hugetlb.c 156.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

85 86 87 88 89 90 91
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
92
	 * remain, give up any reservations based on minimum size and
93 94 95 96 97
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
98
		kfree(spool);
99
	}
100 101
}

102 103
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
104 105 106
{
	struct hugepage_subpool *spool;

107
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 109 110 111 112
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
113 114 115 116 117 118 119 120 121
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
122 123 124 125 126 127 128 129 130 131 132 133

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

134 135 136
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
137
 * request.  Otherwise, return the number of pages by which the
138 139
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
140
 * a subpool minimum size must be maintained.
141 142
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 144
				      long delta)
{
145
	long ret = delta;
146 147

	if (!spool)
148
		return ret;
149 150

	spin_lock(&spool->lock);
151 152 153 154 155 156 157 158

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
159 160
	}

161 162
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
178 179 180
	return ret;
}

181 182 183 184 185 186 187
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 189
				       long delta)
{
190 191
	long ret = delta;

192
	if (!spool)
193
		return delta;
194 195

	spin_lock(&spool->lock);
196 197 198 199

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

200 201
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
216
	unlock_or_release_subpool(spool);
217 218

	return ret;
219 220 221 222 223 224 225 226 227
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
228
	return subpool_inode(file_inode(vma->vm_file));
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

311
		rg = prg;
312 313 314 315 316 317 318 319 320 321 322 323
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);
	}
}

M
Mina Almasry 已提交
324 325
/* Must be called with resv->lock held. Calling this with count_only == true
 * will count the number of pages to be added but will not modify the linked
326 327 328
 * list. If regions_needed != NULL and count_only == true, then regions_needed
 * will indicate the number of file_regions needed in the cache to carry out to
 * add the regions for this range.
M
Mina Almasry 已提交
329 330
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
331 332 333
				     struct hugetlb_cgroup *h_cg,
				     struct hstate *h, long *regions_needed,
				     bool count_only)
M
Mina Almasry 已提交
334
{
335
	long add = 0;
M
Mina Almasry 已提交
336
	struct list_head *head = &resv->regions;
337
	long last_accounted_offset = f;
M
Mina Almasry 已提交
338 339
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

340 341
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
357

358 359 360
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
361 362 363
		if (rg->from > t)
			break;

364 365 366 367 368 369 370 371
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
			if (!count_only) {
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
372 373
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
374
				list_add(&nrg->link, rg->link.prev);
375
				coalesce_file_region(resv, nrg);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
			} else if (regions_needed)
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
		if (!count_only) {
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
391
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
392
			list_add(&nrg->link, rg->link.prev);
393
			coalesce_file_region(resv, nrg);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		} else if (regions_needed)
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
433
		 */
434 435 436 437 438 439 440 441
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
442 443
		}

444 445 446
		spin_lock(&resv->lock);

		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
M
Mina Almasry 已提交
447
			list_del(&rg->link);
448 449
			list_add(&rg->link, &resv->region_cache);
			resv->region_cache_count++;
M
Mina Almasry 已提交
450 451 452
		}
	}

453
	return 0;
M
Mina Almasry 已提交
454

455 456 457 458 459 460
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
461 462
}

463 464
/*
 * Add the huge page range represented by [f, t) to the reserve
465 466 467 468 469
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
470
 *
471 472 473 474
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
475
 * this operation and we were not able to allocate, it returns -ENOMEM.
476 477 478
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
479
 */
480
static long region_add(struct resv_map *resv, long f, long t,
481 482
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
483
{
484
	long add = 0, actual_regions_needed = 0;
485

486
	spin_lock(&resv->lock);
487 488 489
retry:

	/* Count how many regions are actually needed to execute this add. */
490 491
	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
				 true);
492

493
	/*
494 495 496 497 498 499 500
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
501
	 */
502 503 504 505 506 507 508 509
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
510

511 512 513 514
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
515

516
		goto retry;
517 518
	}

519
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
520 521

	resv->adds_in_progress -= in_regions_needed;
522

523
	spin_unlock(&resv->lock);
524 525
	VM_BUG_ON(add < 0);
	return add;
526 527
}

528 529 530 531 532 533 534
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
535 536 537 538 539 540 541
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
542 543 544 545 546
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
547
 */
548 549
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
550 551 552
{
	long chg = 0;

553
	spin_lock(&resv->lock);
554

555
	/* Count how many hugepages in this range are NOT respresented. */
556 557
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
				       out_regions_needed, true);
558

559 560
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
561

562 563
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
564

565
	resv->adds_in_progress += *out_regions_needed;
566 567

	spin_unlock(&resv->lock);
568 569 570
	return chg;
}

571 572 573 574 575
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
576 577 578
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
579 580 581 582 583
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
584 585
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
586 587 588
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
589
	resv->adds_in_progress -= regions_needed;
590 591 592
	spin_unlock(&resv->lock);
}

593
/*
594 595 596 597 598 599 600 601 602 603 604 605
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
606
 */
607
static long region_del(struct resv_map *resv, long f, long t)
608
{
609
	struct list_head *head = &resv->regions;
610
	struct file_region *rg, *trg;
611 612
	struct file_region *nrg = NULL;
	long del = 0;
613

614
retry:
615
	spin_lock(&resv->lock);
616
	list_for_each_entry_safe(rg, trg, head, link) {
617 618 619 620 621 622 623 624
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
625
			continue;
626

627
		if (rg->from >= t)
628 629
			break;

630 631 632 633 634 635 636 637 638 639 640 641 642
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
643

644 645 646 647 648 649 650 651 652 653 654 655 656
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
657 658 659

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

660 661 662 663 664
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

665 666 667
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, nrg->to - nrg->from);

668 669
			list_add(&nrg->link, &rg->link);
			nrg = NULL;
670
			break;
671 672 673 674
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
675 676
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
677 678 679 680 681 682 683 684
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
685 686 687

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);
688 689 690
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
691 692 693

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
694
		}
695
	}
696 697

	spin_unlock(&resv->lock);
698 699
	kfree(nrg);
	return del;
700 701
}

702 703 704 705 706 707 708 709 710
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
711
void hugetlb_fix_reserve_counts(struct inode *inode)
712 713 714 715 716
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
717
	if (rsv_adjust) {
718 719 720 721 722 723
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

724 725 726 727
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
728
static long region_count(struct resv_map *resv, long f, long t)
729
{
730
	struct list_head *head = &resv->regions;
731 732 733
	struct file_region *rg;
	long chg = 0;

734
	spin_lock(&resv->lock);
735 736
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
737 738
		long seg_from;
		long seg_to;
739 740 741 742 743 744 745 746 747 748 749

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
750
	spin_unlock(&resv->lock);
751 752 753 754

	return chg;
}

755 756 757 758
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
759 760
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
761
{
762 763
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
764 765
}

766 767 768 769 770
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
771
EXPORT_SYMBOL_GPL(linear_hugepage_index);
772

773 774 775 776 777 778
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
779 780 781
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
782
}
783
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
784

785 786 787
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
788 789
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
790
 */
791
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 793 794 795
{
	return vma_kernel_pagesize(vma);
}

796 797 798 799 800 801 802
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
803
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
804

805 806 807 808 809 810 811 812 813
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
814 815 816 817 818 819 820 821 822
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
823
 */
824 825 826 827 828 829 830 831 832 833 834
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

854
struct resv_map *resv_map_alloc(void)
855 856
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
857 858 859 860 861
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
862
		return NULL;
863
	}
864 865

	kref_init(&resv_map->refs);
866
	spin_lock_init(&resv_map->lock);
867 868
	INIT_LIST_HEAD(&resv_map->regions);

869
	resv_map->adds_in_progress = 0;
870 871 872 873 874 875 876
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
877 878 879 880 881

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

882 883 884
	return resv_map;
}

885
void resv_map_release(struct kref *ref)
886 887
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
888 889
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
890 891

	/* Clear out any active regions before we release the map. */
892
	region_del(resv_map, 0, LONG_MAX);
893 894 895 896 897 898 899 900 901

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

902 903 904
	kfree(resv_map);
}

905 906
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
907 908 909 910 911 912 913 914 915
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
916 917
}

918
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
919
{
920
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
921 922 923 924 925 926 927
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
928 929
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
930
	}
931 932
}

933
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
934
{
935 936
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
937

938 939
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
940 941 942 943
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
944 945
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
946 947

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
948 949 950 951
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
952
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
953 954

	return (get_vma_private_data(vma) & flag) != 0;
955 956
}

957
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
958 959
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
960
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961
	if (!(vma->vm_flags & VM_MAYSHARE))
962 963 964 965
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
966
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
967
{
968 969 970 971 972 973 974 975 976 977 978
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
979
			return true;
980
		else
981
			return false;
982
	}
983 984

	/* Shared mappings always use reserves */
985 986 987 988 989
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
990
		 * fallocate.  In this case, there really are no reserves to
991 992 993 994 995 996 997
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
998 999 1000 1001 1002

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1024

1025
	return false;
1026 1027
}

1028
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1029 1030
{
	int nid = page_to_nid(page);
1031
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1032 1033
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
1034 1035
}

1036
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1037 1038
{
	struct page *page;
1039 1040 1041 1042 1043
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1044

1045
		if (!PageHWPoison(page))
1046
			break;
1047 1048
	}

1049 1050 1051 1052 1053
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
1054
		return NULL;
1055
	list_move(&page->lru, &h->hugepage_activelist);
1056
	set_page_refcounted(page);
1057 1058 1059 1060 1061
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

1062 1063
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1064
{
1065 1066 1067 1068
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1069
	int node = NUMA_NO_NODE;
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1087 1088 1089 1090 1091

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1092 1093 1094
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1095 1096 1097
	return NULL;
}

1098 1099
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1100 1101
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1102
{
1103
	struct page *page;
1104
	struct mempolicy *mpol;
1105
	gfp_t gfp_mask;
1106
	nodemask_t *nodemask;
1107
	int nid;
L
Linus Torvalds 已提交
1108

1109 1110 1111 1112 1113
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1114
	if (!vma_has_reserves(vma, chg) &&
1115
			h->free_huge_pages - h->resv_huge_pages == 0)
1116
		goto err;
1117

1118
	/* If reserves cannot be used, ensure enough pages are in the pool */
1119
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1120
		goto err;
1121

1122 1123
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1124 1125 1126 1127
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1128
	}
1129

1130
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1131
	return page;
1132 1133 1134

err:
	return NULL;
L
Linus Torvalds 已提交
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1146
	nid = next_node_in(nid, *nodes_allowed);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1208
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1209
static void destroy_compound_gigantic_page(struct page *page,
1210
					unsigned int order)
1211 1212 1213 1214 1215
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1216
	atomic_set(compound_mapcount_ptr(page), 0);
1217 1218 1219
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);

1220
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1221
		clear_compound_head(p);
1222 1223 1224 1225 1226 1227 1228
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1229
static void free_gigantic_page(struct page *page, unsigned int order)
1230
{
1231 1232 1233 1234
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1235 1236
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1237
		return;
1238
#endif
1239

1240 1241 1242
	free_contig_range(page_to_pfn(page), 1 << order);
}

1243
#ifdef CONFIG_CONTIG_ALLOC
1244 1245
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1246
{
1247
	unsigned long nr_pages = 1UL << huge_page_order(h);
1248 1249
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1250

1251 1252
#ifdef CONFIG_CMA
	{
1253 1254 1255
		struct page *page;
		int node;

1256 1257 1258
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1259 1260 1261
			if (page)
				return page;
		}
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1274
	}
1275
#endif
1276

1277
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1278 1279 1280
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1281
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1282 1283 1284 1285 1286 1287 1288
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1289

1290
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1291
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1292 1293 1294 1295
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1296
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1297
static inline void destroy_compound_gigantic_page(struct page *page,
1298
						unsigned int order) { }
1299 1300
#endif

1301
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1302 1303
{
	int i;
1304

1305
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1306
		return;
1307

1308 1309 1310
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1311 1312
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1313 1314
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1315
	}
1316
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1317
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1318
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1319
	set_page_refcounted(page);
1320
	if (hstate_is_gigantic(h)) {
1321 1322 1323 1324 1325
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1326 1327
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1328
		spin_lock(&hugetlb_lock);
1329 1330 1331
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1392
static void __free_huge_page(struct page *page)
1393
{
1394 1395 1396 1397
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1398
	struct hstate *h = page_hstate(page);
1399
	int nid = page_to_nid(page);
1400 1401
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1402
	bool restore_reserve;
1403

1404 1405
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1406 1407 1408

	set_page_private(page, 0);
	page->mapping = NULL;
1409
	restore_reserve = PagePrivate(page);
1410
	ClearPagePrivate(page);
1411

1412
	/*
1413 1414 1415 1416 1417 1418
	 * If PagePrivate() was set on page, page allocation consumed a
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1419
	 */
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1430

1431
	spin_lock(&hugetlb_lock);
1432
	clear_page_huge_active(page);
1433 1434
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1435 1436
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1437 1438 1439
	if (restore_reserve)
		h->resv_huge_pages++;

1440 1441 1442 1443 1444
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1445 1446
		/* remove the page from active list */
		list_del(&page->lru);
1447 1448 1449
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1450
	} else {
1451
		arch_clear_hugepage_flags(page);
1452
		enqueue_huge_page(h, page);
1453
	}
1454 1455 1456
	spin_unlock(&hugetlb_lock);
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1505
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506
{
1507
	INIT_LIST_HEAD(&page->lru);
1508
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1509
	spin_lock(&hugetlb_lock);
1510
	set_hugetlb_cgroup(page, NULL);
1511
	set_hugetlb_cgroup_rsvd(page, NULL);
1512 1513
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1514 1515 1516
	spin_unlock(&hugetlb_lock);
}

1517
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1518 1519 1520 1521 1522 1523 1524
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1525
	__ClearPageReserved(page);
1526
	__SetPageHead(page);
1527
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1528 1529 1530 1531
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1532
		 * too.  Otherwise drivers using get_user_pages() to access tail
1533 1534 1535 1536 1537 1538 1539 1540
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1541
		set_page_count(p, 0);
1542
		set_compound_head(p, page);
1543
	}
1544
	atomic_set(compound_mapcount_ptr(page), -1);
1545 1546 1547

	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
1548 1549
}

A
Andrew Morton 已提交
1550 1551 1552 1553 1554
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1555 1556 1557 1558 1559 1560
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1561
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1562
}
1563 1564
EXPORT_SYMBOL_GPL(PageHuge);

1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1574
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1575 1576
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * Find address_space associated with hugetlbfs page.
 * Upon entry page is locked and page 'was' mapped although mapped state
 * could change.  If necessary, use anon_vma to find vma and associated
 * address space.  The returned mapping may be stale, but it can not be
 * invalid as page lock (which is held) is required to destroy mapping.
 */
static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
{
	struct anon_vma *anon_vma;
	pgoff_t pgoff_start, pgoff_end;
	struct anon_vma_chain *avc;
	struct address_space *mapping = page_mapping(hpage);

	/* Simple file based mapping */
	if (mapping)
		return mapping;

	/*
	 * Even anonymous hugetlbfs mappings are associated with an
	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
	 * code).  Find a vma associated with the anonymous vma, and
	 * use the file pointer to get address_space.
	 */
	anon_vma = page_lock_anon_vma_read(hpage);
	if (!anon_vma)
		return mapping;  /* NULL */

	/* Use first found vma */
	pgoff_start = page_to_pgoff(hpage);
1607
	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
					pgoff_start, pgoff_end) {
		struct vm_area_struct *vma = avc->vma;

		mapping = vma->vm_file->f_mapping;
		break;
	}

	anon_vma_unlock_read(anon_vma);
	return mapping;
}

/*
 * Find and lock address space (mapping) in write mode.
 *
 * Upon entry, the page is locked which allows us to find the mapping
 * even in the case of an anon page.  However, locking order dictates
 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
 * specific.  So, we first try to lock the sema while still holding the
 * page lock.  If this works, great!  If not, then we need to drop the
 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
 * course, need to revalidate state along the way.
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
	struct address_space *mapping, *mapping2;

	mapping = _get_hugetlb_page_mapping(hpage);
retry:
	if (!mapping)
		return mapping;

	/*
	 * If no contention, take lock and return
	 */
	if (i_mmap_trylock_write(mapping))
		return mapping;

	/*
	 * Must drop page lock and wait on mapping sema.
	 * Note:  Once page lock is dropped, mapping could become invalid.
	 * As a hack, increase map count until we lock page again.
	 */
	atomic_inc(&hpage->_mapcount);
	unlock_page(hpage);
	i_mmap_lock_write(mapping);
	lock_page(hpage);
	atomic_add_negative(-1, &hpage->_mapcount);

	/* verify page is still mapped */
	if (!page_mapped(hpage)) {
		i_mmap_unlock_write(mapping);
		return NULL;
	}

	/*
	 * Get address space again and verify it is the same one
	 * we locked.  If not, drop lock and retry.
	 */
	mapping2 = _get_hugetlb_page_mapping(hpage);
	if (mapping2 != mapping) {
		i_mmap_unlock_write(mapping);
		mapping = mapping2;
		goto retry;
	}

	return mapping;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1694
static struct page *alloc_buddy_huge_page(struct hstate *h,
1695 1696
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1697
{
1698
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1699
	struct page *page;
1700
	bool alloc_try_hard = true;
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1714 1715 1716 1717 1718 1719 1720
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1738 1739 1740
	return page;
}

1741 1742 1743 1744 1745
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1746 1747
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1748 1749 1750 1751 1752 1753 1754
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1755
				nid, nmask, node_alloc_noretry);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1766 1767 1768 1769
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1770 1771
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1772 1773 1774
{
	struct page *page;
	int nr_nodes, node;
1775
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1776 1777

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1778 1779
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1780
		if (page)
1781 1782 1783
			break;
	}

1784 1785
	if (!page)
		return 0;
1786

1787 1788 1789
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1790 1791
}

1792 1793 1794 1795 1796 1797
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1798 1799
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1800
{
1801
	int nr_nodes, node;
1802 1803
	int ret = 0;

1804
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1805 1806 1807 1808
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1809 1810
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1811
			struct page *page =
1812
				list_entry(h->hugepage_freelists[node].next,
1813 1814 1815
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1816
			h->free_huge_pages_node[node]--;
1817 1818
			if (acct_surplus) {
				h->surplus_huge_pages--;
1819
				h->surplus_huge_pages_node[node]--;
1820
			}
1821 1822
			update_and_free_page(h, page);
			ret = 1;
1823
			break;
1824
		}
1825
	}
1826 1827 1828 1829

	return ret;
}

1830 1831
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1832 1833 1834 1835 1836 1837 1838
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1839
 */
1840
int dissolve_free_huge_page(struct page *page)
1841
{
1842
	int rc = -EBUSY;
1843

1844 1845 1846 1847
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1848
	spin_lock(&hugetlb_lock);
1849 1850 1851 1852 1853 1854
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1855 1856 1857
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1858
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1859
			goto out;
1860 1861 1862 1863 1864 1865 1866 1867
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1868
		list_del(&head->lru);
1869 1870
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1871
		h->max_huge_pages--;
1872
		update_and_free_page(h, head);
1873
		rc = 0;
1874
	}
1875
out:
1876
	spin_unlock(&hugetlb_lock);
1877
	return rc;
1878 1879 1880 1881 1882
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1883 1884
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1885 1886
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1887
 */
1888
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1889 1890
{
	unsigned long pfn;
1891
	struct page *page;
1892
	int rc = 0;
1893

1894
	if (!hugepages_supported())
1895
		return rc;
1896

1897 1898
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1899 1900 1901
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1902
	}
1903 1904

	return rc;
1905 1906
}

1907 1908 1909
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1910
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1911
		int nid, nodemask_t *nmask)
1912
{
1913
	struct page *page = NULL;
1914

1915
	if (hstate_is_gigantic(h))
1916 1917
		return NULL;

1918
	spin_lock(&hugetlb_lock);
1919 1920
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1921 1922
	spin_unlock(&hugetlb_lock);

1923
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1924
	if (!page)
1925
		return NULL;
1926 1927

	spin_lock(&hugetlb_lock);
1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1937
		spin_unlock(&hugetlb_lock);
1938
		put_page(page);
1939
		return NULL;
1940 1941
	} else {
		h->surplus_huge_pages++;
1942
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1943
	}
1944 1945

out_unlock:
1946
	spin_unlock(&hugetlb_lock);
1947 1948 1949 1950

	return page;
}

1951
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1952
				     int nid, nodemask_t *nmask)
1953 1954 1955 1956 1957 1958
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1959
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1972 1973 1974
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1975
static
1976
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1977 1978
		struct vm_area_struct *vma, unsigned long addr)
{
1979 1980 1981 1982 1983 1984 1985
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1986
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1987 1988 1989
	mpol_cond_put(mpol);

	return page;
1990 1991
}

1992
/* page migration callback function */
1993
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1994
		nodemask_t *nmask, gfp_t gfp_mask)
1995 1996 1997
{
	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1998 1999 2000 2001 2002 2003
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
2004 2005 2006 2007
		}
	}
	spin_unlock(&hugetlb_lock);

2008
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2009 2010
}

2011
/* mempolicy aware migration callback */
2012 2013
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2023
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2024 2025 2026 2027 2028
	mpol_cond_put(mpol);

	return page;
}

2029
/*
L
Lucas De Marchi 已提交
2030
 * Increase the hugetlb pool such that it can accommodate a reservation
2031 2032
 * of size 'delta'.
 */
2033
static int gather_surplus_pages(struct hstate *h, int delta)
2034
	__must_hold(&hugetlb_lock)
2035 2036 2037 2038 2039
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
2040
	bool alloc_ok = true;
2041

2042
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2043
	if (needed <= 0) {
2044
		h->resv_huge_pages += delta;
2045
		return 0;
2046
	}
2047 2048 2049 2050 2051 2052 2053 2054

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
2055
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2056
				NUMA_NO_NODE, NULL);
2057 2058 2059 2060
		if (!page) {
			alloc_ok = false;
			break;
		}
2061
		list_add(&page->lru, &surplus_list);
2062
		cond_resched();
2063
	}
2064
	allocated += i;
2065 2066 2067 2068 2069 2070

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
2071 2072
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2083 2084
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2085
	 * needed to accommodate the reservation.  Add the appropriate number
2086
	 * of pages to the hugetlb pool and free the extras back to the buddy
2087 2088 2089
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2090 2091
	 */
	needed += allocated;
2092
	h->resv_huge_pages += delta;
2093
	ret = 0;
2094

2095
	/* Free the needed pages to the hugetlb pool */
2096
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2097 2098
		if ((--needed) < 0)
			break;
2099 2100 2101 2102 2103
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
2104
		VM_BUG_ON_PAGE(page_count(page), page);
2105
		enqueue_huge_page(h, page);
2106
	}
2107
free:
2108
	spin_unlock(&hugetlb_lock);
2109 2110

	/* Free unnecessary surplus pages to the buddy allocator */
2111 2112
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2113
	spin_lock(&hugetlb_lock);
2114 2115 2116 2117 2118

	return ret;
}

/*
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2131
 */
2132 2133
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2134 2135 2136
{
	unsigned long nr_pages;

2137
	/* Cannot return gigantic pages currently */
2138
	if (hstate_is_gigantic(h))
2139
		goto out;
2140

2141 2142 2143 2144
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2145
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2146

2147 2148
	/*
	 * We want to release as many surplus pages as possible, spread
2149 2150 2151
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2152
	 * free_pool_huge_page() will balance the freed pages across the
2153
	 * on-line nodes with memory and will handle the hstate accounting.
2154 2155 2156 2157
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2158 2159
	 */
	while (nr_pages--) {
2160 2161
		h->resv_huge_pages--;
		unused_resv_pages--;
2162
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2163
			goto out;
2164
		cond_resched_lock(&hugetlb_lock);
2165
	}
2166 2167 2168 2169

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2170 2171
}

2172

2173
/*
2174
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2175
 * are used by the huge page allocation routines to manage reservations.
2176 2177 2178 2179 2180 2181
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2182 2183 2184
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2185 2186 2187 2188 2189 2190
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2191 2192 2193 2194 2195
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2196
 */
2197 2198 2199
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2200
	VMA_END_RESV,
2201
	VMA_ADD_RESV,
2202
};
2203 2204
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2205
				enum vma_resv_mode mode)
2206
{
2207 2208
	struct resv_map *resv;
	pgoff_t idx;
2209
	long ret;
2210
	long dummy_out_regions_needed;
2211

2212 2213
	resv = vma_resv_map(vma);
	if (!resv)
2214
		return 1;
2215

2216
	idx = vma_hugecache_offset(h, vma, addr);
2217 2218
	switch (mode) {
	case VMA_NEEDS_RESV:
2219 2220 2221 2222 2223 2224
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2225 2226
		break;
	case VMA_COMMIT_RESV:
2227
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2228 2229
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2230
		break;
2231
	case VMA_END_RESV:
2232
		region_abort(resv, idx, idx + 1, 1);
2233 2234
		ret = 0;
		break;
2235
	case VMA_ADD_RESV:
2236
		if (vma->vm_flags & VM_MAYSHARE) {
2237
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2238 2239 2240 2241
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2242 2243 2244
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2245 2246 2247
	default:
		BUG();
	}
2248

2249
	if (vma->vm_flags & VM_MAYSHARE)
2250
		return ret;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2270
	else
2271
		return ret < 0 ? ret : 0;
2272
}
2273 2274

static long vma_needs_reservation(struct hstate *h,
2275
			struct vm_area_struct *vma, unsigned long addr)
2276
{
2277
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2278
}
2279

2280 2281 2282
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2283 2284 2285
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2286
static void vma_end_reservation(struct hstate *h,
2287 2288
			struct vm_area_struct *vma, unsigned long addr)
{
2289
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2342
struct page *alloc_huge_page(struct vm_area_struct *vma,
2343
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2344
{
2345
	struct hugepage_subpool *spool = subpool_vma(vma);
2346
	struct hstate *h = hstate_vma(vma);
2347
	struct page *page;
2348 2349
	long map_chg, map_commit;
	long gbl_chg;
2350 2351
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2352
	bool deferred_reserve;
2353

2354
	idx = hstate_index(h);
2355
	/*
2356 2357 2358
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2359
	 */
2360 2361
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2362
		return ERR_PTR(-ENOMEM);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2374
			vma_end_reservation(h, vma, addr);
2375
			return ERR_PTR(-ENOSPC);
2376
		}
L
Linus Torvalds 已提交
2377

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2400
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2401
	if (ret)
2402
		goto out_uncharge_cgroup_reservation;
2403

