hugetlb.c 105.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242 243 244 245 246 247 248
/*
 * Add the huge page range represented by [f, t) to the reserve
 * map.  Existing regions will be expanded to accommodate the
 * specified range.  We know only existing regions need to be
 * expanded, because region_add is only called after region_chg
 * with the same range.  If a new file_region structure must
 * be allocated, it is done in region_chg.
 */
249
static long region_add(struct resv_map *resv, long f, long t)
250
{
251
	struct list_head *head = &resv->regions;
252 253
	struct file_region *rg, *nrg, *trg;

254
	spin_lock(&resv->lock);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
284
	spin_unlock(&resv->lock);
285 286 287
	return 0;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
 * Returns the number of huge pages that need to be added
 * to the existing reservation map for the range [f, t).
 * This number is greater or equal to zero.  -ENOMEM is
 * returned if a new file_region structure is needed and can
 * not be allocated.
 */
307
static long region_chg(struct resv_map *resv, long f, long t)
308
{
309
	struct list_head *head = &resv->regions;
310
	struct file_region *rg, *nrg = NULL;
311 312
	long chg = 0;

313 314
retry:
	spin_lock(&resv->lock);
315 316 317 318 319 320 321 322 323
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
324 325 326 327 328 329 330 331 332 333 334
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
335

336 337 338
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
339 340 341 342 343 344 345 346 347 348 349 350
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
351
			goto out;
352

L
Lucas De Marchi 已提交
353
		/* We overlap with this area, if it extends further than
354 355 356 357 358 359 360 361
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
362 363 364 365 366 367 368 369

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
370 371 372
	return chg;
}

373 374 375 376 377
/*
 * Truncate the reserve map at index 'end'.  Modify/truncate any
 * region which contains end.  Delete any regions past end.
 * Return the number of huge pages removed from the map.
 */
378
static long region_truncate(struct resv_map *resv, long end)
379
{
380
	struct list_head *head = &resv->regions;
381 382 383
	struct file_region *rg, *trg;
	long chg = 0;

384
	spin_lock(&resv->lock);
385 386 387 388 389
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
390
		goto out;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
407 408 409

out:
	spin_unlock(&resv->lock);
410 411 412
	return chg;
}

413 414 415 416
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
417
static long region_count(struct resv_map *resv, long f, long t)
418
{
419
	struct list_head *head = &resv->regions;
420 421 422
	struct file_region *rg;
	long chg = 0;

423
	spin_lock(&resv->lock);
424 425
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
426 427
		long seg_from;
		long seg_to;
428 429 430 431 432 433 434 435 436 437 438

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
439
	spin_unlock(&resv->lock);
440 441 442 443

	return chg;
}

444 445 446 447
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
448 449
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
450
{
451 452
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
453 454
}

455 456 457 458 459 460
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

474
	return 1UL << huge_page_shift(hstate);
475
}
476
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
477

478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

491 492 493 494 495 496 497
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
498
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
499

500 501 502 503 504 505 506 507 508
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
509 510 511 512 513 514 515 516 517
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
518
 */
519 520 521 522 523 524 525 526 527 528 529
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

530
struct resv_map *resv_map_alloc(void)
531 532 533 534 535 536
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
537
	spin_lock_init(&resv_map->lock);
538 539 540 541 542
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

543
void resv_map_release(struct kref *ref)
544 545 546 547
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
548
	region_truncate(resv_map, 0);
549 550 551
	kfree(resv_map);
}

552 553 554 555 556
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

557
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
558
{
559
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
560 561 562 563 564 565 566
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
567 568
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
569
	}
570 571
}

572
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
573
{
574 575
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
576

577 578
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
579 580 581 582
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
583 584
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
585 586

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
587 588 589 590
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
591
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
592 593

	return (get_vma_private_data(vma) & flag) != 0;
594 595
}

596
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
597 598
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
599
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
600
	if (!(vma->vm_flags & VM_MAYSHARE))
601 602 603 604
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
605
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
606
{
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
622 623

	/* Shared mappings always use reserves */
624
	if (vma->vm_flags & VM_MAYSHARE)
625
		return 1;
626 627 628 629 630

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
631 632
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
633

634
	return 0;
635 636
}

637
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
638 639
{
	int nid = page_to_nid(page);
640
	list_move(&page->lru, &h->hugepage_freelists[nid]);
641 642
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
643 644
}

645 646 647 648
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

649 650 651 652 653 654 655 656
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
657
		return NULL;
658
	list_move(&page->lru, &h->hugepage_activelist);
659
	set_page_refcounted(page);
660 661 662 663 664
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

665 666 667
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
668
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
669 670 671 672 673
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

674 675
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
676 677
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
678
{
679
	struct page *page = NULL;
680
	struct mempolicy *mpol;
681
	nodemask_t *nodemask;
682
	struct zonelist *zonelist;
683 684
	struct zone *zone;
	struct zoneref *z;
685
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
686

687 688 689 690 691
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
692
	if (!vma_has_reserves(vma, chg) &&
693
			h->free_huge_pages - h->resv_huge_pages == 0)
694
		goto err;
695

696
	/* If reserves cannot be used, ensure enough pages are in the pool */
697
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
698
		goto err;
699

700
retry_cpuset:
701
	cpuset_mems_cookie = read_mems_allowed_begin();
702
	zonelist = huge_zonelist(vma, address,
703
					htlb_alloc_mask(h), &mpol, &nodemask);
704

705 706
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
707
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
708 709
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
710 711 712 713 714
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

715
				SetPagePrivate(page);
716
				h->resv_huge_pages--;
717 718
				break;
			}
A
Andrew Morton 已提交
719
		}
L
Linus Torvalds 已提交
720
	}
721

722
	mpol_cond_put(mpol);
723
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
724
		goto retry_cpuset;
L
Linus Torvalds 已提交
725
	return page;
726 727 728

err:
	return NULL;
L
Linus Torvalds 已提交
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

942
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
943 944
{
	int i;
945

946 947
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
948

949 950 951
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
952 953
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
954 955
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
956
	}
957
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
958 959
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
960 961 962 963 964 965 966
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
967 968
}

