hugetlb.c 118.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg)
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

384 385 386 387 388 389 390 391 392
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
393
		if (!nrg) {
394
			resv->adds_in_progress--;
395 396 397 398 399 400 401 402 403 404
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
405

406 407 408
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
421
			goto out;
422

L
Lucas De Marchi 已提交
423
		/* We overlap with this area, if it extends further than
424 425 426 427 428 429 430 431
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
432 433 434 435 436 437 438 439

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
440 441 442
	return chg;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

462
/*
463 464 465 466 467 468 469 470 471 472 473 474
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
475
 */
476
static long region_del(struct resv_map *resv, long f, long t)
477
{
478
	struct list_head *head = &resv->regions;
479
	struct file_region *rg, *trg;
480 481
	struct file_region *nrg = NULL;
	long del = 0;
482

483
retry:
484
	spin_lock(&resv->lock);
485 486 487 488
	list_for_each_entry_safe(rg, trg, head, link) {
		if (rg->to <= f)
			continue;
		if (rg->from >= t)
489 490
			break;

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
525
			break;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
542
	}
543 544

	spin_unlock(&resv->lock);
545 546
	kfree(nrg);
	return del;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

571 572 573 574
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
575
static long region_count(struct resv_map *resv, long f, long t)
576
{
577
	struct list_head *head = &resv->regions;
578 579 580
	struct file_region *rg;
	long chg = 0;

581
	spin_lock(&resv->lock);
582 583
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
584 585
		long seg_from;
		long seg_to;
586 587 588 589 590 591 592 593 594 595 596

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
597
	spin_unlock(&resv->lock);
598 599 600 601

	return chg;
}

602 603 604 605
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
606 607
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
608
{
609 610
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
611 612
}

613 614 615 616 617 618
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

632
	return 1UL << huge_page_shift(hstate);
633
}
634
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635

636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

649 650 651 652 653 654 655
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
656
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657

658 659 660 661 662 663 664 665 666
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
667 668 669 670 671 672 673 674 675
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
676
 */
677 678 679 680 681 682 683 684 685 686 687
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

688
struct resv_map *resv_map_alloc(void)
689 690
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 692 693 694 695
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
696
		return NULL;
697
	}
698 699

	kref_init(&resv_map->refs);
700
	spin_lock_init(&resv_map->lock);
701 702
	INIT_LIST_HEAD(&resv_map->regions);

703 704 705 706 707 708
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

709 710 711
	return resv_map;
}

712
void resv_map_release(struct kref *ref)
713 714
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 716
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
717 718

	/* Clear out any active regions before we release the map. */
719
	region_del(resv_map, 0, LONG_MAX);
720 721 722 723 724 725 726 727 728

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

729 730 731
	kfree(resv_map);
}

732 733 734 735 736
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

737
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738
{
739
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 741 742 743 744 745 746
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
747 748
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
749
	}
750 751
}

752
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753
{
754 755
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756

757 758
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
759 760 761 762
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
763 764
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 766

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 768 769 770
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
771
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 773

	return (get_vma_private_data(vma) & flag) != 0;
774 775
}

776
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 778
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
	if (!(vma->vm_flags & VM_MAYSHARE))
781 782 783 784
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
785
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786
{
787 788 789 790 791 792 793 794 795 796 797
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798
			return true;
799
		else
800
			return false;
801
	}
802 803

	/* Shared mappings always use reserves */
804 805 806 807 808 809 810 811 812 813 814 815 816
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
817 818 819 820 821

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
822
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823
		return true;
824

825
	return false;
826 827
}

828
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
829 830
{
	int nid = page_to_nid(page);
831
	list_move(&page->lru, &h->hugepage_freelists[nid]);
832 833
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
834 835
}

836 837 838 839
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

840 841 842 843 844 845 846 847
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
848
		return NULL;
849
	list_move(&page->lru, &h->hugepage_activelist);
850
	set_page_refcounted(page);
851 852 853 854 855
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

856 857 858
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
859
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 861 862 863 864
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

865 866
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
867 868
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
869
{
870
	struct page *page = NULL;
871
	struct mempolicy *mpol;
872
	nodemask_t *nodemask;
873
	struct zonelist *zonelist;
874 875
	struct zone *zone;
	struct zoneref *z;
876
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
877

878 879 880 881 882
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
883
	if (!vma_has_reserves(vma, chg) &&
884
			h->free_huge_pages - h->resv_huge_pages == 0)
885
		goto err;
886

887
	/* If reserves cannot be used, ensure enough pages are in the pool */
888
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889
		goto err;
890

891
retry_cpuset:
892
	cpuset_mems_cookie = read_mems_allowed_begin();
893
	zonelist = huge_zonelist(vma, address,
894
					htlb_alloc_mask(h), &mpol, &nodemask);
895

896 897
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
898
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 900
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
901 902 903 904 905
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

906
				SetPagePrivate(page);
907
				h->resv_huge_pages--;
908 909
				break;
			}
A
Andrew Morton 已提交
910
		}
L
Linus Torvalds 已提交
911
	}
912

913
	mpol_cond_put(mpol);
914
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915
		goto retry_cpuset;
L
Linus Torvalds 已提交
916
	return page;
917 918 919

err:
	return NULL;
L
Linus Torvalds 已提交
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1133
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1134 1135
{
	int i;
1136

1137 1138
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1139

1140 1141 1142
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1143 1144
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1145 1146
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1147
	}
1148
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
1149 1150
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
1151 1152 1153 1154 1155 1156
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1195
void free_huge_page(struct page *page)
1196
{
1197 1198 1199 1200
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1201
	struct hstate *h = page_hstate(page);
1202
	int nid = page_to_nid(page);
1203 1204
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1205
	bool restore_reserve;
1206

1207
	set_page_private(page, 0);
1208
	page->mapping = NULL;
1209
	BUG_ON(page_count(page));
1210
	BUG_ON(page_mapcount(page));
1211
	restore_reserve = PagePrivate(page);
1212
	ClearPagePrivate(page);
1213

1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1222
	spin_lock(&hugetlb_lock);
1223
	clear_page_huge_active(page);
1224 1225
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1226 1227 1228
	if (restore_reserve)
		h->resv_huge_pages++;

1229
	if (h->surplus_huge_pages_node[nid]) {
1230 1231
		/* remove the page from active list */
		list_del(&page->lru);
1232 1233 1234
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1235
	} else {
1236
		arch_clear_hugepage_flags(page);
1237
		enqueue_huge_page(h, page);
1238
	}
1239 1240 1241
	spin_unlock(&hugetlb_lock);
}

1242
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243
{
1244
	INIT_LIST_HEAD(&page->lru);
1245 1246
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1247
	set_hugetlb_cgroup(page, NULL);
1248 1249
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1250 1251 1252 1253
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1254
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 1256 1257 1258 1259 1260 1261 1262
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1263
	__ClearPageReserved(page);
1264
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1278
		set_page_count(p, 0);
1279
		p->first_page = page;
1280 1281 1282
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1283 1284 1285
	}
}

A
Andrew Morton 已提交
1286 1287 1288 1289 1290
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1291 1292 1293 1294 1295 1296
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1297
	return get_compound_page_dtor(page) == free_huge_page;
1298
}
1299 1300
EXPORT_SYMBOL_GPL(PageHuge);

1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1310
	return get_compound_page_dtor(page_head) == free_huge_page;
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1330
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1331 1332
{
	struct page *page;
1333

1334
	page = __alloc_pages_node(nid,
1335
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336
						__GFP_REPEAT|__GFP_NOWARN,
1337
		huge_page_order(h));
L
Linus Torvalds 已提交
1338
	if (page) {
1339
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1340
	}
1341 1342 1343 1344

	return page;
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1367 1368 1369 1370 1371 1372
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1373 1374
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1375
{
1376
	int nr_nodes, node;
1377 1378
	int ret = 0;

1379
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 1381 1382 1383
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1384 1385
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1386
			struct page *page =
1387
				list_entry(h->hugepage_freelists[node].next,
1388 1389 1390
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1391
			h->free_huge_pages_node[node]--;
1392 1393
			if (acct_surplus) {
				h->surplus_huge_pages--;
1394
				h->surplus_huge_pages_node[node]--;
1395
			}
1396 1397
			update_and_free_page(h, page);
			ret = 1;
1398
			break;
1399
		}
1400
	}
1401 1402 1403 1404

	return ret;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1432 1433 1434
	if (!hugepages_supported())
		return;

1435 1436
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 1438 1439
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1458 1459 1460 1461 1462 1463
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1464
	 */
D
Dave Hansen 已提交
1465
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1482 1483
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1516 1517
{
	struct page *page;
1518
	unsigned int r_nid;
1519

1520
	if (hstate_is_gigantic(h))
1521 1522
		return NULL;

1523 1524 1525 1526 1527 1528
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1529 1530
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1531
	}
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1556
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1557 1558 1559
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1560 1561
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1562 1563 1564
	}
	spin_unlock(&hugetlb_lock);

1565
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1566 1567

	spin_lock(&hugetlb_lock);
1568
	if (page) {
1569
		INIT_LIST_HEAD(&page->lru);
1570
		r_nid = page_to_nid(page);
1571
		set_compound_page_dtor(page, free_huge_page);
1572
		set_hugetlb_cgroup(page, NULL);
1573 1574 1575
		/*
		 * We incremented the global counters already
		 */
1576 1577
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1578
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1579
	} else {
1580 1581
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1582
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1583
	}
1584
	spin_unlock(&hugetlb_lock);
1585 1586 1587 1588

	return page;
}

1589 1590 1591 1592 1593
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1594
static
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1605
static
1606 1607 1608 1609 1610 1611
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1612 1613 1614 1615 1616 1617 1618
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1619
	struct page *page = NULL;
1620 1621

	spin_lock(&hugetlb_lock);
1622 1623
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1624 1625
	spin_unlock(&hugetlb_lock);

1626
	if (!page)
1627
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1628 1629 1630 1631

	return page;
}

1632
/*
L
Lucas De Marchi 已提交
1633
 * Increase the hugetlb pool such that it can accommodate a reservation
1634 1635
 * of size 'delta'.
 */
1636
static int gather_surplus_pages(struct hstate *h, int delta)
1637 1638 1639 1640 1641
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1642
	bool alloc_ok = true;
1643

1644
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1645
	if (needed <= 0) {
1646
		h->resv_huge_pages += delta;
1647
		return 0;
1648
	}
1649 1650 1651 1652 1653 1654 1655 1656

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1657
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1658 1659 1660 1661
		if (!page) {
			alloc_ok = false;
			break;
		}
1662 1663
		list_add(&page->lru, &surplus_list);
	}
1664
	allocated += i;
1665 1666 1667 1668 1669 1670

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1671 1672
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1683 1684
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1685
	 * needed to accommodate the reservation.  Add the appropriate number
1686
	 * of pages to the hugetlb pool and free the extras back to the buddy
1687 1688 1689
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1690 1691
	 */
	needed += allocated;
1692
	h->resv_huge_pages += delta;
1693
	ret = 0;
1694

1695
	/* Free the needed pages to the hugetlb pool */
1696
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1697 1698
		if ((--needed) < 0)
			break;
1699 1700 1701 1702 1703
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1704
		VM_BUG_ON_PAGE(page_count(page), page);
1705
		enqueue_huge_page(h, page);
1706
	}
1707
free:
1708
	spin_unlock(&hugetlb_lock);
1709 1710

	/* Free unnecessary surplus pages to the buddy allocator */
1711 1712
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1713
	spin_lock(&hugetlb_lock);
1714 1715 1716 1717 1718 1719 1720 1721

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1722
 * Called with hugetlb_lock held.
1723
 */
1724 1725
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1726 1727 1728
{
	unsigned long nr_pages;

1729
	/* Uncommit the reservation */
1730
	h->resv_huge_pages -= unused_resv_pages;
1731

1732
	/* Cannot return gigantic pages currently */
1733
	if (hstate_is_gigantic(h))
1734 1735
		return;

1736
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1737

1738 1739
	/*
	 * We want to release as many surplus pages as possible, spread
1740 1741 1742 1743 1744
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1745 1746
	 */
	while (nr_pages--) {
1747
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1748
			break;
1749
		cond_resched_lock(&hugetlb_lock);
1750 1751 1752
	}
}

1753

1754
/*
1755
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1756
 * are used by the huge page allocation routines to manage reservations.
1757 1758 1759 1760 1761 1762
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1763 1764 1765
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1766 1767 1768 1769 1770 1771
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1772
 */
1773 1774 1775
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1776
	VMA_END_RESV,
1777
};
1778 1779
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1780
				enum vma_resv_mode mode)
1781
{
1782 1783
	struct resv_map *resv;
	pgoff_t idx;
1784
	long ret;
1785

1786 1787
	resv = vma_resv_map(vma);
	if (!resv)
1788
		return 1;
1789

1790
	idx = vma_hugecache_offset(h, vma, addr);
1791 1792
	switch (mode) {
	case VMA_NEEDS_RESV:
1793
		ret = region_chg(resv, idx, idx + 1);
1794 1795 1796 1797
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1798
	case VMA_END_RESV:
1799 1800 1801 1802 1803 1804
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1805

1806
	if (vma->vm_flags & VM_MAYSHARE)
1807
		return ret;
1808
	else
1809
		return ret < 0 ? ret : 0;
1810
}
1811 1812

static long vma_needs_reservation(struct hstate *h,
1813
			struct vm_area_struct *vma, unsigned long addr)
1814
{
1815
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1816
}
1817

1818 1819 1820
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1821 1822 1823
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1824
static void vma_end_reservation(struct hstate *h,
1825 1826
			struct vm_area_struct *vma, unsigned long addr)
{
1827
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1828 1829
}

1830
struct page *alloc_huge_page(struct vm_area_struct *vma,
1831
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1832
{
1833
	struct hugepage_subpool *spool = subpool_vma(vma);
1834
	struct hstate *h = hstate_vma(vma);
1835
	struct page *page;
1836 1837
	long map_chg, map_commit;
	long gbl_chg;
1838 1839
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1840

1841
	idx = hstate_index(h);
1842
	/*
1843 1844 1845
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1846
	 */
1847 1848
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1849
		return ERR_PTR(-ENOMEM);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1861
			vma_end_reservation(h, vma, addr);
1862
			return ERR_PTR(-ENOSPC);
1863
		}
L
Linus Torvalds 已提交
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1877
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1878 1879 1880
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1881
	spin_lock(&hugetlb_lock);
1882 1883 1884 1885 1886 1887
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1888
	if (!page) {
1889
		spin_unlock(&hugetlb_lock);
1890
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1891 1892 1893
		if (!page)
			goto out_uncharge_cgroup;

1894 1895
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1896
		/* Fall through */
K
Ken Chen 已提交
1897
	}
1898 1899
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1900

1901
	set_page_private(page, (unsigned long)spool);
1902

1903 1904
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1919
	return page;
1920 1921 1922 1923

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1924
	if (map_chg || avoid_reserve)
1925
		hugepage_subpool_put_pages(spool, 1);
1926
	vma_end_reservation(h, vma, addr);
1927
	return ERR_PTR(-ENOSPC);
1928 1929
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1944
int __weak alloc_bootmem_huge_page(struct hstate *h)
1945 1946
{
	struct huge_bootmem_page *m;
1947
	int nr_nodes, node;
1948

1949
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1950 1951
		void *addr;

1952 1953 1954
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1955 1956 1957 1958 1959 1960 1961
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1962
			goto found;
1963 1964 1965 1966 1967
		}
	}
	return 0;

found:
1968
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1969 1970 1971 1972 1973 1974
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1975
static void __init prep_compound_huge_page(struct page *page, int order)
1976 1977 1978 1979 1980 1981 1982
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1983 1984 1985 1986 1987 1988 1989
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1990 1991 1992 1993
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1994 1995
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1996 1997 1998
#else
		page = virt_to_page(m);
#endif
1999
		WARN_ON(page_count(page) != 1);
2000
		prep_compound_huge_page(page, h->order);
2001
		WARN_ON(PageReserved(page));
2002
		prep_new_huge_page(h, page, page_to_nid(page));
2003 2004 2005 2006 2007 2008
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2009
		if (hstate_is_gigantic(h))
2010
			adjust_managed_page_count(page, 1 << h->order);
2011 2012 2013
	}
}

2014
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2015 2016
{
	unsigned long i;
2017

2018
	for (i = 0; i < h->max_huge_pages; ++i) {
2019
		if (hstate_is_gigantic(h)) {
2020 2021
			if (!alloc_bootmem_huge_page(h))
				break;
2022
		} else if (!alloc_fresh_huge_page(h,
2023
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2024 2025
			break;
	}
2026
	h->max_huge_pages = i;
2027 2028 2029 2030 2031 2032 2033
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2034 2035 2036
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2037
		/* oversize hugepages were init'ed in early boot */
2038
		if (!hstate_is_gigantic(h))
2039
			hugetlb_hstate_alloc_pages(h);
2040
	}
2041
	VM_BUG_ON(minimum_order == UINT_MAX);
2042 2043
}

A
Andi Kleen 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2055 2056 2057 2058 2059
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2060
		char buf[32];
2061
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2062 2063
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2064 2065 2066
	}
}

L
Linus Torvalds 已提交
2067
#ifdef CONFIG_HIGHMEM
2068 2069
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2070
{
2071 2072
	int i;

2073
	if (hstate_is_gigantic(h))
2074 2075
		return;

2076
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2077
		struct page *page, *next;
2078 2079 2080
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2081
				return;
L
Linus Torvalds 已提交
2082 2083 2084
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2085
			update_and_free_page(h, page);
2086 2087
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2088 2089 2090 2091
		}
	}
}
#else
2092 2093
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2094 2095 2096 2097
{
}
#endif

2098 2099 2100 2101 2102
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2103 2104
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2105
{
2106
	int nr_nodes, node;
2107 2108 2109

	VM_BUG_ON(delta != -1 && delta != 1);

2110 2111 2112 2113
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2114
		}
2115 2116 2117 2118 2119
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2120
		}
2121 2122
	}
	return 0;
2123

2124 2125 2126 2127
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2128 2129
}

2130
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2131 2132
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2133
{
2134
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2135

2136
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2137 2138
		return h->max_huge_pages;

2139 2140 2141 2142
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2143 2144 2145 2146 2147 2148
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2149
	 */
L
Linus Torvalds 已提交
2150
	spin_lock(&hugetlb_lock);
2151
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2152
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2153 2154 2155
			break;
	}

2156
	while (count > persistent_huge_pages(h)) {
2157 2158 2159 2160 2161 2162
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2163 2164 2165 2166
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2167 2168 2169 2170
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2171 2172 2173
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2174 2175 2176 2177 2178 2179 2180 2181
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2182 2183 2184 2185 2186 2187 2188 2189
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2190
	 */
2191
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2192
	min_count = max(count, min_count);
2193
	try_to_free_low(h, min_count, nodes_allowed);
2194
	while (min_count < persistent_huge_pages(h)) {
2195
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2196
			break;
2197
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2198
	}
2199
	while (count < persistent_huge_pages(h)) {
2200
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2201 2202 2203
			break;
	}
out:
2204
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2205
	spin_unlock(&hugetlb_lock);
2206
	return ret;
L
Linus Torvalds 已提交
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2219 2220 2221
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2222 2223
{
	int i;
2224

2225
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2226 2227 2228
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2229
			return &hstates[i];
2230 2231 2232
		}

	return kobj_to_node_hstate(kobj, nidp);
2233 2234
}

2235
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2236 2237
					struct kobj_attribute *attr, char *buf)
{
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2249
}
2250

2251 2252 2253
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2254 2255
{
	int err;
2256
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2257

2258
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2259 2260 2261 2262
		err = -EINVAL;
		goto out;
	}

2263 2264 2265 2266 2267 2268 2269
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2270
			nodes_allowed = &node_states[N_MEMORY];
2271 2272 2273 2274 2275 2276 2277 2278 2279
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2280
		nodes_allowed = &node_states[N_MEMORY];
2281

2282
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2283

2284
	if (nodes_allowed != &node_states[N_MEMORY])
2285 2286 2287
		NODEMASK_FREE(nodes_allowed);

	return len;
2288 2289 2290
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2291 2292
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2319
	return nr_hugepages_store_common(false, kobj, buf, len);
2320 2321 2322
}
HSTATE_ATTR(nr_hugepages);

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2338
	return nr_hugepages_store_common(true, kobj, buf, len);
2339 2340 2341 2342 2343
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2344 2345 2346
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2347
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2348 2349
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2350

2351 2352 2353 2354 2355
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2356
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2357

2358
	if (hstate_is_gigantic(h))
2359 2360
		return -EINVAL;

2361
	err = kstrtoul(buf, 10, &input);
2362
	if (err)
2363
		return err;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2387 2388 2389 2390 2391 2392
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2393
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2394 2395 2396 2397 2398 2399 2400
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2412 2413 2414 2415 2416 2417 2418 2419 2420
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2421 2422 2423
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2424 2425 2426 2427 2428 2429 2430
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2431 2432 2433
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2434 2435
{
	int retval;
2436
	int hi = hstate_index(h);
2437

2438 2439
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2440 2441
		return -ENOMEM;

2442
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2443
	if (retval)
2444
		kobject_put(hstate_kobjs[hi]);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2459 2460
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2461
		if (err)
2462
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2463 2464 2465
	}
}

2466 2467 2468 2469
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2470 2471 2472
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2473 2474 2475 2476 2477 2478
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2479
static struct node_hstate node_hstates[MAX_NUMNODES];
2480 2481

/*
2482
 * A subset of global hstate attributes for node devices
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2496
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2519
 * Unregister hstate attributes from a single node device.
2520 2521
 * No-op if no hstate attributes attached.
 */
2522
static void hugetlb_unregister_node(struct node *node)
2523 2524
{
	struct hstate *h;
2525
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2526 2527

	if (!nhs->hugepages_kobj)
2528
		return;		/* no hstate attributes */
2529

2530 2531 2532 2533 2534
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2535
		}
2536
	}
2537 2538 2539 2540 2541 2542

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2543
 * hugetlb module exit:  unregister hstate attributes from node devices
2544 2545 2546 2547 2548 2549 2550
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2551
	 * disable node device registrations.
2552 2553 2554 2555 2556 2557 2558
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2559
		hugetlb_unregister_node(node_devices[nid]);
2560 2561 2562
}

/*
2563
 * Register hstate attributes for a single node device.
2564 2565
 * No-op if attributes already registered.
 */
2566
static void hugetlb_register_node(struct node *node)
2567 2568
{
	struct hstate *h;
2569
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2570 2571 2572 2573 2574 2575
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2576
							&node->dev.kobj);
2577 2578 2579 2580 2581 2582 2583 2584
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2585 2586
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2587 2588 2589 2590 2591 2592 2593
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2594
 * hugetlb init time:  register hstate attributes for all registered node
2595 2596
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2597
 */
2598
static void __init hugetlb_register_all_nodes(void)
2599 2600 2601
{
	int nid;

2602
	for_each_node_state(nid, N_MEMORY) {
2603
		struct node *node = node_devices[nid];
2604
		if (node->dev.id == nid)
2605 2606 2607 2608
			hugetlb_register_node(node);
	}

	/*
2609
	 * Let the node device driver know we're here so it can
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2631 2632 2633 2634
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2635 2636
	hugetlb_unregister_all_nodes();

2637
	for_each_hstate(h) {
2638
		kobject_put(hstate_kobjs[hstate_index(h)]);
2639 2640 2641
	}

	kobject_put(hugepages_kobj);
2642
	kfree(hugetlb_fault_mutex_table);
2643 2644 2645 2646 2647
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2648 2649
	int i;

2650
	if (!hugepages_supported())
2651
		return 0;
2652

2653 2654 2655 2656
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2657
	}
2658
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2659 2660
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2661 2662

	hugetlb_init_hstates();
2663
	gather_bootmem_prealloc();
2664 2665 2666
	report_hugepages();

	hugetlb_sysfs_init();
2667
	hugetlb_register_all_nodes();
2668
	hugetlb_cgroup_file_init();
2669

2670 2671 2672 2673 2674
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2675
	hugetlb_fault_mutex_table =
2676
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2677
	BUG_ON(!hugetlb_fault_mutex_table);
2678 2679

	for (i = 0; i < num_fault_mutexes; i++)
2680
		mutex_init(&hugetlb_fault_mutex_table[i]);
2681 2682 2683 2684 2685 2686 2687 2688
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2689 2690
	unsigned long i;

2691
	if (size_to_hstate(PAGE_SIZE << order)) {
2692
		pr_warning("hugepagesz= specified twice, ignoring\n");
2693 2694
		return;
	}
2695
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2696
	BUG_ON(order == 0);
2697
	h = &hstates[hugetlb_max_hstate++];
2698 2699
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2700 2701 2702 2703
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2704
	INIT_LIST_HEAD(&h->hugepage_activelist);
2705 2706
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2707 2708
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2709

2710 2711 2712
	parsed_hstate = h;
}

2713
static int __init hugetlb_nrpages_setup(char *s)
2714 2715
{
	unsigned long *mhp;
2716
	static unsigned long *last_mhp;
2717 2718

	/*
2719
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2720 2721
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2722
	if (!hugetlb_max_hstate)
2723 2724 2725 2726
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2727
	if (mhp == last_mhp) {
2728 2729
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2730 2731 2732
		return 1;
	}

2733 2734 2735
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2736 2737 2738 2739 2740
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2741
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2742 2743 2744 2745
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2746 2747
	return 1;
}
2748 2749 2750 2751 2752 2753 2754 2755
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2769 2770 2771
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2772
{
2773
	struct hstate *h = &default_hstate;
2774
	unsigned long tmp = h->max_huge_pages;
2775
	int ret;
2776

2777 2778 2779
	if (!hugepages_supported())
		return -ENOTSUPP;

2780 2781
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2782 2783 2784
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2785

2786 2787 2788
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2789 2790
out:
	return ret;
L
Linus Torvalds 已提交
2791
}
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2810
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2811
			void __user *buffer,
2812 2813
			size_t *length, loff_t *ppos)
{
2814
	struct hstate *h = &default_hstate;
2815
	unsigned long tmp;
2816
	int ret;
2817

2818 2819 2820
	if (!hugepages_supported())
		return -ENOTSUPP;

2821
	tmp = h->nr_overcommit_huge_pages;
2822

2823
	if (write && hstate_is_gigantic(h))
2824 2825
		return -EINVAL;

2826 2827
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2828 2829 2830
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2831 2832 2833 2834 2835 2836

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2837 2838
out:
	return ret;
2839 2840
}

L
Linus Torvalds 已提交
2841 2842
#endif /* CONFIG_SYSCTL */

2843
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2844
{
2845
	struct hstate *h = &default_hstate;
2846 2847
	if (!hugepages_supported())
		return;
2848
	seq_printf(m,
2849 2850 2851 2852 2853
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2854 2855 2856 2857 2858
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2859 2860 2861 2862
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2863
	struct hstate *h = &default_hstate;
2864 2865
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2866 2867
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2868 2869
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2870 2871 2872
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2873 2874
}

2875 2876 2877 2878 2879
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2880 2881 2882
	if (!hugepages_supported())
		return;

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2893 2894 2895 2896 2897 2898
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2899 2900 2901
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2902 2903 2904 2905 2906 2907
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2908 2909
}

2910
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2933
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2934 2935
			goto out;

2936 2937
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2938 2939 2940 2941 2942 2943
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2944
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2945 2946 2947 2948 2949 2950

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2951 2952
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2953
	struct resv_map *resv = vma_resv_map(vma);
2954 2955 2956 2957 2958

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2959
	 * has a reference to the reservation map it cannot disappear until
2960 2961 2962
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2963
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2964
		kref_get(&resv->refs);
2965 2966
}

2967 2968
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2969
	struct hstate *h = hstate_vma(vma);
2970
	struct resv_map *resv = vma_resv_map(vma);
2971
	struct hugepage_subpool *spool = subpool_vma(vma);
2972
	unsigned long reserve, start, end;
2973
	long gbl_reserve;
2974

2975 2976
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2977

2978 2979
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2980

2981
	reserve = (end - start) - region_count(resv, start, end);
2982

2983 2984 2985
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2986 2987 2988 2989 2990 2991
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2992
	}
2993 2994
}

L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3001
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3002 3003
{
	BUG();
N
Nick Piggin 已提交
3004
	return 0;
L
Linus Torvalds 已提交
3005 3006
}

3007
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3008
	.fault = hugetlb_vm_op_fault,
3009
	.open = hugetlb_vm_op_open,
3010
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3011 3012
};

3013 3014
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3015 3016 3017
{
	pte_t entry;

3018
	if (writable) {
3019 3020
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3021
	} else {
3022 3023
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3024 3025 3026
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3027
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3028 3029 3030 3031

	return entry;
}

3032 3033 3034 3035 3036
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3037
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3038
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3039
		update_mmu_cache(vma, address, ptep);
3040 3041
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3067

D
David Gibson 已提交
3068 3069 3070 3071 3072
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3073
	unsigned long addr;
3074
	int cow;
3075 3076
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3077 3078 3079
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3080 3081

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3082

3083 3084 3085 3086 3087
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3088
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3089
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3090 3091 3092
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3093
		dst_pte = huge_pte_alloc(dst, addr, sz);
3094 3095 3096 3097
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3098 3099 3100 3101 3102

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3103 3104 3105
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3124
			if (cow) {
3125
				huge_ptep_set_wrprotect(src, addr, src_pte);
3126 3127 3128
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3129
			entry = huge_ptep_get(src_pte);
3130 3131
			ptepage = pte_page(entry);
			get_page(ptepage);
3132
			page_dup_rmap(ptepage);
3133
			set_huge_pte_at(dst, addr, dst_pte, entry);
3134
			hugetlb_count_add(pages_per_huge_page(h), dst);
3135
		}
3136 3137
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3138 3139
	}

3140 3141 3142 3143
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3144 3145
}

3146 3147 3148
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3149
{
3150
	int force_flush = 0;
D
David Gibson 已提交
3151 3152
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3153
	pte_t *ptep;
D
David Gibson 已提交
3154
	pte_t pte;
3155
	spinlock_t *ptl;
D
David Gibson 已提交
3156
	struct page *page;
3157 3158
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3159 3160
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3161

D
David Gibson 已提交
3162
	WARN_ON(!is_vm_hugetlb_page(vma));
3163 3164
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3165

3166
	tlb_start_vma(tlb, vma);
3167
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3168
	address = start;
3169
again:
3170
	for (; address < end; address += sz) {
3171
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3172
		if (!ptep)
3173 3174
			continue;

3175
		ptl = huge_pte_lock(h, mm, ptep);
3176
		if (huge_pmd_unshare(mm, &address, ptep))
3177
			goto unlock;
3178

3179 3180
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3181
			goto unlock;
3182 3183

		/*
3184 3185
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3186
		 */
3187
		if (unlikely(!pte_present(pte))) {
3188
			huge_pte_clear(mm, address, ptep);
3189
			goto unlock;
3190
		}
3191 3192

		page = pte_page(pte);
3193 3194 3195 3196 3197 3198 3199
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3200
				goto unlock;
3201 3202 3203 3204 3205 3206 3207 3208 3209

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3210
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3211
		tlb_remove_tlb_entry(tlb, ptep, address);
3212
		if (huge_pte_dirty(pte))
3213
			set_page_dirty(page);
3214

3215
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3216 3217
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3218
		if (force_flush) {
3219
			address += sz;
3220
			spin_unlock(ptl);
3221
			break;
3222
		}
3223
		/* Bail out after unmapping reference page if supplied */
3224 3225
		if (ref_page) {
			spin_unlock(ptl);
3226
			break;
3227 3228 3229
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3230
	}
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3241
	}
3242
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3243
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3244
}
D
David Gibson 已提交
3245

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3258
	 * is to clear it before releasing the i_mmap_rwsem. This works
3259
	 * because in the context this is called, the VMA is about to be
3260
	 * destroyed and the i_mmap_rwsem is held.
3261 3262 3263 3264
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3265
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3266
			  unsigned long end, struct page *ref_page)
3267
{
3268 3269 3270 3271 3272
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3273
	tlb_gather_mmu(&tlb, mm, start, end);
3274 3275
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3276 3277
}

3278 3279 3280 3281 3282 3283
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3284 3285
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3286
{
3287
	struct hstate *h = hstate_vma(vma);
3288 3289 3290 3291 3292 3293 3294 3295
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3296
	address = address & huge_page_mask(h);
3297 3298
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3299
	mapping = file_inode(vma->vm_file)->i_mapping;
3300

3301 3302 3303 3304 3305
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3306
	i_mmap_lock_write(mapping);
3307
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3308 3309 3310 3311
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3312 3313 3314 3315 3316 3317 3318 3319
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3320 3321 3322 3323 3324 3325 3326 3327
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3328 3329
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3330
	}
3331
	i_mmap_unlock_write(mapping);
3332 3333
}

3334 3335
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3336 3337 3338
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3339
 */
3340
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3341
			unsigned long address, pte_t *ptep, pte_t pte,
3342
			struct page *pagecache_page, spinlock_t *ptl)
3343
{
3344
	struct hstate *h = hstate_vma(vma);
3345
	struct page *old_page, *new_page;
3346
	int ret = 0, outside_reserve = 0;
3347 3348
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3349 3350 3351

	old_page = pte_page(pte);

3352
retry_avoidcopy:
3353 3354
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3355 3356
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3357
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3358
		return 0;
3359 3360
	}

3361 3362 3363 3364 3365 3366 3367 3368 3369
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3370
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3371 3372 3373
			old_page != pagecache_page)
		outside_reserve = 1;

3374
	page_cache_get(old_page);
3375

3376 3377 3378 3379
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3380
	spin_unlock(ptl);
3381
	new_page = alloc_huge_page(vma, address, outside_reserve);
3382

3383
	if (IS_ERR(new_page)) {
3384 3385 3386 3387 3388 3389 3390 3391
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3392
			page_cache_release(old_page);
3393
			BUG_ON(huge_pte_none(pte));
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3406 3407
		}

3408 3409 3410
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3411 3412
	}

3413 3414 3415 3416
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3417
	if (unlikely(anon_vma_prepare(vma))) {
3418 3419
		ret = VM_FAULT_OOM;
		goto out_release_all;
3420
	}
3421

A
Andrea Arcangeli 已提交
3422 3423
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3424
	__SetPageUptodate(new_page);
3425
	set_page_huge_active(new_page);
3426

3427 3428 3429
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3430

3431
	/*
3432
	 * Retake the page table lock to check for racing updates
3433 3434
	 * before the page tables are altered
	 */
3435
	spin_lock(ptl);
3436
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3437
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3438 3439
		ClearPagePrivate(new_page);

3440
		/* Break COW */
3441
		huge_ptep_clear_flush(vma, address, ptep);
3442
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3443 3444
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3445
		page_remove_rmap(old_page);
3446
		hugepage_add_new_anon_rmap(new_page, vma, address);
3447 3448 3449
		/* Make the old page be freed below */
		new_page = old_page;
	}
3450
	spin_unlock(ptl);
3451
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3452
out_release_all:
3453
	page_cache_release(new_page);
3454
out_release_old:
3455
	page_cache_release(old_page);
3456

3457 3458
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3459 3460
}

3461
/* Return the pagecache page at a given address within a VMA */
3462 3463
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3464 3465
{
	struct address_space *mapping;
3466
	pgoff_t idx;
3467 3468

	mapping = vma->vm_file->f_mapping;
3469
	idx = vma_hugecache_offset(h, vma, address);
3470 3471 3472 3473

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3474 3475 3476 3477 3478
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3511
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3512 3513
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3514
{
3515
	struct hstate *h = hstate_vma(vma);
3516
	int ret = VM_FAULT_SIGBUS;
3517
	int anon_rmap = 0;
A
Adam Litke 已提交
3518 3519
	unsigned long size;
	struct page *page;
3520
	pte_t new_pte;
3521
	spinlock_t *ptl;
A
Adam Litke 已提交
3522

3523 3524 3525
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3526
	 * COW. Warn that such a situation has occurred as it may not be obvious
3527 3528
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3529 3530
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3531 3532 3533
		return ret;
	}

A
Adam Litke 已提交
3534 3535 3536 3537
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3538 3539 3540
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3541
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3542 3543
		if (idx >= size)
			goto out;
3544
		page = alloc_huge_page(vma, address, 0);
3545
		if (IS_ERR(page)) {
3546 3547 3548 3549 3550
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3551 3552
			goto out;
		}
A
Andrea Arcangeli 已提交
3553
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3554
		__SetPageUptodate(page);
3555
		set_page_huge_active(page);
3556

3557
		if (vma->vm_flags & VM_MAYSHARE) {
3558
			int err = huge_add_to_page_cache(page, mapping, idx);
3559 3560 3561 3562 3563 3564
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3565
		} else {
3566
			lock_page(page);
3567 3568 3569 3570
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3571
			anon_rmap = 1;
3572
		}
3573
	} else {
3574 3575 3576 3577 3578 3579
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3580
			ret = VM_FAULT_HWPOISON |
3581
				VM_FAULT_SET_HINDEX(hstate_index(h));
3582 3583
			goto backout_unlocked;
		}
3584
	}
3585

3586 3587 3588 3589 3590 3591
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3592
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3593 3594 3595 3596
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3597
		/* Just decrements count, does not deallocate */
3598
		vma_end_reservation(h, vma, address);
3599
	}
3600

3601 3602
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3603
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3604 3605 3606
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3607
	ret = 0;
3608
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3609 3610
		goto backout;

3611 3612
	if (anon_rmap) {
		ClearPagePrivate(page);
3613
		hugepage_add_new_anon_rmap(page, vma, address);
3614
	} else
3615
		page_dup_rmap(page);
3616 3617 3618 3619
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3620
	hugetlb_count_add(pages_per_huge_page(h), mm);
3621
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622
		/* Optimization, do the COW without a second fault */
3623
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3624 3625
	}

3626
	spin_unlock(ptl);
A
Adam Litke 已提交
3627 3628
	unlock_page(page);
out:
3629
	return ret;
A
Adam Litke 已提交
3630 3631

backout:
3632
	spin_unlock(ptl);
3633
backout_unlocked:
A
Adam Litke 已提交
3634 3635 3636
	unlock_page(page);
	put_page(page);
	goto out;
3637 3638
}

3639
#ifdef CONFIG_SMP
3640
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3665
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666 3667 3668 3669 3670 3671 3672 3673
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3674
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675
			unsigned long address, unsigned int flags)
3676
{
3677
	pte_t *ptep, entry;
3678
	spinlock_t *ptl;
3679
	int ret;
3680 3681
	u32 hash;
	pgoff_t idx;
3682
	struct page *page = NULL;
3683
	struct page *pagecache_page = NULL;
3684
	struct hstate *h = hstate_vma(vma);
3685
	struct address_space *mapping;
3686
	int need_wait_lock = 0;
3687

3688 3689
	address &= huge_page_mask(h);

3690 3691 3692
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3693
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3694
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3695 3696
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3697
			return VM_FAULT_HWPOISON_LARGE |
3698
				VM_FAULT_SET_HINDEX(hstate_index(h));
3699 3700
	}

3701
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3702 3703 3704
	if (!ptep)
		return VM_FAULT_OOM;

3705 3706 3707
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3708 3709 3710 3711 3712
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3713 3714
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715

3716 3717
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3718
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3719
		goto out_mutex;
3720
	}
3721

N
Nick Piggin 已提交
3722
	ret = 0;
3723

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3734 3735 3736 3737 3738 3739 3740 3741
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3742
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3743 3744
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3745
			goto out_mutex;
3746
		}
3747
		/* Just decrements count, does not deallocate */
3748
		vma_end_reservation(h, vma, address);
3749

3750
		if (!(vma->vm_flags & VM_MAYSHARE))
3751 3752 3753 3754
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3755 3756 3757 3758 3759 3760
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3761 3762 3763 3764 3765 3766 3767
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3768 3769 3770 3771
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3772

3773
	get_page(page);
3774

3775
	if (flags & FAULT_FLAG_WRITE) {
3776
		if (!huge_pte_write(entry)) {
3777
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3778
					pagecache_page, ptl);
3779
			goto out_put_page;
3780
		}
3781
		entry = huge_pte_mkdirty(entry);
3782 3783
	}
	entry = pte_mkyoung(entry);
3784 3785
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3786
		update_mmu_cache(vma, address, ptep);
3787 3788 3789 3790
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3791 3792
out_ptl:
	spin_unlock(ptl);
3793 3794 3795 3796 3797

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3798
out_mutex:
3799
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3800 3801 3802 3803 3804 3805 3806 3807 3808
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3809
	return ret;
3810 3811
}

3812 3813 3814 3815
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3816
{
3817 3818
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3819
	unsigned long remainder = *nr_pages;
3820
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3821 3822

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3823
		pte_t *pte;
3824
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3825
		int absent;
A
Adam Litke 已提交
3826
		struct page *page;
D
David Gibson 已提交
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3837 3838
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3839
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3840
		 * first, for the page indexing below to work.
3841 3842
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3843
		 */
3844
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3845 3846
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3847 3848 3849 3850
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3851 3852 3853 3854
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3855
		 */
H
Hugh Dickins 已提交
3856 3857
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3858 3859
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3860 3861 3862
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3863

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3875 3876
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3877
			int ret;
D
David Gibson 已提交
3878

3879 3880
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3881 3882
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3883
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3884
				continue;
D
David Gibson 已提交
3885

A
Adam Litke 已提交
3886 3887 3888 3889
			remainder = 0;
			break;
		}

3890
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3891
		page = pte_page(huge_ptep_get(pte));
3892
same_page:
3893
		if (pages) {
H
Hugh Dickins 已提交
3894
			pages[i] = mem_map_offset(page, pfn_offset);
3895
			get_page_foll(pages[i]);
3896
		}
D
David Gibson 已提交
3897 3898 3899 3900 3901

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3902
		++pfn_offset;
D
David Gibson 已提交
3903 3904
		--remainder;
		++i;
3905
		if (vaddr < vma->vm_end && remainder &&
3906
				pfn_offset < pages_per_huge_page(h)) {
3907 3908 3909 3910 3911 3912
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3913
		spin_unlock(ptl);
D
David Gibson 已提交
3914
	}
3915
	*nr_pages = remainder;
D
David Gibson 已提交
3916 3917
	*position = vaddr;

H
Hugh Dickins 已提交
3918
	return i ? i : -EFAULT;
D
David Gibson 已提交
3919
}
3920

3921
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3922 3923 3924 3925 3926 3927
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3928
	struct hstate *h = hstate_vma(vma);
3929
	unsigned long pages = 0;
3930 3931 3932 3933

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3934
	mmu_notifier_invalidate_range_start(mm, start, end);
3935
	i_mmap_lock_write(vma->vm_file->f_mapping);
3936
	for (; address < end; address += huge_page_size(h)) {
3937
		spinlock_t *ptl;
3938 3939 3940
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3941
		ptl = huge_pte_lock(h, mm, ptep);
3942 3943
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3944
			spin_unlock(ptl);
3945
			continue;
3946
		}
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3967
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3968
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3969
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3970
			set_huge_pte_at(mm, address, ptep, pte);
3971
			pages++;
3972
		}
3973
		spin_unlock(ptl);
3974
	}
3975
	/*
3976
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3977
	 * may have cleared our pud entry and done put_page on the page table:
3978
	 * once we release i_mmap_rwsem, another task can do the final put_page
3979 3980
	 * and that page table be reused and filled with junk.
	 */
3981
	flush_tlb_range(vma, start, end);
3982
	mmu_notifier_invalidate_range(mm, start, end);
3983
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3984
	mmu_notifier_invalidate_range_end(mm, start, end);
3985 3986

	return pages << h->order;
3987 3988
}

3989 3990
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3991
					struct vm_area_struct *vma,
3992
					vm_flags_t vm_flags)
3993
{
3994
	long ret, chg;
3995
	struct hstate *h = hstate_inode(inode);
3996
	struct hugepage_subpool *spool = subpool_inode(inode);
3997
	struct resv_map *resv_map;
3998
	long gbl_reserve;
3999

4000 4001 4002
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4003
	 * without using reserves
4004
	 */
4005
	if (vm_flags & VM_NORESERVE)
4006 4007
		return 0;

4008 4009 4010 4011 4012 4013
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4014
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4015
		resv_map = inode_resv_map(inode);
4016

4017
		chg = region_chg(resv_map, from, to);
4018 4019 4020

	} else {
		resv_map = resv_map_alloc();
4021 4022 4023
		if (!resv_map)
			return -ENOMEM;

4024
		chg = to - from;
4025

4026 4027 4028 4029
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4030 4031 4032 4033
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4034

4035 4036 4037 4038 4039 4040 4041
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4042 4043 4044
		ret = -ENOSPC;
		goto out_err;
	}
4045 4046

	/*
4047
	 * Check enough hugepages are available for the reservation.
4048
	 * Hand the pages back to the subpool if there are not
4049
	 */
4050
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4051
	if (ret < 0) {
4052 4053
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4054
		goto out_err;
K
Ken Chen 已提交
4055
	}
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4086
	return 0;
4087
out_err:
4088 4089
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4090 4091
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4092
	return ret;
4093 4094
}

4095 4096
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4097
{
4098
	struct hstate *h = hstate_inode(inode);
4099
	struct resv_map *resv_map = inode_resv_map(inode);
4100
	long chg = 0;
4101
	struct hugepage_subpool *spool = subpool_inode(inode);
4102
	long gbl_reserve;
K
Ken Chen 已提交
4103

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4115
	spin_lock(&inode->i_lock);
4116
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4117 4118
	spin_unlock(&inode->i_lock);

4119 4120 4121 4122 4123 4124
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4125 4126

	return 0;
4127
}
4128

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4140 4141
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4155
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4156 4157 4158 4159 4160 4161 4162 4163 4164
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4165 4166
		return true;
	return false;
4167 4168 4169 4170 4171 4172 4173
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4174
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4188
	spinlock_t *ptl;
4189 4190 4191 4192

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4193
	i_mmap_lock_write(mapping);
4194 4195 4196 4197 4198 4199 4200 4201
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4202
				mm_inc_nr_pmds(mm);
4203 4204 4205 4206 4207 4208 4209 4210 4211
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4212 4213
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4214
	if (pud_none(*pud)) {
4215 4216
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4217
	} else {
4218
		put_page(virt_to_page(spte));
4219 4220
		mm_inc_nr_pmds(mm);
	}
4221
	spin_unlock(ptl);
4222 4223
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4224
	i_mmap_unlock_write(mapping);
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4235
 * called with page table lock held.
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4251
	mm_dec_nr_pmds(mm);
4252 4253 4254
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4255 4256 4257 4258 4259 4260
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4261 4262 4263 4264 4265

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4266
#define want_pmd_share()	(0)
4267 4268
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4327
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4328
		pmd_t *pmd, int flags)
4329
{
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4342
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4358 4359 4360
	return page;
}

4361
struct page * __weak
4362
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4363
		pud_t *pud, int flags)
4364
{
4365 4366
	if (flags & FOLL_GET)
		return NULL;
4367

4368
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4369 4370
}

4371 4372
#ifdef CONFIG_MEMORY_FAILURE

4373 4374 4375 4376
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4377
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4378 4379 4380
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4381
	int ret = -EBUSY;
4382 4383

	spin_lock(&hugetlb_lock);
4384 4385 4386 4387 4388
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4389 4390 4391 4392 4393 4394 4395
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4396
		set_page_refcounted(hpage);
4397 4398 4399 4400
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4401
	spin_unlock(&hugetlb_lock);
4402
	return ret;
4403
}
4404
#endif
4405 4406 4407

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4408 4409
	bool ret = true;

4410
	VM_BUG_ON_PAGE(!PageHead(page), page);
4411
	spin_lock(&hugetlb_lock);
4412 4413 4414 4415 4416
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4417
	list_move_tail(&page->lru, list);
4418
unlock:
4419
	spin_unlock(&hugetlb_lock);
4420
	return ret;
4421 4422 4423 4424
}

void putback_active_hugepage(struct page *page)
{
4425
	VM_BUG_ON_PAGE(!PageHead(page), page);
4426
	spin_lock(&hugetlb_lock);
4427
	set_page_huge_active(page);
4428 4429 4430 4431
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}