L
Linus Torvalds 已提交
2404
	spin_lock(&hugetlb_lock);
2405 2406 2407 2408 2409 2410
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2411
	if (!page) {
2412
		spin_unlock(&hugetlb_lock);
2413
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2414 2415
		if (!page)
			goto out_uncharge_cgroup;
2416 2417 2418 2419
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2420 2421
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2422
		/* Fall through */
K
Ken Chen 已提交
2423
	}
2424
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2425 2426 2427 2428 2429 2430 2431 2432
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2433
	spin_unlock(&hugetlb_lock);
2434

2435
	set_page_private(page, (unsigned long)spool);
2436

2437 2438
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2453
	return page;
2454 2455 2456

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2457 2458 2459 2460
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2461
out_subpool_put:
2462
	if (map_chg || avoid_reserve)
2463
		hugepage_subpool_put_pages(spool, 1);
2464
	vma_end_reservation(h, vma, addr);
2465
	return ERR_PTR(-ENOSPC);
2466 2467
}

2468 2469 2470
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2471 2472
{
	struct huge_bootmem_page *m;
2473
	int nr_nodes, node;
2474

2475
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2476 2477
		void *addr;

2478
		addr = memblock_alloc_try_nid_raw(
2479
				huge_page_size(h), huge_page_size(h),
2480
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2481 2482 2483 2484 2485 2486 2487
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2488
			goto found;
2489 2490 2491 2492 2493
		}
	}
	return 0;

found:
2494
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2495
	/* Put them into a private list first because mem_map is not up yet */
2496
	INIT_LIST_HEAD(&m->list);
2497 2498 2499 2500 2501
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2502 2503
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2504 2505 2506 2507 2508 2509 2510
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2511 2512 2513 2514 2515 2516
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2517
		struct page *page = virt_to_page(m);
2518
		struct hstate *h = m->hstate;
2519

2520
		WARN_ON(page_count(page) != 1);
2521
		prep_compound_huge_page(page, h->order);
2522
		WARN_ON(PageReserved(page));
2523
		prep_new_huge_page(h, page, page_to_nid(page));
2524 2525
		put_page(page); /* free it into the hugepage allocator */

2526 2527 2528 2529 2530 2531
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2532
		if (hstate_is_gigantic(h))
2533
			adjust_managed_page_count(page, 1 << h->order);
2534
		cond_resched();
2535 2536 2537
	}
}

2538
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2539 2540
{
	unsigned long i;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2560

2561
	for (i = 0; i < h->max_huge_pages; ++i) {
2562
		if (hstate_is_gigantic(h)) {
2563
			if (hugetlb_cma_size) {
2564 2565 2566
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
				break;
			}
2567 2568
			if (!alloc_bootmem_huge_page(h))
				break;
2569
		} else if (!alloc_pool_huge_page(h,
2570 2571
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2572
			break;
2573
		cond_resched();
L
Linus Torvalds 已提交
2574
	}
2575 2576 2577
	if (i < h->max_huge_pages) {
		char buf[32];

2578
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2579 2580 2581 2582
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2583 2584

	kfree(node_alloc_noretry);
2585 2586 2587 2588 2589 2590 2591
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2592 2593 2594
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2595
		/* oversize hugepages were init'ed in early boot */
2596
		if (!hstate_is_gigantic(h))
2597
			hugetlb_hstate_alloc_pages(h);
2598
	}
2599
	VM_BUG_ON(minimum_order == UINT_MAX);
2600 2601 2602 2603 2604 2605 2606
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2607
		char buf[32];
2608 2609

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2610
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2611
			buf, h->free_huge_pages);
2612 2613 2614
	}
}

L
Linus Torvalds 已提交
2615
#ifdef CONFIG_HIGHMEM
2616 2617
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2618
{
2619 2620
	int i;

2621
	if (hstate_is_gigantic(h))
2622 2623
		return;

2624
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2625
		struct page *page, *next;
2626 2627 2628
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2629
				return;
L
Linus Torvalds 已提交
2630 2631 2632
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2633
			update_and_free_page(h, page);
2634 2635
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2636 2637 2638 2639
		}
	}
}
#else
2640 2641
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2642 2643 2644 2645
{
}
#endif

2646 2647 2648 2649 2650
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2651 2652
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2653
{
2654
	int nr_nodes, node;
2655 2656 2657

	VM_BUG_ON(delta != -1 && delta != 1);

2658 2659 2660 2661
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2662
		}
2663 2664 2665 2666 2667
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2668
		}
2669 2670
	}
	return 0;
2671

2672 2673 2674 2675
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2676 2677
}

2678
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2679
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2680
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2681
{
2682
	unsigned long min_count, ret;
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2694

2695 2696
	spin_lock(&hugetlb_lock);

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2727
			NODEMASK_FREE(node_alloc_noretry);
2728 2729 2730 2731
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2732

2733 2734 2735 2736
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2737
	 *
2738
	 * We might race with alloc_surplus_huge_page() here and be unable
2739 2740 2741 2742
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2743
	 */
2744
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2745
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2746 2747 2748
			break;
	}

2749
	while (count > persistent_huge_pages(h)) {
2750 2751 2752 2753 2754 2755
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2756 2757 2758 2759

		/* yield cpu to avoid soft lockup */
		cond_resched();

2760 2761
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2762 2763 2764 2765
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2766 2767 2768
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2769 2770 2771 2772 2773 2774 2775 2776
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2777 2778 2779 2780
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2781
	 * alloc_surplus_huge_page() is checking the global counter,
2782 2783 2784
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2785
	 */
2786
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2787
	min_count = max(count, min_count);
2788
	try_to_free_low(h, min_count, nodes_allowed);
2789
	while (min_count < persistent_huge_pages(h)) {
2790
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2791
			break;
2792
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2793
	}
2794
	while (count < persistent_huge_pages(h)) {
2795
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2796 2797 2798
			break;
	}
out:
2799
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2800
	spin_unlock(&hugetlb_lock);
2801

2802 2803
	NODEMASK_FREE(node_alloc_noretry);

2804
	return 0;
L
Linus Torvalds 已提交
2805 2806
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2817 2818 2819
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2820 2821
{
	int i;
2822

2823
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2824 2825 2826
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2827
			return &hstates[i];
2828 2829 2830
		}

	return kobj_to_node_hstate(kobj, nidp);
2831 2832
}

2833
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2834 2835
					struct kobj_attribute *attr, char *buf)
{
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2847
}
2848

2849 2850 2851
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2852 2853
{
	int err;
2854
	nodemask_t nodes_allowed, *n_mask;
2855

2856 2857
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2858

2859 2860 2861 2862 2863
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2864 2865 2866 2867 2868
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2869
		/*
2870 2871
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2872
		 */
2873 2874
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2875
	}
2876

2877
	err = set_max_huge_pages(h, count, nid, n_mask);
2878

2879
	return err ? err : len;
2880 2881
}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2899 2900 2901 2902 2903 2904 2905 2906 2907
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2908
	return nr_hugepages_store_common(false, kobj, buf, len);
2909 2910 2911
}
HSTATE_ATTR(nr_hugepages);

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2927
	return nr_hugepages_store_common(true, kobj, buf, len);
2928 2929 2930 2931 2932
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2933 2934 2935
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2936
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2937 2938
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2939

2940 2941 2942 2943 2944
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2945
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2946

2947
	if (hstate_is_gigantic(h))
2948 2949
		return -EINVAL;

2950
	err = kstrtoul(buf, 10, &input);
2951
	if (err)
2952
		return err;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2976 2977 2978 2979 2980 2981
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2982
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2983 2984 2985 2986 2987 2988 2989
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
3001 3002 3003 3004 3005 3006 3007 3008 3009
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3010 3011 3012
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3013 3014 3015
	NULL,
};

3016
static const struct attribute_group hstate_attr_group = {
3017 3018 3019
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
3020 3021
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3022
				    const struct attribute_group *hstate_attr_group)
3023 3024
{
	int retval;
3025
	int hi = hstate_index(h);
3026

3027 3028
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3029 3030
		return -ENOMEM;

3031
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3032
	if (retval)
3033
		kobject_put(hstate_kobjs[hi]);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3048 3049
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3050
		if (err)
3051
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3052 3053 3054
	}
}

3055 3056 3057 3058
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3059 3060 3061
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3062 3063 3064 3065 3066 3067
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3068
static struct node_hstate node_hstates[MAX_NUMNODES];
3069 3070

/*
3071
 * A subset of global hstate attributes for node devices
3072 3073 3074 3075 3076 3077 3078 3079
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3080
static const struct attribute_group per_node_hstate_attr_group = {
3081 3082 3083 3084
	.attrs = per_node_hstate_attrs,
};

/*
3085
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3108
 * Unregister hstate attributes from a single node device.
3109 3110
 * No-op if no hstate attributes attached.
 */
3111
static void hugetlb_unregister_node(struct node *node)
3112 3113
{
	struct hstate *h;
3114
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3115 3116

	if (!nhs->hugepages_kobj)
3117
		return;		/* no hstate attributes */
3118

3119 3120 3121 3122 3123
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3124
		}
3125
	}
3126 3127 3128 3129 3130 3131 3132

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3133
 * Register hstate attributes for a single node device.
3134 3135
 * No-op if attributes already registered.
 */
3136
static void hugetlb_register_node(struct node *node)
3137 3138
{
	struct hstate *h;
3139
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3140 3141 3142 3143 3144 3145
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3146
							&node->dev.kobj);
3147 3148 3149 3150 3151 3152 3153 3154
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3155
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3156
				h->name, node->dev.id);
3157 3158 3159 3160 3161 3162 3163
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3164
 * hugetlb init time:  register hstate attributes for all registered node
3165 3166
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3167
 */
3168
static void __init hugetlb_register_all_nodes(void)
3169 3170 3171
{
	int nid;

3172
	for_each_node_state(nid, N_MEMORY) {
3173
		struct node *node = node_devices[nid];
3174
		if (node->dev.id == nid)
3175 3176 3177 3178
			hugetlb_register_node(node);
	}

	/*
3179
	 * Let the node device driver know we're here so it can
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3199 3200
static int __init hugetlb_init(void)
{
3201 3202
	int i;

3203 3204 3205
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3206
		return 0;
3207
	}
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3237
		}
3238
	}
3239

3240
	hugetlb_cma_check();
3241
	hugetlb_init_hstates();
3242
	gather_bootmem_prealloc();
3243 3244 3245
	report_hugepages();

	hugetlb_sysfs_init();
3246
	hugetlb_register_all_nodes();
3247
	hugetlb_cgroup_file_init();
3248

3249 3250 3251 3252 3253
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3254
	hugetlb_fault_mutex_table =
3255 3256
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3257
	BUG_ON(!hugetlb_fault_mutex_table);
3258 3259

	for (i = 0; i < num_fault_mutexes; i++)
3260
		mutex_init(&hugetlb_fault_mutex_table[i]);
3261 3262
	return 0;
}
3263
subsys_initcall(hugetlb_init);
3264

3265 3266
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3267
{
3268
	return size == HPAGE_SIZE;
3269 3270
}

3271
void __init hugetlb_add_hstate(unsigned int order)
3272 3273
{
	struct hstate *h;
3274 3275
	unsigned long i;

3276 3277 3278
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3279
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3280
	BUG_ON(order == 0);
3281
	h = &hstates[hugetlb_max_hstate++];
3282 3283
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3284 3285 3286 3287
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3288
	INIT_LIST_HEAD(&h->hugepage_activelist);
3289 3290
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3291 3292
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3293

3294 3295 3296
	parsed_hstate = h;
}

3297 3298 3299 3300 3301 3302 3303 3304
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3305 3306
{
	unsigned long *mhp;
3307
	static unsigned long *last_mhp;
3308

3309
	if (!parsed_valid_hugepagesz) {
3310
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3311
		parsed_valid_hugepagesz = true;
3312
		return 0;
3313
	}
3314

3315
	/*
3316 3317 3318 3319
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3320
	 */
3321
	else if (!hugetlb_max_hstate)
3322 3323 3324 3325
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3326
	if (mhp == last_mhp) {
3327 3328
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3329 3330
	}

3331 3332 3333
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3334 3335 3336 3337 3338
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3339
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3340 3341 3342 3343
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3344 3345
	return 1;
}
3346
__setup("hugepages=", hugepages_setup);
3347

3348 3349 3350 3351 3352 3353 3354
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3355
static int __init hugepagesz_setup(char *s)
3356
{
3357
	unsigned long size;
3358 3359 3360
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3361 3362 3363
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3364
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3365 3366 3367
		return 0;
	}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3391 3392
	}

3393
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3394
	parsed_valid_hugepagesz = true;
3395 3396
	return 1;
}
3397 3398
__setup("hugepagesz=", hugepagesz_setup);

3399 3400 3401 3402
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3403
static int __init default_hugepagesz_setup(char *s)
3404
{
3405 3406
	unsigned long size;

3407 3408 3409 3410 3411 3412
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3413 3414 3415
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3416
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3417 3418 3419
		return 0;
	}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3439 3440
	return 1;
}
3441
__setup("default_hugepagesz=", default_hugepagesz_setup);
3442

3443
static unsigned int allowed_mems_nr(struct hstate *h)
3444 3445 3446
{
	int node;
	unsigned int nr = 0;
3447 3448 3449 3450 3451
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3452

3453 3454 3455 3456 3457
	for_each_node_mask(node, cpuset_current_mems_allowed) {
		if (!mpol_allowed ||
		    (mpol_allowed && node_isset(node, *mpol_allowed)))
			nr += array[node];
	}
3458 3459 3460 3461 3462

	return nr;
}

#ifdef CONFIG_SYSCTL
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3479 3480
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3481
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3482
{
3483
	struct hstate *h = &default_hstate;
3484
	unsigned long tmp = h->max_huge_pages;
3485
	int ret;
3486

3487
	if (!hugepages_supported())
3488
		return -EOPNOTSUPP;
3489

3490 3491
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3492 3493
	if (ret)
		goto out;
3494

3495 3496 3497
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3498 3499
out:
	return ret;
L
Linus Torvalds 已提交
3500
}
3501

3502
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3503
			  void *buffer, size_t *length, loff_t *ppos)
3504 3505 3506 3507 3508 3509 3510 3511
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3512
			  void *buffer, size_t *length, loff_t *ppos)
3513 3514 3515 3516 3517 3518
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3519
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3520
		void *buffer, size_t *length, loff_t *ppos)
3521
{
3522
	struct hstate *h = &default_hstate;
3523
	unsigned long tmp;
3524
	int ret;
3525

3526
	if (!hugepages_supported())
3527
		return -EOPNOTSUPP;
3528

3529
	tmp = h->nr_overcommit_huge_pages;
3530

3531
	if (write && hstate_is_gigantic(h))
3532 3533
		return -EINVAL;

3534 3535
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3536 3537
	if (ret)
		goto out;
3538 3539 3540 3541 3542 3543

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3544 3545
out:
	return ret;
3546 3547
}

L
Linus Torvalds 已提交
3548 3549
#endif /* CONFIG_SYSCTL */

3550
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3551
{
3552 3553 3554
	struct hstate *h;
	unsigned long total = 0;

3555 3556
	if (!hugepages_supported())
		return;
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3578 3579 3580 3581
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3582
	struct hstate *h = &default_hstate;
3583 3584
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3585 3586
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3587 3588
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3589 3590 3591
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3592 3593
}

3594 3595 3596 3597 3598
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3599 3600 3601
	if (!hugepages_supported())
		return;

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3612 3613 3614 3615 3616 3617
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3618 3619 3620
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3621 3622 3623 3624 3625 3626
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3627 3628
}

3629
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3650 3651 3652 3653 3654 3655
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3656 3657
	 */
	if (delta > 0) {
3658
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3659 3660
			goto out;

3661
		if (delta > allowed_mems_nr(h)) {
3662
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3663 3664 3665 3666 3667 3668
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3669
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3670 3671 3672 3673 3674 3675

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3676 3677
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3678
	struct resv_map *resv = vma_resv_map(vma);
3679 3680 3681 3682 3683

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3684
	 * has a reference to the reservation map it cannot disappear until
3685 3686 3687
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3688
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3689
		kref_get(&resv->refs);
3690 3691
}

3692 3693
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3694
	struct hstate *h = hstate_vma(vma);
3695
	struct resv_map *resv = vma_resv_map(vma);
3696
	struct hugepage_subpool *spool = subpool_vma(vma);
3697
	unsigned long reserve, start, end;
3698
	long gbl_reserve;
3699

3700 3701
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3702

3703 3704
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3705

3706
	reserve = (end - start) - region_count(resv, start, end);
3707
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3708
	if (reserve) {
3709 3710 3711 3712 3713 3714
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3715
	}
3716 3717

	kref_put(&resv->refs, resv_map_release);
3718 3719
}

3720 3721 3722 3723 3724 3725 3726
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3727 3728 3729 3730 3731 3732 3733
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3740
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3741 3742
{
	BUG();
N
Nick Piggin 已提交
3743
	return 0;
L
Linus Torvalds 已提交
3744 3745
}

3746 3747 3748 3749 3750 3751 3752
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3753
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3754
	.fault = hugetlb_vm_op_fault,
3755
	.open = hugetlb_vm_op_open,
3756
	.close = hugetlb_vm_op_close,
3757
	.split = hugetlb_vm_op_split,
3758
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3759 3760
};

3761 3762
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3763 3764 3765
{
	pte_t entry;

3766
	if (writable) {
3767 3768
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3769
	} else {
3770 3771
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3772 3773 3774
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3775
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3776 3777 3778 3779

	return entry;
}

3780 3781 3782 3783 3784
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3785
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3786
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3787
		update_mmu_cache(vma, address, ptep);
3788 3789
}

3790
bool is_hugetlb_entry_migration(pte_t pte)
3791 3792 3793 3794
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3795
		return false;
3796
	swp = pte_to_swp_entry(pte);
3797
	if (is_migration_entry(swp))
3798
		return true;
3799
	else
3800
		return false;
3801 3802
}

3803
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3804 3805 3806 3807
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3808
		return false;
3809
	swp = pte_to_swp_entry(pte);
3810
	if (is_hwpoison_entry(swp))
3811
		return true;
3812
	else
3813
		return false;
3814
}
3815

D
David Gibson 已提交
3816 3817 3818
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3819
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3820
	struct page *ptepage;
3821
	unsigned long addr;
3822
	int cow;
3823 3824
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3825
	struct address_space *mapping = vma->vm_file->f_mapping;
3826
	struct mmu_notifier_range range;
3827
	int ret = 0;
3828 3829

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3830

3831
	if (cow) {
3832
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3833
					vma->vm_start,
3834 3835
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3836 3837 3838 3839 3840 3841 3842 3843
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3844
	}
3845

3846
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3847
		spinlock_t *src_ptl, *dst_ptl;
3848
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3849 3850
		if (!src_pte)
			continue;
3851
		dst_pte = huge_pte_alloc(dst, addr, sz);
3852 3853 3854 3855
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3868 3869
			continue;

3870 3871 3872
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3873
		entry = huge_ptep_get(src_pte);
3874 3875 3876 3877 3878 3879 3880
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3893 3894
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3895
			}
3896
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3897
		} else {
3898
			if (cow) {
3899 3900 3901 3902 3903
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3904
				 * See Documentation/vm/mmu_notifier.rst
3905
				 */
3906
				huge_ptep_set_wrprotect(src, addr, src_pte);
3907
			}
3908
			entry = huge_ptep_get(src_pte);
3909 3910
			ptepage = pte_page(entry);
			get_page(ptepage);
3911
			page_dup_rmap(ptepage, true);
3912
			set_huge_pte_at(dst, addr, dst_pte, entry);
3913
			hugetlb_count_add(pages_per_huge_page(h), dst);
3914
		}
3915 3916
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3917 3918
	}

3919
	if (cow)
3920
		mmu_notifier_invalidate_range_end(&range);
3921 3922
	else
		i_mmap_unlock_read(mapping);
3923 3924

	return ret;
D
David Gibson 已提交
3925 3926
}

3927 3928 3929
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3930 3931 3932
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3933
	pte_t *ptep;
D
David Gibson 已提交
3934
	pte_t pte;
3935
	spinlock_t *ptl;
D
David Gibson 已提交
3936
	struct page *page;
3937 3938
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3939
	struct mmu_notifier_range range;
3940

D
David Gibson 已提交
3941
	WARN_ON(!is_vm_hugetlb_page(vma));
3942 3943
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3944

3945 3946 3947 3948
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3949
	tlb_change_page_size(tlb, sz);
3950
	tlb_start_vma(tlb, vma);
3951 3952 3953 3954

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3955 3956
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3957 3958
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3959 3960
	address = start;
	for (; address < end; address += sz) {
3961
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3962
		if (!ptep)
3963 3964
			continue;

3965
		ptl = huge_pte_lock(h, mm, ptep);
3966
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3967
			spin_unlock(ptl);
3968 3969 3970 3971
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3972 3973
			continue;
		}
3974

3975
		pte = huge_ptep_get(ptep);
3976 3977 3978 3979
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3980 3981

		/*
3982 3983
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3984
		 */
3985
		if (unlikely(!pte_present(pte))) {
3986
			huge_pte_clear(mm, address, ptep, sz);
3987 3988
			spin_unlock(ptl);
			continue;
3989
		}
3990 3991

		page = pte_page(pte);
3992 3993 3994 3995 3996 3997
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3998 3999 4000 4001
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
4002 4003 4004 4005 4006 4007 4008 4009
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

4010
		pte = huge_ptep_get_and_clear(mm, address, ptep);
4011
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4012
		if (huge_pte_dirty(pte))
4013
			set_page_dirty(page);
4014

4015
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4016
		page_remove_rmap(page, true);
4017

4018
		spin_unlock(ptl);
4019
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4020 4021 4022 4023 4024
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4025
	}
4026
	mmu_notifier_invalidate_range_end(&range);
4027
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4028
}
D
David Gibson 已提交
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4042
	 * is to clear it before releasing the i_mmap_rwsem. This works
4043
	 * because in the context this is called, the VMA is about to be
4044
	 * destroyed and the i_mmap_rwsem is held.
4045 4046 4047 4048
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4049
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4050
			  unsigned long end, struct page *ref_page)
4051
{
4052 4053
	struct mm_struct *mm;
	struct mmu_gather tlb;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4065 4066 4067

	mm = vma->vm_mm;

4068
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4069
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4070
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4071 4072
}

4073 4074 4075 4076 4077 4078
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4079 4080
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4081
{
4082
	struct hstate *h = hstate_vma(vma);
4083 4084 4085 4086 4087 4088 4089 4090
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4091
	address = address & huge_page_mask(h);
4092 4093
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4094
	mapping = vma->vm_file->f_mapping;
4095

4096 4097 4098 4099 4100
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4101
	i_mmap_lock_write(mapping);
4102
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4103 4104 4105 4106
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4107 4108 4109 4110 4111 4112 4113 4114
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4115 4116 4117 4118 4119 4120 4121 4122
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4123 4124
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4125
	}
4126
	i_mmap_unlock_write(mapping);
4127 4128
}

4129 4130
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4131 4132 4133
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4134
 */
4135
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4136
		       unsigned long address, pte_t *ptep,
4137
		       struct page *pagecache_page, spinlock_t *ptl)
4138
{
4139
	pte_t pte;
4140
	struct hstate *h = hstate_vma(vma);
4141
	struct page *old_page, *new_page;
4142 4143
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4144
	unsigned long haddr = address & huge_page_mask(h);
4145
	struct mmu_notifier_range range;
4146

4147
	pte = huge_ptep_get(ptep);
4148 4149
	old_page = pte_page(pte);

4150
retry_avoidcopy:
4151 4152
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4153
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4154
		page_move_anon_rmap(old_page, vma);
4155
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4156
		return 0;
4157 4158
	}

4159 4160 4161 4162 4163 4164 4165 4166 4167
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4168
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4169 4170 4171
			old_page != pagecache_page)
		outside_reserve = 1;

4172
	get_page(old_page);
4173

4174 4175 4176 4177
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4178
	spin_unlock(ptl);
4179
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4180

4181
	if (IS_ERR(new_page)) {
4182 4183 4184 4185 4186 4187 4188 4189
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4190
			put_page(old_page);
4191
			BUG_ON(huge_pte_none(pte));
4192
			unmap_ref_private(mm, vma, old_page, haddr);
4193 4194
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
4195
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4196 4197 4198 4199 4200 4201 4202 4203
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4204 4205
		}

4206
		ret = vmf_error(PTR_ERR(new_page));
4207
		goto out_release_old;
4208 4209
	}

4210 4211 4212 4213
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4214
	if (unlikely(anon_vma_prepare(vma))) {
4215 4216
		ret = VM_FAULT_OOM;
		goto out_release_all;
4217
	}
4218

4219
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4220
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4221
	__SetPageUptodate(new_page);
4222

4223
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4224
				haddr + huge_page_size(h));
4225
	mmu_notifier_invalidate_range_start(&range);
4226

4227
	/*
4228
	 * Retake the page table lock to check for racing updates
4229 4230
	 * before the page tables are altered
	 */
4231
	spin_lock(ptl);
4232
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4233
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4234 4235
		ClearPagePrivate(new_page);

4236
		/* Break COW */
4237
		huge_ptep_clear_flush(vma, haddr, ptep);
4238
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4239
		set_huge_pte_at(mm, haddr, ptep,
4240
				make_huge_pte(vma, new_page, 1));
4241
		page_remove_rmap(old_page, true);
4242
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4243
		set_page_huge_active(new_page);
4244 4245 4246
		/* Make the old page be freed below */
		new_page = old_page;
	}
4247
	spin_unlock(ptl);
4248
	mmu_notifier_invalidate_range_end(&range);
4249
out_release_all:
4250
	restore_reserve_on_error(h, vma, haddr, new_page);
4251
	put_page(new_page);
4252
out_release_old:
4253
	put_page(old_page);
4254

4255 4256
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4257 4258
}

4259
/* Return the pagecache page at a given address within a VMA */
4260 4261
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4262 4263
{
	struct address_space *mapping;
4264
	pgoff_t idx;
4265 4266

	mapping = vma->vm_file->f_mapping;
4267
	idx = vma_hugecache_offset(h, vma, address);
4268 4269 4270 4271

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4272 4273 4274 4275 4276
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

4303 4304 4305 4306 4307 4308
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4309 4310 4311 4312 4313 4314
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4315 4316 4317 4318
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4319
{
4320
	struct hstate *h = hstate_vma(vma);
4321
	vm_fault_t ret = VM_FAULT_SIGBUS;
4322
	int anon_rmap = 0;
A
Adam Litke 已提交
4323 4324
	unsigned long size;
	struct page *page;
4325
	pte_t new_pte;
4326
	spinlock_t *ptl;
4327
	unsigned long haddr = address & huge_page_mask(h);
4328
	bool new_page = false;
A
Adam Litke 已提交
4329

4330 4331 4332
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4333
	 * COW. Warn that such a situation has occurred as it may not be obvious
4334 4335
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4336
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4337
			   current->pid);
4338 4339 4340
		return ret;
	}

A
Adam Litke 已提交
4341
	/*
4342 4343 4344
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4345
	 */
4346 4347 4348 4349
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4350 4351 4352
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4353 4354 4355 4356 4357 4358 4359
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4360
				.address = haddr,
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4372 4373 4374
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4375
			 */
4376
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4377
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4378
			i_mmap_unlock_read(mapping);
4379
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4380
			i_mmap_lock_read(mapping);
4381 4382 4383 4384
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4385
		page = alloc_huge_page(vma, haddr, 0);
4386
		if (IS_ERR(page)) {
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4406
			ret = vmf_error(PTR_ERR(page));
4407 4408
			goto out;
		}
A
Andrea Arcangeli 已提交
4409
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4410
		__SetPageUptodate(page);
4411
		new_page = true;
4412

4413
		if (vma->vm_flags & VM_MAYSHARE) {
4414
			int err = huge_add_to_page_cache(page, mapping, idx);
4415 4416 4417 4418 4419 4420
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4421
		} else {
4422
			lock_page(page);
4423 4424 4425 4426
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4427
			anon_rmap = 1;
4428
		}
4429
	} else {
4430 4431 4432 4433 4434 4435
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4436
			ret = VM_FAULT_HWPOISON |
4437
				VM_FAULT_SET_HINDEX(hstate_index(h));
4438 4439
			goto backout_unlocked;
		}
4440
	}
4441

4442 4443 4444 4445 4446 4447
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4448
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4449
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4450 4451 4452
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4453
		/* Just decrements count, does not deallocate */
4454
		vma_end_reservation(h, vma, haddr);
4455
	}
4456

4457
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4458
	ret = 0;
4459
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4460 4461
		goto backout;

4462 4463
	if (anon_rmap) {
		ClearPagePrivate(page);
4464
		hugepage_add_new_anon_rmap(page, vma, haddr);
4465
	} else
4466
		page_dup_rmap(page, true);
4467 4468
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4469
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4470

4471
	hugetlb_count_add(pages_per_huge_page(h), mm);
4472
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4473
		/* Optimization, do the COW without a second fault */
4474
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4475 4476
	}

4477
	spin_unlock(ptl);
4478 4479 4480 4481 4482 4483 4484 4485 4486

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
4487 4488
	unlock_page(page);
out:
4489
	return ret;
A
Adam Litke 已提交
4490 4491

backout:
4492
	spin_unlock(ptl);
4493
backout_unlocked:
A
Adam Litke 已提交
4494
	unlock_page(page);
4495
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4496 4497
	put_page(page);
	goto out;
4498 4499
}

4500
#ifdef CONFIG_SMP
4501
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4502 4503 4504 4505
{
	unsigned long key[2];
	u32 hash;

4506 4507
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4508

4509
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4510 4511 4512 4513 4514 4515 4516 4517

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
4518
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4519 4520 4521 4522 4523
{
	return 0;
}
#endif

4524
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4525
			unsigned long address, unsigned int flags)
4526
{
4527
	pte_t *ptep, entry;
4528
	spinlock_t *ptl;
4529
	vm_fault_t ret;
4530 4531
	u32 hash;
	pgoff_t idx;
4532
	struct page *page = NULL;
4533
	struct page *pagecache_page = NULL;
4534
	struct hstate *h = hstate_vma(vma);
4535
	struct address_space *mapping;
4536
	int need_wait_lock = 0;
4537
	unsigned long haddr = address & huge_page_mask(h);
4538

4539
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4540
	if (ptep) {
4541 4542 4543 4544 4545
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4546
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4547
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4548
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4549 4550
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4551
			return VM_FAULT_HWPOISON_LARGE |
4552
				VM_FAULT_SET_HINDEX(hstate_index(h));
4553 4554
	}

4555 4556
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4557 4558 4559 4560
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4561 4562 4563 4564 4565
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4566
	mapping = vma->vm_file->f_mapping;
4567 4568 4569 4570 4571 4572
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4573

4574 4575 4576 4577 4578
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4579
	idx = vma_hugecache_offset(h, vma, haddr);
4580
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4581
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4582

4583 4584
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4585
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4586
		goto out_mutex;
4587
	}
4588

N
Nick Piggin 已提交
4589
	ret = 0;
4590

4591 4592 4593
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4594 4595 4596
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4597 4598 4599 4600
	 */
	if (!pte_present(entry))
		goto out_mutex;

4601 4602 4603 4604 4605 4606 4607 4608
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4609
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4610
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4611
			ret = VM_FAULT_OOM;
4612
			goto out_mutex;
4613
		}
4614
		/* Just decrements count, does not deallocate */
4615
		vma_end_reservation(h, vma, haddr);
4616

4617
		if (!(vma->vm_flags & VM_MAYSHARE))
4618
			pagecache_page = hugetlbfs_pagecache_page(h,
4619
								vma, haddr);
4620 4621
	}

4622 4623 4624 4625 4626 4627
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4628 4629 4630 4631 4632 4633 4634
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4635 4636 4637 4638
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4639

4640
	get_page(page);
4641

4642
	if (flags & FAULT_FLAG_WRITE) {
4643
		if (!huge_pte_write(entry)) {
4644
			ret = hugetlb_cow(mm, vma, address, ptep,
4645
					  pagecache_page, ptl);
4646
			goto out_put_page;
4647
		}
4648
		entry = huge_pte_mkdirty(entry);
4649 4650
	}
	entry = pte_mkyoung(entry);
4651
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4652
						flags & FAULT_FLAG_WRITE))
4653
		update_mmu_cache(vma, haddr, ptep);
4654 4655 4656 4657
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4658 4659
out_ptl:
	spin_unlock(ptl);
4660 4661 4662 4663 4664

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4665
out_mutex:
4666
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4667
	i_mmap_unlock_read(mapping);
4668 4669 4670 4671 4672 4673 4674 4675 4676
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4677
	return ret;
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4691 4692 4693
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4694
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4709
						pages_per_huge_page(h), false);
4710

4711
		/* fallback to copy_from_user outside mmap_lock */
4712
		if (unlikely(ret)) {
4713
			ret = -ENOENT;
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4730 4731 4732
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4733 4734 4735 4736
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4737 4738 4739 4740
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4741

4742 4743 4744 4745 4746 4747
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4748 4749 4750 4751 4752
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4753 4754 4755
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4770 4771 4772 4773
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4774 4775 4776 4777 4778 4779
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4796
	set_page_huge_active(page);
4797 4798
	if (vm_shared)
		unlock_page(page);
4799 4800 4801 4802 4803
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4804 4805
	if (vm_shared)
		unlock_page(page);
4806
out_release_nounlock:
4807 4808 4809 4810
	put_page(page);
	goto out;
}

4811 4812 4813
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4814
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4815
{
4816 4817
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4818
	unsigned long remainder = *nr_pages;
4819
	struct hstate *h = hstate_vma(vma);
4820
	int err = -EFAULT;
D
David Gibson 已提交
4821 4822

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4823
		pte_t *pte;
4824
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4825
		int absent;
A
Adam Litke 已提交
4826
		struct page *page;
D
David Gibson 已提交
4827

4828 4829 4830 4831
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4832
		if (fatal_signal_pending(current)) {
4833 4834 4835 4836
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4837 4838
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4839
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4840
		 * first, for the page indexing below to work.
4841 4842
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4843
		 */
4844 4845
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4846 4847
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4848 4849 4850 4851
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4852 4853 4854 4855
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4856
		 */
H
Hugh Dickins 已提交
4857 4858
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4859 4860
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4861 4862 4863
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4864

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4876 4877
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4878
			vm_fault_t ret;
4879
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4880

4881 4882
			if (pte)
				spin_unlock(ptl);
4883 4884
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4885
			if (locked)
4886 4887
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4888 4889 4890 4891
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4892 4893 4894 4895
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4896 4897 4898 4899
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4900
				err = vm_fault_to_errno(ret, flags);
4901 4902 4903 4904
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4905
				if (locked &&
4906
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4907
					*locked = 0;
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4921 4922
		}

4923
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4924
		page = pte_page(huge_ptep_get(pte));
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4940
same_page:
4941
		if (pages) {
H
Hugh Dickins 已提交
4942
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4959
		}
D
David Gibson 已提交
4960 4961 4962 4963 4964

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4965
		++pfn_offset;
D
David Gibson 已提交
4966 4967
		--remainder;
		++i;
4968
		if (vaddr < vma->vm_end && remainder &&
4969
				pfn_offset < pages_per_huge_page(h)) {
4970 4971 4972 4973 4974 4975
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4976
		spin_unlock(ptl);
D
David Gibson 已提交
4977
	}
4978
	*nr_pages = remainder;
4979 4980 4981 4982 4983
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4984 4985
	*position = vaddr;

4986
	return i ? i : err;
D
David Gibson 已提交
4987
}
4988

4989 4990 4991 4992 4993 4994 4995 4996
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4997
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4998 4999 5000 5001 5002 5003
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
5004
	struct hstate *h = hstate_vma(vma);
5005
	unsigned long pages = 0;
5006
	bool shared_pmd = false;
5007
	struct mmu_notifier_range range;
5008 5009 5010

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
5011
	 * start/end.  Set range.start/range.end to cover the maximum possible
5012 5013
	 * range if PMD sharing is possible.
	 */
5014 5015
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
5016
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5017 5018

	BUG_ON(address >= end);
5019
	flush_cache_range(vma, range.start, range.end);
5020

5021
	mmu_notifier_invalidate_range_start(&range);
5022
	i_mmap_lock_write(vma->vm_file->f_mapping);
5023
	for (; address < end; address += huge_page_size(h)) {
5024
		spinlock_t *ptl;
5025
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5026 5027
		if (!ptep)
			continue;
5028
		ptl = huge_pte_lock(h, mm, ptep);
5029
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5030
			pages++;
5031
			spin_unlock(ptl);
5032
			shared_pmd = true;
5033
			continue;
5034
		}
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5048 5049
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5050 5051 5052 5053 5054 5055
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5056 5057 5058 5059
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5060
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5061
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5062
			pages++;
5063
		}
5064
		spin_unlock(ptl);
5065
	}
5066
	/*
5067
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5068
	 * may have cleared our pud entry and done put_page on the page table:
5069
	 * once we release i_mmap_rwsem, another task can do the final put_page
5070 5071
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5072
	 */
5073
	if (shared_pmd)
5074
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5075 5076
	else
		flush_hugetlb_tlb_range(vma, start, end);
5077 5078 5079 5080
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5081
	 * See Documentation/vm/mmu_notifier.rst
5082
	 */
5083
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5084
	mmu_notifier_invalidate_range_end(&range);
5085 5086

	return pages << h->order;
5087 5088
}

5089 5090
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5091
					struct vm_area_struct *vma,
5092
					vm_flags_t vm_flags)
5093
{
5094
	long ret, chg, add = -1;
5095
	struct hstate *h = hstate_inode(inode);
5096
	struct hugepage_subpool *spool = subpool_inode(inode);
5097
	struct resv_map *resv_map;
5098
	struct hugetlb_cgroup *h_cg = NULL;
5099
	long gbl_reserve, regions_needed = 0;
5100

5101 5102 5103 5104 5105 5106
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5107 5108 5109
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5110
	 * without using reserves
5111
	 */
5112
	if (vm_flags & VM_NORESERVE)
5113 5114
		return 0;

5115 5116 5117 5118 5119 5120
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5121
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5122 5123 5124 5125 5126
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5127
		resv_map = inode_resv_map(inode);
5128

5129
		chg = region_chg(resv_map, from, to, &regions_needed);
5130 5131

	} else {
5132
		/* Private mapping. */
5133
		resv_map = resv_map_alloc();
5134 5135 5136
		if (!resv_map)
			return -ENOMEM;

5137
		chg = to - from;
5138

5139 5140 5141 5142
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5143 5144 5145 5146
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5147

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5163 5164 5165 5166 5167 5168 5169
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5170
		ret = -ENOSPC;
5171
		goto out_uncharge_cgroup;
5172
	}
5173 5174

	/*
5175
	 * Check enough hugepages are available for the reservation.
5176
	 * Hand the pages back to the subpool if there are not
5177
	 */
5178
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5179
	if (ret < 0) {
5180
		goto out_put_pages;
K
Ken Chen 已提交
5181
	}
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5194
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5195
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5196 5197 5198

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5199
			goto out_put_pages;
5200
		} else if (unlikely(chg > add)) {
5201 5202 5203 5204 5205 5206 5207 5208 5209
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5210 5211 5212 5213
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5214 5215 5216 5217 5218
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5219
	return 0;
5220 5221 5222 5223 5224 5225
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5226
out_err:
5227
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5228 5229 5230 5231 5232
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5233 5234
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5235
	return ret;
5236 5237
}

5238 5239
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5240
{
5241
	struct hstate *h = hstate_inode(inode);
5242
	struct resv_map *resv_map = inode_resv_map(inode);
5243
	long chg = 0;
5244
	struct hugepage_subpool *spool = subpool_inode(inode);
5245
	long gbl_reserve;
K
Ken Chen 已提交
5246

5247 5248 5249 5250
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5262
	spin_lock(&inode->i_lock);
5263
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5264 5265
	spin_unlock(&inode->i_lock);

5266 5267 5268 5269 5270 5271
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5272 5273

	return 0;
5274
}
5275

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5287 5288
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

5302
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5303 5304 5305 5306 5307 5308 5309
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5310
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5311 5312
		return true;
	return false;
5313 5314
}

5315 5316 5317 5318 5319 5320 5321 5322
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5323
	unsigned long a_start, a_end;
5324 5325 5326 5327

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

5328 5329 5330
	/* Extend the range to be PUD aligned for a worst case scenario */
	a_start = ALIGN_DOWN(*start, PUD_SIZE);
	a_end = ALIGN(*end, PUD_SIZE);
5331

5332 5333 5334 5335 5336 5337
	/*
	 * Intersect the range with the vma range, since pmd sharing won't be
	 * across vma after all
	 */
	*start = max(vma->vm_start, a_start);
	*end = min(vma->vm_end, a_end);
5338 5339
}

5340 5341 5342 5343
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5344 5345 5346 5347 5348 5349
 * code much cleaner.
 *
 * This routine must be called with i_mmap_rwsem held in at least read mode.
 * For hugetlbfs, this prevents removal of any page table entries associated
 * with the address space.  This is important as we are setting up sharing
 * based on existing page table entries (mappings).
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5361
	spinlock_t *ptl;
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5372 5373
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5384
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5385
	if (pud_none(*pud)) {
5386 5387
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5388
		mm_inc_nr_pmds(mm);
5389
	} else {
5390
		put_page(virt_to_page(spte));
5391
	}
5392
	spin_unlock(ptl);
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5405
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5406 5407 5408 5409
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5410 5411
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5412 5413
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5414 5415
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5416

5417
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5418 5419 5420 5421 5422 5423
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5424
	mm_dec_nr_pmds(mm);
5425 5426 5427
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5428 5429 5430 5431 5432 5433
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5434

5435 5436
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5437 5438 5439
{
	return 0;
}
5440 5441 5442 5443 5444

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5445
#define want_pmd_share()	(0)
5446 5447
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5448 5449 5450 5451 5452
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5453
	p4d_t *p4d;
5454 5455 5456 5457
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5458 5459 5460
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5461
	pud = pud_alloc(mm, p4d, addr);
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5473
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5474 5475 5476 5477

	return pte;
}

5478 5479 5480 5481
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5482 5483
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5484 5485 5486
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5487 5488
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5489 5490
{
	pgd_t *pgd;
5491
	p4d_t *p4d;
5492 5493
	pud_t *pud;
	pmd_t *pmd;
5494 5495

	pgd = pgd_offset(mm, addr);
5496 5497 5498 5499 5500
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5501

5502
	pud = pud_offset(p4d, addr);
5503 5504
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5505
		return (pte_t *)pud;
5506
	if (!pud_present(*pud))
5507
		return NULL;
5508
	/* must have a valid entry and size to go further */
5509

5510 5511 5512
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5513 5514
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5528 5529 5530 5531 5532 5533 5534 5535
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5536
struct page * __weak
5537
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5538
		pmd_t *pmd, int flags)
5539
{
5540 5541
	struct page *page = NULL;
	spinlock_t *ptl;
5542
	pte_t pte;
J
John Hubbard 已提交
5543 5544 5545 5546 5547 5548

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5549 5550 5551 5552 5553 5554 5555 5556 5557
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5558 5559
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5560
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5573
	} else {
5574
		if (is_hugetlb_entry_migration(pte)) {
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5586 5587 5588
	return page;
}

5589
struct page * __weak
5590
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5591
		pud_t *pud, int flags)
5592
{
J
John Hubbard 已提交
5593
	if (flags & (FOLL_GET | FOLL_PIN))
5594
		return NULL;
5595

5596
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5597 5598
}

5599 5600 5601
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5602
	if (flags & (FOLL_GET | FOLL_PIN))
5603 5604 5605 5606 5607
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5608 5609
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5610 5611
	bool ret = true;

5612
	VM_BUG_ON_PAGE(!PageHead(page), page);
5613
	spin_lock(&hugetlb_lock);
5614 5615 5616 5617 5618
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
5619
	list_move_tail(&page->lru, list);
5620
unlock:
5621
	spin_unlock(&hugetlb_lock);
5622
	return ret;
5623 5624 5625 5626
}

void putback_active_hugepage(struct page *page)
{
5627
	VM_BUG_ON_PAGE(!PageHead(page), page);
5628
	spin_lock(&hugetlb_lock);
5629
	set_page_huge_active(page);
5630 5631 5632 5633
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5706
		char name[20];
5707 5708 5709 5710

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5711
		snprintf(name, 20, "hugetlb%d", nid);
5712
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5713
						 0, false, name,
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */