hugetlb.c 171.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/page_owner.h>
43
#include "internal.h"
44
#include "hugetlb_vmemmap.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

85
static inline bool subpool_is_free(struct hugepage_subpool *spool)
86
{
87 88 89 90 91 92 93 94 95
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
96

97 98
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
						unsigned long irq_flags)
99
{
100
	spin_unlock_irqrestore(&spool->lock, irq_flags);
101 102

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
103
	 * remain, give up any reservations based on minimum size and
104
	 * free the subpool */
105
	if (subpool_is_free(spool)) {
106 107 108
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
109
		kfree(spool);
110
	}
111 112
}

113 114
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
115 116 117
{
	struct hugepage_subpool *spool;

118
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119 120 121 122 123
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
124 125 126 127 128 129 130 131 132
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
133 134 135 136 137 138

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
139 140 141
	unsigned long flags;

	spin_lock_irqsave(&spool->lock, flags);
142 143
	BUG_ON(!spool->count);
	spool->count--;
144
	unlock_or_release_subpool(spool, flags);
145 146
}

147 148 149
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
150
 * request.  Otherwise, return the number of pages by which the
151 152
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
153
 * a subpool minimum size must be maintained.
154 155
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156 157
				      long delta)
{
158
	long ret = delta;
159 160

	if (!spool)
161
		return ret;
162

163
	spin_lock_irq(&spool->lock);
164 165 166 167 168 169 170 171

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
172 173
	}

174 175
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
190
	spin_unlock_irq(&spool->lock);
191 192 193
	return ret;
}

194 195 196 197 198 199 200
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201 202
				       long delta)
{
203
	long ret = delta;
204
	unsigned long flags;
205

206
	if (!spool)
207
		return delta;
208

209
	spin_lock_irqsave(&spool->lock, flags);
210 211 212 213

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

214 215
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
230
	unlock_or_release_subpool(spool, flags);
231 232

	return ret;
233 234 235 236 237 238 239 240 241
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
242
	return subpool_inode(file_inode(vma->vm_file));
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
287 288 289 290 291 292 293 294 295 296 297
		/*
		 * The caller will hold exactly one h_cg->css reference for the
		 * whole contiguous reservation region. But this area might be
		 * scattered when there are already some file_regions reside in
		 * it. As a result, many file_regions may share only one css
		 * reference. In order to ensure that one file_region must hold
		 * exactly one h_cg->css reference, we should do css_get for
		 * each file_region and leave the reference held by caller
		 * untouched.
		 */
		css_get(&h_cg->css);
298 299 300 301 302 303 304 305 306 307 308 309 310
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

311 312 313 314 315 316 317 318
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (rg->css)
		css_put(rg->css);
#endif
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
342
		put_uncharge_info(rg);
343 344
		kfree(rg);

345
		rg = prg;
346 347 348 349 350 351 352 353
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
354
		put_uncharge_info(rg);
355 356 357 358
		kfree(rg);
	}
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static inline long
hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
		     long *regions_needed)
{
	struct file_region *nrg;

	if (!regions_needed) {
		nrg = get_file_region_entry_from_cache(map, from, to);
		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
		list_add(&nrg->link, rg->link.prev);
		coalesce_file_region(map, nrg);
	} else
		*regions_needed += 1;

	return to - from;
}

377 378 379 380 381 382 383
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
384 385
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386
				     struct hugetlb_cgroup *h_cg,
387
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
388
{
389
	long add = 0;
M
Mina Almasry 已提交
390
	struct list_head *head = &resv->regions;
391
	long last_accounted_offset = f;
392
	struct file_region *rg = NULL, *trg = NULL;
M
Mina Almasry 已提交
393

394 395
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
411

412 413 414
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
415
		if (rg->from >= t)
M
Mina Almasry 已提交
416 417
			break;

418 419 420
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
421 422 423 424 425
		if (rg->from > last_accounted_offset)
			add += hugetlb_resv_map_add(resv, rg,
						    last_accounted_offset,
						    rg->from, h, h_cg,
						    regions_needed);
426 427 428 429 430 431 432

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
433 434 435
	if (last_accounted_offset < t)
		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
					    t, h, h_cg, regions_needed);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
I
Ingo Molnar 已提交
470
		 * for all the existing adds_in_progress. We should only be
471
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
472
		 */
473 474 475 476 477 478 479 480
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
481 482
		}

483 484
		spin_lock(&resv->lock);

485 486
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
487 488
	}

489
	return 0;
M
Mina Almasry 已提交
490

491 492 493 494 495 496
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
497 498
}

499 500
/*
 * Add the huge page range represented by [f, t) to the reserve
501 502 503 504 505
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
506
 *
507 508 509 510
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
511
 * this operation and we were not able to allocate, it returns -ENOMEM.
512 513 514
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
515
 */
516
static long region_add(struct resv_map *resv, long f, long t,
517 518
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
519
{
520
	long add = 0, actual_regions_needed = 0;
521

522
	spin_lock(&resv->lock);
523 524 525
retry:

	/* Count how many regions are actually needed to execute this add. */
526 527
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
528

529
	/*
530 531 532 533 534 535 536
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
537
	 */
538 539 540 541 542 543 544 545
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
546

547 548 549 550
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
551

552
		goto retry;
553 554
	}

555
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556 557

	resv->adds_in_progress -= in_regions_needed;
558

559
	spin_unlock(&resv->lock);
560
	return add;
561 562
}

563 564 565 566 567 568 569
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
570 571 572 573 574 575 576
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
577 578 579 580 581
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
582
 */
583 584
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
585 586 587
{
	long chg = 0;

588
	spin_lock(&resv->lock);
589

590
	/* Count how many hugepages in this range are NOT represented. */
591
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592
				       out_regions_needed);
593

594 595
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
596

597 598
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
599

600
	resv->adds_in_progress += *out_regions_needed;
601 602

	spin_unlock(&resv->lock);
603 604 605
	return chg;
}

606 607 608 609 610
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
611 612 613
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
614 615 616 617 618
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
619 620
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
621 622 623
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
624
	resv->adds_in_progress -= regions_needed;
625 626 627
	spin_unlock(&resv->lock);
}

628
/*
629 630 631 632 633 634 635 636 637 638 639 640
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
641
 */
642
static long region_del(struct resv_map *resv, long f, long t)
643
{
644
	struct list_head *head = &resv->regions;
645
	struct file_region *rg, *trg;
646 647
	struct file_region *nrg = NULL;
	long del = 0;
648

649
retry:
650
	spin_lock(&resv->lock);
651
	list_for_each_entry_safe(rg, trg, head, link) {
652 653 654 655 656 657 658 659
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660
			continue;
661

662
		if (rg->from >= t)
663 664
			break;

665 666 667 668 669 670 671 672 673 674 675 676 677
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
678

679 680 681 682 683 684 685 686 687
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
688
			hugetlb_cgroup_uncharge_file_region(
689
				resv, rg, t - f, false);
690 691 692 693

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
694 695 696

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

697 698 699 700 701 702 703
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
704
			break;
705 706 707 708
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
709
			hugetlb_cgroup_uncharge_file_region(resv, rg,
710
							    rg->to - rg->from, true);
711 712 713 714 715 716
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
717
			hugetlb_cgroup_uncharge_file_region(resv, rg,
718
							    t - rg->from, false);
719

720 721 722
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
723
			hugetlb_cgroup_uncharge_file_region(resv, rg,
724
							    rg->to - f, false);
725 726 727

			del += rg->to - f;
			rg->to = f;
728
		}
729
	}
730 731

	spin_unlock(&resv->lock);
732 733
	kfree(nrg);
	return del;
734 735
}

736 737 738 739 740 741 742 743 744
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
745
void hugetlb_fix_reserve_counts(struct inode *inode)
746 747 748
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;
749
	bool reserved = false;
750 751

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752
	if (rsv_adjust > 0) {
753 754
		struct hstate *h = hstate_inode(inode);

755 756 757 758
		if (!hugetlb_acct_memory(h, 1))
			reserved = true;
	} else if (!rsv_adjust) {
		reserved = true;
759
	}
760 761 762

	if (!reserved)
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 764
}

765 766 767 768
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
769
static long region_count(struct resv_map *resv, long f, long t)
770
{
771
	struct list_head *head = &resv->regions;
772 773 774
	struct file_region *rg;
	long chg = 0;

775
	spin_lock(&resv->lock);
776 777
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
778 779
		long seg_from;
		long seg_to;
780 781 782 783 784 785 786 787 788 789 790

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
791
	spin_unlock(&resv->lock);
792 793 794 795

	return chg;
}

796 797 798 799
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
800 801
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
802
{
803 804
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
805 806
}

807 808 809 810 811
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
812
EXPORT_SYMBOL_GPL(linear_hugepage_index);
813

814 815 816 817 818 819
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
820 821 822
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
823
}
824
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825

826 827 828
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
829 830
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
831
 */
832
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 834 835 836
{
	return vma_kernel_pagesize(vma);
}

837 838 839 840 841 842 843
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
844
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845

846 847 848 849 850 851 852 853 854
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
855 856 857 858 859 860 861 862 863
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
864
 */
865 866 867 868 869 870 871 872 873 874 875
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

895
struct resv_map *resv_map_alloc(void)
896 897
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898 899 900 901 902
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
903
		return NULL;
904
	}
905 906

	kref_init(&resv_map->refs);
907
	spin_lock_init(&resv_map->lock);
908 909
	INIT_LIST_HEAD(&resv_map->regions);

910
	resv_map->adds_in_progress = 0;
911 912 913 914 915 916 917
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918 919 920 921 922

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

923 924 925
	return resv_map;
}

926
void resv_map_release(struct kref *ref)
927 928
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929 930
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
931 932

	/* Clear out any active regions before we release the map. */
933
	region_del(resv_map, 0, LONG_MAX);
934 935 936 937 938 939 940 941 942

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

943 944 945
	kfree(resv_map);
}

946 947
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
948 949 950 951 952 953 954 955 956
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
957 958
}

959
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960
{
961
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962 963 964 965 966 967 968
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
969 970
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
971
	}
972 973
}

974
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975
{
976 977
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978

979 980
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
981 982 983 984
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
985 986
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987 988

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 990 991 992
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
993
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 995

	return (get_vma_private_data(vma) & flag) != 0;
996 997
}

998
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 1000
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
1001
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002
	if (!(vma->vm_flags & VM_MAYSHARE))
1003 1004 1005 1006
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
1007
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008
{
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020
			return true;
1021
		else
1022
			return false;
1023
	}
1024 1025

	/* Shared mappings always use reserves */
1026 1027 1028 1029 1030
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1031
		 * fallocate.  In this case, there really are no reserves to
1032 1033 1034 1035 1036 1037 1038
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1039 1040 1041 1042 1043

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1065

1066
	return false;
1067 1068
}

1069
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1070 1071
{
	int nid = page_to_nid(page);
1072 1073

	lockdep_assert_held(&hugetlb_lock);
1074
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1075 1076
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1077
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1078 1079
}

1080
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 1082
{
	struct page *page;
1083
	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1084

1085
	lockdep_assert_held(&hugetlb_lock);
1086
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087
		if (pin && !is_pinnable_page(page))
1088
			continue;
1089

1090 1091 1092 1093 1094
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1095
		ClearHPageFreed(page);
1096 1097 1098
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1099 1100
	}

1101
	return NULL;
1102 1103
}

1104 1105
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1106
{
1107 1108 1109 1110
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1111
	int node = NUMA_NO_NODE;
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1129 1130 1131 1132 1133

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1134 1135 1136
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1137 1138 1139
	return NULL;
}

1140 1141
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1142 1143
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1144
{
1145
	struct page *page;
1146
	struct mempolicy *mpol;
1147
	gfp_t gfp_mask;
1148
	nodemask_t *nodemask;
1149
	int nid;
L
Linus Torvalds 已提交
1150

1151 1152 1153 1154 1155
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1156
	if (!vma_has_reserves(vma, chg) &&
1157
			h->free_huge_pages - h->resv_huge_pages == 0)
1158
		goto err;
1159

1160
	/* If reserves cannot be used, ensure enough pages are in the pool */
1161
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162
		goto err;
1163

1164 1165
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166 1167
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168
		SetHPageRestoreReserve(page);
1169
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1170
	}
1171

1172
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1173
	return page;
1174 1175 1176

err:
	return NULL;
L
Linus Torvalds 已提交
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1188
	nid = next_node_in(nid, *nodes_allowed);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
1221
 * helper for remove_pool_huge_page() - return the previously saved
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1250
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251
static void destroy_compound_gigantic_page(struct page *page,
1252
					unsigned int order)
1253 1254 1255 1256 1257
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1258
	atomic_set(compound_mapcount_ptr(page), 0);
1259
	atomic_set(compound_pincount_ptr(page), 0);
1260

1261
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262
		clear_compound_head(p);
1263 1264 1265 1266
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
1267
	page[1].compound_nr = 0;
1268 1269 1270
	__ClearPageHead(page);
}

1271
static void free_gigantic_page(struct page *page, unsigned int order)
1272
{
1273 1274 1275 1276
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1277 1278
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279
		return;
1280
#endif
1281

1282 1283 1284
	free_contig_range(page_to_pfn(page), 1 << order);
}

1285
#ifdef CONFIG_CONTIG_ALLOC
1286 1287
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1288
{
1289
	unsigned long nr_pages = pages_per_huge_page(h);
1290 1291
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1292

1293 1294
#ifdef CONFIG_CMA
	{
1295 1296 1297
		struct page *page;
		int node;

1298 1299 1300
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1301 1302 1303
			if (page)
				return page;
		}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1316
	}
1317
#endif
1318

1319
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 1321 1322
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 1325 1326 1327 1328 1329 1330
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1331

1332
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334 1335 1336 1337
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1338
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339
static inline void destroy_compound_gigantic_page(struct page *page,
1340
						unsigned int order) { }
1341 1342
#endif

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * Remove hugetlb page from lists, and update dtor so that page appears
 * as just a compound page.  A reference is held on the page.
 *
 * Must be called with hugetlb lock held.
 */
static void remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);

1357
	lockdep_assert_held(&hugetlb_lock);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return;

	list_del(&page->lru);

	if (HPageFreed(page)) {
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	}
	if (adjust_surplus) {
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	}

	set_page_refcounted(page);
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);

	h->nr_huge_pages--;
	h->nr_huge_pages_node[nid]--;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void add_hugetlb_page(struct hstate *h, struct page *page,
			     bool adjust_surplus)
{
	int zeroed;
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);

	lockdep_assert_held(&hugetlb_lock);

	INIT_LIST_HEAD(&page->lru);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;

	if (adjust_surplus) {
		h->surplus_huge_pages++;
		h->surplus_huge_pages_node[nid]++;
	}

	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	set_page_private(page, 0);
	SetHPageVmemmapOptimized(page);

	/*
	 * This page is now managed by the hugetlb allocator and has
	 * no users -- drop the last reference.
	 */
	zeroed = put_page_testzero(page);
	VM_BUG_ON_PAGE(!zeroed, page);
	arch_clear_hugepage_flags(page);
	enqueue_huge_page(h, page);
}

1412
static void __update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1413 1414
{
	int i;
1415
	struct page *subpage = page;
1416

1417
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1418
		return;
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (alloc_huge_page_vmemmap(h, page)) {
		spin_lock_irq(&hugetlb_lock);
		/*
		 * If we cannot allocate vmemmap pages, just refuse to free the
		 * page and put the page back on the hugetlb free list and treat
		 * as a surplus page.
		 */
		add_hugetlb_page(h, page, true);
		spin_unlock_irq(&hugetlb_lock);
		return;
	}

1432 1433 1434
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1435
				1 << PG_referenced | 1 << PG_dirty |
1436 1437
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1438
	}
1439 1440 1441 1442 1443 1444
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/*
 * As update_and_free_page() can be called under any context, so we cannot
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 * the vmemmap pages.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 * freed and frees them one-by-one. As the page->mapping pointer is going
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 * structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		struct page *page;
		struct hstate *h;

		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		page->mapping = NULL;
		/*
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
		 * is going to trigger because a previous call to
		 * remove_hugetlb_page() will set_compound_page_dtor(page,
		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
		 */
		h = size_to_hstate(page_size(page));

		__update_and_free_page(h, page);

		cond_resched();
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

static inline void flush_free_hpage_work(struct hstate *h)
{
	if (free_vmemmap_pages_per_hpage(h))
		flush_work(&free_hpage_work);
}

static void update_and_free_page(struct hstate *h, struct page *page,
				 bool atomic)
{
1498
	if (!HPageVmemmapOptimized(page) || !atomic) {
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		__update_and_free_page(h, page);
		return;
	}

	/*
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
	 *
	 * Only call schedule_work() if hpage_freelist is previously
	 * empty. Otherwise, schedule_work() had been called but the workfn
	 * hasn't retrieved the list yet.
	 */
	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
		schedule_work(&free_hpage_work);
}

1514 1515 1516 1517 1518
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
	struct page *page, *t_page;

	list_for_each_entry_safe(page, t_page, list, lru) {
1519
		update_and_free_page(h, page, false);
1520 1521 1522 1523
		cond_resched();
	}
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1535
void free_huge_page(struct page *page)
1536
{
1537 1538 1539 1540
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1541
	struct hstate *h = page_hstate(page);
1542
	int nid = page_to_nid(page);
1543
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1544
	bool restore_reserve;
1545
	unsigned long flags;
1546

1547 1548
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1549

1550
	hugetlb_set_page_subpool(page, NULL);
1551
	page->mapping = NULL;
1552 1553
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1554

1555
	/*
1556
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1557 1558 1559
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1560
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1561
	 * remove the reserved page from the subpool.
1562
	 */
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1573

1574
	spin_lock_irqsave(&hugetlb_lock, flags);
1575
	ClearHPageMigratable(page);
1576 1577
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1578 1579
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1580 1581 1582
	if (restore_reserve)
		h->resv_huge_pages++;

1583
	if (HPageTemporary(page)) {
1584
		remove_hugetlb_page(h, page, false);
1585
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1586
		update_and_free_page(h, page, true);
1587
	} else if (h->surplus_huge_pages_node[nid]) {
1588
		/* remove the page from active list */
1589
		remove_hugetlb_page(h, page, true);
1590
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1591
		update_and_free_page(h, page, true);
1592
	} else {
1593
		arch_clear_hugepage_flags(page);
1594
		enqueue_huge_page(h, page);
1595
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1596 1597 1598
	}
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * Must be called with the hugetlb lock held
 */
static void __prep_account_new_huge_page(struct hstate *h, int nid)
{
	lockdep_assert_held(&hugetlb_lock);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
}

1609
static void __prep_new_huge_page(struct hstate *h, struct page *page)
1610
{
1611
	free_huge_page_vmemmap(h, page);
1612
	INIT_LIST_HEAD(&page->lru);
1613
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1614
	hugetlb_set_page_subpool(page, NULL);
1615
	set_hugetlb_cgroup(page, NULL);
1616
	set_hugetlb_cgroup_rsvd(page, NULL);
1617 1618 1619 1620
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
1621
	__prep_new_huge_page(h, page);
1622
	spin_lock_irq(&hugetlb_lock);
1623
	__prep_account_new_huge_page(h, nid);
1624
	spin_unlock_irq(&hugetlb_lock);
1625 1626
}

1627
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1628 1629 1630 1631 1632 1633 1634
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1635
	__ClearPageReserved(page);
1636
	__SetPageHead(page);
1637
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1638 1639 1640 1641
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1642
		 * too.  Otherwise drivers using get_user_pages() to access tail
1643 1644 1645 1646 1647 1648 1649 1650
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1651
		set_page_count(p, 0);
1652
		set_compound_head(p, page);
1653
	}
1654
	atomic_set(compound_mapcount_ptr(page), -1);
1655
	atomic_set(compound_pincount_ptr(page), 0);
1656 1657
}

A
Andrew Morton 已提交
1658 1659 1660 1661 1662
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1663 1664 1665 1666 1667 1668
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1669
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1670
}
1671 1672
EXPORT_SYMBOL_GPL(PageHuge);

1673 1674 1675 1676 1677 1678 1679 1680 1681
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1682
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1683 1684
}

1685 1686 1687
/*
 * Find and lock address space (mapping) in write mode.
 *
1688 1689 1690
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1691 1692 1693
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1694
	struct address_space *mapping = page_mapping(hpage);
1695 1696 1697 1698 1699 1700 1701

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1702
	return NULL;
1703 1704
}

1705
pgoff_t hugetlb_basepage_index(struct page *page)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1719
static struct page *alloc_buddy_huge_page(struct hstate *h,
1720 1721
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1722
{
1723
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1724
	struct page *page;
1725
	bool alloc_try_hard = true;
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1739 1740
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1741
	page = __alloc_pages(gfp_mask, order, nid, nmask);
1742 1743 1744 1745
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1763 1764 1765
	return page;
}

1766 1767 1768 1769 1770
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1771 1772
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1773 1774 1775 1776 1777 1778 1779
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1780
				nid, nmask, node_alloc_noretry);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1791 1792 1793 1794
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1795 1796
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1797 1798 1799
{
	struct page *page;
	int nr_nodes, node;
1800
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1801 1802

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1803 1804
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1805
		if (page)
1806 1807 1808
			break;
	}

1809 1810
	if (!page)
		return 0;
1811

1812 1813 1814
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1815 1816
}

1817
/*
1818 1819 1820 1821
 * Remove huge page from pool from next node to free.  Attempt to keep
 * persistent huge pages more or less balanced over allowed nodes.
 * This routine only 'removes' the hugetlb page.  The caller must make
 * an additional call to free the page to low level allocators.
1822 1823
 * Called with hugetlb_lock locked.
 */
1824 1825 1826
static struct page *remove_pool_huge_page(struct hstate *h,
						nodemask_t *nodes_allowed,
						 bool acct_surplus)
1827
{
1828
	int nr_nodes, node;
1829
	struct page *page = NULL;
1830

1831
	lockdep_assert_held(&hugetlb_lock);
1832
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1833 1834 1835 1836
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1837 1838
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1839
			page = list_entry(h->hugepage_freelists[node].next,
1840
					  struct page, lru);
1841
			remove_hugetlb_page(h, page, acct_surplus);
1842
			break;
1843
		}
1844
	}
1845

1846
	return page;
1847 1848
}

1849 1850
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1851 1852 1853
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
1854 1855 1856 1857 1858 1859 1860 1861
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 *           when the system is under memory pressure and the feature of
 *           freeing unused vmemmap pages associated with each hugetlb page
 *           is enabled.
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 *           (allocated or reserved.)
 *       0:  successfully dissolved free hugepages or the page is not a
 *           hugepage (considered as already dissolved)
1862
 */
1863
int dissolve_free_huge_page(struct page *page)
1864
{
1865
	int rc = -EBUSY;
1866

1867
retry:
1868 1869 1870 1871
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1872
	spin_lock_irq(&hugetlb_lock);
1873 1874 1875 1876 1877 1878
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1879 1880
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
1881
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1882
			goto out;
1883 1884 1885 1886 1887

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
1888
		if (unlikely(!HPageFreed(head))) {
1889
			spin_unlock_irq(&hugetlb_lock);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

1903
		remove_hugetlb_page(h, head, false);
1904
		h->max_huge_pages--;
1905
		spin_unlock_irq(&hugetlb_lock);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

		/*
		 * Normally update_and_free_page will allocate required vmemmmap
		 * before freeing the page.  update_and_free_page will fail to
		 * free the page if it can not allocate required vmemmap.  We
		 * need to adjust max_huge_pages if the page is not freed.
		 * Attempt to allocate vmemmmap here so that we can take
		 * appropriate action on failure.
		 */
		rc = alloc_huge_page_vmemmap(h, head);
		if (!rc) {
			/*
			 * Move PageHWPoison flag from head page to the raw
			 * error page, which makes any subpages rather than
			 * the error page reusable.
			 */
			if (PageHWPoison(head) && page != head) {
				SetPageHWPoison(page);
				ClearPageHWPoison(head);
			}
			update_and_free_page(h, head, false);
		} else {
			spin_lock_irq(&hugetlb_lock);
			add_hugetlb_page(h, head, false);
			h->max_huge_pages++;
			spin_unlock_irq(&hugetlb_lock);
		}

		return rc;
1935
	}
1936
out:
1937
	spin_unlock_irq(&hugetlb_lock);
1938
	return rc;
1939 1940 1941 1942 1943
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1944 1945
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1946 1947
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1948
 */
1949
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1950 1951
{
	unsigned long pfn;
1952
	struct page *page;
1953
	int rc = 0;
1954

