hugetlb.c 79.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/node.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33 34

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35 36
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
37

38
static int hugetlb_max_hstate;
39 40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

42 43
__initdata LIST_HEAD(huge_boot_pages);

44 45 46
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
47
static unsigned long __initdata default_hstate_size;
48 49

#define for_each_hstate(h) \
50
	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
51

52 53 54 55
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

135 136 137
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
138 139 140 141 142 143
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
144
 *	down_write(&mm->mmap_sem);
145
 * or
146 147
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
228
		/* We overlap with this area, if it extends further than
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

270 271 272 273 274 275 276
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
277 278
		long seg_from;
		long seg_to;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

294 295 296 297
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
298 299
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
300
{
301 302
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
303 304
}

305 306 307 308 309 310
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
326
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327

328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

341 342 343 344 345 346 347
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
348
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349

350 351 352 353 354 355 356 357 358
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
359 360 361 362 363 364 365 366 367
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
368
 */
369 370 371 372 373 374 375 376 377 378 379
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

380 381 382 383 384
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

385
static struct resv_map *resv_map_alloc(void)
386 387 388 389 390 391 392 393 394 395 396
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

397
static void resv_map_release(struct kref *ref)
398 399 400 401 402 403 404 405 406
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 408
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
409
	if (!(vma->vm_flags & VM_MAYSHARE))
410 411
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
412
	return NULL;
413 414
}

415
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 417
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
418
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419

420 421
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
422 423 424 425 426
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
427
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 429

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 431 432 433 434
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 436

	return (get_vma_private_data(vma) & flag) != 0;
437 438 439
}

/* Decrement the reserved pages in the hugepage pool by one */
440 441
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
442
{
443 444 445
	if (vma->vm_flags & VM_NORESERVE)
		return;

446
	if (vma->vm_flags & VM_MAYSHARE) {
447
		/* Shared mappings always use reserves */
448
		h->resv_huge_pages--;
449
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 451 452 453
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
454
		h->resv_huge_pages--;
455 456 457
	}
}

458
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
459 460 461
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462
	if (!(vma->vm_flags & VM_MAYSHARE))
463 464 465 466
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
467
static int vma_has_reserves(struct vm_area_struct *vma)
468
{
469
	if (vma->vm_flags & VM_MAYSHARE)
470 471 472 473
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

510
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
511 512
{
	int nid = page_to_nid(page);
513 514 515
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
516 517
}

518 519 520 521 522 523 524 525
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
526
	set_page_refcounted(page);
527 528 529 530 531
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

532 533
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
534
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
535
{
536
	struct page *page = NULL;
537
	struct mempolicy *mpol;
538
	nodemask_t *nodemask;
539
	struct zonelist *zonelist;
540 541
	struct zone *zone;
	struct zoneref *z;
542
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
543

544 545
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
546 547
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
548 549 550 551 552
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
553
	if (!vma_has_reserves(vma) &&
554
			h->free_huge_pages - h->resv_huge_pages == 0)
555
		goto err;
556

557
	/* If reserves cannot be used, ensure enough pages are in the pool */
558
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559
		goto err;
560

561 562
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
563 564 565 566 567 568 569
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
570
		}
L
Linus Torvalds 已提交
571
	}
572

573
	mpol_cond_put(mpol);
574 575
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
576
	return page;
577 578 579 580

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
581 582
}

583
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
584 585
{
	int i;
586

587 588
	VM_BUG_ON(h->order >= MAX_ORDER);

589 590 591
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
592 593 594 595
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
596 597 598
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
599
	arch_release_hugepage(page);
600
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
601 602
}

603 604 605 606 607 608 609 610 611 612 613
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

614 615
static void free_huge_page(struct page *page)
{
616 617 618 619
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
620
	struct hstate *h = page_hstate(page);
621
	int nid = page_to_nid(page);
622 623
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
624

625
	set_page_private(page, 0);
626
	page->mapping = NULL;
627
	BUG_ON(page_count(page));
628
	BUG_ON(page_mapcount(page));
629 630 631
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634 635
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
636
	} else {
637
		enqueue_huge_page(h, page);
638
	}
639
	spin_unlock(&hugetlb_lock);
640
	hugepage_subpool_put_pages(spool, 1);
641 642
}

643
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 645 646
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
647 648
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
649 650 651 652
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

653 654 655 656 657 658 659 660 661 662 663
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
664
		set_page_count(p, 0);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
681 682
EXPORT_SYMBOL_GPL(PageHuge);

683
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
684 685
{
	struct page *page;
686

687 688 689
	if (h->order >= MAX_ORDER)
		return NULL;

690
	page = alloc_pages_exact_node(nid,
691 692
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
693
		huge_page_order(h));
L
Linus Torvalds 已提交
694
	if (page) {
695
		if (arch_prepare_hugepage(page)) {
696
			__free_pages(page, huge_page_order(h));
697
			return NULL;
698
		}
699
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
700
	}
701 702 703 704

	return page;
}

705
/*
706 707 708 709 710
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
711
 */
712
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
713
{
714
	nid = next_node(nid, *nodes_allowed);
715
	if (nid == MAX_NUMNODES)
716
		nid = first_node(*nodes_allowed);
717 718 719 720 721
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

722 723 724 725 726 727 728
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

729
/*
730 731 732 733
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
734
 */
735 736
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
737
{
738 739 740 741 742 743
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
744 745

	return nid;
746 747
}

748
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
749 750 751 752 753 754
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

755
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
756
	next_nid = start_nid;
757 758

	do {
759
		page = alloc_fresh_huge_page_node(h, next_nid);
760
		if (page) {
761
			ret = 1;
762 763
			break;
		}
764
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
765
	} while (next_nid != start_nid);
766

767 768 769 770 771
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

772
	return ret;
L
Linus Torvalds 已提交
773 774
}

775
/*
776 777 778 779
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
780
 */
781
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782
{
783 784 785 786 787 788
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789 790

	return nid;
791 792 793 794 795 796 797 798
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
799 800
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
801 802 803 804 805
{
	int start_nid;
	int next_nid;
	int ret = 0;

806
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
807 808 809
	next_nid = start_nid;

	do {
810 811 812 813 814 815
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
816 817 818 819 820 821
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
822 823 824 825
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
826 827
			update_and_free_page(h, page);
			ret = 1;
828
			break;
829
		}
830
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
831
	} while (next_nid != start_nid);
832 833 834 835

	return ret;
}

836
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
837 838
{
	struct page *page;
839
	unsigned int r_nid;
840

841 842 843
	if (h->order >= MAX_ORDER)
		return NULL;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
868
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
869 870 871
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
872 873
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
874 875 876
	}
	spin_unlock(&hugetlb_lock);

877 878 879 880 881 882 883 884
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
885

886 887
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
888
		page = NULL;
889 890
	}

891
	spin_lock(&hugetlb_lock);
892
	if (page) {
893
		r_nid = page_to_nid(page);
894
		set_compound_page_dtor(page, free_huge_page);
895 896 897
		/*
		 * We incremented the global counters already
		 */
898 899
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
900
		__count_vm_event(HTLB_BUDDY_PGALLOC);
901
	} else {
902 903
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
904
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
905
	}
906
	spin_unlock(&hugetlb_lock);
907 908 909 910

	return page;
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

930
/*
L
Lucas De Marchi 已提交
931
 * Increase the hugetlb pool such that it can accommodate a reservation
932 933
 * of size 'delta'.
 */
934
static int gather_surplus_pages(struct hstate *h, int delta)
935 936 937 938 939
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
940
	bool alloc_ok = true;
941

942
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
943
	if (needed <= 0) {
944
		h->resv_huge_pages += delta;
945
		return 0;
946
	}
947 948 949 950 951 952 953 954

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
955
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
956 957 958 959
		if (!page) {
			alloc_ok = false;
			break;
		}
960 961
		list_add(&page->lru, &surplus_list);
	}
962
	allocated += i;
963 964 965 966 967 968

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
969 970
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
971 972 973 974 975 976 977 978 979 980
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
981 982
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
983
	 * needed to accommodate the reservation.  Add the appropriate number
984
	 * of pages to the hugetlb pool and free the extras back to the buddy
985 986 987
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
988 989
	 */
	needed += allocated;
990
	h->resv_huge_pages += delta;
991
	ret = 0;
992

993
	/* Free the needed pages to the hugetlb pool */
994
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
995 996
		if ((--needed) < 0)
			break;
997
		list_del(&page->lru);
998 999 1000 1001 1002 1003
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1004
		enqueue_huge_page(h, page);
1005
	}
1006
free:
1007
	spin_unlock(&hugetlb_lock);
1008 1009 1010 1011 1012

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
1013
			put_page(page);
1014
		}
1015
	}
1016
	spin_lock(&hugetlb_lock);
1017 1018 1019 1020 1021 1022 1023 1024

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1025
 * Called with hugetlb_lock held.
1026
 */
1027 1028
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1029 1030 1031
{
	unsigned long nr_pages;

1032
	/* Uncommit the reservation */
1033
	h->resv_huge_pages -= unused_resv_pages;
1034

1035 1036 1037 1038
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1039
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1040

1041 1042
	/*
	 * We want to release as many surplus pages as possible, spread
1043 1044 1045 1046 1047
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1048 1049
	 */
	while (nr_pages--) {
1050
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1051
			break;
1052 1053 1054
	}
}

1055 1056 1057
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1058 1059 1060 1061 1062 1063
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1064
 */
1065
static long vma_needs_reservation(struct hstate *h,
1066
			struct vm_area_struct *vma, unsigned long addr)
1067 1068 1069 1070
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1071
	if (vma->vm_flags & VM_MAYSHARE) {
1072
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1073 1074 1075
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1076 1077
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1078

1079
	} else  {
1080
		long err;
1081
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1082 1083 1084 1085 1086 1087 1088
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1089
}
1090 1091
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1092 1093 1094 1095
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1096
	if (vma->vm_flags & VM_MAYSHARE) {
1097
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1098
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1099 1100

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1101
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1102 1103 1104 1105
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1106 1107 1108
	}
}

1109
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1110
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1111
{
1112
	struct hugepage_subpool *spool = subpool_vma(vma);
1113
	struct hstate *h = hstate_vma(vma);
1114
	struct page *page;
1115
	long chg;
1116 1117

	/*
1118 1119 1120 1121 1122 1123
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1124
	 */
1125
	chg = vma_needs_reservation(h, vma, addr);
1126
	if (chg < 0)
1127
		return ERR_PTR(-ENOMEM);
1128
	if (chg)
1129
		if (hugepage_subpool_get_pages(spool, chg))
1130
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1131 1132

	spin_lock(&hugetlb_lock);
1133
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1134
	spin_unlock(&hugetlb_lock);
1135

K
Ken Chen 已提交
1136
	if (!page) {
1137
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1138
		if (!page) {
1139
			hugepage_subpool_put_pages(spool, chg);
1140
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1141 1142
		}
	}
1143

1144
	set_page_private(page, (unsigned long)spool);
1145

1146
	vma_commit_reservation(h, vma, addr);
1147

1148
	return page;
1149 1150
}

1151
int __weak alloc_bootmem_huge_page(struct hstate *h)
1152 1153
{
	struct huge_bootmem_page *m;
1154
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1155 1156 1157 1158 1159

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1160
				NODE_DATA(hstate_next_node_to_alloc(h,
1161
						&node_states[N_HIGH_MEMORY])),
1162 1163 1164 1165 1166 1167 1168 1169 1170
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1171
			goto found;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1185 1186 1187 1188 1189 1190 1191 1192
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1193 1194 1195 1196 1197 1198 1199
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1200 1201 1202 1203 1204 1205 1206 1207 1208
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1209 1210
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1211
		prep_compound_huge_page(page, h->order);
1212
		prep_new_huge_page(h, page, page_to_nid(page));
1213 1214 1215 1216 1217 1218 1219 1220
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1221 1222 1223
	}
}

1224
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1225 1226
{
	unsigned long i;
1227

1228
	for (i = 0; i < h->max_huge_pages; ++i) {
1229 1230 1231
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1232 1233
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1234 1235
			break;
	}
1236
	h->max_huge_pages = i;
1237 1238 1239 1240 1241 1242 1243
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1244 1245 1246
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1247 1248 1249
	}
}

A
Andi Kleen 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1261 1262 1263 1264 1265
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1266 1267 1268 1269 1270
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1271 1272 1273
	}
}

L
Linus Torvalds 已提交
1274
#ifdef CONFIG_HIGHMEM
1275 1276
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1277
{
1278 1279
	int i;

1280 1281 1282
	if (h->order >= MAX_ORDER)
		return;

1283
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1284
		struct page *page, *next;
1285 1286 1287
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1288
				return;
L
Linus Torvalds 已提交
1289 1290 1291
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1292
			update_and_free_page(h, page);
1293 1294
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1295 1296 1297 1298
		}
	}
}
#else
1299 1300
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1301 1302 1303 1304
{
}
#endif

1305 1306 1307 1308 1309
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1310 1311
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1312
{
1313
	int start_nid, next_nid;
1314 1315 1316 1317
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1318
	if (delta < 0)
1319
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1320
	else
1321
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1322 1323 1324 1325 1326 1327 1328 1329
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1330
			if (!h->surplus_huge_pages_node[nid]) {
1331 1332
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1333
				continue;
1334
			}
1335 1336 1337 1338 1339 1340
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1341
						h->nr_huge_pages_node[nid]) {
1342 1343
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1344
				continue;
1345
			}
1346
		}
1347 1348 1349 1350 1351

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1352
	} while (next_nid != start_nid);
1353 1354 1355 1356

	return ret;
}

1357
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1358 1359
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1360
{
1361
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1362

1363 1364 1365
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1366 1367 1368 1369
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1370 1371 1372 1373 1374 1375
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1376
	 */
L
Linus Torvalds 已提交
1377
	spin_lock(&hugetlb_lock);
1378
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1379
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1380 1381 1382
			break;
	}

1383
	while (count > persistent_huge_pages(h)) {
1384 1385 1386 1387 1388 1389
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1390
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1391 1392 1393 1394
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1395 1396 1397
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1398 1399 1400 1401 1402 1403 1404 1405
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1406 1407 1408 1409 1410 1411 1412 1413
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1414
	 */
1415
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1416
	min_count = max(count, min_count);
1417
	try_to_free_low(h, min_count, nodes_allowed);
1418
	while (min_count < persistent_huge_pages(h)) {
1419
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1420 1421
			break;
	}
1422
	while (count < persistent_huge_pages(h)) {
1423
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1424 1425 1426
			break;
	}
out:
1427
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1428
	spin_unlock(&hugetlb_lock);
1429
	return ret;
L
Linus Torvalds 已提交
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1442 1443 1444
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1445 1446
{
	int i;
1447

1448
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1449 1450 1451
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1452
			return &hstates[i];
1453 1454 1455
		}

	return kobj_to_node_hstate(kobj, nidp);
1456 1457
}

1458
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1459 1460
					struct kobj_attribute *attr, char *buf)
{
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1472
}
1473

1474 1475 1476
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1477 1478
{
	int err;
1479
	int nid;
1480
	unsigned long count;
1481
	struct hstate *h;
1482
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1483

1484
	err = strict_strtoul(buf, 10, &count);
1485
	if (err)
1486
		goto out;
1487

1488
	h = kobj_to_hstate(kobj, &nid);
1489 1490 1491 1492 1493
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1513
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1514

1515
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1516 1517 1518
		NODEMASK_FREE(nodes_allowed);

	return len;
1519 1520 1521
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1534 1535 1536
}
HSTATE_ATTR(nr_hugepages);

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1558 1559 1560
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1561
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1562 1563
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1564

1565 1566 1567 1568 1569
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1570
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1571

1572 1573 1574
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1575 1576
	err = strict_strtoul(buf, 10, &input);
	if (err)
1577
		return err;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1601 1602 1603 1604 1605 1606
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1607
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1608 1609 1610 1611 1612 1613 1614
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1626 1627 1628 1629 1630 1631 1632 1633 1634
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1635 1636 1637
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1638 1639 1640 1641 1642 1643 1644
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1645 1646 1647
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1648 1649
{
	int retval;
1650
	int hi = hstate_index(h);
1651

1652 1653
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1654 1655
		return -ENOMEM;

1656
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1657
	if (retval)
1658
		kobject_put(hstate_kobjs[hi]);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1673 1674
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1675 1676 1677 1678 1679 1680
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1681 1682 1683 1684
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1685 1686 1687
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1688 1689 1690 1691 1692 1693 1694 1695 1696
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1697
 * A subset of global hstate attributes for node devices
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1711
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1734
 * Unregister hstate attributes from a single node device.
1735 1736 1737 1738 1739
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1740
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1741 1742

	if (!nhs->hugepages_kobj)
1743
		return;		/* no hstate attributes */
1744

1745 1746 1747 1748 1749
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1750
		}
1751
	}
1752 1753 1754 1755 1756 1757

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1758
 * hugetlb module exit:  unregister hstate attributes from node devices
1759 1760 1761 1762 1763 1764 1765
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1766
	 * disable node device registrations.
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1778
 * Register hstate attributes for a single node device.
1779 1780 1781 1782 1783
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1784
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1785 1786 1787 1788 1789 1790
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1791
							&node->dev.kobj);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1802
						h->name, node->dev.id);
1803 1804 1805 1806 1807 1808 1809
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1810
 * hugetlb init time:  register hstate attributes for all registered node
1811 1812
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1813 1814 1815 1816 1817
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1818
	for_each_node_state(nid, N_HIGH_MEMORY) {
1819
		struct node *node = &node_devices[nid];
1820
		if (node->dev.id == nid)
1821 1822 1823 1824
			hugetlb_register_node(node);
	}

	/*
1825
	 * Let the node device driver know we're here so it can
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1847 1848 1849 1850
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1851 1852
	hugetlb_unregister_all_nodes();

1853
	for_each_hstate(h) {
1854
		kobject_put(hstate_kobjs[hstate_index(h)]);
1855 1856 1857 1858 1859 1860 1861 1862
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1863 1864 1865 1866 1867 1868
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1869

1870 1871 1872 1873
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1874
	}
1875
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1876 1877
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1878 1879 1880

	hugetlb_init_hstates();

1881 1882
	gather_bootmem_prealloc();

1883 1884 1885 1886
	report_hugepages();

	hugetlb_sysfs_init();

1887 1888
	hugetlb_register_all_nodes();

1889 1890 1891 1892 1893 1894 1895 1896
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1897 1898
	unsigned long i;

1899 1900 1901 1902
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1903
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1904
	BUG_ON(order == 0);
1905
	h = &hstates[hugetlb_max_hstate++];
1906 1907
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1908 1909 1910 1911
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1912 1913
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1914 1915
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1916

1917 1918 1919
	parsed_hstate = h;
}

1920
static int __init hugetlb_nrpages_setup(char *s)
1921 1922
{
	unsigned long *mhp;
1923
	static unsigned long *last_mhp;
1924 1925

	/*
1926
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1927 1928
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1929
	if (!hugetlb_max_hstate)
1930 1931 1932 1933
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1934 1935 1936 1937 1938 1939
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1940 1941 1942
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1943 1944 1945 1946 1947
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1948
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1949 1950 1951 1952
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1953 1954
	return 1;
}
1955 1956 1957 1958 1959 1960 1961 1962
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1976 1977 1978
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1979
{
1980 1981
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1982
	int ret;
1983

1984
	tmp = h->max_huge_pages;
1985

1986 1987 1988
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1989 1990
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1991 1992 1993
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1994

1995
	if (write) {
1996 1997
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2008 2009
out:
	return ret;
L
Linus Torvalds 已提交
2010
}
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2029
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2030
			void __user *buffer,
2031 2032
			size_t *length, loff_t *ppos)
{
2033
	proc_dointvec(table, write, buffer, length, ppos);
2034 2035 2036 2037 2038 2039 2040
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2041
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2042
			void __user *buffer,
2043 2044
			size_t *length, loff_t *ppos)
{
2045
	struct hstate *h = &default_hstate;
2046
	unsigned long tmp;
2047
	int ret;
2048

2049
	tmp = h->nr_overcommit_huge_pages;
2050

2051 2052 2053
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2054 2055
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2056 2057 2058
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2059 2060 2061 2062 2063 2064

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2065 2066
out:
	return ret;
2067 2068
}

L
Linus Torvalds 已提交
2069 2070
#endif /* CONFIG_SYSCTL */

2071
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2072
{
2073
	struct hstate *h = &default_hstate;
2074
	seq_printf(m,
2075 2076 2077 2078 2079
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2080 2081 2082 2083 2084
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2085 2086 2087 2088
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2089
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2090 2091
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2092 2093
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2094 2095 2096
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2102 2103
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2104 2105
}

2106
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2129
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2130 2131
			goto out;

2132 2133
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2134 2135 2136 2137 2138 2139
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2140
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2141 2142 2143 2144 2145 2146

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2147 2148 2149 2150 2151 2152 2153 2154
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2155
	 * has a reference to the reservation map it cannot disappear until
2156 2157 2158 2159 2160 2161 2162
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2163 2164 2165 2166 2167 2168 2169 2170 2171
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2172 2173
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2174
	struct hstate *h = hstate_vma(vma);
2175
	struct resv_map *reservations = vma_resv_map(vma);
2176
	struct hugepage_subpool *spool = subpool_vma(vma);
2177 2178 2179 2180 2181
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2182 2183
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2184 2185 2186 2187

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2188
		resv_map_put(vma);
2189

2190
		if (reserve) {
2191
			hugetlb_acct_memory(h, -reserve);
2192
			hugepage_subpool_put_pages(spool, reserve);
2193
		}
2194
	}
2195 2196
}

L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2203
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2204 2205
{
	BUG();
N
Nick Piggin 已提交
2206
	return 0;
L
Linus Torvalds 已提交
2207 2208
}

2209
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2210
	.fault = hugetlb_vm_op_fault,
2211
	.open = hugetlb_vm_op_open,
2212
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2213 2214
};

2215 2216
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2217 2218 2219
{
	pte_t entry;

2220
	if (writable) {
D
David Gibson 已提交
2221 2222 2223
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2224
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2225 2226 2227
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2228
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2229 2230 2231 2232

	return entry;
}

2233 2234 2235 2236 2237
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2238
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2239
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2240
		update_mmu_cache(vma, address, ptep);
2241 2242 2243
}


D
David Gibson 已提交
2244 2245 2246 2247 2248
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2249
	unsigned long addr;
2250
	int cow;
2251 2252
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2253 2254

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2255

2256
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2257 2258 2259
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2260
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2261 2262
		if (!dst_pte)
			goto nomem;
2263 2264 2265 2266 2267

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2268
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2269
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2270
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2271
			if (cow)
2272 2273
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2274 2275
			ptepage = pte_page(entry);
			get_page(ptepage);
2276
			page_dup_rmap(ptepage);
2277 2278 2279
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2280
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2281 2282 2283 2284 2285 2286 2287
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2288 2289 2290 2291 2292 2293 2294
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2295
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2296
		return 1;
2297
	else
N
Naoya Horiguchi 已提交
2298 2299 2300
		return 0;
}

2301 2302 2303 2304 2305 2306 2307
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2308
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2309
		return 1;
2310
	else
2311 2312 2313
		return 0;
}

2314 2315 2316
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2317
{
2318
	int force_flush = 0;
D
David Gibson 已提交
2319 2320
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2321
	pte_t *ptep;
D
David Gibson 已提交
2322 2323
	pte_t pte;
	struct page *page;
2324 2325 2326
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2327
	WARN_ON(!is_vm_hugetlb_page(vma));
2328 2329
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2330

2331
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2332
	mmu_notifier_invalidate_range_start(mm, start, end);
2333
again:
2334
	spin_lock(&mm->page_table_lock);
2335
	for (address = start; address < end; address += sz) {
2336
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2337
		if (!ptep)
2338 2339
			continue;

2340 2341 2342
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2371
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2372
		tlb_remove_tlb_entry(tlb, ptep, address);
2373 2374
		if (pte_dirty(pte))
			set_page_dirty(page);
2375

2376 2377 2378 2379
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2380 2381 2382
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2383
	}
2384
	spin_unlock(&mm->page_table_lock);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2395
	}
2396 2397
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2398
}
D
David Gibson 已提交
2399

2400
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2401
			  unsigned long end, struct page *ref_page)
2402
{
2403 2404 2405 2406 2407 2408 2409 2410
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2411 2412
}

2413 2414 2415 2416 2417 2418
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2419 2420
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2421
{
2422
	struct hstate *h = hstate_vma(vma);
2423 2424 2425 2426 2427 2428 2429 2430 2431
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2432
	address = address & huge_page_mask(h);
2433
	pgoff = vma_hugecache_offset(h, vma, address);
2434
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2435

2436 2437 2438 2439 2440
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2441
	mutex_lock(&mapping->i_mmap_mutex);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2455 2456
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2457
	}
2458
	mutex_unlock(&mapping->i_mmap_mutex);
2459 2460 2461 2462

	return 1;
}

2463 2464
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2465 2466 2467
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2468
 */
2469
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2470 2471
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2472
{
2473
	struct hstate *h = hstate_vma(vma);
2474
	struct page *old_page, *new_page;
2475
	int avoidcopy;
2476
	int outside_reserve = 0;
2477 2478 2479

	old_page = pte_page(pte);

2480
retry_avoidcopy:
2481 2482
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2483
	avoidcopy = (page_mapcount(old_page) == 1);
2484
	if (avoidcopy) {
2485 2486
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2487
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2488
		return 0;
2489 2490
	}

2491 2492 2493 2494 2495 2496 2497 2498 2499
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2500
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2501 2502 2503 2504
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2505
	page_cache_get(old_page);
2506 2507 2508

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2509
	new_page = alloc_huge_page(vma, address, outside_reserve);
2510

2511
	if (IS_ERR(new_page)) {
2512
		long err = PTR_ERR(new_page);
2513
		page_cache_release(old_page);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2526
				spin_lock(&mm->page_table_lock);
2527 2528 2529 2530 2531 2532 2533 2534
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2535 2536 2537 2538
			}
			WARN_ON_ONCE(1);
		}

2539 2540
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2541 2542 2543 2544
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2545 2546
	}

2547 2548 2549 2550
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2551
	if (unlikely(anon_vma_prepare(vma))) {
2552 2553
		page_cache_release(new_page);
		page_cache_release(old_page);
2554 2555
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2556
		return VM_FAULT_OOM;
2557
	}
2558

A
Andrea Arcangeli 已提交
2559 2560
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2561
	__SetPageUptodate(new_page);
2562

2563 2564 2565 2566 2567
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2568
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2569
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2570
		/* Break COW */
2571 2572 2573
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2574
		huge_ptep_clear_flush(vma, address, ptep);
2575 2576
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2577
		page_remove_rmap(old_page);
2578
		hugepage_add_new_anon_rmap(new_page, vma, address);
2579 2580
		/* Make the old page be freed below */
		new_page = old_page;
2581 2582 2583
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2584 2585 2586
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2587
	return 0;
2588 2589
}

2590
/* Return the pagecache page at a given address within a VMA */
2591 2592
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2593 2594
{
	struct address_space *mapping;
2595
	pgoff_t idx;
2596 2597

	mapping = vma->vm_file->f_mapping;
2598
	idx = vma_hugecache_offset(h, vma, address);
2599 2600 2601 2602

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2603 2604 2605 2606 2607
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2623
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2624
			unsigned long address, pte_t *ptep, unsigned int flags)
2625
{
2626
	struct hstate *h = hstate_vma(vma);
2627
	int ret = VM_FAULT_SIGBUS;
2628
	int anon_rmap = 0;
2629
	pgoff_t idx;
A
Adam Litke 已提交
2630 2631 2632
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2633
	pte_t new_pte;
A
Adam Litke 已提交
2634

2635 2636 2637
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2638
	 * COW. Warn that such a situation has occurred as it may not be obvious
2639 2640 2641 2642 2643 2644 2645 2646
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2647
	mapping = vma->vm_file->f_mapping;
2648
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2649 2650 2651 2652 2653

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2654 2655 2656
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2657
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2658 2659
		if (idx >= size)
			goto out;
2660
		page = alloc_huge_page(vma, address, 0);
2661
		if (IS_ERR(page)) {
2662 2663 2664 2665 2666
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2667 2668
			goto out;
		}
A
Andrea Arcangeli 已提交
2669
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2670
		__SetPageUptodate(page);
2671

2672
		if (vma->vm_flags & VM_MAYSHARE) {
2673
			int err;
K
Ken Chen 已提交
2674
			struct inode *inode = mapping->host;
2675 2676 2677 2678 2679 2680 2681 2682

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2683 2684

			spin_lock(&inode->i_lock);
2685
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2686
			spin_unlock(&inode->i_lock);
2687
		} else {
2688
			lock_page(page);
2689 2690 2691 2692
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2693
			anon_rmap = 1;
2694
		}
2695
	} else {
2696 2697 2698 2699 2700 2701
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2702
			ret = VM_FAULT_HWPOISON |
2703
				VM_FAULT_SET_HINDEX(hstate_index(h));
2704 2705
			goto backout_unlocked;
		}
2706
	}
2707

2708 2709 2710 2711 2712 2713
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2714
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2715 2716 2717 2718
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2719

2720
	spin_lock(&mm->page_table_lock);
2721
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2722 2723 2724
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2725
	ret = 0;
2726
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2727 2728
		goto backout;

2729 2730 2731 2732
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2733 2734 2735 2736
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2737
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2738
		/* Optimization, do the COW without a second fault */
2739
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2740 2741
	}

2742
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2743 2744
	unlock_page(page);
out:
2745
	return ret;
A
Adam Litke 已提交
2746 2747 2748

backout:
	spin_unlock(&mm->page_table_lock);
2749
backout_unlocked:
A
Adam Litke 已提交
2750 2751 2752
	unlock_page(page);
	put_page(page);
	goto out;
2753 2754
}

2755
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2756
			unsigned long address, unsigned int flags)
2757 2758 2759
{
	pte_t *ptep;
	pte_t entry;
2760
	int ret;
2761
	struct page *page = NULL;
2762
	struct page *pagecache_page = NULL;
2763
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2764
	struct hstate *h = hstate_vma(vma);
2765

2766 2767
	address &= huge_page_mask(h);

2768 2769 2770
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2771 2772 2773 2774
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2775
			return VM_FAULT_HWPOISON_LARGE |
2776
				VM_FAULT_SET_HINDEX(hstate_index(h));
2777 2778
	}

2779
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2780 2781 2782
	if (!ptep)
		return VM_FAULT_OOM;

2783 2784 2785 2786 2787 2788
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2789 2790
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2791
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2792
		goto out_mutex;
2793
	}
2794

N
Nick Piggin 已提交
2795
	ret = 0;
2796

2797 2798 2799 2800 2801 2802 2803 2804
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2805
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2806 2807
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2808
			goto out_mutex;
2809
		}
2810

2811
		if (!(vma->vm_flags & VM_MAYSHARE))
2812 2813 2814 2815
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2824
	get_page(page);
2825
	if (page != pagecache_page)
2826 2827
		lock_page(page);

2828 2829
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2830 2831 2832 2833
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2834
	if (flags & FAULT_FLAG_WRITE) {
2835
		if (!pte_write(entry)) {
2836 2837
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2838 2839 2840 2841 2842
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2843 2844
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2845
		update_mmu_cache(vma, address, ptep);
2846 2847

out_page_table_lock:
2848
	spin_unlock(&mm->page_table_lock);
2849 2850 2851 2852 2853

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2854 2855
	if (page != pagecache_page)
		unlock_page(page);
2856
	put_page(page);
2857

2858
out_mutex:
2859
	mutex_unlock(&hugetlb_instantiation_mutex);
2860 2861

	return ret;
2862 2863
}

A
Andi Kleen 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2873 2874
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2875
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2876
			unsigned int flags)
D
David Gibson 已提交
2877
{
2878 2879
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2880
	int remainder = *length;
2881
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2882

2883
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2884
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2885
		pte_t *pte;
H
Hugh Dickins 已提交
2886
		int absent;
A
Adam Litke 已提交
2887
		struct page *page;
D
David Gibson 已提交
2888

A
Adam Litke 已提交
2889 2890
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2891
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2892 2893
		 * first, for the page indexing below to work.
		 */
2894
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2895 2896 2897 2898
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2899 2900 2901 2902
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2903
		 */
H
Hugh Dickins 已提交
2904 2905
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2906 2907 2908
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2909

H
Hugh Dickins 已提交
2910 2911
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2912
			int ret;
D
David Gibson 已提交
2913

A
Adam Litke 已提交
2914
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2915 2916
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2917
			spin_lock(&mm->page_table_lock);
2918
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2919
				continue;
D
David Gibson 已提交
2920

A
Adam Litke 已提交
2921 2922 2923 2924
			remainder = 0;
			break;
		}

2925
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2926
		page = pte_page(huge_ptep_get(pte));
2927
same_page:
2928
		if (pages) {
H
Hugh Dickins 已提交
2929
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2930
			get_page(pages[i]);
2931
		}
D
David Gibson 已提交
2932 2933 2934 2935 2936

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2937
		++pfn_offset;
D
David Gibson 已提交
2938 2939
		--remainder;
		++i;
2940
		if (vaddr < vma->vm_end && remainder &&
2941
				pfn_offset < pages_per_huge_page(h)) {
2942 2943 2944 2945 2946 2947
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2948
	}
2949
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2950 2951 2952
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2953
	return i ? i : -EFAULT;
D
David Gibson 已提交
2954
}
2955 2956 2957 2958 2959 2960 2961 2962

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2963
	struct hstate *h = hstate_vma(vma);
2964 2965 2966 2967

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2968
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2969
	spin_lock(&mm->page_table_lock);
2970
	for (; address < end; address += huge_page_size(h)) {
2971 2972 2973
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2974 2975
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2976
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2977 2978 2979 2980 2981 2982
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2983
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2984 2985 2986 2987

	flush_tlb_range(vma, start, end);
}

2988 2989
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2990
					struct vm_area_struct *vma,
2991
					vm_flags_t vm_flags)
2992
{
2993
	long ret, chg;
2994
	struct hstate *h = hstate_inode(inode);
2995
	struct hugepage_subpool *spool = subpool_inode(inode);
2996

2997 2998 2999
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3000
	 * without using reserves
3001
	 */
3002
	if (vm_flags & VM_NORESERVE)
3003 3004
		return 0;

3005 3006 3007 3008 3009 3010
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3011
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3012
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3013 3014 3015 3016 3017
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3018
		chg = to - from;
3019

3020 3021 3022 3023
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3024 3025 3026 3027
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3028

3029
	/* There must be enough pages in the subpool for the mapping */
3030 3031 3032 3033
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3034 3035

	/*
3036
	 * Check enough hugepages are available for the reservation.
3037
	 * Hand the pages back to the subpool if there are not
3038
	 */
3039
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3040
	if (ret < 0) {
3041
		hugepage_subpool_put_pages(spool, chg);
3042
		goto out_err;
K
Ken Chen 已提交
3043
	}
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3056
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3057
		region_add(&inode->i_mapping->private_list, from, to);
3058
	return 0;
3059
out_err:
3060 3061
	if (vma)
		resv_map_put(vma);
3062
	return ret;
3063 3064 3065 3066
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3067
	struct hstate *h = hstate_inode(inode);
3068
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3069
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3070 3071

	spin_lock(&inode->i_lock);
3072
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3073 3074
	spin_unlock(&inode->i_lock);

3075
	hugepage_subpool_put_pages(spool, (chg - freed));
3076
	hugetlb_acct_memory(h, -(chg - freed));
3077
}
3078

3079 3080
#ifdef CONFIG_MEMORY_FAILURE

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3095 3096 3097 3098
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3099
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3100 3101 3102
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3103
	int ret = -EBUSY;
3104 3105

	spin_lock(&hugetlb_lock);
3106 3107
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3108
		set_page_refcounted(hpage);
3109 3110 3111 3112
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3113
	spin_unlock(&hugetlb_lock);
3114
	return ret;
3115
}
3116
#endif