969 970 971 972 973 974 975 976 977 978 979
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1005
void free_huge_page(struct page *page)
1006
{
1007 1008 1009 1010
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1011
	struct hstate *h = page_hstate(page);
1012
	int nid = page_to_nid(page);
1013 1014
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1015
	bool restore_reserve;
1016

1017
	set_page_private(page, 0);
1018
	page->mapping = NULL;
1019
	BUG_ON(page_count(page));
1020
	BUG_ON(page_mapcount(page));
1021
	restore_reserve = PagePrivate(page);
1022
	ClearPagePrivate(page);
1023

1024 1025 1026 1027 1028 1029 1030 1031
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1032
	spin_lock(&hugetlb_lock);
1033
	clear_page_huge_active(page);
1034 1035
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1036 1037 1038
	if (restore_reserve)
		h->resv_huge_pages++;

1039
	if (h->surplus_huge_pages_node[nid]) {
1040 1041
		/* remove the page from active list */
		list_del(&page->lru);
1042 1043 1044
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1045
	} else {
1046
		arch_clear_hugepage_flags(page);
1047
		enqueue_huge_page(h, page);
1048
	}
1049 1050 1051
	spin_unlock(&hugetlb_lock);
}

1052
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1053
{
1054
	INIT_LIST_HEAD(&page->lru);
1055 1056
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1057
	set_hugetlb_cgroup(page, NULL);
1058 1059
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1060 1061 1062 1063
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1064
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1065 1066 1067 1068 1069 1070 1071 1072
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1073
	__ClearPageReserved(page);
1074
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1088
		set_page_count(p, 0);
1089
		p->first_page = page;
1090 1091 1092
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1093 1094 1095
	}
}

A
Andrew Morton 已提交
1096 1097 1098 1099 1100
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1101 1102 1103 1104 1105 1106
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1107
	return get_compound_page_dtor(page) == free_huge_page;
1108
}
1109 1110
EXPORT_SYMBOL_GPL(PageHuge);

1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1120
	return get_compound_page_dtor(page_head) == free_huge_page;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1140
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1141 1142
{
	struct page *page;
1143

1144
	page = alloc_pages_exact_node(nid,
1145
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1146
						__GFP_REPEAT|__GFP_NOWARN,
1147
		huge_page_order(h));
L
Linus Torvalds 已提交
1148
	if (page) {
1149
		if (arch_prepare_hugepage(page)) {
1150
			__free_pages(page, huge_page_order(h));
1151
			return NULL;
1152
		}
1153
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1154
	}
1155 1156 1157 1158

	return page;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1181 1182 1183 1184 1185 1186
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1187 1188
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1189
{
1190
	int nr_nodes, node;
1191 1192
	int ret = 0;

1193
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1194 1195 1196 1197
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1198 1199
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1200
			struct page *page =
1201
				list_entry(h->hugepage_freelists[node].next,
1202 1203 1204
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1205
			h->free_huge_pages_node[node]--;
1206 1207
			if (acct_surplus) {
				h->surplus_huge_pages--;
1208
				h->surplus_huge_pages_node[node]--;
1209
			}
1210 1211
			update_and_free_page(h, page);
			ret = 1;
1212
			break;
1213
		}
1214
	}
1215 1216 1217 1218

	return ret;
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1246 1247 1248
	if (!hugepages_supported())
		return;

1249 1250
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1251 1252 1253
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1254
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1255 1256
{
	struct page *page;
1257
	unsigned int r_nid;
1258

1259
	if (hstate_is_gigantic(h))
1260 1261
		return NULL;

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1286
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1287 1288 1289
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1290 1291
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1292 1293 1294
	}
	spin_unlock(&hugetlb_lock);

1295
	if (nid == NUMA_NO_NODE)
1296
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1297 1298 1299 1300
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1301
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1302
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1303

1304 1305
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1306
		page = NULL;
1307 1308
	}

1309
	spin_lock(&hugetlb_lock);
1310
	if (page) {
1311
		INIT_LIST_HEAD(&page->lru);
1312
		r_nid = page_to_nid(page);
1313
		set_compound_page_dtor(page, free_huge_page);
1314
		set_hugetlb_cgroup(page, NULL);
1315 1316 1317
		/*
		 * We incremented the global counters already
		 */
1318 1319
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1320
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1321
	} else {
1322 1323
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1324
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1325
	}
1326
	spin_unlock(&hugetlb_lock);
1327 1328 1329 1330

	return page;
}

1331 1332 1333 1334 1335 1336 1337
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1338
	struct page *page = NULL;
1339 1340

	spin_lock(&hugetlb_lock);
1341 1342
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1343 1344
	spin_unlock(&hugetlb_lock);

1345
	if (!page)
1346 1347 1348 1349 1350
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1351
/*
L
Lucas De Marchi 已提交
1352
 * Increase the hugetlb pool such that it can accommodate a reservation
1353 1354
 * of size 'delta'.
 */
1355
static int gather_surplus_pages(struct hstate *h, int delta)
1356 1357 1358 1359 1360
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1361
	bool alloc_ok = true;
1362

1363
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1364
	if (needed <= 0) {
1365
		h->resv_huge_pages += delta;
1366
		return 0;
1367
	}
1368 1369 1370 1371 1372 1373 1374 1375

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1376
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1377 1378 1379 1380
		if (!page) {
			alloc_ok = false;
			break;
		}
1381 1382
		list_add(&page->lru, &surplus_list);
	}
1383
	allocated += i;
1384 1385 1386 1387 1388 1389

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1390 1391
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1402 1403
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1404
	 * needed to accommodate the reservation.  Add the appropriate number
1405
	 * of pages to the hugetlb pool and free the extras back to the buddy
1406 1407 1408
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1409 1410
	 */
	needed += allocated;
1411
	h->resv_huge_pages += delta;
1412
	ret = 0;
1413

1414
	/* Free the needed pages to the hugetlb pool */
1415
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1416 1417
		if ((--needed) < 0)
			break;
1418 1419 1420 1421 1422
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1423
		VM_BUG_ON_PAGE(page_count(page), page);
1424
		enqueue_huge_page(h, page);
1425
	}
1426
free:
1427
	spin_unlock(&hugetlb_lock);
1428 1429

	/* Free unnecessary surplus pages to the buddy allocator */
1430 1431
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1432
	spin_lock(&hugetlb_lock);
1433 1434 1435 1436 1437 1438 1439 1440

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1441
 * Called with hugetlb_lock held.
1442
 */
1443 1444
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1445 1446 1447
{
	unsigned long nr_pages;

1448
	/* Uncommit the reservation */
1449
	h->resv_huge_pages -= unused_resv_pages;
1450

1451
	/* Cannot return gigantic pages currently */
1452
	if (hstate_is_gigantic(h))
1453 1454
		return;

1455
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1456

1457 1458
	/*
	 * We want to release as many surplus pages as possible, spread
1459 1460 1461 1462 1463
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1464 1465
	 */
	while (nr_pages--) {
1466
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1467
			break;
1468
		cond_resched_lock(&hugetlb_lock);
1469 1470 1471
	}
}

1472 1473 1474
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1475 1476 1477 1478 1479 1480
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1481
 */
1482
static long vma_needs_reservation(struct hstate *h,
1483
			struct vm_area_struct *vma, unsigned long addr)
1484
{
1485 1486 1487
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1488

1489 1490
	resv = vma_resv_map(vma);
	if (!resv)
1491
		return 1;
1492

1493 1494
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1495

1496 1497 1498 1499
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1500
}
1501 1502
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1503
{
1504 1505
	struct resv_map *resv;
	pgoff_t idx;
1506

1507 1508 1509
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1510

1511 1512
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1513 1514
}

1515
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1516
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1517
{
1518
	struct hugepage_subpool *spool = subpool_vma(vma);
1519
	struct hstate *h = hstate_vma(vma);
1520
	struct page *page;
1521
	long chg;
1522 1523
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1524

1525
	idx = hstate_index(h);
1526
	/*
1527 1528 1529 1530 1531 1532
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1533
	 */
1534
	chg = vma_needs_reservation(h, vma, addr);
1535
	if (chg < 0)
1536
		return ERR_PTR(-ENOMEM);
1537
	if (chg || avoid_reserve)
1538
		if (hugepage_subpool_get_pages(spool, 1) < 0)
1539
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1540

1541
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1542 1543 1544
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1545
	spin_lock(&hugetlb_lock);
1546
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1547
	if (!page) {
1548
		spin_unlock(&hugetlb_lock);
1549
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1550 1551 1552
		if (!page)
			goto out_uncharge_cgroup;

1553 1554
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1555
		/* Fall through */
K
Ken Chen 已提交
1556
	}
1557 1558
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1559

1560
	set_page_private(page, (unsigned long)spool);
1561

1562
	vma_commit_reservation(h, vma, addr);
1563
	return page;
1564 1565 1566 1567 1568 1569 1570

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1587
int __weak alloc_bootmem_huge_page(struct hstate *h)
1588 1589
{
	struct huge_bootmem_page *m;
1590
	int nr_nodes, node;
1591

1592
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1593 1594
		void *addr;

1595 1596 1597
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1598 1599 1600 1601 1602 1603 1604
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1605
			goto found;
1606 1607 1608 1609 1610
		}
	}
	return 0;

found:
1611
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1612 1613 1614 1615 1616 1617
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1618
static void __init prep_compound_huge_page(struct page *page, int order)
1619 1620 1621 1622 1623 1624 1625
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1626 1627 1628 1629 1630 1631 1632
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1633 1634 1635 1636
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1637 1638
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1639 1640 1641
#else
		page = virt_to_page(m);
#endif
1642
		WARN_ON(page_count(page) != 1);
1643
		prep_compound_huge_page(page, h->order);
1644
		WARN_ON(PageReserved(page));
1645
		prep_new_huge_page(h, page, page_to_nid(page));
1646 1647 1648 1649 1650 1651
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1652
		if (hstate_is_gigantic(h))
1653
			adjust_managed_page_count(page, 1 << h->order);
1654 1655 1656
	}
}

1657
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1658 1659
{
	unsigned long i;
1660

1661
	for (i = 0; i < h->max_huge_pages; ++i) {
1662
		if (hstate_is_gigantic(h)) {
1663 1664
			if (!alloc_bootmem_huge_page(h))
				break;
1665
		} else if (!alloc_fresh_huge_page(h,
1666
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1667 1668
			break;
	}
1669
	h->max_huge_pages = i;
1670 1671 1672 1673 1674 1675 1676
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1677 1678 1679
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

1680
		/* oversize hugepages were init'ed in early boot */
1681
		if (!hstate_is_gigantic(h))
1682
			hugetlb_hstate_alloc_pages(h);
1683
	}
1684
	VM_BUG_ON(minimum_order == UINT_MAX);
1685 1686
}

A
Andi Kleen 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1698 1699 1700 1701 1702
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1703
		char buf[32];
1704
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1705 1706
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1707 1708 1709
	}
}

L
Linus Torvalds 已提交
1710
#ifdef CONFIG_HIGHMEM
1711 1712
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1713
{
1714 1715
	int i;

1716
	if (hstate_is_gigantic(h))
1717 1718
		return;

1719
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1720
		struct page *page, *next;
1721 1722 1723
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1724
				return;
L
Linus Torvalds 已提交
1725 1726 1727
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1728
			update_and_free_page(h, page);
1729 1730
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1731 1732 1733 1734
		}
	}
}
#else
1735 1736
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1737 1738 1739 1740
{
}
#endif

1741 1742 1743 1744 1745
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1746 1747
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1748
{
1749
	int nr_nodes, node;
1750 1751 1752

	VM_BUG_ON(delta != -1 && delta != 1);

1753 1754 1755 1756
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1757
		}
1758 1759 1760 1761 1762
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1763
		}
1764 1765
	}
	return 0;
1766

1767 1768 1769 1770
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1771 1772
}

1773
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1774 1775
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1776
{
1777
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1778

1779
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1780 1781
		return h->max_huge_pages;

1782 1783 1784 1785
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1786 1787 1788 1789 1790 1791
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1792
	 */
L
Linus Torvalds 已提交
1793
	spin_lock(&hugetlb_lock);
1794
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1795
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1796 1797 1798
			break;
	}

1799
	while (count > persistent_huge_pages(h)) {
1800 1801 1802 1803 1804 1805
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1806 1807 1808 1809
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1810 1811 1812 1813
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1814 1815 1816
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1817 1818 1819 1820 1821 1822 1823 1824
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1825 1826 1827 1828 1829 1830 1831 1832
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1833
	 */
1834
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1835
	min_count = max(count, min_count);
1836
	try_to_free_low(h, min_count, nodes_allowed);
1837
	while (min_count < persistent_huge_pages(h)) {
1838
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1839
			break;
1840
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1841
	}
1842
	while (count < persistent_huge_pages(h)) {
1843
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1844 1845 1846
			break;
	}
out:
1847
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1848
	spin_unlock(&hugetlb_lock);
1849
	return ret;
L
Linus Torvalds 已提交
1850 1851
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1862 1863 1864
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1865 1866
{
	int i;
1867

1868
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1869 1870 1871
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1872
			return &hstates[i];
1873 1874 1875
		}

	return kobj_to_node_hstate(kobj, nidp);
1876 1877
}

1878
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1879 1880
					struct kobj_attribute *attr, char *buf)
{
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1892
}
1893

1894 1895 1896
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1897 1898
{
	int err;
1899
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1900

1901
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1902 1903 1904 1905
		err = -EINVAL;
		goto out;
	}

1906 1907 1908 1909 1910 1911 1912
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1913
			nodes_allowed = &node_states[N_MEMORY];
1914 1915 1916 1917 1918 1919 1920 1921 1922
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1923
		nodes_allowed = &node_states[N_MEMORY];
1924

1925
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1926

1927
	if (nodes_allowed != &node_states[N_MEMORY])
1928 1929 1930
		NODEMASK_FREE(nodes_allowed);

	return len;
1931 1932 1933
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1953 1954 1955 1956 1957 1958 1959 1960 1961
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1962
	return nr_hugepages_store_common(false, kobj, buf, len);
1963 1964 1965
}
HSTATE_ATTR(nr_hugepages);

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1981
	return nr_hugepages_store_common(true, kobj, buf, len);
1982 1983 1984 1985 1986
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1987 1988 1989
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1990
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1991 1992
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1993

1994 1995 1996 1997 1998
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1999
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2000

2001
	if (hstate_is_gigantic(h))
2002 2003
		return -EINVAL;

2004
	err = kstrtoul(buf, 10, &input);
2005
	if (err)
2006
		return err;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2030 2031 2032 2033 2034 2035
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2036
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2037 2038 2039 2040 2041 2042 2043
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2055 2056 2057 2058 2059 2060 2061 2062 2063
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2064 2065 2066
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2067 2068 2069 2070 2071 2072 2073
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2074 2075 2076
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2077 2078
{
	int retval;
2079
	int hi = hstate_index(h);
2080

2081 2082
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2083 2084
		return -ENOMEM;

2085
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2086
	if (retval)
2087
		kobject_put(hstate_kobjs[hi]);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2102 2103
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2104
		if (err)
2105
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2106 2107 2108
	}
}

2109 2110 2111 2112
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2113 2114 2115
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2116 2117 2118 2119 2120 2121 2122 2123 2124
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2125
 * A subset of global hstate attributes for node devices
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2139
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2162
 * Unregister hstate attributes from a single node device.
2163 2164
 * No-op if no hstate attributes attached.
 */
2165
static void hugetlb_unregister_node(struct node *node)
2166 2167
{
	struct hstate *h;
2168
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2169 2170

	if (!nhs->hugepages_kobj)
2171
		return;		/* no hstate attributes */
2172

2173 2174 2175 2176 2177
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2178
		}
2179
	}
2180 2181 2182 2183 2184 2185

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2186
 * hugetlb module exit:  unregister hstate attributes from node devices
2187 2188 2189 2190 2191 2192 2193
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2194
	 * disable node device registrations.
2195 2196 2197 2198 2199 2200 2201
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2202
		hugetlb_unregister_node(node_devices[nid]);
2203 2204 2205
}

/*
2206
 * Register hstate attributes for a single node device.
2207 2208
 * No-op if attributes already registered.
 */
2209
static void hugetlb_register_node(struct node *node)
2210 2211
{
	struct hstate *h;
2212
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2213 2214 2215 2216 2217 2218
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2219
							&node->dev.kobj);
2220 2221 2222 2223 2224 2225 2226 2227
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2228 2229
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2230 2231 2232 2233 2234 2235 2236
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2237
 * hugetlb init time:  register hstate attributes for all registered node
2238 2239
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2240
 */
2241
static void __init hugetlb_register_all_nodes(void)
2242 2243 2244
{
	int nid;

2245
	for_each_node_state(nid, N_MEMORY) {
2246
		struct node *node = node_devices[nid];
2247
		if (node->dev.id == nid)
2248 2249 2250 2251
			hugetlb_register_node(node);
	}

	/*
2252
	 * Let the node device driver know we're here so it can
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2274 2275 2276 2277
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2278 2279
	hugetlb_unregister_all_nodes();

2280
	for_each_hstate(h) {
2281
		kobject_put(hstate_kobjs[hstate_index(h)]);
2282 2283 2284
	}

	kobject_put(hugepages_kobj);
2285
	kfree(htlb_fault_mutex_table);
2286 2287 2288 2289 2290
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2291 2292
	int i;

2293
	if (!hugepages_supported())
2294
		return 0;
2295

2296 2297 2298 2299
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2300
	}
2301
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2302 2303
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2304 2305

	hugetlb_init_hstates();
2306
	gather_bootmem_prealloc();
2307 2308 2309
	report_hugepages();

	hugetlb_sysfs_init();
2310
	hugetlb_register_all_nodes();
2311
	hugetlb_cgroup_file_init();
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2324 2325 2326 2327 2328 2329 2330 2331
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2332 2333
	unsigned long i;

2334
	if (size_to_hstate(PAGE_SIZE << order)) {
2335
		pr_warning("hugepagesz= specified twice, ignoring\n");
2336 2337
		return;
	}
2338
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2339
	BUG_ON(order == 0);
2340
	h = &hstates[hugetlb_max_hstate++];
2341 2342
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2343 2344 2345 2346
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2347
	INIT_LIST_HEAD(&h->hugepage_activelist);
2348 2349
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2350 2351
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2352

2353 2354 2355
	parsed_hstate = h;
}

2356
static int __init hugetlb_nrpages_setup(char *s)
2357 2358
{
	unsigned long *mhp;
2359
	static unsigned long *last_mhp;
2360 2361

	/*
2362
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2363 2364
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2365
	if (!hugetlb_max_hstate)
2366 2367 2368 2369
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2370
	if (mhp == last_mhp) {
2371 2372
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2373 2374 2375
		return 1;
	}

2376 2377 2378
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2379 2380 2381 2382 2383
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2384
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2385 2386 2387 2388
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2389 2390
	return 1;
}
2391 2392 2393 2394 2395 2396 2397 2398
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2412 2413 2414
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2415
{
2416
	struct hstate *h = &default_hstate;
2417
	unsigned long tmp = h->max_huge_pages;
2418
	int ret;
2419

2420 2421 2422
	if (!hugepages_supported())
		return -ENOTSUPP;

2423 2424
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2425 2426 2427
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2428

2429 2430 2431
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2432 2433
out:
	return ret;
L
Linus Torvalds 已提交
2434
}
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2453
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2454
			void __user *buffer,
2455 2456
			size_t *length, loff_t *ppos)
{
2457
	struct hstate *h = &default_hstate;
2458
	unsigned long tmp;
2459
	int ret;
2460

2461 2462 2463
	if (!hugepages_supported())
		return -ENOTSUPP;

2464
	tmp = h->nr_overcommit_huge_pages;
2465

2466
	if (write && hstate_is_gigantic(h))
2467 2468
		return -EINVAL;

2469 2470
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2471 2472 2473
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2474 2475 2476 2477 2478 2479

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2480 2481
out:
	return ret;
2482 2483
}

L
Linus Torvalds 已提交
2484 2485
#endif /* CONFIG_SYSCTL */

2486
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2487
{
2488
	struct hstate *h = &default_hstate;
2489 2490
	if (!hugepages_supported())
		return;
2491
	seq_printf(m,
2492 2493 2494 2495 2496
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2497 2498 2499 2500 2501
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2502 2503 2504 2505
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2506
	struct hstate *h = &default_hstate;
2507 2508
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2509 2510
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2511 2512
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2513 2514 2515
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2516 2517
}

2518 2519 2520 2521 2522
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2523 2524 2525
	if (!hugepages_supported())
		return;

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2536 2537 2538
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2539 2540 2541 2542 2543 2544
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2545 2546
}

2547
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2570
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2571 2572
			goto out;

2573 2574
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2575 2576 2577 2578 2579 2580
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2581
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2582 2583 2584 2585 2586 2587

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2588 2589
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2590
	struct resv_map *resv = vma_resv_map(vma);
2591 2592 2593 2594 2595

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2596
	 * has a reference to the reservation map it cannot disappear until
2597 2598 2599
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2600
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2601
		kref_get(&resv->refs);
2602 2603
}

2604 2605
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2606
	struct hstate *h = hstate_vma(vma);
2607
	struct resv_map *resv = vma_resv_map(vma);
2608
	struct hugepage_subpool *spool = subpool_vma(vma);
2609
	unsigned long reserve, start, end;
2610
	long gbl_reserve;
2611

2612 2613
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2614

2615 2616
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2617

2618
	reserve = (end - start) - region_count(resv, start, end);
2619

2620 2621 2622
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2623 2624 2625 2626 2627 2628
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2629
	}
2630 2631
}

L
Linus Torvalds 已提交
2632 2633 2634 2635 2636 2637
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2638
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2639 2640
{
	BUG();
N
Nick Piggin 已提交
2641
	return 0;
L
Linus Torvalds 已提交
2642 2643
}

2644
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2645
	.fault = hugetlb_vm_op_fault,
2646
	.open = hugetlb_vm_op_open,
2647
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2648 2649
};

2650 2651
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2652 2653 2654
{
	pte_t entry;

2655
	if (writable) {
2656 2657
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2658
	} else {
2659 2660
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2661 2662 2663
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2664
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2665 2666 2667 2668

	return entry;
}

2669 2670 2671 2672 2673
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2674
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2675
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2676
		update_mmu_cache(vma, address, ptep);
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2704

D
David Gibson 已提交
2705 2706 2707 2708 2709
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2710
	unsigned long addr;
2711
	int cow;
2712 2713
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2714 2715 2716
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2717 2718

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2719

2720 2721 2722 2723 2724
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2725
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2726
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2727 2728 2729
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2730
		dst_pte = huge_pte_alloc(dst, addr, sz);
2731 2732 2733 2734
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2735 2736 2737 2738 2739

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2740 2741 2742
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2761
			if (cow) {
2762
				huge_ptep_set_wrprotect(src, addr, src_pte);
2763 2764 2765
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2766
			entry = huge_ptep_get(src_pte);
2767 2768
			ptepage = pte_page(entry);
			get_page(ptepage);
2769
			page_dup_rmap(ptepage);
2770 2771
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2772 2773
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2774 2775
	}

2776 2777 2778 2779
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2780 2781
}

2782 2783 2784
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2785
{
2786
	int force_flush = 0;
D
David Gibson 已提交
2787 2788
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2789
	pte_t *ptep;
D
David Gibson 已提交
2790
	pte_t pte;
2791
	spinlock_t *ptl;
D
David Gibson 已提交
2792
	struct page *page;
2793 2794
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2795 2796
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2797

D
David Gibson 已提交
2798
	WARN_ON(!is_vm_hugetlb_page(vma));
2799 2800
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2801

2802
	tlb_start_vma(tlb, vma);
2803
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2804
	address = start;
2805
again:
2806
	for (; address < end; address += sz) {
2807
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2808
		if (!ptep)
2809 2810
			continue;

2811
		ptl = huge_pte_lock(h, mm, ptep);
2812
		if (huge_pmd_unshare(mm, &address, ptep))
2813
			goto unlock;
2814

2815 2816
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2817
			goto unlock;
2818 2819

		/*
2820 2821
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2822
		 */
2823
		if (unlikely(!pte_present(pte))) {
2824
			huge_pte_clear(mm, address, ptep);
2825
			goto unlock;
2826
		}
2827 2828

		page = pte_page(pte);
2829 2830 2831 2832 2833 2834 2835
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2836
				goto unlock;
2837 2838 2839 2840 2841 2842 2843 2844 2845

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2846
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2847
		tlb_remove_tlb_entry(tlb, ptep, address);
2848
		if (huge_pte_dirty(pte))
2849
			set_page_dirty(page);
2850

2851 2852
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2853
		if (force_flush) {
2854
			address += sz;
2855
			spin_unlock(ptl);
2856
			break;
2857
		}
2858
		/* Bail out after unmapping reference page if supplied */
2859 2860
		if (ref_page) {
			spin_unlock(ptl);
2861
			break;
2862 2863 2864
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2865
	}
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2876
	}
2877
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2878
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2879
}
D
David Gibson 已提交
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2893
	 * is to clear it before releasing the i_mmap_rwsem. This works
2894
	 * because in the context this is called, the VMA is about to be
2895
	 * destroyed and the i_mmap_rwsem is held.
2896 2897 2898 2899
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2900
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2901
			  unsigned long end, struct page *ref_page)
2902
{
2903 2904 2905 2906 2907
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2908
	tlb_gather_mmu(&tlb, mm, start, end);
2909 2910
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2911 2912
}

2913 2914 2915 2916 2917 2918
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2919 2920
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2921
{
2922
	struct hstate *h = hstate_vma(vma);
2923 2924 2925 2926 2927 2928 2929 2930
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2931
	address = address & huge_page_mask(h);
2932 2933
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2934
	mapping = file_inode(vma->vm_file)->i_mapping;
2935

2936 2937 2938 2939 2940
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2941
	i_mmap_lock_write(mapping);
2942
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2955 2956
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2957
	}
2958
	i_mmap_unlock_write(mapping);
2959 2960
}

2961 2962
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2963 2964 2965
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2966
 */
2967
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2968
			unsigned long address, pte_t *ptep, pte_t pte,
2969
			struct page *pagecache_page, spinlock_t *ptl)
2970
{
2971
	struct hstate *h = hstate_vma(vma);
2972
	struct page *old_page, *new_page;
2973
	int ret = 0, outside_reserve = 0;
2974 2975
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2976 2977 2978

	old_page = pte_page(pte);

2979
retry_avoidcopy:
2980 2981
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2982 2983
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2984
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2985
		return 0;
2986 2987
	}

2988 2989 2990 2991 2992 2993 2994 2995 2996
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2997
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2998 2999 3000
			old_page != pagecache_page)
		outside_reserve = 1;

3001
	page_cache_get(old_page);
3002

3003 3004 3005 3006
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3007
	spin_unlock(ptl);
3008
	new_page = alloc_huge_page(vma, address, outside_reserve);
3009

3010
	if (IS_ERR(new_page)) {
3011 3012 3013 3014 3015 3016 3017 3018
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3019
			page_cache_release(old_page);
3020
			BUG_ON(huge_pte_none(pte));
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3033 3034
		}

3035 3036 3037
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3038 3039
	}

3040 3041 3042 3043
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3044
	if (unlikely(anon_vma_prepare(vma))) {
3045 3046
		ret = VM_FAULT_OOM;
		goto out_release_all;
3047
	}
3048

A
Andrea Arcangeli 已提交
3049 3050
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3051
	__SetPageUptodate(new_page);
3052
	set_page_huge_active(new_page);
3053

3054 3055 3056
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3057

3058
	/*
3059
	 * Retake the page table lock to check for racing updates
3060 3061
	 * before the page tables are altered
	 */
3062
	spin_lock(ptl);
3063
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3064
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3065 3066
		ClearPagePrivate(new_page);

3067
		/* Break COW */
3068
		huge_ptep_clear_flush(vma, address, ptep);
3069
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3070 3071
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3072
		page_remove_rmap(old_page);
3073
		hugepage_add_new_anon_rmap(new_page, vma, address);
3074 3075 3076
		/* Make the old page be freed below */
		new_page = old_page;
	}
3077
	spin_unlock(ptl);
3078
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3079
out_release_all:
3080
	page_cache_release(new_page);
3081
out_release_old:
3082
	page_cache_release(old_page);
3083

3084 3085
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3086 3087
}

3088
/* Return the pagecache page at a given address within a VMA */
3089 3090
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3091 3092
{
	struct address_space *mapping;
3093
	pgoff_t idx;
3094 3095

	mapping = vma->vm_file->f_mapping;
3096
	idx = vma_hugecache_offset(h, vma, address);
3097 3098 3099 3100

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3101 3102 3103 3104 3105
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3121
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3122 3123
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3124
{
3125
	struct hstate *h = hstate_vma(vma);
3126
	int ret = VM_FAULT_SIGBUS;
3127
	int anon_rmap = 0;
A
Adam Litke 已提交
3128 3129
	unsigned long size;
	struct page *page;
3130
	pte_t new_pte;
3131
	spinlock_t *ptl;
A
Adam Litke 已提交
3132

3133 3134 3135
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3136
	 * COW. Warn that such a situation has occurred as it may not be obvious
3137 3138
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3139 3140
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3141 3142 3143
		return ret;
	}

A
Adam Litke 已提交
3144 3145 3146 3147
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3148 3149 3150
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3151
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3152 3153
		if (idx >= size)
			goto out;
3154
		page = alloc_huge_page(vma, address, 0);
3155
		if (IS_ERR(page)) {
3156 3157 3158 3159 3160
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3161 3162
			goto out;
		}
A
Andrea Arcangeli 已提交
3163
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3164
		__SetPageUptodate(page);
3165
		set_page_huge_active(page);
3166

3167
		if (vma->vm_flags & VM_MAYSHARE) {
3168
			int err;
K
Ken Chen 已提交
3169
			struct inode *inode = mapping->host;
3170 3171 3172 3173 3174 3175 3176 3177

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3178
			ClearPagePrivate(page);
K
Ken Chen 已提交
3179 3180

			spin_lock(&inode->i_lock);
3181
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3182
			spin_unlock(&inode->i_lock);
3183
		} else {
3184
			lock_page(page);
3185 3186 3187 3188
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3189
			anon_rmap = 1;
3190
		}
3191
	} else {
3192 3193 3194 3195 3196 3197
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3198
			ret = VM_FAULT_HWPOISON |
3199
				VM_FAULT_SET_HINDEX(hstate_index(h));
3200 3201
			goto backout_unlocked;
		}
3202
	}
3203

3204 3205 3206 3207 3208 3209
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3210
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3211 3212 3213 3214
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3215

3216 3217
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3218
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3219 3220 3221
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3222
	ret = 0;
3223
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3224 3225
		goto backout;

3226 3227
	if (anon_rmap) {
		ClearPagePrivate(page);
3228
		hugepage_add_new_anon_rmap(page, vma, address);
3229
	} else
3230
		page_dup_rmap(page);
3231 3232 3233 3234
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3235
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3236
		/* Optimization, do the COW without a second fault */
3237
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3238 3239
	}

3240
	spin_unlock(ptl);
A
Adam Litke 已提交
3241 3242
	unlock_page(page);
out:
3243
	return ret;
A
Adam Litke 已提交
3244 3245

backout:
3246
	spin_unlock(ptl);
3247
backout_unlocked:
A
Adam Litke 已提交
3248 3249 3250
	unlock_page(page);
	put_page(page);
	goto out;
3251 3252
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3288
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3289
			unsigned long address, unsigned int flags)
3290
{
3291
	pte_t *ptep, entry;
3292
	spinlock_t *ptl;
3293
	int ret;
3294 3295
	u32 hash;
	pgoff_t idx;
3296
	struct page *page = NULL;
3297
	struct page *pagecache_page = NULL;
3298
	struct hstate *h = hstate_vma(vma);
3299
	struct address_space *mapping;
3300
	int need_wait_lock = 0;
3301

3302 3303
	address &= huge_page_mask(h);

3304 3305 3306
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3307
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3308
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3309 3310
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3311
			return VM_FAULT_HWPOISON_LARGE |
3312
				VM_FAULT_SET_HINDEX(hstate_index(h));
3313 3314
	}

3315
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3316 3317 3318
	if (!ptep)
		return VM_FAULT_OOM;

3319 3320 3321
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3322 3323 3324 3325 3326
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3327 3328 3329
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3330 3331
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3332
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3333
		goto out_mutex;
3334
	}
3335

N
Nick Piggin 已提交
3336
	ret = 0;
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3356
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3357 3358
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3359
			goto out_mutex;
3360
		}
3361

3362
		if (!(vma->vm_flags & VM_MAYSHARE))
3363 3364 3365 3366
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3367 3368 3369 3370 3371 3372
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3373 3374 3375 3376 3377 3378 3379
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3380 3381 3382 3383
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3384

3385
	get_page(page);
3386

3387
	if (flags & FAULT_FLAG_WRITE) {
3388
		if (!huge_pte_write(entry)) {
3389
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3390
					pagecache_page, ptl);
3391
			goto out_put_page;
3392
		}
3393
		entry = huge_pte_mkdirty(entry);
3394 3395
	}
	entry = pte_mkyoung(entry);
3396 3397
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3398
		update_mmu_cache(vma, address, ptep);
3399 3400 3401 3402
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3403 3404
out_ptl:
	spin_unlock(ptl);
3405 3406 3407 3408 3409

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3410
out_mutex:
3411
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3412 3413 3414 3415 3416 3417 3418 3419 3420
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3421
	return ret;
3422 3423
}

3424 3425 3426 3427
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3428
{
3429 3430
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3431
	unsigned long remainder = *nr_pages;
3432
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3433 3434

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3435
		pte_t *pte;
3436
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3437
		int absent;
A
Adam Litke 已提交
3438
		struct page *page;
D
David Gibson 已提交
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3449 3450
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3451
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3452
		 * first, for the page indexing below to work.
3453 3454
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3455
		 */
3456
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3457 3458
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3459 3460 3461 3462
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3463 3464 3465 3466
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3467
		 */
H
Hugh Dickins 已提交
3468 3469
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3470 3471
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3472 3473 3474
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3487 3488
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3489
			int ret;
D
David Gibson 已提交
3490

3491 3492
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3493 3494
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3495
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3496
				continue;
D
David Gibson 已提交
3497

A
Adam Litke 已提交
3498 3499 3500 3501
			remainder = 0;
			break;
		}

3502
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3503
		page = pte_page(huge_ptep_get(pte));
3504
same_page:
3505
		if (pages) {
H
Hugh Dickins 已提交
3506
			pages[i] = mem_map_offset(page, pfn_offset);
3507
			get_page_foll(pages[i]);
3508
		}
D
David Gibson 已提交
3509 3510 3511 3512 3513

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3514
		++pfn_offset;
D
David Gibson 已提交
3515 3516
		--remainder;
		++i;
3517
		if (vaddr < vma->vm_end && remainder &&
3518
				pfn_offset < pages_per_huge_page(h)) {
3519 3520 3521 3522 3523 3524
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3525
		spin_unlock(ptl);
D
David Gibson 已提交
3526
	}
3527
	*nr_pages = remainder;
D
David Gibson 已提交
3528 3529
	*position = vaddr;

H
Hugh Dickins 已提交
3530
	return i ? i : -EFAULT;
D
David Gibson 已提交
3531
}
3532

3533
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3534 3535 3536 3537 3538 3539
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3540
	struct hstate *h = hstate_vma(vma);
3541
	unsigned long pages = 0;
3542 3543 3544 3545

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3546
	mmu_notifier_invalidate_range_start(mm, start, end);
3547
	i_mmap_lock_write(vma->vm_file->f_mapping);
3548
	for (; address < end; address += huge_page_size(h)) {
3549
		spinlock_t *ptl;
3550 3551 3552
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3553
		ptl = huge_pte_lock(h, mm, ptep);
3554 3555
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3556
			spin_unlock(ptl);
3557
			continue;
3558
		}
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3579
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3580
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3581
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3582
			set_huge_pte_at(mm, address, ptep, pte);
3583
			pages++;
3584
		}
3585
		spin_unlock(ptl);
3586
	}
3587
	/*
3588
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3589
	 * may have cleared our pud entry and done put_page on the page table:
3590
	 * once we release i_mmap_rwsem, another task can do the final put_page
3591 3592
	 * and that page table be reused and filled with junk.
	 */
3593
	flush_tlb_range(vma, start, end);
3594
	mmu_notifier_invalidate_range(mm, start, end);
3595
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3596
	mmu_notifier_invalidate_range_end(mm, start, end);
3597 3598

	return pages << h->order;
3599 3600
}

3601 3602
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3603
					struct vm_area_struct *vma,
3604
					vm_flags_t vm_flags)
3605
{
3606
	long ret, chg;
3607
	struct hstate *h = hstate_inode(inode);
3608
	struct hugepage_subpool *spool = subpool_inode(inode);
3609
	struct resv_map *resv_map;
3610
	long gbl_reserve;
3611

3612 3613 3614
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3615
	 * without using reserves
3616
	 */
3617
	if (vm_flags & VM_NORESERVE)
3618 3619
		return 0;

3620 3621 3622 3623 3624 3625
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3626
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3627
		resv_map = inode_resv_map(inode);
3628

3629
		chg = region_chg(resv_map, from, to);
3630 3631 3632

	} else {
		resv_map = resv_map_alloc();
3633 3634 3635
		if (!resv_map)
			return -ENOMEM;

3636
		chg = to - from;
3637

3638 3639 3640 3641
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3642 3643 3644 3645
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3646

3647 3648 3649 3650 3651 3652 3653
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3654 3655 3656
		ret = -ENOSPC;
		goto out_err;
	}
3657 3658

	/*
3659
	 * Check enough hugepages are available for the reservation.
3660
	 * Hand the pages back to the subpool if there are not
3661
	 */
3662
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3663
	if (ret < 0) {
3664 3665
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3666
		goto out_err;
K
Ken Chen 已提交
3667
	}
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3680
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3681
		region_add(resv_map, from, to);
3682
	return 0;
3683
out_err:
J
Joonsoo Kim 已提交
3684 3685
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3686
	return ret;
3687 3688 3689 3690
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3691
	struct hstate *h = hstate_inode(inode);
3692
	struct resv_map *resv_map = inode_resv_map(inode);
3693
	long chg = 0;
3694
	struct hugepage_subpool *spool = subpool_inode(inode);
3695
	long gbl_reserve;
K
Ken Chen 已提交
3696

3697
	if (resv_map)
3698
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3699
	spin_lock(&inode->i_lock);
3700
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3701 3702
	spin_unlock(&inode->i_lock);

3703 3704 3705 3706 3707 3708
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3709
}
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3756
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3770
	spinlock_t *ptl;
3771 3772 3773 3774

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3775
	i_mmap_lock_write(mapping);
3776 3777 3778 3779 3780 3781 3782 3783
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3784
				mm_inc_nr_pmds(mm);
3785 3786 3787 3788 3789 3790 3791 3792 3793
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3794 3795
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3796
	if (pud_none(*pud)) {
3797 3798
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3799
	} else {
3800
		put_page(virt_to_page(spte));
3801 3802
		mm_inc_nr_pmds(mm);
	}
3803
	spin_unlock(ptl);
3804 3805
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3806
	i_mmap_unlock_write(mapping);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3817
 * called with page table lock held.
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3833
	mm_dec_nr_pmds(mm);
3834 3835 3836
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3837 3838 3839 3840 3841 3842
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
3843 3844 3845 3846 3847

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
3848
#define want_pmd_share()	(0)
3849 3850
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3909
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3910
		pmd_t *pmd, int flags)
3911
{
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
3924
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3940 3941 3942
	return page;
}

3943
struct page * __weak
3944
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3945
		pud_t *pud, int flags)
3946
{
3947 3948
	if (flags & FOLL_GET)
		return NULL;
3949

3950
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3951 3952
}

3953 3954
#ifdef CONFIG_MEMORY_FAILURE

3955 3956 3957 3958
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3959
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3960 3961 3962
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3963
	int ret = -EBUSY;
3964 3965

	spin_lock(&hugetlb_lock);
3966 3967 3968 3969 3970
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
3971 3972 3973 3974 3975 3976 3977
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3978
		set_page_refcounted(hpage);
3979 3980 3981 3982
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3983
	spin_unlock(&hugetlb_lock);
3984
	return ret;
3985
}
3986
#endif
3987 3988 3989

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3990 3991
	bool ret = true;

3992
	VM_BUG_ON_PAGE(!PageHead(page), page);
3993
	spin_lock(&hugetlb_lock);
3994 3995 3996 3997 3998
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
3999
	list_move_tail(&page->lru, list);
4000
unlock:
4001
	spin_unlock(&hugetlb_lock);
4002
	return ret;
4003 4004 4005 4006
}

void putback_active_hugepage(struct page *page)
{
4007
	VM_BUG_ON_PAGE(!PageHead(page), page);
4008
	spin_lock(&hugetlb_lock);
4009
	set_page_huge_active(page);
4010 4011 4012 4013
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}