1955
	if (!hugepages_supported())
1956
		return rc;
1957

1958 1959
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1960 1961 1962
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1963
	}
1964 1965

	return rc;
1966 1967
}

1968 1969 1970
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1971
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1972
		int nid, nodemask_t *nmask)
1973
{
1974
	struct page *page = NULL;
1975

1976
	if (hstate_is_gigantic(h))
1977 1978
		return NULL;

1979
	spin_lock_irq(&hugetlb_lock);
1980 1981
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1982
	spin_unlock_irq(&hugetlb_lock);
1983

1984
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1985
	if (!page)
1986
		return NULL;
1987

1988
	spin_lock_irq(&hugetlb_lock);
1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1997
		SetHPageTemporary(page);
1998
		spin_unlock_irq(&hugetlb_lock);
1999
		put_page(page);
2000
		return NULL;
2001 2002
	} else {
		h->surplus_huge_pages++;
2003
		h->surplus_huge_pages_node[page_to_nid(page)]++;
2004
	}
2005 2006

out_unlock:
2007
	spin_unlock_irq(&hugetlb_lock);
2008 2009 2010 2011

	return page;
}

2012
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2013
				     int nid, nodemask_t *nmask)
2014 2015 2016 2017 2018 2019
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

2020
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2021 2022 2023 2024 2025 2026 2027
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
2028
	SetHPageTemporary(page);
2029 2030 2031 2032

	return page;
}

2033 2034 2035
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
2036
static
2037
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2038 2039
		struct vm_area_struct *vma, unsigned long addr)
{
2040 2041 2042 2043 2044 2045 2046
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2047
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2048 2049 2050
	mpol_cond_put(mpol);

	return page;
2051 2052
}

2053
/* page migration callback function */
2054
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2055
		nodemask_t *nmask, gfp_t gfp_mask)
2056
{
2057
	spin_lock_irq(&hugetlb_lock);
2058
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2059 2060 2061 2062
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
2063
			spin_unlock_irq(&hugetlb_lock);
2064
			return page;
2065 2066
		}
	}
2067
	spin_unlock_irq(&hugetlb_lock);
2068

2069
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2070 2071
}

2072
/* mempolicy aware migration callback */
2073 2074
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2075 2076 2077 2078 2079 2080 2081 2082 2083
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2084
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2085 2086 2087 2088 2089
	mpol_cond_put(mpol);

	return page;
}

2090
/*
L
Lucas De Marchi 已提交
2091
 * Increase the hugetlb pool such that it can accommodate a reservation
2092 2093
 * of size 'delta'.
 */
2094
static int gather_surplus_pages(struct hstate *h, long delta)
2095
	__must_hold(&hugetlb_lock)
2096 2097 2098
{
	struct list_head surplus_list;
	struct page *page, *tmp;
2099 2100 2101
	int ret;
	long i;
	long needed, allocated;
2102
	bool alloc_ok = true;
2103

2104
	lockdep_assert_held(&hugetlb_lock);
2105
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2106
	if (needed <= 0) {
2107
		h->resv_huge_pages += delta;
2108
		return 0;
2109
	}
2110 2111 2112 2113 2114 2115

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
2116
	spin_unlock_irq(&hugetlb_lock);
2117
	for (i = 0; i < needed; i++) {
2118
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2119
				NUMA_NO_NODE, NULL);
2120 2121 2122 2123
		if (!page) {
			alloc_ok = false;
			break;
		}
2124
		list_add(&page->lru, &surplus_list);
2125
		cond_resched();
2126
	}
2127
	allocated += i;
2128 2129 2130 2131 2132

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
2133
	spin_lock_irq(&hugetlb_lock);
2134 2135
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2146 2147
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2148
	 * needed to accommodate the reservation.  Add the appropriate number
2149
	 * of pages to the hugetlb pool and free the extras back to the buddy
2150 2151 2152
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2153 2154
	 */
	needed += allocated;
2155
	h->resv_huge_pages += delta;
2156
	ret = 0;
2157

2158
	/* Free the needed pages to the hugetlb pool */
2159
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2160 2161
		int zeroed;

2162 2163
		if ((--needed) < 0)
			break;
2164 2165 2166 2167
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
2168 2169
		zeroed = put_page_testzero(page);
		VM_BUG_ON_PAGE(!zeroed, page);
2170
		enqueue_huge_page(h, page);
2171
	}
2172
free:
2173
	spin_unlock_irq(&hugetlb_lock);
2174 2175

	/* Free unnecessary surplus pages to the buddy allocator */
2176 2177
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2178
	spin_lock_irq(&hugetlb_lock);
2179 2180 2181 2182 2183

	return ret;
}

/*
2184 2185 2186 2187 2188 2189
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
2190
 */
2191 2192
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2193 2194
{
	unsigned long nr_pages;
2195 2196 2197
	struct page *page;
	LIST_HEAD(page_list);

2198
	lockdep_assert_held(&hugetlb_lock);
2199 2200
	/* Uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2201

2202
	/* Cannot return gigantic pages currently */
2203
	if (hstate_is_gigantic(h))
2204
		goto out;
2205

2206 2207 2208 2209
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2210
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2211

2212 2213
	/*
	 * We want to release as many surplus pages as possible, spread
2214 2215 2216
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2217
	 * remove_pool_huge_page() will balance the freed pages across the
2218
	 * on-line nodes with memory and will handle the hstate accounting.
2219 2220
	 */
	while (nr_pages--) {
2221 2222
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
		if (!page)
2223
			goto out;
2224 2225

		list_add(&page->lru, &page_list);
2226
	}
2227 2228

out:
2229
	spin_unlock_irq(&hugetlb_lock);
2230
	update_and_free_pages_bulk(h, &page_list);
2231
	spin_lock_irq(&hugetlb_lock);
2232 2233
}

2234

2235
/*
2236
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2237
 * are used by the huge page allocation routines to manage reservations.
2238 2239 2240 2241 2242 2243
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2244 2245 2246
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2247 2248 2249 2250 2251 2252
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2253 2254 2255 2256 2257
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2258 2259 2260 2261 2262
 *
 * vma_del_reservation is used in error paths where an entry in the reserve
 * map was created during huge page allocation and must be removed.  It is to
 * be called after calling vma_needs_reservation to determine if a reservation
 * exists.
2263
 */
2264 2265 2266
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2267
	VMA_END_RESV,
2268
	VMA_ADD_RESV,
2269
	VMA_DEL_RESV,
2270
};
2271 2272
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2273
				enum vma_resv_mode mode)
2274
{
2275 2276
	struct resv_map *resv;
	pgoff_t idx;
2277
	long ret;
2278
	long dummy_out_regions_needed;
2279

2280 2281
	resv = vma_resv_map(vma);
	if (!resv)
2282
		return 1;
2283

2284
	idx = vma_hugecache_offset(h, vma, addr);
2285 2286
	switch (mode) {
	case VMA_NEEDS_RESV:
2287 2288 2289 2290 2291 2292
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2293 2294
		break;
	case VMA_COMMIT_RESV:
2295
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2296 2297
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2298
		break;
2299
	case VMA_END_RESV:
2300
		region_abort(resv, idx, idx + 1, 1);
2301 2302
		ret = 0;
		break;
2303
	case VMA_ADD_RESV:
2304
		if (vma->vm_flags & VM_MAYSHARE) {
2305
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2306 2307 2308 2309
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2310 2311 2312
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	case VMA_DEL_RESV:
		if (vma->vm_flags & VM_MAYSHARE) {
			region_abort(resv, idx, idx + 1, 1);
			ret = region_del(resv, idx, idx + 1);
		} else {
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		}
		break;
2323 2324 2325
	default:
		BUG();
	}
2326

2327
	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2328
		return ret;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * We know private mapping must have HPAGE_RESV_OWNER set.
	 *
	 * In most cases, reserves always exist for private mappings.
	 * However, a file associated with mapping could have been
	 * hole punched or truncated after reserves were consumed.
	 * As subsequent fault on such a range will not use reserves.
	 * Subtle - The reserve map for private mappings has the
	 * opposite meaning than that of shared mappings.  If NO
	 * entry is in the reserve map, it means a reservation exists.
	 * If an entry exists in the reserve map, it means the
	 * reservation has already been consumed.  As a result, the
	 * return value of this routine is the opposite of the
	 * value returned from reserve map manipulation routines above.
	 */
	if (ret > 0)
		return 0;
	if (ret == 0)
		return 1;
	return ret;
2349
}
2350 2351

static long vma_needs_reservation(struct hstate *h,
2352
			struct vm_area_struct *vma, unsigned long addr)
2353
{
2354
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2355
}
2356

2357 2358 2359
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2360 2361 2362
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2363
static void vma_end_reservation(struct hstate *h,
2364 2365
			struct vm_area_struct *vma, unsigned long addr)
{
2366
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2367 2368
}

2369 2370 2371 2372 2373 2374
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

2375 2376 2377 2378 2379 2380
static long vma_del_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
}

2381
/*
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
 * This routine is called to restore reservation information on error paths.
 * It should ONLY be called for pages allocated via alloc_huge_page(), and
 * the hugetlb mutex should remain held when calling this routine.
 *
 * It handles two specific cases:
 * 1) A reservation was in place and the page consumed the reservation.
 *    HPageRestoreReserve is set in the page.
 * 2) No reservation was in place for the page, so HPageRestoreReserve is
 *    not set.  However, alloc_huge_page always updates the reserve map.
 *
 * In case 1, free_huge_page later in the error path will increment the
 * global reserve count.  But, free_huge_page does not have enough context
 * to adjust the reservation map.  This case deals primarily with private
 * mappings.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.  Make sure the
 * reserve map indicates there is a reservation present.
 *
 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2400
 */
2401 2402
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
			unsigned long address, struct page *page)
2403
{
2404
	long rc = vma_needs_reservation(h, vma, address);
2405

2406 2407
	if (HPageRestoreReserve(page)) {
		if (unlikely(rc < 0))
2408 2409
			/*
			 * Rare out of memory condition in reserve map
2410
			 * manipulation.  Clear HPageRestoreReserve so that
2411 2412 2413 2414 2415 2416 2417 2418
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2419
			ClearHPageRestoreReserve(page);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		else if (rc)
			(void)vma_add_reservation(h, vma, address);
		else
			vma_end_reservation(h, vma, address);
	} else {
		if (!rc) {
			/*
			 * This indicates there is an entry in the reserve map
			 * added by alloc_huge_page.  We know it was added
			 * before the alloc_huge_page call, otherwise
			 * HPageRestoreReserve would be set on the page.
			 * Remove the entry so that a subsequent allocation
			 * does not consume a reservation.
			 */
			rc = vma_del_reservation(h, vma, address);
			if (rc < 0)
2436
				/*
2437 2438 2439 2440 2441 2442
				 * VERY rare out of memory condition.  Since
				 * we can not delete the entry, set
				 * HPageRestoreReserve so that the reserve
				 * count will be incremented when the page
				 * is freed.  This reserve will be consumed
				 * on a subsequent allocation.
2443
				 */
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
				SetHPageRestoreReserve(page);
		} else if (rc < 0) {
			/*
			 * Rare out of memory condition from
			 * vma_needs_reservation call.  Memory allocation is
			 * only attempted if a new entry is needed.  Therefore,
			 * this implies there is not an entry in the
			 * reserve map.
			 *
			 * For shared mappings, no entry in the map indicates
			 * no reservation.  We are done.
			 */
			if (!(vma->vm_flags & VM_MAYSHARE))
				/*
				 * For private mappings, no entry indicates
				 * a reservation is present.  Since we can
				 * not add an entry, set SetHPageRestoreReserve
				 * on the page so reserve count will be
				 * incremented when freed.  This reserve will
				 * be consumed on a subsequent allocation.
				 */
				SetHPageRestoreReserve(page);
2466
		} else
2467 2468 2469 2470
			/*
			 * No reservation present, do nothing
			 */
			 vma_end_reservation(h, vma, address);
2471 2472 2473
	}
}

2474 2475 2476 2477
/*
 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
 * @h: struct hstate old page belongs to
 * @old_page: Old page to dissolve
2478
 * @list: List to isolate the page in case we need to
2479 2480
 * Returns 0 on success, otherwise negated error.
 */
2481 2482
static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
					struct list_head *list)
2483 2484 2485 2486 2487 2488 2489 2490
{
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
	int nid = page_to_nid(old_page);
	struct page *new_page;
	int ret = 0;

	/*
	 * Before dissolving the page, we need to allocate a new one for the
2491 2492 2493 2494
	 * pool to remain stable.  Here, we allocate the page and 'prep' it
	 * by doing everything but actually updating counters and adding to
	 * the pool.  This simplifies and let us do most of the processing
	 * under the lock.
2495 2496 2497 2498
	 */
	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
	if (!new_page)
		return -ENOMEM;
2499
	__prep_new_huge_page(h, new_page);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

retry:
	spin_lock_irq(&hugetlb_lock);
	if (!PageHuge(old_page)) {
		/*
		 * Freed from under us. Drop new_page too.
		 */
		goto free_new;
	} else if (page_count(old_page)) {
		/*
2510 2511
		 * Someone has grabbed the page, try to isolate it here.
		 * Fail with -EBUSY if not possible.
2512
		 */
2513 2514 2515 2516
		spin_unlock_irq(&hugetlb_lock);
		if (!isolate_huge_page(old_page, list))
			ret = -EBUSY;
		spin_lock_irq(&hugetlb_lock);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		goto free_new;
	} else if (!HPageFreed(old_page)) {
		/*
		 * Page's refcount is 0 but it has not been enqueued in the
		 * freelist yet. Race window is small, so we can succeed here if
		 * we retry.
		 */
		spin_unlock_irq(&hugetlb_lock);
		cond_resched();
		goto retry;
	} else {
		/*
		 * Ok, old_page is still a genuine free hugepage. Remove it from
		 * the freelist and decrease the counters. These will be
		 * incremented again when calling __prep_account_new_huge_page()
		 * and enqueue_huge_page() for new_page. The counters will remain
		 * stable since this happens under the lock.
		 */
		remove_hugetlb_page(h, old_page, false);

		/*
		 * Reference count trick is needed because allocator gives us
		 * referenced page but the pool requires pages with 0 refcount.
		 */
		__prep_account_new_huge_page(h, nid);
		page_ref_dec(new_page);
		enqueue_huge_page(h, new_page);

		/*
		 * Pages have been replaced, we can safely free the old one.
		 */
		spin_unlock_irq(&hugetlb_lock);
2549
		update_and_free_page(h, old_page, false);
2550 2551 2552 2553 2554 2555
	}

	return ret;

free_new:
	spin_unlock_irq(&hugetlb_lock);
2556
	update_and_free_page(h, new_page, false);
2557 2558 2559 2560

	return ret;
}

2561
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2562 2563 2564
{
	struct hstate *h;
	struct page *head;
2565
	int ret = -EBUSY;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	/*
	 * The page might have been dissolved from under our feet, so make sure
	 * to carefully check the state under the lock.
	 * Return success when racing as if we dissolved the page ourselves.
	 */
	spin_lock_irq(&hugetlb_lock);
	if (PageHuge(page)) {
		head = compound_head(page);
		h = page_hstate(head);
	} else {
		spin_unlock_irq(&hugetlb_lock);
		return 0;
	}
	spin_unlock_irq(&hugetlb_lock);

	/*
	 * Fence off gigantic pages as there is a cyclic dependency between
	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
	 * of bailing out right away without further retrying.
	 */
	if (hstate_is_gigantic(h))
		return -ENOMEM;

2590 2591 2592 2593 2594 2595
	if (page_count(head) && isolate_huge_page(head, list))
		ret = 0;
	else if (!page_count(head))
		ret = alloc_and_dissolve_huge_page(h, head, list);

	return ret;
2596 2597
}

2598
struct page *alloc_huge_page(struct vm_area_struct *vma,
2599
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2600
{
2601
	struct hugepage_subpool *spool = subpool_vma(vma);
2602
	struct hstate *h = hstate_vma(vma);
2603
	struct page *page;
2604 2605
	long map_chg, map_commit;
	long gbl_chg;
2606 2607
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2608
	bool deferred_reserve;
2609

2610
	idx = hstate_index(h);
2611
	/*
2612 2613 2614
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2615
	 */
2616 2617
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2618
		return ERR_PTR(-ENOMEM);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2630
			vma_end_reservation(h, vma, addr);
2631
			return ERR_PTR(-ENOSPC);
2632
		}
L
Linus Torvalds 已提交
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2646 2647
	/* If this allocation is not consuming a reservation, charge it now.
	 */
2648
	deferred_reserve = map_chg || avoid_reserve;
2649 2650 2651 2652 2653 2654 2655
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2656
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2657
	if (ret)
2658
		goto out_uncharge_cgroup_reservation;
2659

2660
	spin_lock_irq(&hugetlb_lock);
2661 2662 2663 2664 2665 2666
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2667
	if (!page) {
2668
		spin_unlock_irq(&hugetlb_lock);
2669
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2670 2671
		if (!page)
			goto out_uncharge_cgroup;
2672
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2673
			SetHPageRestoreReserve(page);
2674 2675
			h->resv_huge_pages--;
		}
2676
		spin_lock_irq(&hugetlb_lock);
2677
		list_add(&page->lru, &h->hugepage_activelist);
2678
		/* Fall through */
K
Ken Chen 已提交
2679
	}
2680
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2681 2682 2683 2684 2685 2686 2687 2688
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2689
	spin_unlock_irq(&hugetlb_lock);
2690

2691
	hugetlb_set_page_subpool(page, spool);
2692

2693 2694
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2708 2709 2710
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2711
	}
2712
	return page;
2713 2714 2715

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2716 2717 2718 2719
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2720
out_subpool_put:
2721
	if (map_chg || avoid_reserve)
2722
		hugepage_subpool_put_pages(spool, 1);
2723
	vma_end_reservation(h, vma, addr);
2724
	return ERR_PTR(-ENOSPC);
2725 2726
}

2727 2728 2729
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2730 2731
{
	struct huge_bootmem_page *m;
2732
	int nr_nodes, node;
2733

2734
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2735 2736
		void *addr;

2737
		addr = memblock_alloc_try_nid_raw(
2738
				huge_page_size(h), huge_page_size(h),
2739
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2740 2741 2742 2743 2744 2745 2746
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2747
			goto found;
2748 2749 2750 2751 2752
		}
	}
	return 0;

found:
2753
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2754
	/* Put them into a private list first because mem_map is not up yet */
2755
	INIT_LIST_HEAD(&m->list);
2756 2757 2758 2759 2760
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2761 2762
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2763 2764 2765 2766 2767 2768 2769
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2770 2771 2772 2773 2774 2775
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2776
		struct page *page = virt_to_page(m);
2777
		struct hstate *h = m->hstate;
2778

2779
		WARN_ON(page_count(page) != 1);
2780
		prep_compound_huge_page(page, huge_page_order(h));
2781
		WARN_ON(PageReserved(page));
2782
		prep_new_huge_page(h, page, page_to_nid(page));
2783 2784
		put_page(page); /* free it into the hugepage allocator */

2785 2786 2787 2788 2789 2790
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2791
		if (hstate_is_gigantic(h))
2792
			adjust_managed_page_count(page, pages_per_huge_page(h));
2793
		cond_resched();
2794 2795 2796
	}
}

2797
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2798 2799
{
	unsigned long i;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2819

2820
	for (i = 0; i < h->max_huge_pages; ++i) {
2821
		if (hstate_is_gigantic(h)) {
2822
			if (hugetlb_cma_size) {
2823
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2824
				goto free;
2825
			}
2826 2827
			if (!alloc_bootmem_huge_page(h))
				break;
2828
		} else if (!alloc_pool_huge_page(h,
2829 2830
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2831
			break;
2832
		cond_resched();
L
Linus Torvalds 已提交
2833
	}
2834 2835 2836
	if (i < h->max_huge_pages) {
		char buf[32];

2837
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2838 2839 2840 2841
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2842
free:
2843
	kfree(node_alloc_noretry);
2844 2845 2846 2847 2848 2849 2850
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2851 2852 2853
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2854
		/* oversize hugepages were init'ed in early boot */
2855
		if (!hstate_is_gigantic(h))
2856
			hugetlb_hstate_alloc_pages(h);
2857
	}
2858
	VM_BUG_ON(minimum_order == UINT_MAX);
2859 2860 2861 2862 2863 2864 2865
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2866
		char buf[32];
2867 2868

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2869
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2870
			buf, h->free_huge_pages);
2871 2872 2873
	}
}

L
Linus Torvalds 已提交
2874
#ifdef CONFIG_HIGHMEM
2875 2876
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2877
{
2878
	int i;
2879
	LIST_HEAD(page_list);
2880

2881
	lockdep_assert_held(&hugetlb_lock);
2882
	if (hstate_is_gigantic(h))
2883 2884
		return;

2885 2886 2887
	/*
	 * Collect pages to be freed on a list, and free after dropping lock
	 */
2888
	for_each_node_mask(i, *nodes_allowed) {
2889
		struct page *page, *next;
2890 2891 2892
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2893
				goto out;
L
Linus Torvalds 已提交
2894 2895
			if (PageHighMem(page))
				continue;
2896
			remove_hugetlb_page(h, page, false);
2897
			list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
2898 2899
		}
	}
2900 2901

out:
2902
	spin_unlock_irq(&hugetlb_lock);
2903
	update_and_free_pages_bulk(h, &page_list);
2904
	spin_lock_irq(&hugetlb_lock);
L
Linus Torvalds 已提交
2905 2906
}
#else
2907 2908
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2909 2910 2911 2912
{
}
#endif

2913 2914 2915 2916 2917
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2918 2919
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2920
{
2921
	int nr_nodes, node;
2922

2923
	lockdep_assert_held(&hugetlb_lock);
2924 2925
	VM_BUG_ON(delta != -1 && delta != 1);

2926 2927 2928 2929
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2930
		}
2931 2932 2933 2934 2935
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2936
		}
2937 2938
	}
	return 0;
2939

2940 2941 2942 2943
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2944 2945
}

2946
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2947
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2948
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2949
{
2950
	unsigned long min_count, ret;
2951 2952
	struct page *page;
	LIST_HEAD(page_list);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2964

2965 2966 2967 2968 2969
	/*
	 * resize_lock mutex prevents concurrent adjustments to number of
	 * pages in hstate via the proc/sysfs interfaces.
	 */
	mutex_lock(&h->resize_lock);
2970
	flush_free_hpage_work(h);
2971
	spin_lock_irq(&hugetlb_lock);
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2993 2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
3002
			spin_unlock_irq(&hugetlb_lock);
3003
			mutex_unlock(&h->resize_lock);
3004
			NODEMASK_FREE(node_alloc_noretry);
3005 3006 3007 3008
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
3009

3010 3011 3012 3013
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
3014
	 *
3015
	 * We might race with alloc_surplus_huge_page() here and be unable
3016 3017 3018 3019
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
3020
	 */
3021
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3022
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3023 3024 3025
			break;
	}

3026
	while (count > persistent_huge_pages(h)) {
3027 3028 3029 3030 3031
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
3032
		spin_unlock_irq(&hugetlb_lock);
3033 3034 3035 3036

		/* yield cpu to avoid soft lockup */
		cond_resched();

3037 3038
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
3039
		spin_lock_irq(&hugetlb_lock);
3040 3041 3042
		if (!ret)
			goto out;

3043 3044 3045
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
3046 3047 3048 3049 3050 3051 3052 3053
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
3054 3055 3056 3057
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
3058
	 * alloc_surplus_huge_page() is checking the global counter,
3059 3060 3061
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
3062
	 */
3063
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3064
	min_count = max(count, min_count);
3065
	try_to_free_low(h, min_count, nodes_allowed);
3066 3067 3068 3069

	/*
	 * Collect pages to be removed on list without dropping lock
	 */
3070
	while (min_count < persistent_huge_pages(h)) {
3071 3072
		page = remove_pool_huge_page(h, nodes_allowed, 0);
		if (!page)
L
Linus Torvalds 已提交
3073
			break;
3074 3075

		list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3076
	}
3077
	/* free the pages after dropping lock */
3078
	spin_unlock_irq(&hugetlb_lock);
3079
	update_and_free_pages_bulk(h, &page_list);
3080
	flush_free_hpage_work(h);
3081
	spin_lock_irq(&hugetlb_lock);
3082

3083
	while (count < persistent_huge_pages(h)) {
3084
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3085 3086 3087
			break;
	}
out:
3088
	h->max_huge_pages = persistent_huge_pages(h);
3089
	spin_unlock_irq(&hugetlb_lock);
3090
	mutex_unlock(&h->resize_lock);
3091

3092 3093
	NODEMASK_FREE(node_alloc_noretry);

3094
	return 0;
L
Linus Torvalds 已提交
3095 3096
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

3107 3108 3109
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3110 3111
{
	int i;
3112

3113
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3114 3115 3116
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
3117
			return &hstates[i];
3118 3119 3120
		}

	return kobj_to_node_hstate(kobj, nidp);
3121 3122
}

3123
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3124 3125
					struct kobj_attribute *attr, char *buf)
{
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

3136
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3137
}
3138

3139 3140 3141
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
3142 3143
{
	int err;
3144
	nodemask_t nodes_allowed, *n_mask;
3145

3146 3147
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
3148

3149 3150 3151 3152 3153
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
3154 3155 3156 3157 3158
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
3159
		/*
3160 3161
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
3162
		 */
3163 3164
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
3165
	}
3166

3167
	err = set_max_huge_pages(h, count, nid, n_mask);
3168

3169
	return err ? err : len;
3170 3171
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

3189 3190 3191 3192 3193 3194 3195 3196 3197
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3198
	return nr_hugepages_store_common(false, kobj, buf, len);
3199 3200 3201
}
HSTATE_ATTR(nr_hugepages);

3202 3203 3204 3205 3206 3207 3208
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3209 3210
					   struct kobj_attribute *attr,
					   char *buf)
3211 3212 3213 3214 3215 3216 3217
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3218
	return nr_hugepages_store_common(true, kobj, buf, len);
3219 3220 3221 3222 3223
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


3224 3225 3226
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3227
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3228
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3229
}
3230

3231 3232 3233 3234 3235
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
3236
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3237

3238
	if (hstate_is_gigantic(h))
3239 3240
		return -EINVAL;

3241
	err = kstrtoul(buf, 10, &input);
3242
	if (err)
3243
		return err;
3244

3245
	spin_lock_irq(&hugetlb_lock);
3246
	h->nr_overcommit_huge_pages = input;
3247
	spin_unlock_irq(&hugetlb_lock);
3248 3249 3250 3251 3252 3253 3254 3255

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

3266
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3267 3268 3269 3270 3271 3272
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3273
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3274
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3275 3276 3277 3278 3279 3280
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

3291
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3292 3293 3294 3295 3296 3297 3298 3299 3300
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3301 3302 3303
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3304 3305 3306
	NULL,
};

3307
static const struct attribute_group hstate_attr_group = {
3308 3309 3310
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
3311 3312
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3313
				    const struct attribute_group *hstate_attr_group)
3314 3315
{
	int retval;
3316
	int hi = hstate_index(h);
3317

3318 3319
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3320 3321
		return -ENOMEM;

3322
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3323
	if (retval) {
3324
		kobject_put(hstate_kobjs[hi]);
3325 3326
		hstate_kobjs[hi] = NULL;
	}
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3341 3342
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3343
		if (err)
3344
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3345 3346 3347
	}
}

3348 3349 3350 3351
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3352 3353 3354
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3355 3356 3357 3358 3359 3360
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3361
static struct node_hstate node_hstates[MAX_NUMNODES];
3362 3363

/*
3364
 * A subset of global hstate attributes for node devices
3365 3366 3367 3368 3369 3370 3371 3372
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3373
static const struct attribute_group per_node_hstate_attr_group = {
3374 3375 3376 3377
	.attrs = per_node_hstate_attrs,
};

/*
3378
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3401
 * Unregister hstate attributes from a single node device.
3402 3403
 * No-op if no hstate attributes attached.
 */
3404
static void hugetlb_unregister_node(struct node *node)
3405 3406
{
	struct hstate *h;
3407
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3408 3409

	if (!nhs->hugepages_kobj)
3410
		return;		/* no hstate attributes */
3411

3412 3413 3414 3415 3416
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3417
		}
3418
	}
3419 3420 3421 3422 3423 3424 3425

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3426
 * Register hstate attributes for a single node device.
3427 3428
 * No-op if attributes already registered.
 */
3429
static void hugetlb_register_node(struct node *node)
3430 3431
{
	struct hstate *h;
3432
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3433 3434 3435 3436 3437 3438
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3439
							&node->dev.kobj);
3440 3441 3442 3443 3444 3445 3446 3447
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3448
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3449
				h->name, node->dev.id);
3450 3451 3452 3453 3454 3455 3456
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3457
 * hugetlb init time:  register hstate attributes for all registered node
3458 3459
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3460
 */
3461
static void __init hugetlb_register_all_nodes(void)
3462 3463 3464
{
	int nid;

3465
	for_each_node_state(nid, N_MEMORY) {
3466
		struct node *node = node_devices[nid];
3467
		if (node->dev.id == nid)
3468 3469 3470 3471
			hugetlb_register_node(node);
	}

	/*
3472
	 * Let the node device driver know we're here so it can
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3492 3493
static int __init hugetlb_init(void)
{
3494 3495
	int i;

3496 3497 3498
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3499 3500 3501
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3502
		return 0;
3503
	}
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3533
		}
3534
	}
3535

3536
	hugetlb_cma_check();
3537
	hugetlb_init_hstates();
3538
	gather_bootmem_prealloc();
3539 3540 3541
	report_hugepages();

	hugetlb_sysfs_init();
3542
	hugetlb_register_all_nodes();
3543
	hugetlb_cgroup_file_init();
3544

3545 3546 3547 3548 3549
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3550
	hugetlb_fault_mutex_table =
3551 3552
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3553
	BUG_ON(!hugetlb_fault_mutex_table);
3554 3555

	for (i = 0; i < num_fault_mutexes; i++)
3556
		mutex_init(&hugetlb_fault_mutex_table[i]);
3557 3558
	return 0;
}
3559
subsys_initcall(hugetlb_init);
3560

3561 3562
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3563
{
3564
	return size == HPAGE_SIZE;
3565 3566
}

3567
void __init hugetlb_add_hstate(unsigned int order)
3568 3569
{
	struct hstate *h;
3570 3571
	unsigned long i;

3572 3573 3574
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3575
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3576
	BUG_ON(order == 0);
3577
	h = &hstates[hugetlb_max_hstate++];
3578
	mutex_init(&h->resize_lock);
3579
	h->order = order;
3580
	h->mask = ~(huge_page_size(h) - 1);
3581 3582
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3583
	INIT_LIST_HEAD(&h->hugepage_activelist);
3584 3585
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3586 3587
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3588

3589 3590 3591
	parsed_hstate = h;
}

3592 3593 3594 3595 3596 3597 3598 3599
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3600 3601
{
	unsigned long *mhp;
3602
	static unsigned long *last_mhp;
3603

3604
	if (!parsed_valid_hugepagesz) {
3605
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3606
		parsed_valid_hugepagesz = true;
3607
		return 0;
3608
	}
3609

3610
	/*
3611 3612 3613 3614
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3615
	 */
3616
	else if (!hugetlb_max_hstate)
3617 3618 3619 3620
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3621
	if (mhp == last_mhp) {
3622 3623
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3624 3625
	}

3626 3627 3628
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3629 3630
	/*
	 * Global state is always initialized later in hugetlb_init.
3631
	 * But we need to allocate gigantic hstates here early to still
3632 3633
	 * use the bootmem allocator.
	 */
3634
	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3635 3636 3637 3638
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3639 3640
	return 1;
}
3641
__setup("hugepages=", hugepages_setup);
3642

3643 3644 3645 3646 3647 3648 3649
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3650
static int __init hugepagesz_setup(char *s)
3651
{
3652
	unsigned long size;
3653 3654 3655
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3656 3657 3658
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3659
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3660 3661 3662
		return 0;
	}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3686 3687
	}

3688
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3689
	parsed_valid_hugepagesz = true;
3690 3691
	return 1;
}
3692 3693
__setup("hugepagesz=", hugepagesz_setup);

3694 3695 3696 3697
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3698
static int __init default_hugepagesz_setup(char *s)
3699
{
3700 3701
	unsigned long size;

3702 3703 3704 3705 3706 3707
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3708 3709 3710
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3711
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3712 3713 3714
		return 0;
	}

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3734 3735
	return 1;
}
3736
__setup("default_hugepagesz=", default_hugepagesz_setup);
3737

3738
static unsigned int allowed_mems_nr(struct hstate *h)
3739 3740 3741
{
	int node;
	unsigned int nr = 0;
3742 3743 3744 3745 3746
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3747

3748
	for_each_node_mask(node, cpuset_current_mems_allowed) {
3749
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3750 3751
			nr += array[node];
	}
3752 3753 3754 3755 3756

	return nr;
}

#ifdef CONFIG_SYSCTL
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3773 3774
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3775
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3776
{
3777
	struct hstate *h = &default_hstate;
3778
	unsigned long tmp = h->max_huge_pages;
3779
	int ret;
3780

3781
	if (!hugepages_supported())
3782
		return -EOPNOTSUPP;
3783

3784 3785
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3786 3787
	if (ret)
		goto out;
3788

3789 3790 3791
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3792 3793
out:
	return ret;
L
Linus Torvalds 已提交
3794
}
3795

3796
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3797
			  void *buffer, size_t *length, loff_t *ppos)
3798 3799 3800 3801 3802 3803 3804 3805
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3806
			  void *buffer, size_t *length, loff_t *ppos)
3807 3808 3809 3810 3811 3812
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3813
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3814
		void *buffer, size_t *length, loff_t *ppos)
3815
{
3816
	struct hstate *h = &default_hstate;
3817
	unsigned long tmp;
3818
	int ret;
3819

3820
	if (!hugepages_supported())
3821
		return -EOPNOTSUPP;
3822

3823
	tmp = h->nr_overcommit_huge_pages;
3824

3825
	if (write && hstate_is_gigantic(h))
3826 3827
		return -EINVAL;

3828 3829
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3830 3831
	if (ret)
		goto out;
3832 3833

	if (write) {
3834
		spin_lock_irq(&hugetlb_lock);
3835
		h->nr_overcommit_huge_pages = tmp;
3836
		spin_unlock_irq(&hugetlb_lock);
3837
	}
3838 3839
out:
	return ret;
3840 3841
}

L
Linus Torvalds 已提交
3842 3843
#endif /* CONFIG_SYSCTL */

3844
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3845
{
3846 3847 3848
	struct hstate *h;
	unsigned long total = 0;

3849 3850
	if (!hugepages_supported())
		return;
3851 3852 3853 3854

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

3855
		total += huge_page_size(h) * count;
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
3868
				   huge_page_size(h) / SZ_1K);
3869 3870
	}

3871
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
3872 3873
}

3874
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
3875
{
3876
	struct hstate *h = &default_hstate;
3877

3878 3879
	if (!hugepages_supported())
		return 0;
3880 3881 3882 3883 3884 3885 3886 3887

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3888 3889
}

3890 3891 3892 3893 3894
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3895 3896 3897
	if (!hugepages_supported())
		return;

3898 3899 3900 3901 3902 3903 3904
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
3905
				huge_page_size(h) / SZ_1K);
3906 3907
}

3908 3909 3910 3911 3912 3913
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3914 3915 3916
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3917 3918 3919 3920 3921 3922
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3923 3924
}

3925
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3926 3927 3928
{
	int ret = -ENOMEM;

3929 3930 3931
	if (!delta)
		return 0;

3932
	spin_lock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3949 3950 3951 3952 3953 3954
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3955 3956
	 */
	if (delta > 0) {
3957
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3958 3959
			goto out;

3960
		if (delta > allowed_mems_nr(h)) {
3961
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3962 3963 3964 3965 3966 3967
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3968
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3969 3970

out:
3971
	spin_unlock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
3972 3973 3974
	return ret;
}

3975 3976
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3977
	struct resv_map *resv = vma_resv_map(vma);
3978 3979 3980 3981 3982

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3983
	 * has a reference to the reservation map it cannot disappear until
3984 3985 3986
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3987
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3988
		kref_get(&resv->refs);
3989 3990
}

3991 3992
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3993
	struct hstate *h = hstate_vma(vma);
3994
	struct resv_map *resv = vma_resv_map(vma);
3995
	struct hugepage_subpool *spool = subpool_vma(vma);
3996
	unsigned long reserve, start, end;
3997
	long gbl_reserve;
3998

3999 4000
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
4001

4002 4003
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
4004

4005
	reserve = (end - start) - region_count(resv, start, end);
4006
	hugetlb_cgroup_uncharge_counter(resv, start, end);
4007
	if (reserve) {
4008 4009 4010 4011 4012 4013
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
4014
	}
4015 4016

	kref_put(&resv->refs, resv_map_release);
4017 4018
}

4019 4020 4021 4022 4023 4024 4025
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

4026 4027
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
4028
	return huge_page_size(hstate_vma(vma));
4029 4030
}

L
Linus Torvalds 已提交
4031 4032 4033
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
4034
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
4035 4036
 * this far.
 */
4037
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
4038 4039
{
	BUG();
N
Nick Piggin 已提交
4040
	return 0;
L
Linus Torvalds 已提交
4041 4042
}

4043 4044 4045 4046 4047 4048 4049
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
4050
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
4051
	.fault = hugetlb_vm_op_fault,
4052
	.open = hugetlb_vm_op_open,
4053
	.close = hugetlb_vm_op_close,
4054
	.may_split = hugetlb_vm_op_split,
4055
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
4056 4057
};

4058 4059
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
4060 4061 4062
{
	pte_t entry;

4063
	if (writable) {
4064 4065
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
4066
	} else {
4067 4068
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
4069 4070 4071
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
4072
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
4073 4074 4075 4076

	return entry;
}

4077 4078 4079 4080 4081
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

4082
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4083
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4084
		update_mmu_cache(vma, address, ptep);
4085 4086
}

4087
bool is_hugetlb_entry_migration(pte_t pte)
4088 4089 4090 4091
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4092
		return false;
4093
	swp = pte_to_swp_entry(pte);
4094
	if (is_migration_entry(swp))
4095
		return true;
4096
	else
4097
		return false;
4098 4099
}

4100
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4101 4102 4103 4104
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4105
		return false;
4106
	swp = pte_to_swp_entry(pte);
4107
	if (is_hwpoison_entry(swp))
4108
		return true;
4109
	else
4110
		return false;
4111
}
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
static void
hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
		     struct page *new_page)
{
	__SetPageUptodate(new_page);
	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
	hugepage_add_new_anon_rmap(new_page, vma, addr);
	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
	ClearHPageRestoreReserve(new_page);
	SetHPageMigratable(new_page);
}

D
David Gibson 已提交
4125 4126 4127
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
4128
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
4129
	struct page *ptepage;
4130
	unsigned long addr;
4131
	bool cow = is_cow_mapping(vma->vm_flags);
4132 4133
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4134
	unsigned long npages = pages_per_huge_page(h);
4135
	struct address_space *mapping = vma->vm_file->f_mapping;
4136
	struct mmu_notifier_range range;
4137
	int ret = 0;
4138

4139
	if (cow) {
4140
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4141
					vma->vm_start,
4142 4143
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
4144 4145 4146 4147 4148 4149 4150 4151
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
4152
	}
4153

4154
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4155
		spinlock_t *src_ptl, *dst_ptl;
4156
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
4157 4158
		if (!src_pte)
			continue;
4159
		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4160 4161 4162 4163
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4176 4177
			continue;

4178 4179 4180
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4181
		entry = huge_ptep_get(src_pte);
4182
		dst_entry = huge_ptep_get(dst_pte);
4183
again:
4184 4185 4186 4187 4188 4189
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
4202 4203
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
4204
			}
4205
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4206
		} else {
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
			entry = huge_ptep_get(src_pte);
			ptepage = pte_page(entry);
			get_page(ptepage);

			/*
			 * This is a rare case where we see pinned hugetlb
			 * pages while they're prone to COW.  We need to do the
			 * COW earlier during fork.
			 *
			 * When pre-allocating the page or copying data, we
			 * need to be without the pgtable locks since we could
			 * sleep during the process.
			 */
			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
				pte_t src_pte_old = entry;
				struct page *new;

				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				/* Do not use reserve as it's private owned */
				new = alloc_huge_page(vma, addr, 1);
				if (IS_ERR(new)) {
					put_page(ptepage);
					ret = PTR_ERR(new);
					break;
				}
				copy_user_huge_page(new, ptepage, addr, vma,
						    npages);
				put_page(ptepage);

				/* Install the new huge page if src pte stable */
				dst_ptl = huge_pte_lock(h, dst, dst_pte);
				src_ptl = huge_pte_lockptr(h, src, src_pte);
				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
				entry = huge_ptep_get(src_pte);
				if (!pte_same(src_pte_old, entry)) {
4243 4244
					restore_reserve_on_error(h, vma, addr,
								new);
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
					put_page(new);
					/* dst_entry won't change as in child */
					goto again;
				}
				hugetlb_install_page(vma, dst_pte, addr, new);
				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				continue;
			}

4255
			if (cow) {
4256 4257 4258 4259 4260
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
4261
				 * See Documentation/vm/mmu_notifier.rst
4262
				 */
4263
				huge_ptep_set_wrprotect(src, addr, src_pte);
4264
				entry = huge_pte_wrprotect(entry);
4265
			}
4266

4267
			page_dup_rmap(ptepage, true);
4268
			set_huge_pte_at(dst, addr, dst_pte, entry);
4269
			hugetlb_count_add(npages, dst);
4270
		}
4271 4272
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
4273 4274
	}

4275
	if (cow)
4276
		mmu_notifier_invalidate_range_end(&range);
4277 4278
	else
		i_mmap_unlock_read(mapping);
4279 4280

	return ret;
D
David Gibson 已提交
4281 4282
}

4283 4284 4285
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
4286 4287 4288
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
4289
	pte_t *ptep;
D
David Gibson 已提交
4290
	pte_t pte;
4291
	spinlock_t *ptl;
D
David Gibson 已提交
4292
	struct page *page;
4293 4294
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4295
	struct mmu_notifier_range range;
4296

D
David Gibson 已提交
4297
	WARN_ON(!is_vm_hugetlb_page(vma));
4298 4299
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
4300

4301 4302 4303 4304
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
4305
	tlb_change_page_size(tlb, sz);
4306
	tlb_start_vma(tlb, vma);
4307 4308 4309 4310

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
4311 4312
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
4313 4314
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
4315 4316
	address = start;
	for (; address < end; address += sz) {
4317
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
4318
		if (!ptep)
4319 4320
			continue;

4321
		ptl = huge_pte_lock(h, mm, ptep);
4322
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4323
			spin_unlock(ptl);
4324 4325 4326 4327
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
4328 4329
			continue;
		}
4330

4331
		pte = huge_ptep_get(ptep);
4332 4333 4334 4335
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
4336 4337

		/*
4338 4339
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
4340
		 */
4341
		if (unlikely(!pte_present(pte))) {
4342
			huge_pte_clear(mm, address, ptep, sz);
4343 4344
			spin_unlock(ptl);
			continue;
4345
		}
4346 4347

		page = pte_page(pte);
4348 4349 4350 4351 4352 4353
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
4354 4355 4356 4357
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
4358 4359 4360 4361 4362 4363 4364 4365
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

4366
		pte = huge_ptep_get_and_clear(mm, address, ptep);
4367
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4368
		if (huge_pte_dirty(pte))
4369
			set_page_dirty(page);
4370

4371
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4372
		page_remove_rmap(page, true);
4373

4374
		spin_unlock(ptl);
4375
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4376 4377 4378 4379 4380
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4381
	}
4382
	mmu_notifier_invalidate_range_end(&range);
4383
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4384
}
D
David Gibson 已提交
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4398
	 * is to clear it before releasing the i_mmap_rwsem. This works
4399
	 * because in the context this is called, the VMA is about to be
4400
	 * destroyed and the i_mmap_rwsem is held.
4401 4402 4403 4404
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4405
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4406
			  unsigned long end, struct page *ref_page)
4407
{
4408
	struct mmu_gather tlb;
4409

4410
	tlb_gather_mmu(&tlb, vma->vm_mm);
4411
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4412
	tlb_finish_mmu(&tlb);
4413 4414
}

4415 4416
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4417
 * mapping it owns the reserve page for. The intention is to unmap the page
4418 4419 4420
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4421 4422
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4423
{
4424
	struct hstate *h = hstate_vma(vma);
4425 4426 4427 4428 4429 4430 4431 4432
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4433
	address = address & huge_page_mask(h);
4434 4435
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4436
	mapping = vma->vm_file->f_mapping;
4437

4438 4439 4440 4441 4442
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4443
	i_mmap_lock_write(mapping);
4444
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4445 4446 4447 4448
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4449 4450 4451 4452 4453 4454 4455 4456
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4457 4458 4459 4460 4461 4462 4463 4464
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4465 4466
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4467
	}
4468
	i_mmap_unlock_write(mapping);
4469 4470
}

4471 4472
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4473 4474 4475
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4476
 */
4477
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4478
		       unsigned long address, pte_t *ptep,
4479
		       struct page *pagecache_page, spinlock_t *ptl)
4480
{
4481
	pte_t pte;
4482
	struct hstate *h = hstate_vma(vma);
4483
	struct page *old_page, *new_page;
4484 4485
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4486
	unsigned long haddr = address & huge_page_mask(h);
4487
	struct mmu_notifier_range range;
4488

4489
	pte = huge_ptep_get(ptep);
4490 4491
	old_page = pte_page(pte);

4492
retry_avoidcopy:
4493 4494
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4495
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4496
		page_move_anon_rmap(old_page, vma);
4497
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4498
		return 0;
4499 4500
	}

4501 4502 4503 4504 4505 4506 4507 4508 4509
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4510
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4511 4512 4513
			old_page != pagecache_page)
		outside_reserve = 1;

4514
	get_page(old_page);
4515

4516 4517 4518 4519
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4520
	spin_unlock(ptl);
4521
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4522

4523
	if (IS_ERR(new_page)) {
4524 4525 4526 4527 4528 4529 4530 4531
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4532 4533 4534 4535
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

4536
			put_page(old_page);
4537
			BUG_ON(huge_pte_none(pte));
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

4552
			unmap_ref_private(mm, vma, old_page, haddr);
4553 4554 4555

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4556
			spin_lock(ptl);
4557
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4558 4559 4560 4561 4562 4563 4564 4565
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4566 4567
		}

4568
		ret = vmf_error(PTR_ERR(new_page));
4569
		goto out_release_old;
4570 4571
	}

4572 4573 4574 4575
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4576
	if (unlikely(anon_vma_prepare(vma))) {
4577 4578
		ret = VM_FAULT_OOM;
		goto out_release_all;
4579
	}
4580

4581
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4582
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4583
	__SetPageUptodate(new_page);
4584

4585
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4586
				haddr + huge_page_size(h));
4587
	mmu_notifier_invalidate_range_start(&range);
4588

4589
	/*
4590
	 * Retake the page table lock to check for racing updates
4591 4592
	 * before the page tables are altered
	 */
4593
	spin_lock(ptl);
4594
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4595
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4596
		ClearHPageRestoreReserve(new_page);
4597

4598
		/* Break COW */
4599
		huge_ptep_clear_flush(vma, haddr, ptep);
4600
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4601
		set_huge_pte_at(mm, haddr, ptep,
4602
				make_huge_pte(vma, new_page, 1));
4603
		page_remove_rmap(old_page, true);
4604
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4605
		SetHPageMigratable(new_page);
4606 4607 4608
		/* Make the old page be freed below */
		new_page = old_page;
	}
4609
	spin_unlock(ptl);
4610
	mmu_notifier_invalidate_range_end(&range);
4611
out_release_all:
4612
	restore_reserve_on_error(h, vma, haddr, new_page);
4613
	put_page(new_page);
4614
out_release_old:
4615
	put_page(old_page);
4616

4617 4618
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4619 4620
}

4621
/* Return the pagecache page at a given address within a VMA */
4622 4623
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4624 4625
{
	struct address_space *mapping;
4626
	pgoff_t idx;
4627 4628

	mapping = vma->vm_file->f_mapping;
4629
	idx = vma_hugecache_offset(h, vma, address);
4630 4631 4632 4633

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4634 4635 4636 4637 4638
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4654 4655 4656 4657 4658 4659 4660 4661 4662
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
4663
	ClearHPageRestoreReserve(page);
4664

4665 4666 4667 4668 4669 4670
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4671 4672 4673 4674 4675 4676
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
						  struct address_space *mapping,
						  pgoff_t idx,
						  unsigned int flags,
						  unsigned long haddr,
						  unsigned long reason)
{
	vm_fault_t ret;
	u32 hash;
	struct vm_fault vmf = {
		.vma = vma,
		.address = haddr,
		.flags = flags,

		/*
		 * Hard to debug if it ends up being
		 * used by a callee that assumes
		 * something about the other
		 * uninitialized fields... same as in
		 * memory.c
		 */
	};

	/*
	 * hugetlb_fault_mutex and i_mmap_rwsem must be
	 * dropped before handling userfault.  Reacquire
	 * after handling fault to make calling code simpler.
	 */
	hash = hugetlb_fault_mutex_hash(mapping, idx);
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
	i_mmap_unlock_read(mapping);
	ret = handle_userfault(&vmf, reason);
	i_mmap_lock_read(mapping);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);

	return ret;
}

4715 4716 4717 4718
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4719
{
4720
	struct hstate *h = hstate_vma(vma);
4721
	vm_fault_t ret = VM_FAULT_SIGBUS;
4722
	int anon_rmap = 0;
A
Adam Litke 已提交
4723 4724
	unsigned long size;
	struct page *page;
4725
	pte_t new_pte;
4726
	spinlock_t *ptl;
4727
	unsigned long haddr = address & huge_page_mask(h);
4728
	bool new_page = false;
A
Adam Litke 已提交
4729

4730 4731 4732
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4733
	 * COW. Warn that such a situation has occurred as it may not be obvious
4734 4735
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4736
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4737
			   current->pid);
4738 4739 4740
		return ret;
	}

A
Adam Litke 已提交
4741
	/*
4742 4743 4744
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4745
	 */
4746 4747 4748 4749
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4750 4751 4752
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4753
		/* Check for page in userfault range */
4754
		if (userfaultfd_missing(vma)) {
4755 4756 4757
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MISSING);
4758 4759 4760
			goto out;
		}

4761
		page = alloc_huge_page(vma, haddr, 0);
4762
		if (IS_ERR(page)) {
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
4776 4777 4778
			ret = 0;
			if (huge_pte_none(huge_ptep_get(ptep)))
				ret = vmf_error(PTR_ERR(page));
4779
			spin_unlock(ptl);
4780 4781
			goto out;
		}
A
Andrea Arcangeli 已提交
4782
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4783
		__SetPageUptodate(page);
4784
		new_page = true;
4785

4786
		if (vma->vm_flags & VM_MAYSHARE) {
4787
			int err = huge_add_to_page_cache(page, mapping, idx);
4788 4789 4790 4791 4792 4793
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4794
		} else {
4795
			lock_page(page);
4796 4797 4798 4799
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4800
			anon_rmap = 1;
4801
		}
4802
	} else {
4803 4804 4805 4806 4807 4808
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4809
			ret = VM_FAULT_HWPOISON_LARGE |
4810
				VM_FAULT_SET_HINDEX(hstate_index(h));
4811 4812
			goto backout_unlocked;
		}
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822

		/* Check for page in userfault range. */
		if (userfaultfd_minor(vma)) {
			unlock_page(page);
			put_page(page);
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MINOR);
			goto out;
		}
4823
	}
4824

4825 4826 4827 4828 4829 4830
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4831
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4832
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4833 4834 4835
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4836
		/* Just decrements count, does not deallocate */
4837
		vma_end_reservation(h, vma, haddr);
4838
	}
4839

4840
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4841
	ret = 0;
4842
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4843 4844
		goto backout;

4845
	if (anon_rmap) {
4846
		ClearHPageRestoreReserve(page);
4847
		hugepage_add_new_anon_rmap(page, vma, haddr);
4848
	} else
4849
		page_dup_rmap(page, true);
4850 4851
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4852
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4853

4854
	hugetlb_count_add(pages_per_huge_page(h), mm);
4855
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4856
		/* Optimization, do the COW without a second fault */
4857
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4858 4859
	}

4860
	spin_unlock(ptl);
4861 4862

	/*
4863 4864 4865
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
4866 4867
	 */
	if (new_page)
4868
		SetHPageMigratable(page);
4869

A
Adam Litke 已提交
4870 4871
	unlock_page(page);
out:
4872
	return ret;
A
Adam Litke 已提交
4873 4874

backout:
4875
	spin_unlock(ptl);
4876
backout_unlocked:
A
Adam Litke 已提交
4877
	unlock_page(page);
4878
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4879 4880
	put_page(page);
	goto out;
4881 4882
}

4883
#ifdef CONFIG_SMP
4884
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4885 4886 4887 4888
{
	unsigned long key[2];
	u32 hash;

4889 4890
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4891

4892
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4893 4894 4895 4896 4897

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
4898
 * For uniprocessor systems we always use a single mutex, so just
4899 4900
 * return 0 and avoid the hashing overhead.
 */
4901
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4902 4903 4904 4905 4906
{
	return 0;
}
#endif

4907
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4908
			unsigned long address, unsigned int flags)
4909
{
4910
	pte_t *ptep, entry;
4911
	spinlock_t *ptl;
4912
	vm_fault_t ret;
4913 4914
	u32 hash;
	pgoff_t idx;
4915
	struct page *page = NULL;
4916
	struct page *pagecache_page = NULL;
4917
	struct hstate *h = hstate_vma(vma);
4918
	struct address_space *mapping;
4919
	int need_wait_lock = 0;
4920
	unsigned long haddr = address & huge_page_mask(h);
4921

4922
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4923
	if (ptep) {
4924 4925 4926 4927 4928
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4929
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4930
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4931
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4932 4933
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4934
			return VM_FAULT_HWPOISON_LARGE |
4935
				VM_FAULT_SET_HINDEX(hstate_index(h));
4936 4937
	}

4938 4939
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4940 4941 4942 4943
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4944 4945 4946 4947 4948
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4949
	mapping = vma->vm_file->f_mapping;
4950
	i_mmap_lock_read(mapping);
4951
	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4952 4953 4954 4955
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4956

4957 4958 4959 4960 4961
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4962
	idx = vma_hugecache_offset(h, vma, haddr);
4963
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4964
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4965

4966 4967
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4968
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4969
		goto out_mutex;
4970
	}
4971

N
Nick Piggin 已提交
4972
	ret = 0;
4973

4974 4975 4976
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4977 4978 4979
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4980 4981 4982 4983
	 */
	if (!pte_present(entry))
		goto out_mutex;

4984 4985 4986 4987 4988 4989 4990 4991
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4992
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4993
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4994
			ret = VM_FAULT_OOM;
4995
			goto out_mutex;
4996
		}
4997
		/* Just decrements count, does not deallocate */
4998
		vma_end_reservation(h, vma, haddr);
4999

5000
		if (!(vma->vm_flags & VM_MAYSHARE))
5001
			pagecache_page = hugetlbfs_pagecache_page(h,
5002
								vma, haddr);
5003 5004
	}

5005 5006 5007 5008 5009 5010
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

5011 5012 5013 5014 5015 5016 5017
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
5018 5019 5020 5021
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
5022

5023
	get_page(page);
5024

5025
	if (flags & FAULT_FLAG_WRITE) {
5026
		if (!huge_pte_write(entry)) {
5027
			ret = hugetlb_cow(mm, vma, address, ptep,
5028
					  pagecache_page, ptl);
5029
			goto out_put_page;
5030
		}
5031
		entry = huge_pte_mkdirty(entry);
5032 5033
	}
	entry = pte_mkyoung(entry);
5034
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5035
						flags & FAULT_FLAG_WRITE))
5036
		update_mmu_cache(vma, haddr, ptep);
5037 5038 5039 5040
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
5041 5042
out_ptl:
	spin_unlock(ptl);
5043 5044 5045 5046 5047

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
5048
out_mutex:
5049
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5050
	i_mmap_unlock_read(mapping);
5051 5052 5053 5054 5055 5056 5057 5058 5059
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
5060
	return ret;
5061 5062
}

5063
#ifdef CONFIG_USERFAULTFD
5064 5065 5066 5067 5068 5069 5070 5071 5072
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
5073
			    enum mcopy_atomic_mode mode,
5074 5075
			    struct page **pagep)
{
5076
	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5077 5078 5079
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
5080
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5081 5082 5083 5084 5085
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;
5086
	int writable;
5087

5088 5089 5090 5091 5092 5093 5094 5095 5096
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

	if (is_continue) {
		ret = -EFAULT;
		page = find_lock_page(mapping, idx);
		if (!page)
			goto out;
	} else if (!*pagep) {
5097 5098 5099 5100 5101 5102 5103 5104 5105
		/* If a page already exists, then it's UFFDIO_COPY for
		 * a non-missing case. Return -EEXIST.
		 */
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			ret = -EEXIST;
			goto out;
		}

5106
		page = alloc_huge_page(dst_vma, dst_addr, 0);
5107 5108
		if (IS_ERR(page)) {
			ret = -ENOMEM;
5109
			goto out;
5110
		}
5111 5112 5113

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
5114
						pages_per_huge_page(h), false);
5115

5116
		/* fallback to copy_from_user outside mmap_lock */
5117
		if (unlikely(ret)) {
5118
			ret = -ENOENT;
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

5135 5136
	/* Add shared, newly allocated pages to the page cache. */
	if (vm_shared && !is_continue) {
5137 5138 5139 5140
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
5141

5142 5143 5144 5145 5146 5147
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
5148 5149 5150 5151 5152
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

5153 5154 5155
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

5170 5171 5172 5173
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

5174 5175 5176
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
5177
		ClearHPageRestoreReserve(page);
5178 5179
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
5180

5181 5182 5183 5184 5185 5186 5187 5188
	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
	if (is_continue && !vm_shared)
		writable = 0;
	else
		writable = dst_vma->vm_flags & VM_WRITE;

	_dst_pte = make_huge_pte(dst_vma, page, writable);
	if (writable)
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
5202 5203 5204
	if (!is_continue)
		SetHPageMigratable(page);
	if (vm_shared || is_continue)
5205
		unlock_page(page);
5206 5207 5208 5209 5210
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
5211
	if (vm_shared || is_continue)
5212
		unlock_page(page);
5213
out_release_nounlock:
5214
	restore_reserve_on_error(h, dst_vma, dst_addr, page);
5215 5216 5217
	put_page(page);
	goto out;
}
5218
#endif /* CONFIG_USERFAULTFD */
5219

5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

5234 5235 5236
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
5237
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
5238
{
5239 5240
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
5241
	unsigned long remainder = *nr_pages;
5242
	struct hstate *h = hstate_vma(vma);
5243
	int err = -EFAULT, refs;
D
David Gibson 已提交
5244 5245

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
5246
		pte_t *pte;
5247
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
5248
		int absent;
A
Adam Litke 已提交
5249
		struct page *page;
D
David Gibson 已提交
5250

5251 5252 5253 5254
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
5255
		if (fatal_signal_pending(current)) {
5256 5257 5258 5259
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
5260 5261
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
5262
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
5263
		 * first, for the page indexing below to work.
5264 5265
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
5266
		 */
5267 5268
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
5269 5270
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
5271 5272 5273 5274
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
5275 5276 5277 5278
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
5279
		 */
H
Hugh Dickins 已提交
5280 5281
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5282 5283
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
5284 5285 5286
			remainder = 0;
			break;
		}
D
David Gibson 已提交
5287

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5299 5300
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
5301
			vm_fault_t ret;
5302
			unsigned int fault_flags = 0;
D
David Gibson 已提交
5303

5304 5305
			if (pte)
				spin_unlock(ptl);
5306 5307
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
5308
			if (locked)
5309 5310
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
5311 5312 5313 5314
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
5315 5316 5317 5318
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
5319 5320 5321 5322
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
5323
				err = vm_fault_to_errno(ret, flags);
5324 5325 5326 5327
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
5328
				if (locked &&
5329
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5330
					*locked = 0;
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
5344 5345
		}

5346
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5347
		page = pte_page(huge_ptep_get(pte));
5348

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

5363 5364
		refs = min3(pages_per_huge_page(h) - pfn_offset,
			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5365

5366 5367 5368 5369 5370
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
5371

5372
		if (pages) {
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
			/*
			 * try_grab_compound_head() should always succeed here,
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
5383
			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5384 5385 5386 5387 5388 5389 5390
								 refs,
								 flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
5391
		}
5392 5393 5394 5395 5396

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

5397
		spin_unlock(ptl);
D
David Gibson 已提交
5398
	}
5399
	*nr_pages = remainder;
5400 5401 5402 5403 5404
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
5405 5406
	*position = vaddr;

5407
	return i ? i : err;
D
David Gibson 已提交
5408
}
5409

5410
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5411 5412 5413 5414 5415 5416
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
5417
	struct hstate *h = hstate_vma(vma);
5418
	unsigned long pages = 0;
5419
	bool shared_pmd = false;
5420
	struct mmu_notifier_range range;
5421 5422 5423

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
5424
	 * start/end.  Set range.start/range.end to cover the maximum possible
5425 5426
	 * range if PMD sharing is possible.
	 */
5427 5428
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
5429
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5430 5431

	BUG_ON(address >= end);
5432
	flush_cache_range(vma, range.start, range.end);
5433

5434
	mmu_notifier_invalidate_range_start(&range);
5435
	i_mmap_lock_write(vma->vm_file->f_mapping);
5436
	for (; address < end; address += huge_page_size(h)) {
5437
		spinlock_t *ptl;
5438
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5439 5440
		if (!ptep)
			continue;
5441
		ptl = huge_pte_lock(h, mm, ptep);
5442
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5443
			pages++;
5444
			spin_unlock(ptl);
5445
			shared_pmd = true;
5446
			continue;
5447
		}
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5461 5462
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5463 5464 5465 5466 5467 5468
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5469 5470 5471 5472
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5473
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5474
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5475
			pages++;
5476
		}
5477
		spin_unlock(ptl);
5478
	}
5479
	/*
5480
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5481
	 * may have cleared our pud entry and done put_page on the page table:
5482
	 * once we release i_mmap_rwsem, another task can do the final put_page
5483 5484
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5485
	 */
5486
	if (shared_pmd)
5487
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5488 5489
	else
		flush_hugetlb_tlb_range(vma, start, end);
5490 5491 5492 5493
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5494
	 * See Documentation/vm/mmu_notifier.rst
5495
	 */
5496
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5497
	mmu_notifier_invalidate_range_end(&range);
5498 5499

	return pages << h->order;
5500 5501
}

5502 5503
/* Return true if reservation was successful, false otherwise.  */
bool hugetlb_reserve_pages(struct inode *inode,
5504
					long from, long to,
5505
					struct vm_area_struct *vma,
5506
					vm_flags_t vm_flags)
5507
{
5508
	long chg, add = -1;
5509
	struct hstate *h = hstate_inode(inode);
5510
	struct hugepage_subpool *spool = subpool_inode(inode);
5511
	struct resv_map *resv_map;
5512
	struct hugetlb_cgroup *h_cg = NULL;
5513
	long gbl_reserve, regions_needed = 0;
5514

5515 5516 5517
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
5518
		return false;
5519 5520
	}

5521 5522 5523
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5524
	 * without using reserves
5525
	 */
5526
	if (vm_flags & VM_NORESERVE)
5527
		return true;
5528

5529 5530 5531 5532 5533 5534
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5535
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5536 5537 5538 5539 5540
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5541
		resv_map = inode_resv_map(inode);
5542

5543
		chg = region_chg(resv_map, from, to, &regions_needed);
5544 5545

	} else {
5546
		/* Private mapping. */
5547
		resv_map = resv_map_alloc();
5548
		if (!resv_map)
5549
			return false;
5550

5551
		chg = to - from;
5552

5553 5554 5555 5556
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5557
	if (chg < 0)
5558
		goto out_err;
5559

5560 5561
	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
				chg * pages_per_huge_page(h), &h_cg) < 0)
5562 5563 5564 5565 5566 5567 5568 5569 5570
		goto out_err;

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5571 5572 5573 5574 5575 5576
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5577
	if (gbl_reserve < 0)
5578
		goto out_uncharge_cgroup;
5579 5580

	/*
5581
	 * Check enough hugepages are available for the reservation.
5582
	 * Hand the pages back to the subpool if there are not
5583
	 */
5584
	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5585
		goto out_put_pages;
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5598
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5599
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5600 5601 5602

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5603
			goto out_put_pages;
5604
		} else if (unlikely(chg > add)) {
5605 5606 5607 5608 5609 5610 5611 5612 5613
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5614 5615 5616 5617
			/*
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
			 * reference to h_cg->css. See comment below for detail.
			 */
5618 5619 5620 5621
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5622 5623 5624
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
5625 5626 5627 5628 5629 5630 5631 5632
		} else if (h_cg) {
			/*
			 * The file_regions will hold their own reference to
			 * h_cg->css. So we should release the reference held
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
			 * done.
			 */
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5633 5634
		}
	}
5635 5636
	return true;

5637 5638 5639 5640 5641 5642
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5643
out_err:
5644
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5645 5646 5647 5648 5649
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5650 5651
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5652
	return false;
5653 5654
}

5655 5656
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5657
{
5658
	struct hstate *h = hstate_inode(inode);
5659
	struct resv_map *resv_map = inode_resv_map(inode);
5660
	long chg = 0;
5661
	struct hugepage_subpool *spool = subpool_inode(inode);
5662
	long gbl_reserve;
K
Ken Chen 已提交
5663

5664 5665 5666 5667
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5679
	spin_lock(&inode->i_lock);
5680
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5681 5682
	spin_unlock(&inode->i_lock);

5683 5684 5685
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
5686 5687 5688
	 *
	 * Note that !resv_map implies freed == 0. So (chg - freed)
	 * won't go negative.
5689 5690 5691
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5692 5693

	return 0;
5694
}
5695

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5707 5708
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5709 5710 5711 5712 5713 5714 5715

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
5716
	    !range_in_vma(svma, sbase, s_end))
5717 5718 5719 5720 5721
		return 0;

	return saddr;
}

5722
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5723 5724 5725 5726 5727 5728 5729
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5730
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5731 5732
		return true;
	return false;
5733 5734
}

5735 5736 5737 5738 5739 5740 5741 5742 5743
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
#ifdef CONFIG_USERFAULTFD
	if (uffd_disable_huge_pmd_share(vma))
		return false;
#endif
	return vma_shareable(vma, addr);
}

5744 5745 5746 5747 5748 5749 5750 5751
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5752 5753
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5754

5755
	/*
I
Ingo Molnar 已提交
5756 5757
	 * vma needs to span at least one aligned PUD size, and the range
	 * must be at least partially within in.
5758 5759 5760
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
5761 5762
		return;

5763
	/* Extend the range to be PUD aligned for a worst case scenario */
5764 5765
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
5766

5767 5768
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
5769 5770
}

5771 5772 5773 5774
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5775 5776
 * code much cleaner.
 *
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
 *
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 * huge_pte_alloc know that sharing is not possible and do not take
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 * only required for subsequent processing.
5787
 */
5788 5789
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
5790 5791 5792 5793 5794 5795 5796 5797
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5798
	spinlock_t *ptl;
5799

5800
	i_mmap_assert_locked(mapping);
5801 5802 5803 5804 5805 5806
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5807 5808
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5819
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5820
	if (pud_none(*pud)) {
5821 5822
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5823
		mm_inc_nr_pmds(mm);
5824
	} else {
5825
		put_page(virt_to_page(spte));
5826
	}
5827
	spin_unlock(ptl);
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5840
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5841 5842 5843 5844
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5845 5846
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5847 5848
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5849 5850
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5851

5852
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5853 5854 5855 5856 5857 5858
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5859
	mm_dec_nr_pmds(mm);
5860 5861 5862
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5863

5864
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5865 5866
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
5867 5868 5869
{
	return NULL;
}
5870

5871 5872
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5873 5874 5875
{
	return 0;
}
5876 5877 5878 5879 5880

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5881 5882 5883 5884 5885

bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
	return false;
}
5886 5887
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5888
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5889
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5890 5891 5892
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5893
	p4d_t *p4d;
5894 5895 5896 5897
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5898 5899 5900
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5901
	pud = pud_alloc(mm, p4d, addr);
5902 5903 5904 5905 5906
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
5907
			if (want_pmd_share(vma, addr) && pud_none(*pud))
5908
				pte = huge_pmd_share(mm, vma, addr, pud);
5909 5910 5911 5912
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5913
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5914 5915 5916 5917

	return pte;
}

5918 5919 5920 5921
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5922 5923
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5924 5925 5926
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5927 5928
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5929 5930
{
	pgd_t *pgd;
5931
	p4d_t *p4d;
5932 5933
	pud_t *pud;
	pmd_t *pmd;
5934 5935

	pgd = pgd_offset(mm, addr);
5936 5937 5938 5939 5940
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5941

5942
	pud = pud_offset(p4d, addr);
5943 5944
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5945
		return (pte_t *)pud;
5946
	if (!pud_present(*pud))
5947
		return NULL;
5948
	/* must have a valid entry and size to go further */
5949

5950 5951 5952
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5953 5954
}

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5968 5969 5970 5971 5972 5973 5974 5975
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5976
struct page * __weak
5977
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5978
		pmd_t *pmd, int flags)
5979
{
5980 5981
	struct page *page = NULL;
	spinlock_t *ptl;
5982
	pte_t pte;
J
John Hubbard 已提交
5983 5984 5985 5986 5987 5988

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5989 5990 5991 5992 5993 5994 5995 5996 5997
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5998 5999
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
6000
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
6013
	} else {
6014
		if (is_hugetlb_entry_migration(pte)) {
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
6026 6027 6028
	return page;
}

6029
struct page * __weak
6030
follow_huge_pud(struct mm_struct *mm, unsigned long address,
6031
		pud_t *pud, int flags)
6032
{
J
John Hubbard 已提交
6033
	if (flags & (FOLL_GET | FOLL_PIN))
6034
		return NULL;
6035

6036
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6037 6038
}

6039 6040 6041
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
6042
	if (flags & (FOLL_GET | FOLL_PIN))
6043 6044 6045 6046 6047
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

6048 6049
bool isolate_huge_page(struct page *page, struct list_head *list)
{
6050 6051
	bool ret = true;

6052
	spin_lock_irq(&hugetlb_lock);
6053 6054
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
6055
	    !get_page_unless_zero(page)) {
6056 6057 6058
		ret = false;
		goto unlock;
	}
6059
	ClearHPageMigratable(page);
6060
	list_move_tail(&page->lru, list);
6061
unlock:
6062
	spin_unlock_irq(&hugetlb_lock);
6063
	return ret;
6064 6065
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
{
	int ret = 0;

	*hugetlb = false;
	spin_lock_irq(&hugetlb_lock);
	if (PageHeadHuge(page)) {
		*hugetlb = true;
		if (HPageFreed(page) || HPageMigratable(page))
			ret = get_page_unless_zero(page);
6076 6077
		else
			ret = -EBUSY;
6078 6079 6080 6081 6082
	}
	spin_unlock_irq(&hugetlb_lock);
	return ret;
}

6083 6084
void putback_active_hugepage(struct page *page)
{
6085
	spin_lock_irq(&hugetlb_lock);
6086
	SetHPageMigratable(page);
6087
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6088
	spin_unlock_irq(&hugetlb_lock);
6089 6090
	put_page(page);
}
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
6109
	if (HPageTemporary(newpage)) {
6110 6111 6112
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

6113 6114
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
6115

6116 6117 6118 6119 6120 6121
		/*
		 * There is no need to transfer the per-node surplus state
		 * when we do not cross the node.
		 */
		if (new_nid == old_nid)
			return;
6122
		spin_lock_irq(&hugetlb_lock);
6123 6124 6125 6126
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
6127
		spin_unlock_irq(&hugetlb_lock);
6128 6129
	}
}
6130

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
/*
 * This function will unconditionally remove all the shared pmd pgtable entries
 * within the specific vma for a hugetlbfs memory range.
 */
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_notifier_range range;
	unsigned long address, start, end;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	start = ALIGN(vma->vm_start, PUD_SIZE);
	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);

	if (start >= end)
		return;

	/*
	 * No need to call adjust_range_if_pmd_sharing_possible(), because
	 * we have already done the PUD_SIZE alignment.
	 */
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
				start, end);
	mmu_notifier_invalidate_range_start(&range);
	i_mmap_lock_write(vma->vm_file->f_mapping);
	for (address = start; address < end; address += PUD_SIZE) {
		unsigned long tmp = address;

		ptep = huge_pte_offset(mm, address, sz);
		if (!ptep)
			continue;
		ptl = huge_pte_lock(h, mm, ptep);
		/* We don't want 'address' to be changed */
		huge_pmd_unshare(mm, vma, &tmp, ptep);
		spin_unlock(ptl);
	}
	flush_hugetlb_tlb_range(vma, start, end);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	/*
	 * No need to call mmu_notifier_invalidate_range(), see
	 * Documentation/vm/mmu_notifier.rst.
	 */
	mmu_notifier_invalidate_range_end(&range);
}

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
6220
		char name[CMA_MAX_NAME];
6221 6222 6223 6224

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

6225
		snprintf(name, sizeof(name), "hugetlb%d", nid);
6226
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6227
						 0, false, name,
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */