hugetlb.c 103.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
222 223 224 225 226 227 228
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

229
static long region_add(struct resv_map *resv, long f, long t)
230
{
231
	struct list_head *head = &resv->regions;
232 233
	struct file_region *rg, *nrg, *trg;

234
	spin_lock(&resv->lock);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
264
	spin_unlock(&resv->lock);
265 266 267
	return 0;
}

268
static long region_chg(struct resv_map *resv, long f, long t)
269
{
270
	struct list_head *head = &resv->regions;
271
	struct file_region *rg, *nrg = NULL;
272 273
	long chg = 0;

274 275
retry:
	spin_lock(&resv->lock);
276 277 278 279 280 281 282 283 284
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
285 286 287 288 289 290 291 292 293 294 295
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
296

297 298 299
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
300 301 302 303 304 305 306 307 308 309 310 311
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
312
			goto out;
313

L
Lucas De Marchi 已提交
314
		/* We overlap with this area, if it extends further than
315 316 317 318 319 320 321 322
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
323 324 325 326 327 328 329 330

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
331 332 333
	return chg;
}

334
static long region_truncate(struct resv_map *resv, long end)
335
{
336
	struct list_head *head = &resv->regions;
337 338 339
	struct file_region *rg, *trg;
	long chg = 0;

340
	spin_lock(&resv->lock);
341 342 343 344 345
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
346
		goto out;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
363 364 365

out:
	spin_unlock(&resv->lock);
366 367 368
	return chg;
}

369
static long region_count(struct resv_map *resv, long f, long t)
370
{
371
	struct list_head *head = &resv->regions;
372 373 374
	struct file_region *rg;
	long chg = 0;

375
	spin_lock(&resv->lock);
376 377
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
378 379
		long seg_from;
		long seg_to;
380 381 382 383 384 385 386 387 388 389 390

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
391
	spin_unlock(&resv->lock);
392 393 394 395

	return chg;
}

396 397 398 399
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
400 401
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
402
{
403 404
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
405 406
}

407 408 409 410 411 412
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

413 414 415 416 417 418 419 420 421 422 423 424 425
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

426
	return 1UL << huge_page_shift(hstate);
427
}
428
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
429

430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

443 444 445 446 447 448 449
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
450
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
451

452 453 454 455 456 457 458 459 460
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
461 462 463 464 465 466 467 468 469
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
470
 */
471 472 473 474 475 476 477 478 479 480 481
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

482
struct resv_map *resv_map_alloc(void)
483 484 485 486 487 488
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
489
	spin_lock_init(&resv_map->lock);
490 491 492 493 494
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

495
void resv_map_release(struct kref *ref)
496 497 498 499
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
500
	region_truncate(resv_map, 0);
501 502 503
	kfree(resv_map);
}

504 505 506 507 508
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

509
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
510
{
511
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
512 513 514 515 516 517 518
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
519 520
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
521
	}
522 523
}

524
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
525
{
526 527
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
528

529 530
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
531 532 533 534
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
535 536
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
537 538

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
539 540 541 542
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
543
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
544 545

	return (get_vma_private_data(vma) & flag) != 0;
546 547
}

548
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
549 550
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
551
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
552
	if (!(vma->vm_flags & VM_MAYSHARE))
553 554 555 556
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
557
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
558
{
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
574 575

	/* Shared mappings always use reserves */
576
	if (vma->vm_flags & VM_MAYSHARE)
577
		return 1;
578 579 580 581 582

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
583 584
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
585

586
	return 0;
587 588
}

589
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
590 591
{
	int nid = page_to_nid(page);
592
	list_move(&page->lru, &h->hugepage_freelists[nid]);
593 594
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
595 596
}

597 598 599 600
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

601 602 603 604 605 606 607 608
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
609
		return NULL;
610
	list_move(&page->lru, &h->hugepage_activelist);
611
	set_page_refcounted(page);
612 613 614 615 616
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

617 618 619
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
620
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
621 622 623 624 625
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

626 627
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
628 629
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
630
{
631
	struct page *page = NULL;
632
	struct mempolicy *mpol;
633
	nodemask_t *nodemask;
634
	struct zonelist *zonelist;
635 636
	struct zone *zone;
	struct zoneref *z;
637
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
638

639 640 641 642 643
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
644
	if (!vma_has_reserves(vma, chg) &&
645
			h->free_huge_pages - h->resv_huge_pages == 0)
646
		goto err;
647

648
	/* If reserves cannot be used, ensure enough pages are in the pool */
649
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
650
		goto err;
651

652
retry_cpuset:
653
	cpuset_mems_cookie = read_mems_allowed_begin();
654
	zonelist = huge_zonelist(vma, address,
655
					htlb_alloc_mask(h), &mpol, &nodemask);
656

657 658
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
659
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
660 661
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
662 663 664 665 666
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

667
				SetPagePrivate(page);
668
				h->resv_huge_pages--;
669 670
				break;
			}
A
Andrew Morton 已提交
671
		}
L
Linus Torvalds 已提交
672
	}
673

674
	mpol_cond_put(mpol);
675
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
676
		goto retry_cpuset;
L
Linus Torvalds 已提交
677
	return page;
678 679 680

err:
	return NULL;
L
Linus Torvalds 已提交
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

894
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
895 896
{
	int i;
897

898 899
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
900

901 902 903
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
904 905
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
906 907
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
908
	}
909
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
910 911
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
912 913 914 915 916 917 918
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
919 920
}

921 922 923 924 925 926 927 928 929 930 931
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

957
void free_huge_page(struct page *page)
958
{
959 960 961 962
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
963
	struct hstate *h = page_hstate(page);
964
	int nid = page_to_nid(page);
965 966
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
967
	bool restore_reserve;
968

969
	set_page_private(page, 0);
970
	page->mapping = NULL;
971
	BUG_ON(page_count(page));
972
	BUG_ON(page_mapcount(page));
973
	restore_reserve = PagePrivate(page);
974
	ClearPagePrivate(page);
975

976 977 978 979 980 981 982 983
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

984
	spin_lock(&hugetlb_lock);
985
	clear_page_huge_active(page);
986 987
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
988 989 990
	if (restore_reserve)
		h->resv_huge_pages++;

991
	if (h->surplus_huge_pages_node[nid]) {
992 993
		/* remove the page from active list */
		list_del(&page->lru);
994 995 996
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
997
	} else {
998
		arch_clear_hugepage_flags(page);
999
		enqueue_huge_page(h, page);
1000
	}
1001 1002 1003
	spin_unlock(&hugetlb_lock);
}

1004
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1005
{
1006
	INIT_LIST_HEAD(&page->lru);
1007 1008
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1009
	set_hugetlb_cgroup(page, NULL);
1010 1011
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1012 1013 1014 1015
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1016
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1017 1018 1019 1020 1021 1022 1023 1024
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1025
	__ClearPageReserved(page);
1026
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1040
		set_page_count(p, 0);
1041
		p->first_page = page;
1042 1043 1044
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1045 1046 1047
	}
}

A
Andrew Morton 已提交
1048 1049 1050 1051 1052
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1053 1054 1055 1056 1057 1058
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1059
	return get_compound_page_dtor(page) == free_huge_page;
1060
}
1061 1062
EXPORT_SYMBOL_GPL(PageHuge);

1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1072
	return get_compound_page_dtor(page_head) == free_huge_page;
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1092
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1093 1094
{
	struct page *page;
1095

1096
	page = alloc_pages_exact_node(nid,
1097
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1098
						__GFP_REPEAT|__GFP_NOWARN,
1099
		huge_page_order(h));
L
Linus Torvalds 已提交
1100
	if (page) {
1101
		if (arch_prepare_hugepage(page)) {
1102
			__free_pages(page, huge_page_order(h));
1103
			return NULL;
1104
		}
1105
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1106
	}
1107 1108 1109 1110

	return page;
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1133 1134 1135 1136 1137 1138
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1139 1140
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1141
{
1142
	int nr_nodes, node;
1143 1144
	int ret = 0;

1145
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1146 1147 1148 1149
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1150 1151
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1152
			struct page *page =
1153
				list_entry(h->hugepage_freelists[node].next,
1154 1155 1156
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1157
			h->free_huge_pages_node[node]--;
1158 1159
			if (acct_surplus) {
				h->surplus_huge_pages--;
1160
				h->surplus_huge_pages_node[node]--;
1161
			}
1162 1163
			update_and_free_page(h, page);
			ret = 1;
1164
			break;
1165
		}
1166
	}
1167 1168 1169 1170

	return ret;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1198 1199 1200
	if (!hugepages_supported())
		return;

1201 1202
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1203 1204 1205
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1206
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1207 1208
{
	struct page *page;
1209
	unsigned int r_nid;
1210

1211
	if (hstate_is_gigantic(h))
1212 1213
		return NULL;

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1238
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1239 1240 1241
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1242 1243
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1244 1245 1246
	}
	spin_unlock(&hugetlb_lock);

1247
	if (nid == NUMA_NO_NODE)
1248
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1249 1250 1251 1252
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1253
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1254
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1255

1256 1257
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1258
		page = NULL;
1259 1260
	}

1261
	spin_lock(&hugetlb_lock);
1262
	if (page) {
1263
		INIT_LIST_HEAD(&page->lru);
1264
		r_nid = page_to_nid(page);
1265
		set_compound_page_dtor(page, free_huge_page);
1266
		set_hugetlb_cgroup(page, NULL);
1267 1268 1269
		/*
		 * We incremented the global counters already
		 */
1270 1271
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1272
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1273
	} else {
1274 1275
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1276
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1277
	}
1278
	spin_unlock(&hugetlb_lock);
1279 1280 1281 1282

	return page;
}

1283 1284 1285 1286 1287 1288 1289
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1290
	struct page *page = NULL;
1291 1292

	spin_lock(&hugetlb_lock);
1293 1294
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1295 1296
	spin_unlock(&hugetlb_lock);

1297
	if (!page)
1298 1299 1300 1301 1302
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1303
/*
L
Lucas De Marchi 已提交
1304
 * Increase the hugetlb pool such that it can accommodate a reservation
1305 1306
 * of size 'delta'.
 */
1307
static int gather_surplus_pages(struct hstate *h, int delta)
1308 1309 1310 1311 1312
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1313
	bool alloc_ok = true;
1314

1315
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1316
	if (needed <= 0) {
1317
		h->resv_huge_pages += delta;
1318
		return 0;
1319
	}
1320 1321 1322 1323 1324 1325 1326 1327

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1328
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1329 1330 1331 1332
		if (!page) {
			alloc_ok = false;
			break;
		}
1333 1334
		list_add(&page->lru, &surplus_list);
	}
1335
	allocated += i;
1336 1337 1338 1339 1340 1341

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1342 1343
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1354 1355
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1356
	 * needed to accommodate the reservation.  Add the appropriate number
1357
	 * of pages to the hugetlb pool and free the extras back to the buddy
1358 1359 1360
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1361 1362
	 */
	needed += allocated;
1363
	h->resv_huge_pages += delta;
1364
	ret = 0;
1365

1366
	/* Free the needed pages to the hugetlb pool */
1367
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1368 1369
		if ((--needed) < 0)
			break;
1370 1371 1372 1373 1374
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1375
		VM_BUG_ON_PAGE(page_count(page), page);
1376
		enqueue_huge_page(h, page);
1377
	}
1378
free:
1379
	spin_unlock(&hugetlb_lock);
1380 1381

	/* Free unnecessary surplus pages to the buddy allocator */
1382 1383
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1384
	spin_lock(&hugetlb_lock);
1385 1386 1387 1388 1389 1390 1391 1392

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1393
 * Called with hugetlb_lock held.
1394
 */
1395 1396
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1397 1398 1399
{
	unsigned long nr_pages;

1400
	/* Uncommit the reservation */
1401
	h->resv_huge_pages -= unused_resv_pages;
1402

1403
	/* Cannot return gigantic pages currently */
1404
	if (hstate_is_gigantic(h))
1405 1406
		return;

1407
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1408

1409 1410
	/*
	 * We want to release as many surplus pages as possible, spread
1411 1412 1413 1414 1415
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1416 1417
	 */
	while (nr_pages--) {
1418
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1419
			break;
1420
		cond_resched_lock(&hugetlb_lock);
1421 1422 1423
	}
}

1424 1425 1426
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1427 1428 1429 1430 1431 1432
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1433
 */
1434
static long vma_needs_reservation(struct hstate *h,
1435
			struct vm_area_struct *vma, unsigned long addr)
1436
{
1437 1438 1439
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1440

1441 1442
	resv = vma_resv_map(vma);
	if (!resv)
1443
		return 1;
1444

1445 1446
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1447

1448 1449 1450 1451
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1452
}
1453 1454
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1455
{
1456 1457
	struct resv_map *resv;
	pgoff_t idx;
1458

1459 1460 1461
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1462

1463 1464
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1465 1466
}

1467
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1468
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1469
{
1470
	struct hugepage_subpool *spool = subpool_vma(vma);
1471
	struct hstate *h = hstate_vma(vma);
1472
	struct page *page;
1473
	long chg;
1474 1475
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1476

1477
	idx = hstate_index(h);
1478
	/*
1479 1480 1481 1482 1483 1484
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1485
	 */
1486
	chg = vma_needs_reservation(h, vma, addr);
1487
	if (chg < 0)
1488
		return ERR_PTR(-ENOMEM);
1489
	if (chg || avoid_reserve)
1490
		if (hugepage_subpool_get_pages(spool, 1) < 0)
1491
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1492

1493
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1494 1495 1496
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1497
	spin_lock(&hugetlb_lock);
1498
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1499
	if (!page) {
1500
		spin_unlock(&hugetlb_lock);
1501
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1502 1503 1504
		if (!page)
			goto out_uncharge_cgroup;

1505 1506
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1507
		/* Fall through */
K
Ken Chen 已提交
1508
	}
1509 1510
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1511

1512
	set_page_private(page, (unsigned long)spool);
1513

1514
	vma_commit_reservation(h, vma, addr);
1515
	return page;
1516 1517 1518 1519 1520 1521 1522

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1539
int __weak alloc_bootmem_huge_page(struct hstate *h)
1540 1541
{
	struct huge_bootmem_page *m;
1542
	int nr_nodes, node;
1543

1544
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1545 1546
		void *addr;

1547 1548 1549
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1550 1551 1552 1553 1554 1555 1556
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1557
			goto found;
1558 1559 1560 1561 1562
		}
	}
	return 0;

found:
1563
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1564 1565 1566 1567 1568 1569
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1570
static void __init prep_compound_huge_page(struct page *page, int order)
1571 1572 1573 1574 1575 1576 1577
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1578 1579 1580 1581 1582 1583 1584
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1585 1586 1587 1588
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1589 1590
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1591 1592 1593
#else
		page = virt_to_page(m);
#endif
1594
		WARN_ON(page_count(page) != 1);
1595
		prep_compound_huge_page(page, h->order);
1596
		WARN_ON(PageReserved(page));
1597
		prep_new_huge_page(h, page, page_to_nid(page));
1598 1599 1600 1601 1602 1603
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1604
		if (hstate_is_gigantic(h))
1605
			adjust_managed_page_count(page, 1 << h->order);
1606 1607 1608
	}
}

1609
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1610 1611
{
	unsigned long i;
1612

1613
	for (i = 0; i < h->max_huge_pages; ++i) {
1614
		if (hstate_is_gigantic(h)) {
1615 1616
			if (!alloc_bootmem_huge_page(h))
				break;
1617
		} else if (!alloc_fresh_huge_page(h,
1618
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1619 1620
			break;
	}
1621
	h->max_huge_pages = i;
1622 1623 1624 1625 1626 1627 1628
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1629 1630 1631
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

1632
		/* oversize hugepages were init'ed in early boot */
1633
		if (!hstate_is_gigantic(h))
1634
			hugetlb_hstate_alloc_pages(h);
1635
	}
1636
	VM_BUG_ON(minimum_order == UINT_MAX);
1637 1638
}

A
Andi Kleen 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1650 1651 1652 1653 1654
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1655
		char buf[32];
1656
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1657 1658
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1659 1660 1661
	}
}

L
Linus Torvalds 已提交
1662
#ifdef CONFIG_HIGHMEM
1663 1664
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1665
{
1666 1667
	int i;

1668
	if (hstate_is_gigantic(h))
1669 1670
		return;

1671
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1672
		struct page *page, *next;
1673 1674 1675
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1676
				return;
L
Linus Torvalds 已提交
1677 1678 1679
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1680
			update_and_free_page(h, page);
1681 1682
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1683 1684 1685 1686
		}
	}
}
#else
1687 1688
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1689 1690 1691 1692
{
}
#endif

1693 1694 1695 1696 1697
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1698 1699
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1700
{
1701
	int nr_nodes, node;
1702 1703 1704

	VM_BUG_ON(delta != -1 && delta != 1);

1705 1706 1707 1708
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1709
		}
1710 1711 1712 1713 1714
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1715
		}
1716 1717
	}
	return 0;
1718

1719 1720 1721 1722
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1723 1724
}

1725
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1726 1727
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1728
{
1729
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1730

1731
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1732 1733
		return h->max_huge_pages;

1734 1735 1736 1737
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1738 1739 1740 1741 1742 1743
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1744
	 */
L
Linus Torvalds 已提交
1745
	spin_lock(&hugetlb_lock);
1746
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1747
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1748 1749 1750
			break;
	}

1751
	while (count > persistent_huge_pages(h)) {
1752 1753 1754 1755 1756 1757
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1758 1759 1760 1761
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1762 1763 1764 1765
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1766 1767 1768
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1769 1770 1771 1772 1773 1774 1775 1776
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1777 1778 1779 1780 1781 1782 1783 1784
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1785
	 */
1786
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1787
	min_count = max(count, min_count);
1788
	try_to_free_low(h, min_count, nodes_allowed);
1789
	while (min_count < persistent_huge_pages(h)) {
1790
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1791
			break;
1792
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1793
	}
1794
	while (count < persistent_huge_pages(h)) {
1795
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1796 1797 1798
			break;
	}
out:
1799
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1800
	spin_unlock(&hugetlb_lock);
1801
	return ret;
L
Linus Torvalds 已提交
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1814 1815 1816
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1817 1818
{
	int i;
1819

1820
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1821 1822 1823
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1824
			return &hstates[i];
1825 1826 1827
		}

	return kobj_to_node_hstate(kobj, nidp);
1828 1829
}

1830
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1831 1832
					struct kobj_attribute *attr, char *buf)
{
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1844
}
1845

1846 1847 1848
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1849 1850
{
	int err;
1851
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1852

1853
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1854 1855 1856 1857
		err = -EINVAL;
		goto out;
	}

1858 1859 1860 1861 1862 1863 1864
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1865
			nodes_allowed = &node_states[N_MEMORY];
1866 1867 1868 1869 1870 1871 1872 1873 1874
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1875
		nodes_allowed = &node_states[N_MEMORY];
1876

1877
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1878

1879
	if (nodes_allowed != &node_states[N_MEMORY])
1880 1881 1882
		NODEMASK_FREE(nodes_allowed);

	return len;
1883 1884 1885
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1905 1906 1907 1908 1909 1910 1911 1912 1913
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1914
	return nr_hugepages_store_common(false, kobj, buf, len);
1915 1916 1917
}
HSTATE_ATTR(nr_hugepages);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1933
	return nr_hugepages_store_common(true, kobj, buf, len);
1934 1935 1936 1937 1938
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1939 1940 1941
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1942
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1943 1944
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1945

1946 1947 1948 1949 1950
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1951
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1952

1953
	if (hstate_is_gigantic(h))
1954 1955
		return -EINVAL;

1956
	err = kstrtoul(buf, 10, &input);
1957
	if (err)
1958
		return err;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1982 1983 1984 1985 1986 1987
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1988
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1989 1990 1991 1992 1993 1994 1995
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2007 2008 2009 2010 2011 2012 2013 2014 2015
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2016 2017 2018
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2019 2020 2021 2022 2023 2024 2025
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2026 2027 2028
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2029 2030
{
	int retval;
2031
	int hi = hstate_index(h);
2032

2033 2034
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2035 2036
		return -ENOMEM;

2037
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2038
	if (retval)
2039
		kobject_put(hstate_kobjs[hi]);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2054 2055
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2056
		if (err)
2057
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2058 2059 2060
	}
}

2061 2062 2063 2064
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2065 2066 2067
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2068 2069 2070 2071 2072 2073 2074 2075 2076
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2077
 * A subset of global hstate attributes for node devices
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2091
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2114
 * Unregister hstate attributes from a single node device.
2115 2116
 * No-op if no hstate attributes attached.
 */
2117
static void hugetlb_unregister_node(struct node *node)
2118 2119
{
	struct hstate *h;
2120
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2121 2122

	if (!nhs->hugepages_kobj)
2123
		return;		/* no hstate attributes */
2124

2125 2126 2127 2128 2129
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2130
		}
2131
	}
2132 2133 2134 2135 2136 2137

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2138
 * hugetlb module exit:  unregister hstate attributes from node devices
2139 2140 2141 2142 2143 2144 2145
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2146
	 * disable node device registrations.
2147 2148 2149 2150 2151 2152 2153
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2154
		hugetlb_unregister_node(node_devices[nid]);
2155 2156 2157
}

/*
2158
 * Register hstate attributes for a single node device.
2159 2160
 * No-op if attributes already registered.
 */
2161
static void hugetlb_register_node(struct node *node)
2162 2163
{
	struct hstate *h;
2164
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2165 2166 2167 2168 2169 2170
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2171
							&node->dev.kobj);
2172 2173 2174 2175 2176 2177 2178 2179
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2180 2181
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2182 2183 2184 2185 2186 2187 2188
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2189
 * hugetlb init time:  register hstate attributes for all registered node
2190 2191
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2192
 */
2193
static void __init hugetlb_register_all_nodes(void)
2194 2195 2196
{
	int nid;

2197
	for_each_node_state(nid, N_MEMORY) {
2198
		struct node *node = node_devices[nid];
2199
		if (node->dev.id == nid)
2200 2201 2202 2203
			hugetlb_register_node(node);
	}

	/*
2204
	 * Let the node device driver know we're here so it can
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2226 2227 2228 2229
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2230 2231
	hugetlb_unregister_all_nodes();

2232
	for_each_hstate(h) {
2233
		kobject_put(hstate_kobjs[hstate_index(h)]);
2234 2235 2236
	}

	kobject_put(hugepages_kobj);
2237
	kfree(htlb_fault_mutex_table);
2238 2239 2240 2241 2242
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2243 2244
	int i;

2245
	if (!hugepages_supported())
2246
		return 0;
2247

2248 2249 2250 2251
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2252
	}
2253
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2254 2255
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2256 2257

	hugetlb_init_hstates();
2258
	gather_bootmem_prealloc();
2259 2260 2261
	report_hugepages();

	hugetlb_sysfs_init();
2262
	hugetlb_register_all_nodes();
2263
	hugetlb_cgroup_file_init();
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2276 2277 2278 2279 2280 2281 2282 2283
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2284 2285
	unsigned long i;

2286
	if (size_to_hstate(PAGE_SIZE << order)) {
2287
		pr_warning("hugepagesz= specified twice, ignoring\n");
2288 2289
		return;
	}
2290
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2291
	BUG_ON(order == 0);
2292
	h = &hstates[hugetlb_max_hstate++];
2293 2294
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2295 2296 2297 2298
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2299
	INIT_LIST_HEAD(&h->hugepage_activelist);
2300 2301
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2302 2303
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2304

2305 2306 2307
	parsed_hstate = h;
}

2308
static int __init hugetlb_nrpages_setup(char *s)
2309 2310
{
	unsigned long *mhp;
2311
	static unsigned long *last_mhp;
2312 2313

	/*
2314
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2315 2316
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2317
	if (!hugetlb_max_hstate)
2318 2319 2320 2321
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2322
	if (mhp == last_mhp) {
2323 2324
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2325 2326 2327
		return 1;
	}

2328 2329 2330
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2331 2332 2333 2334 2335
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2336
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2337 2338 2339 2340
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2341 2342
	return 1;
}
2343 2344 2345 2346 2347 2348 2349 2350
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2364 2365 2366
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2367
{
2368
	struct hstate *h = &default_hstate;
2369
	unsigned long tmp = h->max_huge_pages;
2370
	int ret;
2371

2372 2373 2374
	if (!hugepages_supported())
		return -ENOTSUPP;

2375 2376
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2377 2378 2379
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2380

2381 2382 2383
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2384 2385
out:
	return ret;
L
Linus Torvalds 已提交
2386
}
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2405
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2406
			void __user *buffer,
2407 2408
			size_t *length, loff_t *ppos)
{
2409
	struct hstate *h = &default_hstate;
2410
	unsigned long tmp;
2411
	int ret;
2412

2413 2414 2415
	if (!hugepages_supported())
		return -ENOTSUPP;

2416
	tmp = h->nr_overcommit_huge_pages;
2417

2418
	if (write && hstate_is_gigantic(h))
2419 2420
		return -EINVAL;

2421 2422
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2423 2424 2425
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2426 2427 2428 2429 2430 2431

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2432 2433
out:
	return ret;
2434 2435
}

L
Linus Torvalds 已提交
2436 2437
#endif /* CONFIG_SYSCTL */

2438
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2439
{
2440
	struct hstate *h = &default_hstate;
2441 2442
	if (!hugepages_supported())
		return;
2443
	seq_printf(m,
2444 2445 2446 2447 2448
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2449 2450 2451 2452 2453
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2454 2455 2456 2457
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2458
	struct hstate *h = &default_hstate;
2459 2460
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2461 2462
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2463 2464
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2465 2466 2467
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2468 2469
}

2470 2471 2472 2473 2474
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2475 2476 2477
	if (!hugepages_supported())
		return;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2488 2489 2490
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2491 2492 2493 2494 2495 2496
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2497 2498
}

2499
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2522
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2523 2524
			goto out;

2525 2526
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2527 2528 2529 2530 2531 2532
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2533
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2534 2535 2536 2537 2538 2539

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2540 2541
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2542
	struct resv_map *resv = vma_resv_map(vma);
2543 2544 2545 2546 2547

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2548
	 * has a reference to the reservation map it cannot disappear until
2549 2550 2551
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2552
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2553
		kref_get(&resv->refs);
2554 2555
}

2556 2557
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2558
	struct hstate *h = hstate_vma(vma);
2559
	struct resv_map *resv = vma_resv_map(vma);
2560
	struct hugepage_subpool *spool = subpool_vma(vma);
2561
	unsigned long reserve, start, end;
2562
	long gbl_reserve;
2563

2564 2565
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2566

2567 2568
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2569

2570
	reserve = (end - start) - region_count(resv, start, end);
2571

2572 2573 2574
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2575 2576 2577 2578 2579 2580
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2581
	}
2582 2583
}

L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2590
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2591 2592
{
	BUG();
N
Nick Piggin 已提交
2593
	return 0;
L
Linus Torvalds 已提交
2594 2595
}

2596
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2597
	.fault = hugetlb_vm_op_fault,
2598
	.open = hugetlb_vm_op_open,
2599
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2600 2601
};

2602 2603
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2604 2605 2606
{
	pte_t entry;

2607
	if (writable) {
2608 2609
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2610
	} else {
2611 2612
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2613 2614 2615
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2616
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2617 2618 2619 2620

	return entry;
}

2621 2622 2623 2624 2625
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2626
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2627
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2628
		update_mmu_cache(vma, address, ptep);
2629 2630
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2656

D
David Gibson 已提交
2657 2658 2659 2660 2661
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2662
	unsigned long addr;
2663
	int cow;
2664 2665
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2666 2667 2668
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2669 2670

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2671

2672 2673 2674 2675 2676
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2677
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2678
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2679 2680 2681
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2682
		dst_pte = huge_pte_alloc(dst, addr, sz);
2683 2684 2685 2686
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2687 2688 2689 2690 2691

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2692 2693 2694
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2713
			if (cow) {
2714
				huge_ptep_set_wrprotect(src, addr, src_pte);
2715 2716 2717
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2718
			entry = huge_ptep_get(src_pte);
2719 2720
			ptepage = pte_page(entry);
			get_page(ptepage);
2721
			page_dup_rmap(ptepage);
2722 2723
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2724 2725
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2726 2727
	}

2728 2729 2730 2731
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2732 2733
}

2734 2735 2736
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2737
{
2738
	int force_flush = 0;
D
David Gibson 已提交
2739 2740
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2741
	pte_t *ptep;
D
David Gibson 已提交
2742
	pte_t pte;
2743
	spinlock_t *ptl;
D
David Gibson 已提交
2744
	struct page *page;
2745 2746
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2747 2748
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2749

D
David Gibson 已提交
2750
	WARN_ON(!is_vm_hugetlb_page(vma));
2751 2752
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2753

2754
	tlb_start_vma(tlb, vma);
2755
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2756
	address = start;
2757
again:
2758
	for (; address < end; address += sz) {
2759
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2760
		if (!ptep)
2761 2762
			continue;

2763
		ptl = huge_pte_lock(h, mm, ptep);
2764
		if (huge_pmd_unshare(mm, &address, ptep))
2765
			goto unlock;
2766

2767 2768
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2769
			goto unlock;
2770 2771

		/*
2772 2773
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2774
		 */
2775
		if (unlikely(!pte_present(pte))) {
2776
			huge_pte_clear(mm, address, ptep);
2777
			goto unlock;
2778
		}
2779 2780

		page = pte_page(pte);
2781 2782 2783 2784 2785 2786 2787
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2788
				goto unlock;
2789 2790 2791 2792 2793 2794 2795 2796 2797

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2798
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2799
		tlb_remove_tlb_entry(tlb, ptep, address);
2800
		if (huge_pte_dirty(pte))
2801
			set_page_dirty(page);
2802

2803 2804
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2805
		if (force_flush) {
2806
			address += sz;
2807
			spin_unlock(ptl);
2808
			break;
2809
		}
2810
		/* Bail out after unmapping reference page if supplied */
2811 2812
		if (ref_page) {
			spin_unlock(ptl);
2813
			break;
2814 2815 2816
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2817
	}
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2828
	}
2829
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2830
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2831
}
D
David Gibson 已提交
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2845
	 * is to clear it before releasing the i_mmap_rwsem. This works
2846
	 * because in the context this is called, the VMA is about to be
2847
	 * destroyed and the i_mmap_rwsem is held.
2848 2849 2850 2851
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2852
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2853
			  unsigned long end, struct page *ref_page)
2854
{
2855 2856 2857 2858 2859
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2860
	tlb_gather_mmu(&tlb, mm, start, end);
2861 2862
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2863 2864
}

2865 2866 2867 2868 2869 2870
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2871 2872
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2873
{
2874
	struct hstate *h = hstate_vma(vma);
2875 2876 2877 2878 2879 2880 2881 2882
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2883
	address = address & huge_page_mask(h);
2884 2885
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2886
	mapping = file_inode(vma->vm_file)->i_mapping;
2887

2888 2889 2890 2891 2892
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2893
	i_mmap_lock_write(mapping);
2894
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2907 2908
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2909
	}
2910
	i_mmap_unlock_write(mapping);
2911 2912
}

2913 2914
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2915 2916 2917
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2918
 */
2919
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2920
			unsigned long address, pte_t *ptep, pte_t pte,
2921
			struct page *pagecache_page, spinlock_t *ptl)
2922
{
2923
	struct hstate *h = hstate_vma(vma);
2924
	struct page *old_page, *new_page;
2925
	int ret = 0, outside_reserve = 0;
2926 2927
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2928 2929 2930

	old_page = pte_page(pte);

2931
retry_avoidcopy:
2932 2933
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2934 2935
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2936
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2937
		return 0;
2938 2939
	}

2940 2941 2942 2943 2944 2945 2946 2947 2948
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2949
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2950 2951 2952
			old_page != pagecache_page)
		outside_reserve = 1;

2953
	page_cache_get(old_page);
2954

2955 2956 2957 2958
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
2959
	spin_unlock(ptl);
2960
	new_page = alloc_huge_page(vma, address, outside_reserve);
2961

2962
	if (IS_ERR(new_page)) {
2963 2964 2965 2966 2967 2968 2969 2970
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
2971
			page_cache_release(old_page);
2972
			BUG_ON(huge_pte_none(pte));
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
2985 2986
		}

2987 2988 2989
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
2990 2991
	}

2992 2993 2994 2995
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2996
	if (unlikely(anon_vma_prepare(vma))) {
2997 2998
		ret = VM_FAULT_OOM;
		goto out_release_all;
2999
	}
3000

A
Andrea Arcangeli 已提交
3001 3002
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3003
	__SetPageUptodate(new_page);
3004
	set_page_huge_active(new_page);
3005

3006 3007 3008
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3009

3010
	/*
3011
	 * Retake the page table lock to check for racing updates
3012 3013
	 * before the page tables are altered
	 */
3014
	spin_lock(ptl);
3015
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3016
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3017 3018
		ClearPagePrivate(new_page);

3019
		/* Break COW */
3020
		huge_ptep_clear_flush(vma, address, ptep);
3021
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3022 3023
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3024
		page_remove_rmap(old_page);
3025
		hugepage_add_new_anon_rmap(new_page, vma, address);
3026 3027 3028
		/* Make the old page be freed below */
		new_page = old_page;
	}
3029
	spin_unlock(ptl);
3030
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3031
out_release_all:
3032
	page_cache_release(new_page);
3033
out_release_old:
3034
	page_cache_release(old_page);
3035

3036 3037
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3038 3039
}

3040
/* Return the pagecache page at a given address within a VMA */
3041 3042
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3043 3044
{
	struct address_space *mapping;
3045
	pgoff_t idx;
3046 3047

	mapping = vma->vm_file->f_mapping;
3048
	idx = vma_hugecache_offset(h, vma, address);
3049 3050 3051 3052

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3053 3054 3055 3056 3057
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3073
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3074 3075
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3076
{
3077
	struct hstate *h = hstate_vma(vma);
3078
	int ret = VM_FAULT_SIGBUS;
3079
	int anon_rmap = 0;
A
Adam Litke 已提交
3080 3081
	unsigned long size;
	struct page *page;
3082
	pte_t new_pte;
3083
	spinlock_t *ptl;
A
Adam Litke 已提交
3084

3085 3086 3087
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3088
	 * COW. Warn that such a situation has occurred as it may not be obvious
3089 3090
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3091 3092
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3093 3094 3095
		return ret;
	}

A
Adam Litke 已提交
3096 3097 3098 3099
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3100 3101 3102
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3103
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3104 3105
		if (idx >= size)
			goto out;
3106
		page = alloc_huge_page(vma, address, 0);
3107
		if (IS_ERR(page)) {
3108 3109 3110 3111 3112
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3113 3114
			goto out;
		}
A
Andrea Arcangeli 已提交
3115
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3116
		__SetPageUptodate(page);
3117
		set_page_huge_active(page);
3118

3119
		if (vma->vm_flags & VM_MAYSHARE) {
3120
			int err;
K
Ken Chen 已提交
3121
			struct inode *inode = mapping->host;
3122 3123 3124 3125 3126 3127 3128 3129

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3130
			ClearPagePrivate(page);
K
Ken Chen 已提交
3131 3132

			spin_lock(&inode->i_lock);
3133
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3134
			spin_unlock(&inode->i_lock);
3135
		} else {
3136
			lock_page(page);
3137 3138 3139 3140
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3141
			anon_rmap = 1;
3142
		}
3143
	} else {
3144 3145 3146 3147 3148 3149
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3150
			ret = VM_FAULT_HWPOISON |
3151
				VM_FAULT_SET_HINDEX(hstate_index(h));
3152 3153
			goto backout_unlocked;
		}
3154
	}
3155

3156 3157 3158 3159 3160 3161
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3162
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3163 3164 3165 3166
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3167

3168 3169
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3170
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3171 3172 3173
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3174
	ret = 0;
3175
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3176 3177
		goto backout;

3178 3179
	if (anon_rmap) {
		ClearPagePrivate(page);
3180
		hugepage_add_new_anon_rmap(page, vma, address);
3181
	} else
3182
		page_dup_rmap(page);
3183 3184 3185 3186
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3187
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3188
		/* Optimization, do the COW without a second fault */
3189
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3190 3191
	}

3192
	spin_unlock(ptl);
A
Adam Litke 已提交
3193 3194
	unlock_page(page);
out:
3195
	return ret;
A
Adam Litke 已提交
3196 3197

backout:
3198
	spin_unlock(ptl);
3199
backout_unlocked:
A
Adam Litke 已提交
3200 3201 3202
	unlock_page(page);
	put_page(page);
	goto out;
3203 3204
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3240
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3241
			unsigned long address, unsigned int flags)
3242
{
3243
	pte_t *ptep, entry;
3244
	spinlock_t *ptl;
3245
	int ret;
3246 3247
	u32 hash;
	pgoff_t idx;
3248
	struct page *page = NULL;
3249
	struct page *pagecache_page = NULL;
3250
	struct hstate *h = hstate_vma(vma);
3251
	struct address_space *mapping;
3252
	int need_wait_lock = 0;
3253

3254 3255
	address &= huge_page_mask(h);

3256 3257 3258
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3259
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3260
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3261 3262
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3263
			return VM_FAULT_HWPOISON_LARGE |
3264
				VM_FAULT_SET_HINDEX(hstate_index(h));
3265 3266
	}

3267
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3268 3269 3270
	if (!ptep)
		return VM_FAULT_OOM;

3271 3272 3273
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3274 3275 3276 3277 3278
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3279 3280 3281
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3282 3283
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3284
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3285
		goto out_mutex;
3286
	}
3287

N
Nick Piggin 已提交
3288
	ret = 0;
3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3308
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3309 3310
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3311
			goto out_mutex;
3312
		}
3313

3314
		if (!(vma->vm_flags & VM_MAYSHARE))
3315 3316 3317 3318
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3319 3320 3321 3322 3323 3324
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3325 3326 3327 3328 3329 3330 3331
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3332 3333 3334 3335
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3336

3337
	get_page(page);
3338

3339
	if (flags & FAULT_FLAG_WRITE) {
3340
		if (!huge_pte_write(entry)) {
3341
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3342
					pagecache_page, ptl);
3343
			goto out_put_page;
3344
		}
3345
		entry = huge_pte_mkdirty(entry);
3346 3347
	}
	entry = pte_mkyoung(entry);
3348 3349
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3350
		update_mmu_cache(vma, address, ptep);
3351 3352 3353 3354
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3355 3356
out_ptl:
	spin_unlock(ptl);
3357 3358 3359 3360 3361

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3362
out_mutex:
3363
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3364 3365 3366 3367 3368 3369 3370 3371 3372
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3373
	return ret;
3374 3375
}

3376 3377 3378 3379
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3380
{
3381 3382
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3383
	unsigned long remainder = *nr_pages;
3384
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3385 3386

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3387
		pte_t *pte;
3388
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3389
		int absent;
A
Adam Litke 已提交
3390
		struct page *page;
D
David Gibson 已提交
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3401 3402
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3403
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3404
		 * first, for the page indexing below to work.
3405 3406
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3407
		 */
3408
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3409 3410
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3411 3412 3413 3414
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3415 3416 3417 3418
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3419
		 */
H
Hugh Dickins 已提交
3420 3421
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3422 3423
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3424 3425 3426
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3427

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3439 3440
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3441
			int ret;
D
David Gibson 已提交
3442

3443 3444
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3445 3446
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3447
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3448
				continue;
D
David Gibson 已提交
3449

A
Adam Litke 已提交
3450 3451 3452 3453
			remainder = 0;
			break;
		}

3454
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3455
		page = pte_page(huge_ptep_get(pte));
3456
same_page:
3457
		if (pages) {
H
Hugh Dickins 已提交
3458
			pages[i] = mem_map_offset(page, pfn_offset);
3459
			get_page_foll(pages[i]);
3460
		}
D
David Gibson 已提交
3461 3462 3463 3464 3465

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3466
		++pfn_offset;
D
David Gibson 已提交
3467 3468
		--remainder;
		++i;
3469
		if (vaddr < vma->vm_end && remainder &&
3470
				pfn_offset < pages_per_huge_page(h)) {
3471 3472 3473 3474 3475 3476
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3477
		spin_unlock(ptl);
D
David Gibson 已提交
3478
	}
3479
	*nr_pages = remainder;
D
David Gibson 已提交
3480 3481
	*position = vaddr;

H
Hugh Dickins 已提交
3482
	return i ? i : -EFAULT;
D
David Gibson 已提交
3483
}
3484

3485
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3486 3487 3488 3489 3490 3491
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3492
	struct hstate *h = hstate_vma(vma);
3493
	unsigned long pages = 0;
3494 3495 3496 3497

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3498
	mmu_notifier_invalidate_range_start(mm, start, end);
3499
	i_mmap_lock_write(vma->vm_file->f_mapping);
3500
	for (; address < end; address += huge_page_size(h)) {
3501
		spinlock_t *ptl;
3502 3503 3504
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3505
		ptl = huge_pte_lock(h, mm, ptep);
3506 3507
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3508
			spin_unlock(ptl);
3509
			continue;
3510
		}
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3531
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3532
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3533
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3534
			set_huge_pte_at(mm, address, ptep, pte);
3535
			pages++;
3536
		}
3537
		spin_unlock(ptl);
3538
	}
3539
	/*
3540
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3541
	 * may have cleared our pud entry and done put_page on the page table:
3542
	 * once we release i_mmap_rwsem, another task can do the final put_page
3543 3544
	 * and that page table be reused and filled with junk.
	 */
3545
	flush_tlb_range(vma, start, end);
3546
	mmu_notifier_invalidate_range(mm, start, end);
3547
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3548
	mmu_notifier_invalidate_range_end(mm, start, end);
3549 3550

	return pages << h->order;
3551 3552
}

3553 3554
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3555
					struct vm_area_struct *vma,
3556
					vm_flags_t vm_flags)
3557
{
3558
	long ret, chg;
3559
	struct hstate *h = hstate_inode(inode);
3560
	struct hugepage_subpool *spool = subpool_inode(inode);
3561
	struct resv_map *resv_map;
3562
	long gbl_reserve;
3563

3564 3565 3566
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3567
	 * without using reserves
3568
	 */
3569
	if (vm_flags & VM_NORESERVE)
3570 3571
		return 0;

3572 3573 3574 3575 3576 3577
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3578
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3579
		resv_map = inode_resv_map(inode);
3580

3581
		chg = region_chg(resv_map, from, to);
3582 3583 3584

	} else {
		resv_map = resv_map_alloc();
3585 3586 3587
		if (!resv_map)
			return -ENOMEM;

3588
		chg = to - from;
3589

3590 3591 3592 3593
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3594 3595 3596 3597
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3598

3599 3600 3601 3602 3603 3604 3605
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3606 3607 3608
		ret = -ENOSPC;
		goto out_err;
	}
3609 3610

	/*
3611
	 * Check enough hugepages are available for the reservation.
3612
	 * Hand the pages back to the subpool if there are not
3613
	 */
3614
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3615
	if (ret < 0) {
3616 3617
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3618
		goto out_err;
K
Ken Chen 已提交
3619
	}
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3632
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3633
		region_add(resv_map, from, to);
3634
	return 0;
3635
out_err:
J
Joonsoo Kim 已提交
3636 3637
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3638
	return ret;
3639 3640 3641 3642
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3643
	struct hstate *h = hstate_inode(inode);
3644
	struct resv_map *resv_map = inode_resv_map(inode);
3645
	long chg = 0;
3646
	struct hugepage_subpool *spool = subpool_inode(inode);
3647
	long gbl_reserve;
K
Ken Chen 已提交
3648

3649
	if (resv_map)
3650
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3651
	spin_lock(&inode->i_lock);
3652
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3653 3654
	spin_unlock(&inode->i_lock);

3655 3656 3657 3658 3659 3660
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3661
}
3662

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3708
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3722
	spinlock_t *ptl;
3723 3724 3725 3726

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3727
	i_mmap_lock_write(mapping);
3728 3729 3730 3731 3732 3733 3734 3735
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3736
				mm_inc_nr_pmds(mm);
3737 3738 3739 3740 3741 3742 3743 3744 3745
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3746 3747
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3748
	if (pud_none(*pud)) {
3749 3750
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3751
	} else {
3752
		put_page(virt_to_page(spte));
3753 3754
		mm_inc_nr_pmds(mm);
	}
3755
	spin_unlock(ptl);
3756 3757
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3758
	i_mmap_unlock_write(mapping);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3769
 * called with page table lock held.
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3785
	mm_dec_nr_pmds(mm);
3786 3787 3788
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3789 3790 3791 3792 3793 3794
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
3795 3796 3797 3798 3799

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
3800
#define want_pmd_share()	(0)
3801 3802
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3861
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3862
		pmd_t *pmd, int flags)
3863
{
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
3876
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3892 3893 3894
	return page;
}

3895
struct page * __weak
3896
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3897
		pud_t *pud, int flags)
3898
{
3899 3900
	if (flags & FOLL_GET)
		return NULL;
3901

3902
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3903 3904
}

3905 3906
#ifdef CONFIG_MEMORY_FAILURE

3907 3908 3909 3910
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3911
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3912 3913 3914
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3915
	int ret = -EBUSY;
3916 3917

	spin_lock(&hugetlb_lock);
3918 3919 3920 3921 3922
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
3923 3924 3925 3926 3927 3928 3929
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3930
		set_page_refcounted(hpage);
3931 3932 3933 3934
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3935
	spin_unlock(&hugetlb_lock);
3936
	return ret;
3937
}
3938
#endif
3939 3940 3941

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3942 3943
	bool ret = true;

3944
	VM_BUG_ON_PAGE(!PageHead(page), page);
3945
	spin_lock(&hugetlb_lock);
3946 3947 3948 3949 3950
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
3951
	list_move_tail(&page->lru, list);
3952
unlock:
3953
	spin_unlock(&hugetlb_lock);
3954
	return ret;
3955 3956 3957 3958
}

void putback_active_hugepage(struct page *page)
{
3959
	VM_BUG_ON_PAGE(!PageHead(page), page);
3960
	spin_lock(&hugetlb_lock);
3961
	set_page_huge_active(page);
3962 3963 3964 3965
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}