hugetlb.c 155.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

85
static inline bool subpool_is_free(struct hugepage_subpool *spool)
86
{
87 88 89 90 91 92 93 94 95
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
96

97 98
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
99 100 101
	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
102
	 * remain, give up any reservations based on minimum size and
103
	 * free the subpool */
104
	if (subpool_is_free(spool)) {
105 106 107
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
108
		kfree(spool);
109
	}
110 111
}

112 113
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
114 115 116
{
	struct hugepage_subpool *spool;

117
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 119 120 121 122
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
123 124 125 126 127 128 129 130 131
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
132 133 134 135 136 137 138 139 140 141 142 143

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

144 145 146
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
147
 * request.  Otherwise, return the number of pages by which the
148 149
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
150
 * a subpool minimum size must be maintained.
151 152
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153 154
				      long delta)
{
155
	long ret = delta;
156 157

	if (!spool)
158
		return ret;
159 160

	spin_lock(&spool->lock);
161 162 163 164 165 166 167 168

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
169 170
	}

171 172
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
188 189 190
	return ret;
}

191 192 193 194 195 196 197
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198 199
				       long delta)
{
200 201
	long ret = delta;

202
	if (!spool)
203
		return delta;
204 205

	spin_lock(&spool->lock);
206 207 208 209

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

210 211
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 213 214 215 216 217 218 219 220 221 222 223 224 225
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
226
	unlock_or_release_subpool(spool);
227 228

	return ret;
229 230 231 232 233 234 235 236 237
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
238
	return subpool_inode(file_inode(vma->vm_file));
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

321
		rg = prg;
322 323 324 325 326 327 328 329 330 331 332 333
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);
	}
}

334 335 336 337 338 339 340
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
341 342
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
343
				     struct hugetlb_cgroup *h_cg,
344
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
345
{
346
	long add = 0;
M
Mina Almasry 已提交
347
	struct list_head *head = &resv->regions;
348
	long last_accounted_offset = f;
M
Mina Almasry 已提交
349 350
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

351 352
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
368

369 370 371
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
372 373 374
		if (rg->from > t)
			break;

375 376 377 378 379
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
380
			if (!regions_needed) {
381 382
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
383 384
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
385
				list_add(&nrg->link, rg->link.prev);
386
				coalesce_file_region(resv, nrg);
387
			} else
388 389 390 391 392 393 394 395 396 397 398
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
399
		if (!regions_needed) {
400 401
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
402
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
403
			list_add(&nrg->link, rg->link.prev);
404
			coalesce_file_region(resv, nrg);
405
		} else
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
444
		 */
445 446 447 448 449 450 451 452
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
453 454
		}

455 456
		spin_lock(&resv->lock);

457 458
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
459 460
	}

461
	return 0;
M
Mina Almasry 已提交
462

463 464 465 466 467 468
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
469 470
}

471 472
/*
 * Add the huge page range represented by [f, t) to the reserve
473 474 475 476 477
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
478
 *
479 480 481 482
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
483
 * this operation and we were not able to allocate, it returns -ENOMEM.
484 485 486
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
487
 */
488
static long region_add(struct resv_map *resv, long f, long t,
489 490
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
491
{
492
	long add = 0, actual_regions_needed = 0;
493

494
	spin_lock(&resv->lock);
495 496 497
retry:

	/* Count how many regions are actually needed to execute this add. */
498 499
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
500

501
	/*
502 503 504 505 506 507 508
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
509
	 */
510 511 512 513 514 515 516 517
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
518

519 520 521 522
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
523

524
		goto retry;
525 526
	}

527
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
528 529

	resv->adds_in_progress -= in_regions_needed;
530

531
	spin_unlock(&resv->lock);
532 533
	VM_BUG_ON(add < 0);
	return add;
534 535
}

536 537 538 539 540 541 542
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
543 544 545 546 547 548 549
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
550 551 552 553 554
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
555
 */
556 557
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
558 559 560
{
	long chg = 0;

561
	spin_lock(&resv->lock);
562

563
	/* Count how many hugepages in this range are NOT represented. */
564
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
565
				       out_regions_needed);
566

567 568
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
569

570 571
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
572

573
	resv->adds_in_progress += *out_regions_needed;
574 575

	spin_unlock(&resv->lock);
576 577 578
	return chg;
}

579 580 581 582 583
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
584 585 586
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
587 588 589 590 591
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
592 593
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
594 595 596
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
597
	resv->adds_in_progress -= regions_needed;
598 599 600
	spin_unlock(&resv->lock);
}

601
/*
602 603 604 605 606 607 608 609 610 611 612 613
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
614
 */
615
static long region_del(struct resv_map *resv, long f, long t)
616
{
617
	struct list_head *head = &resv->regions;
618
	struct file_region *rg, *trg;
619 620
	struct file_region *nrg = NULL;
	long del = 0;
621

622
retry:
623
	spin_lock(&resv->lock);
624
	list_for_each_entry_safe(rg, trg, head, link) {
625 626 627 628 629 630 631 632
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
633
			continue;
634

635
		if (rg->from >= t)
636 637
			break;

638 639 640 641 642 643 644 645 646 647 648 649 650
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
651

652 653 654 655 656 657 658 659 660
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
661 662
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, t - f);
663 664 665 666

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
667 668 669

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

670 671 672 673 674 675 676
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
677
			break;
678 679 680 681
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
682 683
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
684 685 686 687 688 689
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
690 691 692
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);

693 694 695
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
696 697
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
698 699 700

			del += rg->to - f;
			rg->to = f;
701
		}
702
	}
703 704

	spin_unlock(&resv->lock);
705 706
	kfree(nrg);
	return del;
707 708
}

709 710 711 712 713 714 715 716 717
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
718
void hugetlb_fix_reserve_counts(struct inode *inode)
719 720 721 722 723
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
724
	if (rsv_adjust) {
725 726 727 728 729 730
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

731 732 733 734
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
735
static long region_count(struct resv_map *resv, long f, long t)
736
{
737
	struct list_head *head = &resv->regions;
738 739 740
	struct file_region *rg;
	long chg = 0;

741
	spin_lock(&resv->lock);
742 743
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
744 745
		long seg_from;
		long seg_to;
746 747 748 749 750 751 752 753 754 755 756

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
757
	spin_unlock(&resv->lock);
758 759 760 761

	return chg;
}

762 763 764 765
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
766 767
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
768
{
769 770
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
771 772
}

773 774 775 776 777
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
778
EXPORT_SYMBOL_GPL(linear_hugepage_index);
779

780 781 782 783 784 785
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
786 787 788
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
789
}
790
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
791

792 793 794
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
795 796
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
797
 */
798
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
799 800 801 802
{
	return vma_kernel_pagesize(vma);
}

803 804 805 806 807 808 809
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
810
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811

812 813 814 815 816 817 818 819 820
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
821 822 823 824 825 826 827 828 829
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
830
 */
831 832 833 834 835 836 837 838 839 840 841
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

861
struct resv_map *resv_map_alloc(void)
862 863
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
864 865 866 867 868
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
869
		return NULL;
870
	}
871 872

	kref_init(&resv_map->refs);
873
	spin_lock_init(&resv_map->lock);
874 875
	INIT_LIST_HEAD(&resv_map->regions);

876
	resv_map->adds_in_progress = 0;
877 878 879 880 881 882 883
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
884 885 886 887 888

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

889 890 891
	return resv_map;
}

892
void resv_map_release(struct kref *ref)
893 894
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
895 896
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
897 898

	/* Clear out any active regions before we release the map. */
899
	region_del(resv_map, 0, LONG_MAX);
900 901 902 903 904 905 906 907 908

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

909 910 911
	kfree(resv_map);
}

912 913
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
914 915 916 917 918 919 920 921 922
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
923 924
}

925
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
926
{
927
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
928 929 930 931 932 933 934
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
935 936
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
937
	}
938 939
}

940
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
941
{
942 943
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944

945 946
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
947 948 949 950
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
951 952
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
953 954

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
955 956 957 958
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
959
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960 961

	return (get_vma_private_data(vma) & flag) != 0;
962 963
}

964
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
965 966
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
967
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
968
	if (!(vma->vm_flags & VM_MAYSHARE))
969 970 971 972
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
973
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
974
{
975 976 977 978 979 980 981 982 983 984 985
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
986
			return true;
987
		else
988
			return false;
989
	}
990 991

	/* Shared mappings always use reserves */
992 993 994 995 996
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
997
		 * fallocate.  In this case, there really are no reserves to
998 999 1000 1001 1002 1003 1004
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1005 1006 1007 1008 1009

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1031

1032
	return false;
1033 1034
}

1035
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1036 1037
{
	int nid = page_to_nid(page);
1038
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1039 1040
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1041
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1042 1043
}

1044
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1045 1046
{
	struct page *page;
1047 1048 1049 1050 1051
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1052

1053 1054 1055 1056 1057
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1058
		ClearHPageFreed(page);
1059 1060 1061
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1062 1063
	}

1064
	return NULL;
1065 1066
}

1067 1068
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1069
{
1070 1071 1072 1073
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1074
	int node = NUMA_NO_NODE;
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1092 1093 1094 1095 1096

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1097 1098 1099
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1100 1101 1102
	return NULL;
}

1103 1104
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1105 1106
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1107
{
1108
	struct page *page;
1109
	struct mempolicy *mpol;
1110
	gfp_t gfp_mask;
1111
	nodemask_t *nodemask;
1112
	int nid;
L
Linus Torvalds 已提交
1113

1114 1115 1116 1117 1118
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1119
	if (!vma_has_reserves(vma, chg) &&
1120
			h->free_huge_pages - h->resv_huge_pages == 0)
1121
		goto err;
1122

1123
	/* If reserves cannot be used, ensure enough pages are in the pool */
1124
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125
		goto err;
1126

1127 1128
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 1130
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131
		SetHPageRestoreReserve(page);
1132
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1133
	}
1134

1135
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1136
	return page;
1137 1138 1139

err:
	return NULL;
L
Linus Torvalds 已提交
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1151
	nid = next_node_in(nid, *nodes_allowed);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1213
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214
static void destroy_compound_gigantic_page(struct page *page,
1215
					unsigned int order)
1216 1217 1218 1219 1220
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1221
	atomic_set(compound_mapcount_ptr(page), 0);
1222
	atomic_set(compound_pincount_ptr(page), 0);
1223

1224
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225
		clear_compound_head(p);
1226 1227 1228 1229
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
1230
	page[1].compound_nr = 0;
1231 1232 1233
	__ClearPageHead(page);
}

1234
static void free_gigantic_page(struct page *page, unsigned int order)
1235
{
1236 1237 1238 1239
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1240 1241
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242
		return;
1243
#endif
1244

1245 1246 1247
	free_contig_range(page_to_pfn(page), 1 << order);
}

1248
#ifdef CONFIG_CONTIG_ALLOC
1249 1250
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1251
{
1252
	unsigned long nr_pages = 1UL << huge_page_order(h);
1253 1254
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1255

1256 1257
#ifdef CONFIG_CMA
	{
1258 1259 1260
		struct page *page;
		int node;

1261 1262 1263
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1264 1265 1266
			if (page)
				return page;
		}
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1279
	}
1280
#endif
1281

1282
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 1284 1285
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 1288 1289 1290 1291 1292 1293
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1294

1295
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 1298 1299 1300
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1301
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302
static inline void destroy_compound_gigantic_page(struct page *page,
1303
						unsigned int order) { }
1304 1305
#endif

1306
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1307 1308
{
	int i;
1309
	struct page *subpage = page;
1310

1311
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1312
		return;
1313

1314 1315
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
1316 1317 1318
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1319
				1 << PG_referenced | 1 << PG_dirty |
1320 1321
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1322
	}
1323
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1324
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1325
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1326
	set_page_refcounted(page);
1327
	if (hstate_is_gigantic(h)) {
1328 1329 1330 1331 1332
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1333 1334
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1335
		spin_lock(&hugetlb_lock);
1336 1337 1338
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1352
static void __free_huge_page(struct page *page)
1353
{
1354 1355 1356 1357
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1358
	struct hstate *h = page_hstate(page);
1359
	int nid = page_to_nid(page);
1360
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1361
	bool restore_reserve;
1362

1363 1364
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1365

1366
	hugetlb_set_page_subpool(page, NULL);
1367
	page->mapping = NULL;
1368 1369
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1370

1371
	/*
1372
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1373 1374 1375
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1376
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1377
	 * remove the reserved page from the subpool.
1378
	 */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1389

1390
	spin_lock(&hugetlb_lock);
1391
	ClearHPageMigratable(page);
1392 1393
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1394 1395
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1396 1397 1398
	if (restore_reserve)
		h->resv_huge_pages++;

1399
	if (HPageTemporary(page)) {
1400
		list_del(&page->lru);
1401
		ClearHPageTemporary(page);
1402 1403
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1404 1405
		/* remove the page from active list */
		list_del(&page->lru);
1406 1407 1408
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1409
	} else {
1410
		arch_clear_hugepage_flags(page);
1411
		enqueue_huge_page(h, page);
1412
	}
1413 1414 1415
	spin_unlock(&hugetlb_lock);
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1464
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1465
{
1466
	INIT_LIST_HEAD(&page->lru);
1467
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1468
	set_hugetlb_cgroup(page, NULL);
1469
	set_hugetlb_cgroup_rsvd(page, NULL);
1470
	spin_lock(&hugetlb_lock);
1471 1472
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1473
	ClearHPageFreed(page);
1474 1475 1476
	spin_unlock(&hugetlb_lock);
}

1477
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1478 1479 1480 1481 1482 1483 1484
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1485
	__ClearPageReserved(page);
1486
	__SetPageHead(page);
1487
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1488 1489 1490 1491
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1492
		 * too.  Otherwise drivers using get_user_pages() to access tail
1493 1494 1495 1496 1497 1498 1499 1500
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1501
		set_page_count(p, 0);
1502
		set_compound_head(p, page);
1503
	}
1504
	atomic_set(compound_mapcount_ptr(page), -1);
1505
	atomic_set(compound_pincount_ptr(page), 0);
1506 1507
}

A
Andrew Morton 已提交
1508 1509 1510 1511 1512
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1513 1514 1515 1516 1517 1518
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1519
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1520
}
1521 1522
EXPORT_SYMBOL_GPL(PageHuge);

1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1532
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1533 1534
}

1535 1536 1537
/*
 * Find and lock address space (mapping) in write mode.
 *
1538 1539 1540
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1541 1542 1543
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1544
	struct address_space *mapping = page_mapping(hpage);
1545 1546 1547 1548 1549 1550 1551

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1552
	return NULL;
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1572
static struct page *alloc_buddy_huge_page(struct hstate *h,
1573 1574
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1575
{
1576
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1577
	struct page *page;
1578
	bool alloc_try_hard = true;
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1592 1593 1594 1595 1596 1597 1598
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1616 1617 1618
	return page;
}

1619 1620 1621 1622 1623
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1624 1625
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1626 1627 1628 1629 1630 1631 1632
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1633
				nid, nmask, node_alloc_noretry);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1644 1645 1646 1647
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1648 1649
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1650 1651 1652
{
	struct page *page;
	int nr_nodes, node;
1653
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1654 1655

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1656 1657
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1658
		if (page)
1659 1660 1661
			break;
	}

1662 1663
	if (!page)
		return 0;
1664

1665 1666 1667
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1668 1669
}

1670 1671 1672 1673 1674 1675
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1676 1677
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1678
{
1679
	int nr_nodes, node;
1680 1681
	int ret = 0;

1682
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1683 1684 1685 1686
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1687 1688
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1689
			struct page *page =
1690
				list_entry(h->hugepage_freelists[node].next,
1691 1692 1693
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1694
			h->free_huge_pages_node[node]--;
1695 1696
			if (acct_surplus) {
				h->surplus_huge_pages--;
1697
				h->surplus_huge_pages_node[node]--;
1698
			}
1699 1700
			update_and_free_page(h, page);
			ret = 1;
1701
			break;
1702
		}
1703
	}
1704 1705 1706 1707

	return ret;
}

1708 1709
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1710 1711 1712 1713 1714 1715 1716
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1717
 */
1718
int dissolve_free_huge_page(struct page *page)
1719
{
1720
	int rc = -EBUSY;
1721

1722
retry:
1723 1724 1725 1726
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1727
	spin_lock(&hugetlb_lock);
1728 1729 1730 1731 1732 1733
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1734 1735 1736
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1737
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1738
			goto out;
1739 1740 1741 1742 1743

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
1744
		if (unlikely(!HPageFreed(head))) {
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
			spin_unlock(&hugetlb_lock);
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

1759 1760 1761 1762 1763 1764 1765 1766
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1767
		list_del(&head->lru);
1768 1769
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1770
		h->max_huge_pages--;
1771
		update_and_free_page(h, head);
1772
		rc = 0;
1773
	}
1774
out:
1775
	spin_unlock(&hugetlb_lock);
1776
	return rc;
1777 1778 1779 1780 1781
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1782 1783
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1784 1785
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1786
 */
1787
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1788 1789
{
	unsigned long pfn;
1790
	struct page *page;
1791
	int rc = 0;
1792

1793
	if (!hugepages_supported())
1794
		return rc;
1795

1796 1797
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1798 1799 1800
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1801
	}
1802 1803

	return rc;
1804 1805
}

1806 1807 1808
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1809
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1810
		int nid, nodemask_t *nmask)
1811
{
1812
	struct page *page = NULL;
1813

1814
	if (hstate_is_gigantic(h))
1815 1816
		return NULL;

1817
	spin_lock(&hugetlb_lock);
1818 1819
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1820 1821
	spin_unlock(&hugetlb_lock);

1822
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1823
	if (!page)
1824
		return NULL;
1825 1826

	spin_lock(&hugetlb_lock);
1827 1828 1829 1830 1831 1832 1833 1834
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1835
		SetHPageTemporary(page);
1836
		spin_unlock(&hugetlb_lock);
1837
		put_page(page);
1838
		return NULL;
1839 1840
	} else {
		h->surplus_huge_pages++;
1841
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1842
	}
1843 1844

out_unlock:
1845
	spin_unlock(&hugetlb_lock);
1846 1847 1848 1849

	return page;
}

1850
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1851
				     int nid, nodemask_t *nmask)
1852 1853 1854 1855 1856 1857
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1858
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1859 1860 1861 1862 1863 1864 1865
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
1866
	SetHPageTemporary(page);
1867 1868 1869 1870

	return page;
}

1871 1872 1873
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1874
static
1875
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1876 1877
		struct vm_area_struct *vma, unsigned long addr)
{
1878 1879 1880 1881 1882 1883 1884
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1885
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1886 1887 1888
	mpol_cond_put(mpol);

	return page;
1889 1890
}

1891
/* page migration callback function */
1892
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1893
		nodemask_t *nmask, gfp_t gfp_mask)
1894 1895 1896
{
	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1897 1898 1899 1900 1901 1902
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1903 1904 1905 1906
		}
	}
	spin_unlock(&hugetlb_lock);

1907
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1908 1909
}

1910
/* mempolicy aware migration callback */
1911 1912
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1913 1914 1915 1916 1917 1918 1919 1920 1921
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1922
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1923 1924 1925 1926 1927
	mpol_cond_put(mpol);

	return page;
}

1928
/*
L
Lucas De Marchi 已提交
1929
 * Increase the hugetlb pool such that it can accommodate a reservation
1930 1931
 * of size 'delta'.
 */
1932
static int gather_surplus_pages(struct hstate *h, long delta)
1933
	__must_hold(&hugetlb_lock)
1934 1935 1936
{
	struct list_head surplus_list;
	struct page *page, *tmp;
1937 1938 1939
	int ret;
	long i;
	long needed, allocated;
1940
	bool alloc_ok = true;
1941

1942
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1943
	if (needed <= 0) {
1944
		h->resv_huge_pages += delta;
1945
		return 0;
1946
	}
1947 1948 1949 1950 1951 1952 1953 1954

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1955
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1956
				NUMA_NO_NODE, NULL);
1957 1958 1959 1960
		if (!page) {
			alloc_ok = false;
			break;
		}
1961
		list_add(&page->lru, &surplus_list);
1962
		cond_resched();
1963
	}
1964
	allocated += i;
1965 1966 1967 1968 1969 1970

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1971 1972
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1983 1984
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1985
	 * needed to accommodate the reservation.  Add the appropriate number
1986
	 * of pages to the hugetlb pool and free the extras back to the buddy
1987 1988 1989
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1990 1991
	 */
	needed += allocated;
1992
	h->resv_huge_pages += delta;
1993
	ret = 0;
1994

1995
	/* Free the needed pages to the hugetlb pool */
1996
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1997 1998
		int zeroed;

1999 2000
		if ((--needed) < 0)
			break;
2001 2002 2003 2004
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
2005 2006
		zeroed = put_page_testzero(page);
		VM_BUG_ON_PAGE(!zeroed, page);
2007
		enqueue_huge_page(h, page);
2008
	}
2009
free:
2010
	spin_unlock(&hugetlb_lock);
2011 2012

	/* Free unnecessary surplus pages to the buddy allocator */
2013 2014
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2015
	spin_lock(&hugetlb_lock);
2016 2017 2018 2019 2020

	return ret;
}

/*
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2033
 */
2034 2035
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2036 2037 2038
{
	unsigned long nr_pages;

2039
	/* Cannot return gigantic pages currently */
2040
	if (hstate_is_gigantic(h))
2041
		goto out;
2042

2043 2044 2045 2046
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2047
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2048

2049 2050
	/*
	 * We want to release as many surplus pages as possible, spread
2051 2052 2053
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2054
	 * free_pool_huge_page() will balance the freed pages across the
2055
	 * on-line nodes with memory and will handle the hstate accounting.
2056 2057 2058 2059
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2060 2061
	 */
	while (nr_pages--) {
2062 2063
		h->resv_huge_pages--;
		unused_resv_pages--;
2064
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2065
			goto out;
2066
		cond_resched_lock(&hugetlb_lock);
2067
	}
2068 2069 2070 2071

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2072 2073
}

2074

2075
/*
2076
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2077
 * are used by the huge page allocation routines to manage reservations.
2078 2079 2080 2081 2082 2083
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2084 2085 2086
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2087 2088 2089 2090 2091 2092
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2093 2094 2095 2096 2097
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2098
 */
2099 2100 2101
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2102
	VMA_END_RESV,
2103
	VMA_ADD_RESV,
2104
};
2105 2106
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2107
				enum vma_resv_mode mode)
2108
{
2109 2110
	struct resv_map *resv;
	pgoff_t idx;
2111
	long ret;
2112
	long dummy_out_regions_needed;
2113

2114 2115
	resv = vma_resv_map(vma);
	if (!resv)
2116
		return 1;
2117

2118
	idx = vma_hugecache_offset(h, vma, addr);
2119 2120
	switch (mode) {
	case VMA_NEEDS_RESV:
2121 2122 2123 2124 2125 2126
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2127 2128
		break;
	case VMA_COMMIT_RESV:
2129
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2130 2131
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2132
		break;
2133
	case VMA_END_RESV:
2134
		region_abort(resv, idx, idx + 1, 1);
2135 2136
		ret = 0;
		break;
2137
	case VMA_ADD_RESV:
2138
		if (vma->vm_flags & VM_MAYSHARE) {
2139
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2140 2141 2142 2143
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2144 2145 2146
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2147 2148 2149
	default:
		BUG();
	}
2150

2151
	if (vma->vm_flags & VM_MAYSHARE)
2152
		return ret;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2172
	else
2173
		return ret < 0 ? ret : 0;
2174
}
2175 2176

static long vma_needs_reservation(struct hstate *h,
2177
			struct vm_area_struct *vma, unsigned long addr)
2178
{
2179
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2180
}
2181

2182 2183 2184
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2185 2186 2187
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2188
static void vma_end_reservation(struct hstate *h,
2189 2190
			struct vm_area_struct *vma, unsigned long addr)
{
2191
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2192 2193
}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
2204 2205 2206 2207 2208 2209
 * alloc_huge_page would have consumed the reservation and set
 * HPageRestoreReserve in the newly allocated page.  When the page is freed
 * via free_huge_page, the global reservation count will be incremented if
 * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
 * reserve map.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.
2210 2211 2212 2213 2214
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
2215
	if (unlikely(HPageRestoreReserve(page))) {
2216 2217 2218 2219 2220
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
2221
			 * manipulation.  Clear HPageRestoreReserve so that
2222 2223 2224 2225 2226 2227 2228 2229
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2230
			ClearHPageRestoreReserve(page);
2231 2232 2233 2234 2235 2236 2237
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
2238
				ClearHPageRestoreReserve(page);
2239 2240 2241 2242 2243
		} else
			vma_end_reservation(h, vma, address);
	}
}

2244
struct page *alloc_huge_page(struct vm_area_struct *vma,
2245
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2246
{
2247
	struct hugepage_subpool *spool = subpool_vma(vma);
2248
	struct hstate *h = hstate_vma(vma);
2249
	struct page *page;
2250 2251
	long map_chg, map_commit;
	long gbl_chg;
2252 2253
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2254
	bool deferred_reserve;
2255

2256
	idx = hstate_index(h);
2257
	/*
2258 2259 2260
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2261
	 */
2262 2263
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2264
		return ERR_PTR(-ENOMEM);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2276
			vma_end_reservation(h, vma, addr);
2277
			return ERR_PTR(-ENOSPC);
2278
		}
L
Linus Torvalds 已提交
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2302
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2303
	if (ret)
2304
		goto out_uncharge_cgroup_reservation;
2305

L
Linus Torvalds 已提交
2306
	spin_lock(&hugetlb_lock);
2307 2308 2309 2310 2311 2312
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2313
	if (!page) {
2314
		spin_unlock(&hugetlb_lock);
2315
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2316 2317
		if (!page)
			goto out_uncharge_cgroup;
2318
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2319
			SetHPageRestoreReserve(page);
2320 2321
			h->resv_huge_pages--;
		}
2322
		spin_lock(&hugetlb_lock);
2323
		list_add(&page->lru, &h->hugepage_activelist);
2324
		/* Fall through */
K
Ken Chen 已提交
2325
	}
2326
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2327 2328 2329 2330 2331 2332 2333 2334
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2335
	spin_unlock(&hugetlb_lock);
2336

2337
	hugetlb_set_page_subpool(page, spool);
2338

2339 2340
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2354 2355 2356
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2357
	}
2358
	return page;
2359 2360 2361

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2362 2363 2364 2365
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2366
out_subpool_put:
2367
	if (map_chg || avoid_reserve)
2368
		hugepage_subpool_put_pages(spool, 1);
2369
	vma_end_reservation(h, vma, addr);
2370
	return ERR_PTR(-ENOSPC);
2371 2372
}

2373 2374 2375
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2376 2377
{
	struct huge_bootmem_page *m;
2378
	int nr_nodes, node;
2379

2380
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2381 2382
		void *addr;

2383
		addr = memblock_alloc_try_nid_raw(
2384
				huge_page_size(h), huge_page_size(h),
2385
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2386 2387 2388 2389 2390 2391 2392
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2393
			goto found;
2394 2395 2396 2397 2398
		}
	}
	return 0;

found:
2399
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2400
	/* Put them into a private list first because mem_map is not up yet */
2401
	INIT_LIST_HEAD(&m->list);
2402 2403 2404 2405 2406
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2407 2408
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2409 2410 2411 2412 2413 2414 2415
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2416 2417 2418 2419 2420 2421
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2422
		struct page *page = virt_to_page(m);
2423
		struct hstate *h = m->hstate;
2424

2425
		WARN_ON(page_count(page) != 1);
2426
		prep_compound_huge_page(page, huge_page_order(h));
2427
		WARN_ON(PageReserved(page));
2428
		prep_new_huge_page(h, page, page_to_nid(page));
2429 2430
		put_page(page); /* free it into the hugepage allocator */

2431 2432 2433 2434 2435 2436
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2437
		if (hstate_is_gigantic(h))
2438
			adjust_managed_page_count(page, pages_per_huge_page(h));
2439
		cond_resched();
2440 2441 2442
	}
}

2443
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2444 2445
{
	unsigned long i;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2465

2466
	for (i = 0; i < h->max_huge_pages; ++i) {
2467
		if (hstate_is_gigantic(h)) {
2468
			if (hugetlb_cma_size) {
2469
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2470
				goto free;
2471
			}
2472 2473
			if (!alloc_bootmem_huge_page(h))
				break;
2474
		} else if (!alloc_pool_huge_page(h,
2475 2476
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2477
			break;
2478
		cond_resched();
L
Linus Torvalds 已提交
2479
	}
2480 2481 2482
	if (i < h->max_huge_pages) {
		char buf[32];

2483
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2484 2485 2486 2487
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2488
free:
2489
	kfree(node_alloc_noretry);
2490 2491 2492 2493 2494 2495 2496
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2497 2498 2499
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2500
		/* oversize hugepages were init'ed in early boot */
2501
		if (!hstate_is_gigantic(h))
2502
			hugetlb_hstate_alloc_pages(h);
2503
	}
2504
	VM_BUG_ON(minimum_order == UINT_MAX);
2505 2506 2507 2508 2509 2510 2511
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2512
		char buf[32];
2513 2514

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2515
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2516
			buf, h->free_huge_pages);
2517 2518 2519
	}
}

L
Linus Torvalds 已提交
2520
#ifdef CONFIG_HIGHMEM
2521 2522
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2523
{
2524 2525
	int i;

2526
	if (hstate_is_gigantic(h))
2527 2528
		return;

2529
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2530
		struct page *page, *next;
2531 2532 2533
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2534
				return;
L
Linus Torvalds 已提交
2535 2536 2537
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2538
			update_and_free_page(h, page);
2539 2540
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2541 2542 2543 2544
		}
	}
}
#else
2545 2546
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2547 2548 2549 2550
{
}
#endif

2551 2552 2553 2554 2555
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2556 2557
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2558
{
2559
	int nr_nodes, node;
2560 2561 2562

	VM_BUG_ON(delta != -1 && delta != 1);

2563 2564 2565 2566
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2567
		}
2568 2569 2570 2571 2572
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2573
		}
2574 2575
	}
	return 0;
2576

2577 2578 2579 2580
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2581 2582
}

2583
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2584
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2585
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2586
{
2587
	unsigned long min_count, ret;
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2599

2600 2601
	spin_lock(&hugetlb_lock);

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2632
			NODEMASK_FREE(node_alloc_noretry);
2633 2634 2635 2636
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2637

2638 2639 2640 2641
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2642
	 *
2643
	 * We might race with alloc_surplus_huge_page() here and be unable
2644 2645 2646 2647
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2648
	 */
2649
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2650
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2651 2652 2653
			break;
	}

2654
	while (count > persistent_huge_pages(h)) {
2655 2656 2657 2658 2659 2660
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2661 2662 2663 2664

		/* yield cpu to avoid soft lockup */
		cond_resched();

2665 2666
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2667 2668 2669 2670
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2671 2672 2673
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2674 2675 2676 2677 2678 2679 2680 2681
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2682 2683 2684 2685
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2686
	 * alloc_surplus_huge_page() is checking the global counter,
2687 2688 2689
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2690
	 */
2691
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2692
	min_count = max(count, min_count);
2693
	try_to_free_low(h, min_count, nodes_allowed);
2694
	while (min_count < persistent_huge_pages(h)) {
2695
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2696
			break;
2697
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2698
	}
2699
	while (count < persistent_huge_pages(h)) {
2700
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2701 2702 2703
			break;
	}
out:
2704
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2705
	spin_unlock(&hugetlb_lock);
2706

2707 2708
	NODEMASK_FREE(node_alloc_noretry);

2709
	return 0;
L
Linus Torvalds 已提交
2710 2711
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2722 2723 2724
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2725 2726
{
	int i;
2727

2728
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2729 2730 2731
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2732
			return &hstates[i];
2733 2734 2735
		}

	return kobj_to_node_hstate(kobj, nidp);
2736 2737
}

2738
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2739 2740
					struct kobj_attribute *attr, char *buf)
{
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

2751
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2752
}
2753

2754 2755 2756
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2757 2758
{
	int err;
2759
	nodemask_t nodes_allowed, *n_mask;
2760

2761 2762
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2763

2764 2765 2766 2767 2768
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2769 2770 2771 2772 2773
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2774
		/*
2775 2776
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2777
		 */
2778 2779
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2780
	}
2781

2782
	err = set_max_huge_pages(h, count, nid, n_mask);
2783

2784
	return err ? err : len;
2785 2786
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2804 2805 2806 2807 2808 2809 2810 2811 2812
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2813
	return nr_hugepages_store_common(false, kobj, buf, len);
2814 2815 2816
}
HSTATE_ATTR(nr_hugepages);

2817 2818 2819 2820 2821 2822 2823
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2824 2825
					   struct kobj_attribute *attr,
					   char *buf)
2826 2827 2828 2829 2830 2831 2832
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2833
	return nr_hugepages_store_common(true, kobj, buf, len);
2834 2835 2836 2837 2838
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2839 2840 2841
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2842
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2843
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2844
}
2845

2846 2847 2848 2849 2850
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2851
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2852

2853
	if (hstate_is_gigantic(h))
2854 2855
		return -EINVAL;

2856
	err = kstrtoul(buf, 10, &input);
2857
	if (err)
2858
		return err;
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

2881
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2882 2883 2884 2885 2886 2887
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2888
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2889
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2890 2891 2892 2893 2894 2895
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

2906
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2907 2908 2909 2910 2911 2912 2913 2914 2915
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2916 2917 2918
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2919 2920 2921
	NULL,
};

2922
static const struct attribute_group hstate_attr_group = {
2923 2924 2925
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2926 2927
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2928
				    const struct attribute_group *hstate_attr_group)
2929 2930
{
	int retval;
2931
	int hi = hstate_index(h);
2932

2933 2934
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2935 2936
		return -ENOMEM;

2937
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2938
	if (retval) {
2939
		kobject_put(hstate_kobjs[hi]);
2940 2941
		hstate_kobjs[hi] = NULL;
	}
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2956 2957
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2958
		if (err)
2959
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2960 2961 2962
	}
}

2963 2964 2965 2966
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2967 2968 2969
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2970 2971 2972 2973 2974 2975
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2976
static struct node_hstate node_hstates[MAX_NUMNODES];
2977 2978

/*
2979
 * A subset of global hstate attributes for node devices
2980 2981 2982 2983 2984 2985 2986 2987
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2988
static const struct attribute_group per_node_hstate_attr_group = {
2989 2990 2991 2992
	.attrs = per_node_hstate_attrs,
};

/*
2993
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3016
 * Unregister hstate attributes from a single node device.
3017 3018
 * No-op if no hstate attributes attached.
 */
3019
static void hugetlb_unregister_node(struct node *node)
3020 3021
{
	struct hstate *h;
3022
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3023 3024

	if (!nhs->hugepages_kobj)
3025
		return;		/* no hstate attributes */
3026

3027 3028 3029 3030 3031
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3032
		}
3033
	}
3034 3035 3036 3037 3038 3039 3040

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3041
 * Register hstate attributes for a single node device.
3042 3043
 * No-op if attributes already registered.
 */
3044
static void hugetlb_register_node(struct node *node)
3045 3046
{
	struct hstate *h;
3047
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3048 3049 3050 3051 3052 3053
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3054
							&node->dev.kobj);
3055 3056 3057 3058 3059 3060 3061 3062
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3063
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3064
				h->name, node->dev.id);
3065 3066 3067 3068 3069 3070 3071
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3072
 * hugetlb init time:  register hstate attributes for all registered node
3073 3074
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3075
 */
3076
static void __init hugetlb_register_all_nodes(void)
3077 3078 3079
{
	int nid;

3080
	for_each_node_state(nid, N_MEMORY) {
3081
		struct node *node = node_devices[nid];
3082
		if (node->dev.id == nid)
3083 3084 3085 3086
			hugetlb_register_node(node);
	}

	/*
3087
	 * Let the node device driver know we're here so it can
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3107 3108
static int __init hugetlb_init(void)
{
3109 3110
	int i;

3111 3112 3113
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3114 3115 3116
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3117
		return 0;
3118
	}
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3148
		}
3149
	}
3150

3151
	hugetlb_cma_check();
3152
	hugetlb_init_hstates();
3153
	gather_bootmem_prealloc();
3154 3155 3156
	report_hugepages();

	hugetlb_sysfs_init();
3157
	hugetlb_register_all_nodes();
3158
	hugetlb_cgroup_file_init();
3159

3160 3161 3162 3163 3164
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3165
	hugetlb_fault_mutex_table =
3166 3167
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3168
	BUG_ON(!hugetlb_fault_mutex_table);
3169 3170

	for (i = 0; i < num_fault_mutexes; i++)
3171
		mutex_init(&hugetlb_fault_mutex_table[i]);
3172 3173
	return 0;
}
3174
subsys_initcall(hugetlb_init);
3175

3176 3177
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3178
{
3179
	return size == HPAGE_SIZE;
3180 3181
}

3182
void __init hugetlb_add_hstate(unsigned int order)
3183 3184
{
	struct hstate *h;
3185 3186
	unsigned long i;

3187 3188 3189
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3190
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3191
	BUG_ON(order == 0);
3192
	h = &hstates[hugetlb_max_hstate++];
3193
	h->order = order;
3194
	h->mask = ~(huge_page_size(h) - 1);
3195 3196
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3197
	INIT_LIST_HEAD(&h->hugepage_activelist);
3198 3199
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3200 3201
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3202

3203 3204 3205
	parsed_hstate = h;
}

3206 3207 3208 3209 3210 3211 3212 3213
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3214 3215
{
	unsigned long *mhp;
3216
	static unsigned long *last_mhp;
3217

3218
	if (!parsed_valid_hugepagesz) {
3219
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3220
		parsed_valid_hugepagesz = true;
3221
		return 0;
3222
	}
3223

3224
	/*
3225 3226 3227 3228
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3229
	 */
3230
	else if (!hugetlb_max_hstate)
3231 3232 3233 3234
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3235
	if (mhp == last_mhp) {
3236 3237
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3238 3239
	}

3240 3241 3242
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3243 3244 3245 3246 3247
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3248
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3249 3250 3251 3252
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3253 3254
	return 1;
}
3255
__setup("hugepages=", hugepages_setup);
3256

3257 3258 3259 3260 3261 3262 3263
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3264
static int __init hugepagesz_setup(char *s)
3265
{
3266
	unsigned long size;
3267 3268 3269
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3270 3271 3272
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3273
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3274 3275 3276
		return 0;
	}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3300 3301
	}

3302
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3303
	parsed_valid_hugepagesz = true;
3304 3305
	return 1;
}
3306 3307
__setup("hugepagesz=", hugepagesz_setup);

3308 3309 3310 3311
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3312
static int __init default_hugepagesz_setup(char *s)
3313
{
3314 3315
	unsigned long size;

3316 3317 3318 3319 3320 3321
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3322 3323 3324
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3325
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3326 3327 3328
		return 0;
	}

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3348 3349
	return 1;
}
3350
__setup("default_hugepagesz=", default_hugepagesz_setup);
3351

3352
static unsigned int allowed_mems_nr(struct hstate *h)
3353 3354 3355
{
	int node;
	unsigned int nr = 0;
3356 3357 3358 3359 3360
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3361

3362
	for_each_node_mask(node, cpuset_current_mems_allowed) {
3363
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3364 3365
			nr += array[node];
	}
3366 3367 3368 3369 3370

	return nr;
}

#ifdef CONFIG_SYSCTL
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3387 3388
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3389
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3390
{
3391
	struct hstate *h = &default_hstate;
3392
	unsigned long tmp = h->max_huge_pages;
3393
	int ret;
3394

3395
	if (!hugepages_supported())
3396
		return -EOPNOTSUPP;
3397

3398 3399
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3400 3401
	if (ret)
		goto out;
3402

3403 3404 3405
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3406 3407
out:
	return ret;
L
Linus Torvalds 已提交
3408
}
3409

3410
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3411
			  void *buffer, size_t *length, loff_t *ppos)
3412 3413 3414 3415 3416 3417 3418 3419
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3420
			  void *buffer, size_t *length, loff_t *ppos)
3421 3422 3423 3424 3425 3426
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3427
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3428
		void *buffer, size_t *length, loff_t *ppos)
3429
{
3430
	struct hstate *h = &default_hstate;
3431
	unsigned long tmp;
3432
	int ret;
3433

3434
	if (!hugepages_supported())
3435
		return -EOPNOTSUPP;
3436

3437
	tmp = h->nr_overcommit_huge_pages;
3438

3439
	if (write && hstate_is_gigantic(h))
3440 3441
		return -EINVAL;

3442 3443
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3444 3445
	if (ret)
		goto out;
3446 3447 3448 3449 3450 3451

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3452 3453
out:
	return ret;
3454 3455
}

L
Linus Torvalds 已提交
3456 3457
#endif /* CONFIG_SYSCTL */

3458
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3459
{
3460 3461 3462
	struct hstate *h;
	unsigned long total = 0;

3463 3464
	if (!hugepages_supported())
		return;
3465 3466 3467 3468

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

3469
		total += huge_page_size(h) * count;
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
3482
				   huge_page_size(h) / SZ_1K);
3483 3484
	}

3485
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
3486 3487
}

3488
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
3489
{
3490
	struct hstate *h = &default_hstate;
3491

3492 3493
	if (!hugepages_supported())
		return 0;
3494 3495 3496 3497 3498 3499 3500 3501

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3502 3503
}

3504 3505 3506 3507 3508
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3509 3510 3511
	if (!hugepages_supported())
		return;

3512 3513 3514 3515 3516 3517 3518
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
3519
				huge_page_size(h) / SZ_1K);
3520 3521
}

3522 3523 3524 3525 3526 3527
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3528 3529 3530
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3531 3532 3533 3534 3535 3536
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3537 3538
}

3539
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3540 3541 3542
{
	int ret = -ENOMEM;

3543 3544 3545
	if (!delta)
		return 0;

M
Mel Gorman 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3563 3564 3565 3566 3567 3568
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3569 3570
	 */
	if (delta > 0) {
3571
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3572 3573
			goto out;

3574
		if (delta > allowed_mems_nr(h)) {
3575
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3576 3577 3578 3579 3580 3581
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3582
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3583 3584 3585 3586 3587 3588

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3589 3590
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3591
	struct resv_map *resv = vma_resv_map(vma);
3592 3593 3594 3595 3596

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3597
	 * has a reference to the reservation map it cannot disappear until
3598 3599 3600
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3601
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3602
		kref_get(&resv->refs);
3603 3604
}

3605 3606
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3607
	struct hstate *h = hstate_vma(vma);
3608
	struct resv_map *resv = vma_resv_map(vma);
3609
	struct hugepage_subpool *spool = subpool_vma(vma);
3610
	unsigned long reserve, start, end;
3611
	long gbl_reserve;
3612

3613 3614
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3615

3616 3617
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3618

3619
	reserve = (end - start) - region_count(resv, start, end);
3620
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3621
	if (reserve) {
3622 3623 3624 3625 3626 3627
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3628
	}
3629 3630

	kref_put(&resv->refs, resv_map_release);
3631 3632
}

3633 3634 3635 3636 3637 3638 3639
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3640 3641
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
3642
	return huge_page_size(hstate_vma(vma));
3643 3644
}

L
Linus Torvalds 已提交
3645 3646 3647
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
3648
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
3649 3650
 * this far.
 */
3651
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3652 3653
{
	BUG();
N
Nick Piggin 已提交
3654
	return 0;
L
Linus Torvalds 已提交
3655 3656
}

3657 3658 3659 3660 3661 3662 3663
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3664
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3665
	.fault = hugetlb_vm_op_fault,
3666
	.open = hugetlb_vm_op_open,
3667
	.close = hugetlb_vm_op_close,
3668
	.may_split = hugetlb_vm_op_split,
3669
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3670 3671
};

3672 3673
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3674 3675 3676
{
	pte_t entry;

3677
	if (writable) {
3678 3679
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3680
	} else {
3681 3682
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3683 3684 3685
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3686
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3687 3688 3689 3690

	return entry;
}

3691 3692 3693 3694 3695
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3696
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3697
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3698
		update_mmu_cache(vma, address, ptep);
3699 3700
}

3701
bool is_hugetlb_entry_migration(pte_t pte)
3702 3703 3704 3705
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3706
		return false;
3707
	swp = pte_to_swp_entry(pte);
3708
	if (is_migration_entry(swp))
3709
		return true;
3710
	else
3711
		return false;
3712 3713
}

3714
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3715 3716 3717 3718
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3719
		return false;
3720
	swp = pte_to_swp_entry(pte);
3721
	if (is_hwpoison_entry(swp))
3722
		return true;
3723
	else
3724
		return false;
3725
}
3726

D
David Gibson 已提交
3727 3728 3729
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3730
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3731
	struct page *ptepage;
3732
	unsigned long addr;
3733
	int cow;
3734 3735
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3736
	struct address_space *mapping = vma->vm_file->f_mapping;
3737
	struct mmu_notifier_range range;
3738
	int ret = 0;
3739 3740

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3741

3742
	if (cow) {
3743
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3744
					vma->vm_start,
3745 3746
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3747 3748 3749 3750 3751 3752 3753 3754
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3755
	}
3756

3757
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3758
		spinlock_t *src_ptl, *dst_ptl;
3759
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3760 3761
		if (!src_pte)
			continue;
3762
		dst_pte = huge_pte_alloc(dst, addr, sz);
3763 3764 3765 3766
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3779 3780
			continue;

3781 3782 3783
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3784
		entry = huge_ptep_get(src_pte);
3785 3786 3787 3788 3789 3790 3791
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3804 3805
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3806
			}
3807
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3808
		} else {
3809
			if (cow) {
3810 3811 3812 3813 3814
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3815
				 * See Documentation/vm/mmu_notifier.rst
3816
				 */
3817
				huge_ptep_set_wrprotect(src, addr, src_pte);
3818
			}
3819
			entry = huge_ptep_get(src_pte);
3820 3821
			ptepage = pte_page(entry);
			get_page(ptepage);
3822
			page_dup_rmap(ptepage, true);
3823
			set_huge_pte_at(dst, addr, dst_pte, entry);
3824
			hugetlb_count_add(pages_per_huge_page(h), dst);
3825
		}
3826 3827
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3828 3829
	}

3830
	if (cow)
3831
		mmu_notifier_invalidate_range_end(&range);
3832 3833
	else
		i_mmap_unlock_read(mapping);
3834 3835

	return ret;
D
David Gibson 已提交
3836 3837
}

3838 3839 3840
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3841 3842 3843
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3844
	pte_t *ptep;
D
David Gibson 已提交
3845
	pte_t pte;
3846
	spinlock_t *ptl;
D
David Gibson 已提交
3847
	struct page *page;
3848 3849
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3850
	struct mmu_notifier_range range;
3851

D
David Gibson 已提交
3852
	WARN_ON(!is_vm_hugetlb_page(vma));
3853 3854
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3855

3856 3857 3858 3859
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3860
	tlb_change_page_size(tlb, sz);
3861
	tlb_start_vma(tlb, vma);
3862 3863 3864 3865

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3866 3867
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3868 3869
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3870 3871
	address = start;
	for (; address < end; address += sz) {
3872
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3873
		if (!ptep)
3874 3875
			continue;

3876
		ptl = huge_pte_lock(h, mm, ptep);
3877
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3878
			spin_unlock(ptl);
3879 3880 3881 3882
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3883 3884
			continue;
		}
3885

3886
		pte = huge_ptep_get(ptep);
3887 3888 3889 3890
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3891 3892

		/*
3893 3894
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3895
		 */
3896
		if (unlikely(!pte_present(pte))) {
3897
			huge_pte_clear(mm, address, ptep, sz);
3898 3899
			spin_unlock(ptl);
			continue;
3900
		}
3901 3902

		page = pte_page(pte);
3903 3904 3905 3906 3907 3908
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3909 3910 3911 3912
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3913 3914 3915 3916 3917 3918 3919 3920
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3921
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3922
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3923
		if (huge_pte_dirty(pte))
3924
			set_page_dirty(page);
3925

3926
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3927
		page_remove_rmap(page, true);
3928

3929
		spin_unlock(ptl);
3930
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3931 3932 3933 3934 3935
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3936
	}
3937
	mmu_notifier_invalidate_range_end(&range);
3938
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3939
}
D
David Gibson 已提交
3940

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3953
	 * is to clear it before releasing the i_mmap_rwsem. This works
3954
	 * because in the context this is called, the VMA is about to be
3955
	 * destroyed and the i_mmap_rwsem is held.
3956 3957 3958 3959
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3960
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3961
			  unsigned long end, struct page *ref_page)
3962
{
3963
	struct mmu_gather tlb;
3964

3965
	tlb_gather_mmu(&tlb, vma->vm_mm);
3966
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3967
	tlb_finish_mmu(&tlb);
3968 3969
}

3970 3971
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3972
 * mapping it owns the reserve page for. The intention is to unmap the page
3973 3974 3975
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3976 3977
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3978
{
3979
	struct hstate *h = hstate_vma(vma);
3980 3981 3982 3983 3984 3985 3986 3987
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3988
	address = address & huge_page_mask(h);
3989 3990
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3991
	mapping = vma->vm_file->f_mapping;
3992

3993 3994 3995 3996 3997
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3998
	i_mmap_lock_write(mapping);
3999
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4000 4001 4002 4003
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4004 4005 4006 4007 4008 4009 4010 4011
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4012 4013 4014 4015 4016 4017 4018 4019
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4020 4021
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4022
	}
4023
	i_mmap_unlock_write(mapping);
4024 4025
}

4026 4027
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4028 4029 4030
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4031
 */
4032
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4033
		       unsigned long address, pte_t *ptep,
4034
		       struct page *pagecache_page, spinlock_t *ptl)
4035
{
4036
	pte_t pte;
4037
	struct hstate *h = hstate_vma(vma);
4038
	struct page *old_page, *new_page;
4039 4040
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4041
	unsigned long haddr = address & huge_page_mask(h);
4042
	struct mmu_notifier_range range;
4043

4044
	pte = huge_ptep_get(ptep);
4045 4046
	old_page = pte_page(pte);

4047
retry_avoidcopy:
4048 4049
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4050
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4051
		page_move_anon_rmap(old_page, vma);
4052
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4053
		return 0;
4054 4055
	}

4056 4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4065
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4066 4067 4068
			old_page != pagecache_page)
		outside_reserve = 1;

4069
	get_page(old_page);
4070

4071 4072 4073 4074
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4075
	spin_unlock(ptl);
4076
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4077

4078
	if (IS_ERR(new_page)) {
4079 4080 4081 4082 4083 4084 4085 4086
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4087 4088 4089 4090
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

4091
			put_page(old_page);
4092
			BUG_ON(huge_pte_none(pte));
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

4107
			unmap_ref_private(mm, vma, old_page, haddr);
4108 4109 4110

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4111
			spin_lock(ptl);
4112
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4113 4114 4115 4116 4117 4118 4119 4120
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4121 4122
		}

4123
		ret = vmf_error(PTR_ERR(new_page));
4124
		goto out_release_old;
4125 4126
	}

4127 4128 4129 4130
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4131
	if (unlikely(anon_vma_prepare(vma))) {
4132 4133
		ret = VM_FAULT_OOM;
		goto out_release_all;
4134
	}
4135

4136
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4137
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4138
	__SetPageUptodate(new_page);
4139

4140
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4141
				haddr + huge_page_size(h));
4142
	mmu_notifier_invalidate_range_start(&range);
4143

4144
	/*
4145
	 * Retake the page table lock to check for racing updates
4146 4147
	 * before the page tables are altered
	 */
4148
	spin_lock(ptl);
4149
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4150
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4151
		ClearHPageRestoreReserve(new_page);
4152

4153
		/* Break COW */
4154
		huge_ptep_clear_flush(vma, haddr, ptep);
4155
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4156
		set_huge_pte_at(mm, haddr, ptep,
4157
				make_huge_pte(vma, new_page, 1));
4158
		page_remove_rmap(old_page, true);
4159
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4160
		SetHPageMigratable(new_page);
4161 4162 4163
		/* Make the old page be freed below */
		new_page = old_page;
	}
4164
	spin_unlock(ptl);
4165
	mmu_notifier_invalidate_range_end(&range);
4166
out_release_all:
4167
	restore_reserve_on_error(h, vma, haddr, new_page);
4168
	put_page(new_page);
4169
out_release_old:
4170
	put_page(old_page);
4171

4172 4173
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4174 4175
}

4176
/* Return the pagecache page at a given address within a VMA */
4177 4178
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4179 4180
{
	struct address_space *mapping;
4181
	pgoff_t idx;
4182 4183

	mapping = vma->vm_file->f_mapping;
4184
	idx = vma_hugecache_offset(h, vma, address);
4185 4186 4187 4188

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4189 4190 4191 4192 4193
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4209 4210 4211 4212 4213 4214 4215 4216 4217
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
4218
	ClearHPageRestoreReserve(page);
4219

4220 4221 4222 4223 4224 4225
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4226 4227 4228 4229 4230 4231
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4232 4233 4234 4235
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4236
{
4237
	struct hstate *h = hstate_vma(vma);
4238
	vm_fault_t ret = VM_FAULT_SIGBUS;
4239
	int anon_rmap = 0;
A
Adam Litke 已提交
4240 4241
	unsigned long size;
	struct page *page;
4242
	pte_t new_pte;
4243
	spinlock_t *ptl;
4244
	unsigned long haddr = address & huge_page_mask(h);
4245
	bool new_page = false;
A
Adam Litke 已提交
4246

4247 4248 4249
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4250
	 * COW. Warn that such a situation has occurred as it may not be obvious
4251 4252
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4253
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4254
			   current->pid);
4255 4256 4257
		return ret;
	}

A
Adam Litke 已提交
4258
	/*
4259 4260 4261
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4262
	 */
4263 4264 4265 4266
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4267 4268 4269
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4270 4271 4272 4273 4274 4275 4276
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4277
				.address = haddr,
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4289 4290 4291
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4292
			 */
4293
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4294
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4295
			i_mmap_unlock_read(mapping);
4296
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4297
			i_mmap_lock_read(mapping);
4298 4299 4300 4301
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4302
		page = alloc_huge_page(vma, haddr, 0);
4303
		if (IS_ERR(page)) {
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4323
			ret = vmf_error(PTR_ERR(page));
4324 4325
			goto out;
		}
A
Andrea Arcangeli 已提交
4326
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4327
		__SetPageUptodate(page);
4328
		new_page = true;
4329

4330
		if (vma->vm_flags & VM_MAYSHARE) {
4331
			int err = huge_add_to_page_cache(page, mapping, idx);
4332 4333 4334 4335 4336 4337
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4338
		} else {
4339
			lock_page(page);
4340 4341 4342 4343
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4344
			anon_rmap = 1;
4345
		}
4346
	} else {
4347 4348 4349 4350 4351 4352
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4353
			ret = VM_FAULT_HWPOISON_LARGE |
4354
				VM_FAULT_SET_HINDEX(hstate_index(h));
4355 4356
			goto backout_unlocked;
		}
4357
	}
4358

4359 4360 4361 4362 4363 4364
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4365
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4366
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4367 4368 4369
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4370
		/* Just decrements count, does not deallocate */
4371
		vma_end_reservation(h, vma, haddr);
4372
	}
4373

4374
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4375
	ret = 0;
4376
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4377 4378
		goto backout;

4379
	if (anon_rmap) {
4380
		ClearHPageRestoreReserve(page);
4381
		hugepage_add_new_anon_rmap(page, vma, haddr);
4382
	} else
4383
		page_dup_rmap(page, true);
4384 4385
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4386
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4387

4388
	hugetlb_count_add(pages_per_huge_page(h), mm);
4389
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4390
		/* Optimization, do the COW without a second fault */
4391
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4392 4393
	}

4394
	spin_unlock(ptl);
4395 4396

	/*
4397 4398 4399
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
4400 4401
	 */
	if (new_page)
4402
		SetHPageMigratable(page);
4403

A
Adam Litke 已提交
4404 4405
	unlock_page(page);
out:
4406
	return ret;
A
Adam Litke 已提交
4407 4408

backout:
4409
	spin_unlock(ptl);
4410
backout_unlocked:
A
Adam Litke 已提交
4411
	unlock_page(page);
4412
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4413 4414
	put_page(page);
	goto out;
4415 4416
}

4417
#ifdef CONFIG_SMP
4418
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4419 4420 4421 4422
{
	unsigned long key[2];
	u32 hash;

4423 4424
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4425

4426
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4427 4428 4429 4430 4431

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
4432
 * For uniprocessor systems we always use a single mutex, so just
4433 4434
 * return 0 and avoid the hashing overhead.
 */
4435
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4436 4437 4438 4439 4440
{
	return 0;
}
#endif

4441
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4442
			unsigned long address, unsigned int flags)
4443
{
4444
	pte_t *ptep, entry;
4445
	spinlock_t *ptl;
4446
	vm_fault_t ret;
4447 4448
	u32 hash;
	pgoff_t idx;
4449
	struct page *page = NULL;
4450
	struct page *pagecache_page = NULL;
4451
	struct hstate *h = hstate_vma(vma);
4452
	struct address_space *mapping;
4453
	int need_wait_lock = 0;
4454
	unsigned long haddr = address & huge_page_mask(h);
4455

4456
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4457
	if (ptep) {
4458 4459 4460 4461 4462
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4463
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4464
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4465
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4466 4467
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4468
			return VM_FAULT_HWPOISON_LARGE |
4469
				VM_FAULT_SET_HINDEX(hstate_index(h));
4470 4471
	}

4472 4473
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4474 4475 4476 4477
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4478 4479 4480 4481 4482
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4483
	mapping = vma->vm_file->f_mapping;
4484 4485 4486 4487 4488 4489
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4490

4491 4492 4493 4494 4495
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4496
	idx = vma_hugecache_offset(h, vma, haddr);
4497
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4498
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4499

4500 4501
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4502
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4503
		goto out_mutex;
4504
	}
4505

N
Nick Piggin 已提交
4506
	ret = 0;
4507

4508 4509 4510
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4511 4512 4513
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4514 4515 4516 4517
	 */
	if (!pte_present(entry))
		goto out_mutex;

4518 4519 4520 4521 4522 4523 4524 4525
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4526
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4527
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4528
			ret = VM_FAULT_OOM;
4529
			goto out_mutex;
4530
		}
4531
		/* Just decrements count, does not deallocate */
4532
		vma_end_reservation(h, vma, haddr);
4533

4534
		if (!(vma->vm_flags & VM_MAYSHARE))
4535
			pagecache_page = hugetlbfs_pagecache_page(h,
4536
								vma, haddr);
4537 4538
	}

4539 4540 4541 4542 4543 4544
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4545 4546 4547 4548 4549 4550 4551
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4552 4553 4554 4555
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4556

4557
	get_page(page);
4558

4559
	if (flags & FAULT_FLAG_WRITE) {
4560
		if (!huge_pte_write(entry)) {
4561
			ret = hugetlb_cow(mm, vma, address, ptep,
4562
					  pagecache_page, ptl);
4563
			goto out_put_page;
4564
		}
4565
		entry = huge_pte_mkdirty(entry);
4566 4567
	}
	entry = pte_mkyoung(entry);
4568
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4569
						flags & FAULT_FLAG_WRITE))
4570
		update_mmu_cache(vma, haddr, ptep);
4571 4572 4573 4574
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4575 4576
out_ptl:
	spin_unlock(ptl);
4577 4578 4579 4580 4581

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4582
out_mutex:
4583
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4584
	i_mmap_unlock_read(mapping);
4585 4586 4587 4588 4589 4590 4591 4592 4593
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4594
	return ret;
4595 4596
}

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4608 4609 4610
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4611
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4626
						pages_per_huge_page(h), false);
4627

4628
		/* fallback to copy_from_user outside mmap_lock */
4629
		if (unlikely(ret)) {
4630
			ret = -ENOENT;
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4647 4648 4649
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4650 4651 4652 4653
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4654 4655 4656 4657
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4658

4659 4660 4661 4662 4663 4664
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4665 4666 4667 4668 4669
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4670 4671 4672
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4687 4688 4689 4690
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4691 4692 4693
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
4694
		ClearHPageRestoreReserve(page);
4695 4696
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4713
	SetHPageMigratable(page);
4714 4715
	if (vm_shared)
		unlock_page(page);
4716 4717 4718 4719 4720
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4721 4722
	if (vm_shared)
		unlock_page(page);
4723
out_release_nounlock:
4724 4725 4726 4727
	put_page(page);
	goto out;
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

4742 4743 4744
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4745
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4746
{
4747 4748
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4749
	unsigned long remainder = *nr_pages;
4750
	struct hstate *h = hstate_vma(vma);
4751
	int err = -EFAULT, refs;
D
David Gibson 已提交
4752 4753

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4754
		pte_t *pte;
4755
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4756
		int absent;
A
Adam Litke 已提交
4757
		struct page *page;
D
David Gibson 已提交
4758

4759 4760 4761 4762
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4763
		if (fatal_signal_pending(current)) {
4764 4765 4766 4767
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4768 4769
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4770
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4771
		 * first, for the page indexing below to work.
4772 4773
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4774
		 */
4775 4776
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4777 4778
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4779 4780 4781 4782
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4783 4784 4785 4786
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4787
		 */
H
Hugh Dickins 已提交
4788 4789
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4790 4791
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4792 4793 4794
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4807 4808
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4809
			vm_fault_t ret;
4810
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4811

4812 4813
			if (pte)
				spin_unlock(ptl);
4814 4815
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4816
			if (locked)
4817 4818
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4819 4820 4821 4822
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4823 4824 4825 4826
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4827 4828 4829 4830
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4831
				err = vm_fault_to_errno(ret, flags);
4832 4833 4834 4835
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4836
				if (locked &&
4837
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4838
					*locked = 0;
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4852 4853
		}

4854
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4855
		page = pte_page(huge_ptep_get(pte));
4856

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4871 4872
		refs = min3(pages_per_huge_page(h) - pfn_offset,
			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4873

4874 4875 4876 4877 4878
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
4879

4880
		if (pages) {
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
			/*
			 * try_grab_compound_head() should always succeed here,
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
4891
			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4892 4893 4894 4895 4896 4897 4898
								 refs,
								 flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4899
		}
4900 4901 4902 4903 4904

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

4905
		spin_unlock(ptl);
D
David Gibson 已提交
4906
	}
4907
	*nr_pages = remainder;
4908 4909 4910 4911 4912
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4913 4914
	*position = vaddr;

4915
	return i ? i : err;
D
David Gibson 已提交
4916
}
4917

4918 4919 4920 4921 4922 4923 4924 4925
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4926
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4927 4928 4929 4930 4931 4932
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4933
	struct hstate *h = hstate_vma(vma);
4934
	unsigned long pages = 0;
4935
	bool shared_pmd = false;
4936
	struct mmu_notifier_range range;
4937 4938 4939

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4940
	 * start/end.  Set range.start/range.end to cover the maximum possible
4941 4942
	 * range if PMD sharing is possible.
	 */
4943 4944
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
4945
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4946 4947

	BUG_ON(address >= end);
4948
	flush_cache_range(vma, range.start, range.end);
4949

4950
	mmu_notifier_invalidate_range_start(&range);
4951
	i_mmap_lock_write(vma->vm_file->f_mapping);
4952
	for (; address < end; address += huge_page_size(h)) {
4953
		spinlock_t *ptl;
4954
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4955 4956
		if (!ptep)
			continue;
4957
		ptl = huge_pte_lock(h, mm, ptep);
4958
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4959
			pages++;
4960
			spin_unlock(ptl);
4961
			shared_pmd = true;
4962
			continue;
4963
		}
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4977 4978
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4979 4980 4981 4982 4983 4984
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4985 4986 4987 4988
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4989
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4990
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4991
			pages++;
4992
		}
4993
		spin_unlock(ptl);
4994
	}
4995
	/*
4996
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4997
	 * may have cleared our pud entry and done put_page on the page table:
4998
	 * once we release i_mmap_rwsem, another task can do the final put_page
4999 5000
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5001
	 */
5002
	if (shared_pmd)
5003
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5004 5005
	else
		flush_hugetlb_tlb_range(vma, start, end);
5006 5007 5008 5009
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5010
	 * See Documentation/vm/mmu_notifier.rst
5011
	 */
5012
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5013
	mmu_notifier_invalidate_range_end(&range);
5014 5015

	return pages << h->order;
5016 5017
}

5018 5019
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5020
					struct vm_area_struct *vma,
5021
					vm_flags_t vm_flags)
5022
{
5023
	long ret, chg, add = -1;
5024
	struct hstate *h = hstate_inode(inode);
5025
	struct hugepage_subpool *spool = subpool_inode(inode);
5026
	struct resv_map *resv_map;
5027
	struct hugetlb_cgroup *h_cg = NULL;
5028
	long gbl_reserve, regions_needed = 0;
5029

5030 5031 5032 5033 5034 5035
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5036 5037 5038
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5039
	 * without using reserves
5040
	 */
5041
	if (vm_flags & VM_NORESERVE)
5042 5043
		return 0;

5044 5045 5046 5047 5048 5049
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5050
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5051 5052 5053 5054 5055
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5056
		resv_map = inode_resv_map(inode);
5057

5058
		chg = region_chg(resv_map, from, to, &regions_needed);
5059 5060

	} else {
5061
		/* Private mapping. */
5062
		resv_map = resv_map_alloc();
5063 5064 5065
		if (!resv_map)
			return -ENOMEM;

5066
		chg = to - from;
5067

5068 5069 5070 5071
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5072 5073 5074 5075
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5076

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5092 5093 5094 5095 5096 5097 5098
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5099
		ret = -ENOSPC;
5100
		goto out_uncharge_cgroup;
5101
	}
5102 5103

	/*
5104
	 * Check enough hugepages are available for the reservation.
5105
	 * Hand the pages back to the subpool if there are not
5106
	 */
5107
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5108
	if (ret < 0) {
5109
		goto out_put_pages;
K
Ken Chen 已提交
5110
	}
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5123
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5124
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5125 5126 5127

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5128
			ret = add;
5129
			goto out_put_pages;
5130
		} else if (unlikely(chg > add)) {
5131 5132 5133 5134 5135 5136 5137 5138 5139
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5140 5141 5142 5143
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5144 5145 5146 5147 5148
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5149
	return 0;
5150 5151 5152 5153 5154 5155
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5156
out_err:
5157
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5158 5159 5160 5161 5162
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5163 5164
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5165
	return ret;
5166 5167
}

5168 5169
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5170
{
5171
	struct hstate *h = hstate_inode(inode);
5172
	struct resv_map *resv_map = inode_resv_map(inode);
5173
	long chg = 0;
5174
	struct hugepage_subpool *spool = subpool_inode(inode);
5175
	long gbl_reserve;
K
Ken Chen 已提交
5176

5177 5178 5179 5180
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5192
	spin_lock(&inode->i_lock);
5193
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5194 5195
	spin_unlock(&inode->i_lock);

5196 5197 5198 5199 5200 5201
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5202 5203

	return 0;
5204
}
5205

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5217 5218
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5219 5220 5221 5222 5223 5224 5225

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
5226
	    !range_in_vma(svma, sbase, s_end))
5227 5228 5229 5230 5231
		return 0;

	return saddr;
}

5232
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5233 5234 5235 5236 5237 5238 5239
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5240
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5241 5242
		return true;
	return false;
5243 5244
}

5245 5246 5247 5248 5249 5250 5251 5252
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5253 5254
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5255

5256 5257 5258 5259 5260 5261
	/*
	 * vma need span at least one aligned PUD size and the start,end range
	 * must at least partialy within it.
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
5262 5263
		return;

5264
	/* Extend the range to be PUD aligned for a worst case scenario */
5265 5266
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
5267

5268 5269
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
5270 5271
}

5272 5273 5274 5275
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5276 5277
 * code much cleaner.
 *
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
 *
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 * huge_pte_alloc know that sharing is not possible and do not take
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 * only required for subsequent processing.
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5299
	spinlock_t *ptl;
5300 5301 5302 5303

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

5304
	i_mmap_assert_locked(mapping);
5305 5306 5307 5308 5309 5310
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5311 5312
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5323
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5324
	if (pud_none(*pud)) {
5325 5326
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5327
		mm_inc_nr_pmds(mm);
5328
	} else {
5329
		put_page(virt_to_page(spte));
5330
	}
5331
	spin_unlock(ptl);
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5344
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5345 5346 5347 5348
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5349 5350
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5351 5352
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5353 5354
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5355

5356
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5357 5358 5359 5360 5361 5362
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5363
	mm_dec_nr_pmds(mm);
5364 5365 5366
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5367 5368 5369 5370 5371 5372
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5373

5374 5375
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5376 5377 5378
{
	return 0;
}
5379 5380 5381 5382 5383

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5384
#define want_pmd_share()	(0)
5385 5386
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5387 5388 5389 5390 5391
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5392
	p4d_t *p4d;
5393 5394 5395 5396
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5397 5398 5399
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5400
	pud = pud_alloc(mm, p4d, addr);
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5412
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5413 5414 5415 5416

	return pte;
}

5417 5418 5419 5420
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5421 5422
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5423 5424 5425
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5426 5427
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5428 5429
{
	pgd_t *pgd;
5430
	p4d_t *p4d;
5431 5432
	pud_t *pud;
	pmd_t *pmd;
5433 5434

	pgd = pgd_offset(mm, addr);
5435 5436 5437 5438 5439
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5440

5441
	pud = pud_offset(p4d, addr);
5442 5443
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5444
		return (pte_t *)pud;
5445
	if (!pud_present(*pud))
5446
		return NULL;
5447
	/* must have a valid entry and size to go further */
5448

5449 5450 5451
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5452 5453
}

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5467 5468 5469 5470 5471 5472 5473 5474
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5475
struct page * __weak
5476
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5477
		pmd_t *pmd, int flags)
5478
{
5479 5480
	struct page *page = NULL;
	spinlock_t *ptl;
5481
	pte_t pte;
J
John Hubbard 已提交
5482 5483 5484 5485 5486 5487

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5488 5489 5490 5491 5492 5493 5494 5495 5496
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5497 5498
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5499
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5512
	} else {
5513
		if (is_hugetlb_entry_migration(pte)) {
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5525 5526 5527
	return page;
}

5528
struct page * __weak
5529
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5530
		pud_t *pud, int flags)
5531
{
J
John Hubbard 已提交
5532
	if (flags & (FOLL_GET | FOLL_PIN))
5533
		return NULL;
5534

5535
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5536 5537
}

5538 5539 5540
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5541
	if (flags & (FOLL_GET | FOLL_PIN))
5542 5543 5544 5545 5546
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5547 5548
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5549 5550
	bool ret = true;

5551
	spin_lock(&hugetlb_lock);
5552 5553
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
5554
	    !get_page_unless_zero(page)) {
5555 5556 5557
		ret = false;
		goto unlock;
	}
5558
	ClearHPageMigratable(page);
5559
	list_move_tail(&page->lru, list);
5560
unlock:
5561
	spin_unlock(&hugetlb_lock);
5562
	return ret;
5563 5564 5565 5566 5567
}

void putback_active_hugepage(struct page *page)
{
	spin_lock(&hugetlb_lock);
5568
	SetHPageMigratable(page);
5569 5570 5571 5572
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
5591
	if (HPageTemporary(newpage)) {
5592 5593 5594
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

5595 5596
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
5597 5598 5599 5600 5601 5602 5603 5604 5605

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5645
		char name[CMA_MAX_NAME];
5646 5647 5648 5649

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5650
		snprintf(name, sizeof(name), "hugetlb%d", nid);
5651
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5652
						 0, false, name,
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */