		kref_get(&resv->refs);
3674 3675
}

3676 3677
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3678
	struct hstate *h = hstate_vma(vma);
3679
	struct resv_map *resv = vma_resv_map(vma);
3680
	struct hugepage_subpool *spool = subpool_vma(vma);
3681
	unsigned long reserve, start, end;
3682
	long gbl_reserve;
3683

3684 3685
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3686

3687 3688
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3689

3690
	reserve = (end - start) - region_count(resv, start, end);
3691
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3692
	if (reserve) {
3693 3694 3695 3696 3697 3698
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3699
	}
3700 3701

	kref_put(&resv->refs, resv_map_release);
3702 3703
}

3704 3705 3706 3707 3708 3709 3710
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3711 3712 3713 3714 3715 3716 3717
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3724
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3725 3726
{
	BUG();
N
Nick Piggin 已提交
3727
	return 0;
L
Linus Torvalds 已提交
3728 3729
}

3730 3731 3732 3733 3734 3735 3736
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3737
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3738
	.fault = hugetlb_vm_op_fault,
3739
	.open = hugetlb_vm_op_open,
3740
	.close = hugetlb_vm_op_close,
3741
	.split = hugetlb_vm_op_split,
3742
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3743 3744
};

3745 3746
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3747 3748 3749
{
	pte_t entry;

3750
	if (writable) {
3751 3752
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3753
	} else {
3754 3755
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3756 3757 3758
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3759
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3760 3761 3762 3763

	return entry;
}

3764 3765 3766 3767 3768
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3769
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3770
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3771
		update_mmu_cache(vma, address, ptep);
3772 3773
}

3774
bool is_hugetlb_entry_migration(pte_t pte)
3775 3776 3777 3778
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3779
		return false;
3780 3781
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3782
		return true;
3783
	else
3784
		return false;
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3799

D
David Gibson 已提交
3800 3801 3802
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3803
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3804
	struct page *ptepage;
3805
	unsigned long addr;
3806
	int cow;
3807 3808
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3809
	struct address_space *mapping = vma->vm_file->f_mapping;
3810
	struct mmu_notifier_range range;
3811
	int ret = 0;
3812 3813

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3814

3815
	if (cow) {
3816
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3817
					vma->vm_start,
3818 3819
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3820 3821 3822 3823 3824 3825 3826 3827
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3828
	}
3829

3830
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3831
		spinlock_t *src_ptl, *dst_ptl;
3832
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3833 3834
		if (!src_pte)
			continue;
3835
		dst_pte = huge_pte_alloc(dst, addr, sz);
3836 3837 3838 3839
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3852 3853
			continue;

3854 3855 3856
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3857
		entry = huge_ptep_get(src_pte);
3858 3859 3860 3861 3862 3863 3864
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3877 3878
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3879
			}
3880
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3881
		} else {
3882
			if (cow) {
3883 3884 3885 3886 3887
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3888
				 * See Documentation/vm/mmu_notifier.rst
3889
				 */
3890
				huge_ptep_set_wrprotect(src, addr, src_pte);
3891
			}
3892
			entry = huge_ptep_get(src_pte);
3893 3894
			ptepage = pte_page(entry);
			get_page(ptepage);
3895
			page_dup_rmap(ptepage, true);
3896
			set_huge_pte_at(dst, addr, dst_pte, entry);
3897
			hugetlb_count_add(pages_per_huge_page(h), dst);
3898
		}
3899 3900
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3901 3902
	}

3903
	if (cow)
3904
		mmu_notifier_invalidate_range_end(&range);
3905 3906
	else
		i_mmap_unlock_read(mapping);
3907 3908

	return ret;
D
David Gibson 已提交
3909 3910
}

3911 3912 3913
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3914 3915 3916
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3917
	pte_t *ptep;
D
David Gibson 已提交
3918
	pte_t pte;
3919
	spinlock_t *ptl;
D
David Gibson 已提交
3920
	struct page *page;
3921 3922
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3923
	struct mmu_notifier_range range;
3924

D
David Gibson 已提交
3925
	WARN_ON(!is_vm_hugetlb_page(vma));
3926 3927
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3928

3929 3930 3931 3932
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3933
	tlb_change_page_size(tlb, sz);
3934
	tlb_start_vma(tlb, vma);
3935 3936 3937 3938

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3939 3940
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3941 3942
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3943 3944
	address = start;
	for (; address < end; address += sz) {
3945
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3946
		if (!ptep)
3947 3948
			continue;

3949
		ptl = huge_pte_lock(h, mm, ptep);
3950 3951
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
3952 3953 3954 3955
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3956 3957
			continue;
		}
3958

3959
		pte = huge_ptep_get(ptep);
3960 3961 3962 3963
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3964 3965

		/*
3966 3967
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3968
		 */
3969
		if (unlikely(!pte_present(pte))) {
3970
			huge_pte_clear(mm, address, ptep, sz);
3971 3972
			spin_unlock(ptl);
			continue;
3973
		}
3974 3975

		page = pte_page(pte);
3976 3977 3978 3979 3980 3981
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3982 3983 3984 3985
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3986 3987 3988 3989 3990 3991 3992 3993
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3994
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3995
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3996
		if (huge_pte_dirty(pte))
3997
			set_page_dirty(page);
3998

3999
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4000
		page_remove_rmap(page, true);
4001

4002
		spin_unlock(ptl);
4003
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4004 4005 4006 4007 4008
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4009
	}
4010
	mmu_notifier_invalidate_range_end(&range);
4011
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4012
}
D
David Gibson 已提交
4013

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4026
	 * is to clear it before releasing the i_mmap_rwsem. This works
4027
	 * because in the context this is called, the VMA is about to be
4028
	 * destroyed and the i_mmap_rwsem is held.
4029 4030 4031 4032
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4033
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4034
			  unsigned long end, struct page *ref_page)
4035
{
4036 4037
	struct mm_struct *mm;
	struct mmu_gather tlb;
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4049 4050 4051

	mm = vma->vm_mm;

4052
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4053
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4054
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4055 4056
}

4057 4058 4059 4060 4061 4062
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4063 4064
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4065
{
4066
	struct hstate *h = hstate_vma(vma);
4067 4068 4069 4070 4071 4072 4073 4074
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4075
	address = address & huge_page_mask(h);
4076 4077
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4078
	mapping = vma->vm_file->f_mapping;
4079

4080 4081 4082 4083 4084
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4085
	i_mmap_lock_write(mapping);
4086
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4087 4088 4089 4090
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4091 4092 4093 4094 4095 4096 4097 4098
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4099 4100 4101 4102 4103 4104 4105 4106
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4107 4108
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4109
	}
4110
	i_mmap_unlock_write(mapping);
4111 4112
}

4113 4114
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4115 4116 4117
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4118
 */
4119
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4120
		       unsigned long address, pte_t *ptep,
4121
		       struct page *pagecache_page, spinlock_t *ptl)
4122
{
4123
	pte_t pte;
4124
	struct hstate *h = hstate_vma(vma);
4125
	struct page *old_page, *new_page;
4126 4127
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4128
	unsigned long haddr = address & huge_page_mask(h);
4129
	struct mmu_notifier_range range;
4130

4131
	pte = huge_ptep_get(ptep);
4132 4133
	old_page = pte_page(pte);

4134
retry_avoidcopy:
4135 4136
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4137
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4138
		page_move_anon_rmap(old_page, vma);
4139
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4140
		return 0;
4141 4142
	}

4143 4144 4145 4146 4147 4148 4149 4150 4151
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4152
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4153 4154 4155
			old_page != pagecache_page)
		outside_reserve = 1;

4156
	get_page(old_page);
4157

4158 4159 4160 4161
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4162
	spin_unlock(ptl);
4163
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4164

4165
	if (IS_ERR(new_page)) {
4166 4167 4168 4169 4170 4171 4172 4173
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4174
			put_page(old_page);
4175
			BUG_ON(huge_pte_none(pte));
4176
			unmap_ref_private(mm, vma, old_page, haddr);
4177 4178
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
4179
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4180 4181 4182 4183 4184 4185 4186 4187
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4188 4189
		}

4190
		ret = vmf_error(PTR_ERR(new_page));
4191
		goto out_release_old;
4192 4193
	}

4194 4195 4196 4197
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4198
	if (unlikely(anon_vma_prepare(vma))) {
4199 4200
		ret = VM_FAULT_OOM;
		goto out_release_all;
4201
	}
4202

4203
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4204
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4205
	__SetPageUptodate(new_page);
4206

4207
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4208
				haddr + huge_page_size(h));
4209
	mmu_notifier_invalidate_range_start(&range);
4210

4211
	/*
4212
	 * Retake the page table lock to check for racing updates
4213 4214
	 * before the page tables are altered
	 */
4215
	spin_lock(ptl);
4216
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4217
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4218 4219
		ClearPagePrivate(new_page);

4220
		/* Break COW */
4221
		huge_ptep_clear_flush(vma, haddr, ptep);
4222
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4223
		set_huge_pte_at(mm, haddr, ptep,
4224
				make_huge_pte(vma, new_page, 1));
4225
		page_remove_rmap(old_page, true);
4226
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4227
		set_page_huge_active(new_page);
4228 4229 4230
		/* Make the old page be freed below */
		new_page = old_page;
	}
4231
	spin_unlock(ptl);
4232
	mmu_notifier_invalidate_range_end(&range);
4233
out_release_all:
4234
	restore_reserve_on_error(h, vma, haddr, new_page);
4235
	put_page(new_page);
4236
out_release_old:
4237
	put_page(old_page);
4238

4239 4240
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4241 4242
}

4243
/* Return the pagecache page at a given address within a VMA */
4244 4245
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4246 4247
{
	struct address_space *mapping;
4248
	pgoff_t idx;
4249 4250

	mapping = vma->vm_file->f_mapping;
4251
	idx = vma_hugecache_offset(h, vma, address);
4252 4253 4254 4255

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4256 4257 4258 4259 4260
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

4287 4288 4289 4290 4291 4292
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4293 4294 4295 4296 4297 4298
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4299 4300 4301 4302
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4303
{
4304
	struct hstate *h = hstate_vma(vma);
4305
	vm_fault_t ret = VM_FAULT_SIGBUS;
4306
	int anon_rmap = 0;
A
Adam Litke 已提交
4307 4308
	unsigned long size;
	struct page *page;
4309
	pte_t new_pte;
4310
	spinlock_t *ptl;
4311
	unsigned long haddr = address & huge_page_mask(h);
4312
	bool new_page = false;
A
Adam Litke 已提交
4313

4314 4315 4316
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4317
	 * COW. Warn that such a situation has occurred as it may not be obvious
4318 4319
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4320
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4321
			   current->pid);
4322 4323 4324
		return ret;
	}

A
Adam Litke 已提交
4325
	/*
4326 4327 4328
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4329
	 */
4330 4331 4332 4333
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4334 4335 4336
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4337 4338 4339 4340 4341 4342 4343
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4344
				.address = haddr,
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4356 4357 4358
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4359
			 */
4360
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4361
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4362
			i_mmap_unlock_read(mapping);
4363
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4364
			i_mmap_lock_read(mapping);
4365 4366 4367 4368
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4369
		page = alloc_huge_page(vma, haddr, 0);
4370
		if (IS_ERR(page)) {
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4390
			ret = vmf_error(PTR_ERR(page));
4391 4392
			goto out;
		}
A
Andrea Arcangeli 已提交
4393
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4394
		__SetPageUptodate(page);
4395
		new_page = true;
4396

4397
		if (vma->vm_flags & VM_MAYSHARE) {
4398
			int err = huge_add_to_page_cache(page, mapping, idx);
4399 4400 4401 4402 4403 4404
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4405
		} else {
4406
			lock_page(page);
4407 4408 4409 4410
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4411
			anon_rmap = 1;
4412
		}
4413
	} else {
4414 4415 4416 4417 4418 4419
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4420
			ret = VM_FAULT_HWPOISON |
4421
				VM_FAULT_SET_HINDEX(hstate_index(h));
4422 4423
			goto backout_unlocked;
		}
4424
	}
4425

4426 4427 4428 4429 4430 4431
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4432
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4433
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4434 4435 4436
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4437
		/* Just decrements count, does not deallocate */
4438
		vma_end_reservation(h, vma, haddr);
4439
	}
4440

4441
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4442
	ret = 0;
4443
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4444 4445
		goto backout;

4446 4447
	if (anon_rmap) {
		ClearPagePrivate(page);
4448
		hugepage_add_new_anon_rmap(page, vma, haddr);
4449
	} else
4450
		page_dup_rmap(page, true);
4451 4452
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4453
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4454

4455
	hugetlb_count_add(pages_per_huge_page(h), mm);
4456
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4457
		/* Optimization, do the COW without a second fault */
4458
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4459 4460
	}

4461
	spin_unlock(ptl);
4462 4463 4464 4465 4466 4467 4468 4469 4470

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
4471 4472
	unlock_page(page);
out:
4473
	return ret;
A
Adam Litke 已提交
4474 4475

backout:
4476
	spin_unlock(ptl);
4477
backout_unlocked:
A
Adam Litke 已提交
4478
	unlock_page(page);
4479
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4480 4481
	put_page(page);
	goto out;
4482 4483
}

4484
#ifdef CONFIG_SMP
4485
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4486 4487 4488 4489
{
	unsigned long key[2];
	u32 hash;

4490 4491
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4492

4493
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4494 4495 4496 4497 4498 4499 4500 4501

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
4502
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4503 4504 4505 4506 4507
{
	return 0;
}
#endif

4508
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4509
			unsigned long address, unsigned int flags)
4510
{
4511
	pte_t *ptep, entry;
4512
	spinlock_t *ptl;
4513
	vm_fault_t ret;
4514 4515
	u32 hash;
	pgoff_t idx;
4516
	struct page *page = NULL;
4517
	struct page *pagecache_page = NULL;
4518
	struct hstate *h = hstate_vma(vma);
4519
	struct address_space *mapping;
4520
	int need_wait_lock = 0;
4521
	unsigned long haddr = address & huge_page_mask(h);
4522

4523
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4524
	if (ptep) {
4525 4526 4527 4528 4529
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4530
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4531
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4532
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4533 4534
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4535
			return VM_FAULT_HWPOISON_LARGE |
4536
				VM_FAULT_SET_HINDEX(hstate_index(h));
4537 4538 4539 4540
	} else {
		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
4541 4542
	}

4543 4544
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4545 4546 4547 4548
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4549 4550 4551 4552 4553
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4554
	mapping = vma->vm_file->f_mapping;
4555 4556 4557 4558 4559 4560
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4561

4562 4563 4564 4565 4566
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4567
	idx = vma_hugecache_offset(h, vma, haddr);
4568
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4569
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4570

4571 4572
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4573
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4574
		goto out_mutex;
4575
	}
4576

N
Nick Piggin 已提交
4577
	ret = 0;
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

4589 4590 4591 4592 4593 4594 4595 4596
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4597
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4598
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4599
			ret = VM_FAULT_OOM;
4600
			goto out_mutex;
4601
		}
4602
		/* Just decrements count, does not deallocate */
4603
		vma_end_reservation(h, vma, haddr);
4604

4605
		if (!(vma->vm_flags & VM_MAYSHARE))
4606
			pagecache_page = hugetlbfs_pagecache_page(h,
4607
								vma, haddr);
4608 4609
	}

4610 4611 4612 4613 4614 4615
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4616 4617 4618 4619 4620 4621 4622
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4623 4624 4625 4626
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4627

4628
	get_page(page);
4629

4630
	if (flags & FAULT_FLAG_WRITE) {
4631
		if (!huge_pte_write(entry)) {
4632
			ret = hugetlb_cow(mm, vma, address, ptep,
4633
					  pagecache_page, ptl);
4634
			goto out_put_page;
4635
		}
4636
		entry = huge_pte_mkdirty(entry);
4637 4638
	}
	entry = pte_mkyoung(entry);
4639
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4640
						flags & FAULT_FLAG_WRITE))
4641
		update_mmu_cache(vma, haddr, ptep);
4642 4643 4644 4645
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4646 4647
out_ptl:
	spin_unlock(ptl);
4648 4649 4650 4651 4652

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4653
out_mutex:
4654
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4655
	i_mmap_unlock_read(mapping);
4656 4657 4658 4659 4660 4661 4662 4663 4664
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4665
	return ret;
4666 4667
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4679 4680 4681
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4682
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4697
						pages_per_huge_page(h), false);
4698 4699 4700

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
4701
			ret = -ENOENT;
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4718 4719 4720
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4721 4722 4723 4724
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4725 4726 4727 4728
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4729

4730 4731 4732 4733 4734 4735
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4736 4737 4738 4739 4740
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4741 4742 4743
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4758 4759 4760 4761
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4762 4763 4764 4765 4766 4767
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4784
	set_page_huge_active(page);
4785 4786
	if (vm_shared)
		unlock_page(page);
4787 4788 4789 4790 4791
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4792 4793
	if (vm_shared)
		unlock_page(page);
4794
out_release_nounlock:
4795 4796 4797 4798
	put_page(page);
	goto out;
}

4799 4800 4801
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4802
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4803
{
4804 4805
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4806
	unsigned long remainder = *nr_pages;
4807
	struct hstate *h = hstate_vma(vma);
4808
	int err = -EFAULT;
D
David Gibson 已提交
4809 4810

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4811
		pte_t *pte;
4812
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4813
		int absent;
A
Adam Litke 已提交
4814
		struct page *page;
D
David Gibson 已提交
4815

4816 4817 4818 4819
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4820
		if (fatal_signal_pending(current)) {
4821 4822 4823 4824
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4825 4826
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4827
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4828
		 * first, for the page indexing below to work.
4829 4830
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4831
		 */
4832 4833
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4834 4835
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4836 4837 4838 4839
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4840 4841 4842 4843
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4844
		 */
H
Hugh Dickins 已提交
4845 4846
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4847 4848
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4849 4850 4851
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4852

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4864 4865
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4866
			vm_fault_t ret;
4867
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4868

4869 4870
			if (pte)
				spin_unlock(ptl);
4871 4872
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4873
			if (locked)
4874 4875
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4876 4877 4878 4879
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4880 4881 4882 4883
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4884 4885 4886 4887
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4888
				err = vm_fault_to_errno(ret, flags);
4889 4890 4891 4892
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4893
				if (locked &&
4894
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4895
					*locked = 0;
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4909 4910
		}

4911
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4912
		page = pte_page(huge_ptep_get(pte));
4913

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4928
same_page:
4929
		if (pages) {
H
Hugh Dickins 已提交
4930
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4947
		}
D
David Gibson 已提交
4948 4949 4950 4951 4952

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4953
		++pfn_offset;
D
David Gibson 已提交
4954 4955
		--remainder;
		++i;
4956
		if (vaddr < vma->vm_end && remainder &&
4957
				pfn_offset < pages_per_huge_page(h)) {
4958 4959 4960 4961 4962 4963
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4964
		spin_unlock(ptl);
D
David Gibson 已提交
4965
	}
4966
	*nr_pages = remainder;
4967 4968 4969 4970 4971
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4972 4973
	*position = vaddr;

4974
	return i ? i : err;
D
David Gibson 已提交
4975
}
4976

4977 4978 4979 4980 4981 4982 4983 4984
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4985
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4986 4987 4988 4989 4990 4991
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4992
	struct hstate *h = hstate_vma(vma);
4993
	unsigned long pages = 0;
4994
	bool shared_pmd = false;
4995
	struct mmu_notifier_range range;
4996 4997 4998

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4999
	 * start/end.  Set range.start/range.end to cover the maximum possible
5000 5001
	 * range if PMD sharing is possible.
	 */
5002 5003
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
5004
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5005 5006

	BUG_ON(address >= end);
5007
	flush_cache_range(vma, range.start, range.end);
5008

5009
	mmu_notifier_invalidate_range_start(&range);
5010
	i_mmap_lock_write(vma->vm_file->f_mapping);
5011
	for (; address < end; address += huge_page_size(h)) {
5012
		spinlock_t *ptl;
5013
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5014 5015
		if (!ptep)
			continue;
5016
		ptl = huge_pte_lock(h, mm, ptep);
5017 5018
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
5019
			spin_unlock(ptl);
5020
			shared_pmd = true;
5021
			continue;
5022
		}
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5036 5037
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5038 5039 5040 5041 5042 5043
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5044 5045 5046 5047
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5048
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5049
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5050
			pages++;
5051
		}
5052
		spin_unlock(ptl);
5053
	}
5054
	/*
5055
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5056
	 * may have cleared our pud entry and done put_page on the page table:
5057
	 * once we release i_mmap_rwsem, another task can do the final put_page
5058 5059
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5060
	 */
5061
	if (shared_pmd)
5062
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5063 5064
	else
		flush_hugetlb_tlb_range(vma, start, end);
5065 5066 5067 5068
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5069
	 * See Documentation/vm/mmu_notifier.rst
5070
	 */
5071
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5072
	mmu_notifier_invalidate_range_end(&range);
5073 5074

	return pages << h->order;
5075 5076
}

5077 5078
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5079
					struct vm_area_struct *vma,
5080
					vm_flags_t vm_flags)
5081
{
5082
	long ret, chg, add = -1;
5083
	struct hstate *h = hstate_inode(inode);
5084
	struct hugepage_subpool *spool = subpool_inode(inode);
5085
	struct resv_map *resv_map;
5086
	struct hugetlb_cgroup *h_cg = NULL;
5087
	long gbl_reserve, regions_needed = 0;
5088

5089 5090 5091 5092 5093 5094
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5095 5096 5097
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5098
	 * without using reserves
5099
	 */
5100
	if (vm_flags & VM_NORESERVE)
5101 5102
		return 0;

5103 5104 5105 5106 5107 5108
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5109
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5110 5111 5112 5113 5114
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5115
		resv_map = inode_resv_map(inode);
5116

5117
		chg = region_chg(resv_map, from, to, &regions_needed);
5118 5119

	} else {
5120
		/* Private mapping. */
5121
		resv_map = resv_map_alloc();
5122 5123 5124
		if (!resv_map)
			return -ENOMEM;

5125
		chg = to - from;
5126

5127 5128 5129 5130
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5131 5132 5133 5134
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5135

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5151 5152 5153 5154 5155 5156 5157
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5158
		ret = -ENOSPC;
5159
		goto out_uncharge_cgroup;
5160
	}
5161 5162

	/*
5163
	 * Check enough hugepages are available for the reservation.
5164
	 * Hand the pages back to the subpool if there are not
5165
	 */
5166
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5167
	if (ret < 0) {
5168
		goto out_put_pages;
K
Ken Chen 已提交
5169
	}
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5182
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5183
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5184 5185 5186

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5187
			goto out_put_pages;
5188
		} else if (unlikely(chg > add)) {
5189 5190 5191 5192 5193 5194 5195 5196 5197
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5198 5199 5200 5201
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5202 5203 5204 5205 5206
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5207
	return 0;
5208 5209 5210 5211 5212 5213
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5214
out_err:
5215
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5216 5217 5218 5219 5220
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5221 5222
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5223
	return ret;
5224 5225
}

5226 5227
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5228
{
5229
	struct hstate *h = hstate_inode(inode);
5230
	struct resv_map *resv_map = inode_resv_map(inode);
5231
	long chg = 0;
5232
	struct hugepage_subpool *spool = subpool_inode(inode);
5233
	long gbl_reserve;
K
Ken Chen 已提交
5234

5235 5236 5237 5238
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5250
	spin_lock(&inode->i_lock);
5251
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5252 5253
	spin_unlock(&inode->i_lock);

5254 5255 5256 5257 5258 5259
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5260 5261

	return 0;
5262
}
5263

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5275 5276
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

5290
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5291 5292 5293 5294 5295 5296 5297
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5298
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5299 5300
		return true;
	return false;
5301 5302
}

5303 5304 5305 5306 5307 5308 5309 5310
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5311
	unsigned long check_addr;
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
		unsigned long a_start = check_addr & PUD_MASK;
		unsigned long a_end = a_start + PUD_SIZE;

		/*
		 * If sharing is possible, adjust start/end if necessary.
		 */
		if (range_in_vma(vma, a_start, a_end)) {
			if (a_start < *start)
				*start = a_start;
			if (a_end > *end)
				*end = a_end;
		}
	}
}

5332 5333 5334 5335
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5336 5337 5338 5339 5340 5341
 * code much cleaner.
 *
 * This routine must be called with i_mmap_rwsem held in at least read mode.
 * For hugetlbfs, this prevents removal of any page table entries associated
 * with the address space.  This is important as we are setting up sharing
 * based on existing page table entries (mappings).
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5353
	spinlock_t *ptl;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5364 5365
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5376
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5377
	if (pud_none(*pud)) {
5378 5379
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5380
		mm_inc_nr_pmds(mm);
5381
	} else {
5382
		put_page(virt_to_page(spte));
5383
	}
5384
	spin_unlock(ptl);
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5397
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5398 5399 5400 5401 5402 5403 5404
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5405 5406
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5407 5408 5409 5410 5411 5412 5413

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5414
	mm_dec_nr_pmds(mm);
5415 5416 5417
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5418 5419 5420 5421 5422 5423
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5424 5425 5426 5427 5428

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
5429 5430 5431 5432 5433

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5434
#define want_pmd_share()	(0)
5435 5436
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5437 5438 5439 5440 5441
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5442
	p4d_t *p4d;
5443 5444 5445 5446
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5447 5448 5449
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5450
	pud = pud_alloc(mm, p4d, addr);
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5462
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5463 5464 5465 5466

	return pte;
}

5467 5468 5469 5470
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5471 5472
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5473 5474 5475
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5476 5477
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5478 5479
{
	pgd_t *pgd;
5480
	p4d_t *p4d;
5481 5482
	pud_t *pud;
	pmd_t *pmd;
5483 5484

	pgd = pgd_offset(mm, addr);
5485 5486 5487 5488 5489
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5490

5491
	pud = pud_offset(p4d, addr);
5492 5493
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5494
		return (pte_t *)pud;
5495
	if (!pud_present(*pud))
5496
		return NULL;
5497
	/* must have a valid entry and size to go further */
5498

5499 5500 5501
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5502 5503
}

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5517 5518 5519 5520 5521 5522 5523 5524
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5525
struct page * __weak
5526
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5527
		pmd_t *pmd, int flags)
5528
{
5529 5530
	struct page *page = NULL;
	spinlock_t *ptl;
5531
	pte_t pte;
J
John Hubbard 已提交
5532 5533 5534 5535 5536 5537

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5538 5539 5540 5541 5542 5543 5544 5545 5546
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5547 5548
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5549
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5562
	} else {
5563
		if (is_hugetlb_entry_migration(pte)) {
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5575 5576 5577
	return page;
}

5578
struct page * __weak
5579
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5580
		pud_t *pud, int flags)
5581
{
J
John Hubbard 已提交
5582
	if (flags & (FOLL_GET | FOLL_PIN))
5583
		return NULL;
5584

5585
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5586 5587
}

5588 5589 5590
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5591
	if (flags & (FOLL_GET | FOLL_PIN))
5592 5593 5594 5595 5596
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5597 5598
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5599 5600
	bool ret = true;

5601
	VM_BUG_ON_PAGE(!PageHead(page), page);
5602
	spin_lock(&hugetlb_lock);
5603 5604 5605 5606 5607
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
5608
	list_move_tail(&page->lru, list);
5609
unlock:
5610
	spin_unlock(&hugetlb_lock);
5611
	return ret;
5612 5613 5614 5615
}

void putback_active_hugepage(struct page *page)
{
5616
	VM_BUG_ON_PAGE(!PageHead(page), page);
5617
	spin_lock(&hugetlb_lock);
5618
	set_page_huge_active(page);
5619 5620 5621 5622
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

#ifdef CONFIG_CMA
static unsigned long hugetlb_cma_size __initdata;
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
						 0, false, "hugetlb",
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */