hugetlb.c 155.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static inline bool PageHugeFreed(struct page *head)
{
	return page_private(head + 4) == -1UL;
}

static inline void SetPageHugeFreed(struct page *head)
{
	set_page_private(head + 4, -1UL);
}

static inline void ClearPageHugeFreed(struct page *head)
{
	set_page_private(head + 4, 0);
}

97 98 99
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

100 101 102 103 104 105 106
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
107
	 * remain, give up any reservations based on minimum size and
108 109 110 111 112
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
113
		kfree(spool);
114
	}
115 116
}

117 118
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
119 120 121
{
	struct hugepage_subpool *spool;

122
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 124 125 126 127
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
128 129 130 131 132 133 134 135 136
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
137 138 139 140 141 142 143 144 145 146 147 148

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

149 150 151
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
152
 * request.  Otherwise, return the number of pages by which the
153 154
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
155
 * a subpool minimum size must be maintained.
156 157
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 159
				      long delta)
{
160
	long ret = delta;
161 162

	if (!spool)
163
		return ret;
164 165

	spin_lock(&spool->lock);
166 167 168 169 170 171 172 173

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
174 175
	}

176 177
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
193 194 195
	return ret;
}

196 197 198 199 200 201 202
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 204
				       long delta)
{
205 206
	long ret = delta;

207
	if (!spool)
208
		return delta;
209 210

	spin_lock(&spool->lock);
211 212 213 214

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

215 216
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 218 219 220 221 222 223 224 225 226 227 228 229 230
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
231
	unlock_or_release_subpool(spool);
232 233

	return ret;
234 235 236 237 238 239 240 241 242
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
243
	return subpool_inode(file_inode(vma->vm_file));
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

326
		rg = prg;
327 328 329 330 331 332 333 334 335 336 337 338
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);
	}
}

339 340 341 342 343 344 345
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
346 347
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348
				     struct hugetlb_cgroup *h_cg,
349
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
350
{
351
	long add = 0;
M
Mina Almasry 已提交
352
	struct list_head *head = &resv->regions;
353
	long last_accounted_offset = f;
M
Mina Almasry 已提交
354 355
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

356 357
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
373

374 375 376
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
377 378 379
		if (rg->from > t)
			break;

380 381 382 383 384
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
385
			if (!regions_needed) {
386 387
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
388 389
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
390
				list_add(&nrg->link, rg->link.prev);
391
				coalesce_file_region(resv, nrg);
392
			} else
393 394 395 396 397 398 399 400 401 402 403
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
404
		if (!regions_needed) {
405 406
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
407
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408
			list_add(&nrg->link, rg->link.prev);
409
			coalesce_file_region(resv, nrg);
410
		} else
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
449
		 */
450 451 452 453 454 455 456 457
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
458 459
		}

460 461
		spin_lock(&resv->lock);

462 463
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
464 465
	}

466
	return 0;
M
Mina Almasry 已提交
467

468 469 470 471 472 473
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
474 475
}

476 477
/*
 * Add the huge page range represented by [f, t) to the reserve
478 479 480 481 482
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
483
 *
484 485 486 487
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
488
 * this operation and we were not able to allocate, it returns -ENOMEM.
489 490 491
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
492
 */
493
static long region_add(struct resv_map *resv, long f, long t,
494 495
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
496
{
497
	long add = 0, actual_regions_needed = 0;
498

499
	spin_lock(&resv->lock);
500 501 502
retry:

	/* Count how many regions are actually needed to execute this add. */
503 504
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
505

506
	/*
507 508 509 510 511 512 513
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
514
	 */
515 516 517 518 519 520 521 522
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
523

524 525 526 527
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
528

529
		goto retry;
530 531
	}

532
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533 534

	resv->adds_in_progress -= in_regions_needed;
535

536
	spin_unlock(&resv->lock);
537 538
	VM_BUG_ON(add < 0);
	return add;
539 540
}

541 542 543 544 545 546 547
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
548 549 550 551 552 553 554
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
555 556 557 558 559
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
560
 */
561 562
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
563 564 565
{
	long chg = 0;

566
	spin_lock(&resv->lock);
567

568
	/* Count how many hugepages in this range are NOT represented. */
569
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570
				       out_regions_needed);
571

572 573
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
574

575 576
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
577

578
	resv->adds_in_progress += *out_regions_needed;
579 580

	spin_unlock(&resv->lock);
581 582 583
	return chg;
}

584 585 586 587 588
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
589 590 591
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
592 593 594 595 596
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
597 598
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
599 600 601
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
602
	resv->adds_in_progress -= regions_needed;
603 604 605
	spin_unlock(&resv->lock);
}

606
/*
607 608 609 610 611 612 613 614 615 616 617 618
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
619
 */
620
static long region_del(struct resv_map *resv, long f, long t)
621
{
622
	struct list_head *head = &resv->regions;
623
	struct file_region *rg, *trg;
624 625
	struct file_region *nrg = NULL;
	long del = 0;
626

627
retry:
628
	spin_lock(&resv->lock);
629
	list_for_each_entry_safe(rg, trg, head, link) {
630 631 632 633 634 635 636 637
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638
			continue;
639

640
		if (rg->from >= t)
641 642
			break;

643 644 645 646 647 648 649 650 651 652 653 654 655
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
656

657 658 659 660 661 662 663 664 665
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
666 667
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, t - f);
668 669 670 671

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
672 673 674

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

675 676 677 678 679 680 681
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
682
			break;
683 684 685 686
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
687 688
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
689 690 691 692 693 694
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
695 696 697
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);

698 699 700
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
701 702
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
703 704 705

			del += rg->to - f;
			rg->to = f;
706
		}
707
	}
708 709

	spin_unlock(&resv->lock);
710 711
	kfree(nrg);
	return del;
712 713
}

714 715 716 717 718 719 720 721 722
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
723
void hugetlb_fix_reserve_counts(struct inode *inode)
724 725 726 727 728
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729
	if (rsv_adjust) {
730 731 732 733 734 735
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

736 737 738 739
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
740
static long region_count(struct resv_map *resv, long f, long t)
741
{
742
	struct list_head *head = &resv->regions;
743 744 745
	struct file_region *rg;
	long chg = 0;

746
	spin_lock(&resv->lock);
747 748
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
749 750
		long seg_from;
		long seg_to;
751 752 753 754 755 756 757 758 759 760 761

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
762
	spin_unlock(&resv->lock);
763 764 765 766

	return chg;
}

767 768 769 770
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
771 772
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
773
{
774 775
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
776 777
}

778 779 780 781 782
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
783
EXPORT_SYMBOL_GPL(linear_hugepage_index);
784

785 786 787 788 789 790
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
791 792 793
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
794
}
795
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796

797 798 799
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
800 801
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
802
 */
803
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804 805 806 807
{
	return vma_kernel_pagesize(vma);
}

808 809 810 811 812 813 814
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
815
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816

817 818 819 820 821 822 823 824 825
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
826 827 828 829 830 831 832 833 834
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
835
 */
836 837 838 839 840 841 842 843 844 845 846
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

866
struct resv_map *resv_map_alloc(void)
867 868
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869 870 871 872 873
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
874
		return NULL;
875
	}
876 877

	kref_init(&resv_map->refs);
878
	spin_lock_init(&resv_map->lock);
879 880
	INIT_LIST_HEAD(&resv_map->regions);

881
	resv_map->adds_in_progress = 0;
882 883 884 885 886 887 888
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889 890 891 892 893

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

894 895 896
	return resv_map;
}

897
void resv_map_release(struct kref *ref)
898 899
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900 901
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
902 903

	/* Clear out any active regions before we release the map. */
904
	region_del(resv_map, 0, LONG_MAX);
905 906 907 908 909 910 911 912 913

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

914 915 916
	kfree(resv_map);
}

917 918
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
919 920 921 922 923 924 925 926 927
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
928 929
}

930
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931
{
932
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 934 935 936 937 938 939
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
940 941
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
942
	}
943 944
}

945
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946
{
947 948
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949

950 951
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
952 953 954 955
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
956 957
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958 959

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 961 962 963
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
964
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965 966

	return (get_vma_private_data(vma) & flag) != 0;
967 968
}

969
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970 971
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
972
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973
	if (!(vma->vm_flags & VM_MAYSHARE))
974 975 976 977
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
978
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979
{
980 981 982 983 984 985 986 987 988 989 990
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991
			return true;
992
		else
993
			return false;
994
	}
995 996

	/* Shared mappings always use reserves */
997 998 999 1000 1001
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1002
		 * fallocate.  In this case, there really are no reserves to
1003 1004 1005 1006 1007 1008 1009
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1010 1011 1012 1013 1014

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1036

1037
	return false;
1038 1039
}

1040
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1041 1042
{
	int nid = page_to_nid(page);
1043
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1044 1045
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1046
	SetPageHugeFreed(page);
L
Linus Torvalds 已提交
1047 1048
}

1049
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 1051
{
	struct page *page;
1052 1053 1054 1055 1056
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1057

1058 1059 1060 1061 1062
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1063
		ClearPageHugeFreed(page);
1064 1065 1066
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1067 1068
	}

1069
	return NULL;
1070 1071
}

1072 1073
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1074
{
1075 1076 1077 1078
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1079
	int node = NUMA_NO_NODE;
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1097 1098 1099 1100 1101

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1102 1103 1104
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1105 1106 1107
	return NULL;
}

1108 1109
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1110 1111
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1112
{
1113
	struct page *page;
1114
	struct mempolicy *mpol;
1115
	gfp_t gfp_mask;
1116
	nodemask_t *nodemask;
1117
	int nid;
L
Linus Torvalds 已提交
1118

1119 1120 1121 1122 1123
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1124
	if (!vma_has_reserves(vma, chg) &&
1125
			h->free_huge_pages - h->resv_huge_pages == 0)
1126
		goto err;
1127

1128
	/* If reserves cannot be used, ensure enough pages are in the pool */
1129
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130
		goto err;
1131

1132 1133
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134 1135 1136 1137
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1138
	}
1139

1140
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1141
	return page;
1142 1143 1144

err:
	return NULL;
L
Linus Torvalds 已提交
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1156
	nid = next_node_in(nid, *nodes_allowed);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1218
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219
static void destroy_compound_gigantic_page(struct page *page,
1220
					unsigned int order)
1221 1222 1223 1224 1225
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1226
	atomic_set(compound_mapcount_ptr(page), 0);
1227 1228 1229
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);

1230
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231
		clear_compound_head(p);
1232 1233 1234 1235
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
1236
	page[1].compound_nr = 0;
1237 1238 1239
	__ClearPageHead(page);
}

1240
static void free_gigantic_page(struct page *page, unsigned int order)
1241
{
1242 1243 1244 1245
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1246 1247
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248
		return;
1249
#endif
1250

1251 1252 1253
	free_contig_range(page_to_pfn(page), 1 << order);
}

1254
#ifdef CONFIG_CONTIG_ALLOC
1255 1256
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1257
{
1258
	unsigned long nr_pages = 1UL << huge_page_order(h);
1259 1260
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1261

1262 1263
#ifdef CONFIG_CMA
	{
1264 1265 1266
		struct page *page;
		int node;

1267 1268 1269
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1270 1271 1272
			if (page)
				return page;
		}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1285
	}
1286
#endif
1287

1288
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289 1290 1291
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293 1294 1295 1296 1297 1298 1299
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1300

1301
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303 1304 1305 1306
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1307
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308
static inline void destroy_compound_gigantic_page(struct page *page,
1309
						unsigned int order) { }
1310 1311
#endif

1312
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1313 1314
{
	int i;
1315

1316
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1317
		return;
1318

1319 1320 1321
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1322 1323
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1324 1325
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1326
	}
1327
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1328
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1329
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1330
	set_page_refcounted(page);
1331
	if (hstate_is_gigantic(h)) {
1332 1333 1334 1335 1336
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1337 1338
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1339
		spin_lock(&hugetlb_lock);
1340 1341 1342
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1356 1357 1358 1359 1360 1361 1362 1363
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
1364
	return PageHeadHuge(page) && PagePrivate(&page[1]);
1365 1366 1367
}

/* never called for tail page */
1368
void set_page_huge_active(struct page *page)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1402
static void __free_huge_page(struct page *page)
1403
{
1404 1405 1406 1407
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1408
	struct hstate *h = page_hstate(page);
1409
	int nid = page_to_nid(page);
1410 1411
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1412
	bool restore_reserve;
1413

1414 1415
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1416 1417 1418

	set_page_private(page, 0);
	page->mapping = NULL;
1419
	restore_reserve = PagePrivate(page);
1420
	ClearPagePrivate(page);
1421

1422
	/*
1423 1424 1425 1426 1427 1428
	 * If PagePrivate() was set on page, page allocation consumed a
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1429
	 */
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1440

1441
	spin_lock(&hugetlb_lock);
1442
	clear_page_huge_active(page);
1443 1444
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1445 1446
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1447 1448 1449
	if (restore_reserve)
		h->resv_huge_pages++;

1450 1451 1452 1453 1454
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1455 1456
		/* remove the page from active list */
		list_del(&page->lru);
1457 1458 1459
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1460
	} else {
1461
		arch_clear_hugepage_flags(page);
1462
		enqueue_huge_page(h, page);
1463
	}
1464 1465 1466
	spin_unlock(&hugetlb_lock);
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1515
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1516
{
1517
	INIT_LIST_HEAD(&page->lru);
1518
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1519
	set_hugetlb_cgroup(page, NULL);
1520
	set_hugetlb_cgroup_rsvd(page, NULL);
1521
	spin_lock(&hugetlb_lock);
1522 1523
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1524
	ClearPageHugeFreed(page);
1525 1526 1527
	spin_unlock(&hugetlb_lock);
}

1528
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1529 1530 1531 1532 1533 1534 1535
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1536
	__ClearPageReserved(page);
1537
	__SetPageHead(page);
1538
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1539 1540 1541 1542
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1543
		 * too.  Otherwise drivers using get_user_pages() to access tail
1544 1545 1546 1547 1548 1549 1550 1551
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1552
		set_page_count(p, 0);
1553
		set_compound_head(p, page);
1554
	}
1555
	atomic_set(compound_mapcount_ptr(page), -1);
1556 1557 1558

	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
1559 1560
}

A
Andrew Morton 已提交
1561 1562 1563 1564 1565
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1566 1567 1568 1569 1570 1571
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1572
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1573
}
1574 1575
EXPORT_SYMBOL_GPL(PageHuge);

1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1585
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1586 1587
}

1588 1589 1590
/*
 * Find and lock address space (mapping) in write mode.
 *
1591 1592 1593
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1594 1595 1596
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1597
	struct address_space *mapping = page_mapping(hpage);
1598 1599 1600 1601 1602 1603 1604

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1605
	return NULL;
1606 1607
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1625
static struct page *alloc_buddy_huge_page(struct hstate *h,
1626 1627
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1628
{
1629
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1630
	struct page *page;
1631
	bool alloc_try_hard = true;
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1645 1646 1647 1648 1649 1650 1651
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1669 1670 1671
	return page;
}

1672 1673 1674 1675 1676
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1677 1678
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1679 1680 1681 1682 1683 1684 1685
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1686
				nid, nmask, node_alloc_noretry);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1697 1698 1699 1700
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1701 1702
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1703 1704 1705
{
	struct page *page;
	int nr_nodes, node;
1706
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1707 1708

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1709 1710
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1711
		if (page)
1712 1713 1714
			break;
	}

1715 1716
	if (!page)
		return 0;
1717

1718 1719 1720
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1721 1722
}

1723 1724 1725 1726 1727 1728
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1729 1730
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1731
{
1732
	int nr_nodes, node;
1733 1734
	int ret = 0;

1735
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1736 1737 1738 1739
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1740 1741
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1742
			struct page *page =
1743
				list_entry(h->hugepage_freelists[node].next,
1744 1745 1746
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1747
			h->free_huge_pages_node[node]--;
1748 1749
			if (acct_surplus) {
				h->surplus_huge_pages--;
1750
				h->surplus_huge_pages_node[node]--;
1751
			}
1752 1753
			update_and_free_page(h, page);
			ret = 1;
1754
			break;
1755
		}
1756
	}
1757 1758 1759 1760

	return ret;
}

1761 1762
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1763 1764 1765 1766 1767 1768 1769
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1770
 */
1771
int dissolve_free_huge_page(struct page *page)
1772
{
1773
	int rc = -EBUSY;
1774

1775
retry:
1776 1777 1778 1779
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1780
	spin_lock(&hugetlb_lock);
1781 1782 1783 1784 1785 1786
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1787 1788 1789
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1790
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1791
			goto out;
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
		if (unlikely(!PageHugeFreed(head))) {
			spin_unlock(&hugetlb_lock);
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

1812 1813 1814 1815 1816 1817 1818 1819
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1820
		list_del(&head->lru);
1821 1822
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1823
		h->max_huge_pages--;
1824
		update_and_free_page(h, head);
1825
		rc = 0;
1826
	}
1827
out:
1828
	spin_unlock(&hugetlb_lock);
1829
	return rc;
1830 1831 1832 1833 1834
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1835 1836
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1837 1838
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1839
 */
1840
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1841 1842
{
	unsigned long pfn;
1843
	struct page *page;
1844
	int rc = 0;
1845

1846
	if (!hugepages_supported())
1847
		return rc;
1848

1849 1850
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1851 1852 1853
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1854
	}
1855 1856

	return rc;
1857 1858
}

1859 1860 1861
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1862
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1863
		int nid, nodemask_t *nmask)
1864
{
1865
	struct page *page = NULL;
1866

1867
	if (hstate_is_gigantic(h))
1868 1869
		return NULL;

1870
	spin_lock(&hugetlb_lock);
1871 1872
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1873 1874
	spin_unlock(&hugetlb_lock);

1875
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1876
	if (!page)
1877
		return NULL;
1878 1879

	spin_lock(&hugetlb_lock);
1880 1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1889
		spin_unlock(&hugetlb_lock);
1890
		put_page(page);
1891
		return NULL;
1892 1893
	} else {
		h->surplus_huge_pages++;
1894
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1895
	}
1896 1897

out_unlock:
1898
	spin_unlock(&hugetlb_lock);
1899 1900 1901 1902

	return page;
}

1903
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1904
				     int nid, nodemask_t *nmask)
1905 1906 1907 1908 1909 1910
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1911
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1924 1925 1926
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1927
static
1928
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1929 1930
		struct vm_area_struct *vma, unsigned long addr)
{
1931 1932 1933 1934 1935 1936 1937
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1938
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1939 1940 1941
	mpol_cond_put(mpol);

	return page;
1942 1943
}

1944
/* page migration callback function */
1945
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1946
		nodemask_t *nmask, gfp_t gfp_mask)
1947 1948 1949
{
	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1950 1951 1952 1953 1954 1955
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1956 1957 1958 1959
		}
	}
	spin_unlock(&hugetlb_lock);

1960
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1961 1962
}

1963
/* mempolicy aware migration callback */
1964 1965
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1966 1967 1968 1969 1970 1971 1972 1973 1974
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1975
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1976 1977 1978 1979 1980
	mpol_cond_put(mpol);

	return page;
}

1981
/*
L
Lucas De Marchi 已提交
1982
 * Increase the hugetlb pool such that it can accommodate a reservation
1983 1984
 * of size 'delta'.
 */
1985
static int gather_surplus_pages(struct hstate *h, long delta)
1986
	__must_hold(&hugetlb_lock)
1987 1988 1989
{
	struct list_head surplus_list;
	struct page *page, *tmp;
1990 1991 1992
	int ret;
	long i;
	long needed, allocated;
1993
	bool alloc_ok = true;
1994

1995
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1996
	if (needed <= 0) {
1997
		h->resv_huge_pages += delta;
1998
		return 0;
1999
	}
2000 2001 2002 2003 2004 2005 2006 2007

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
2008
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2009
				NUMA_NO_NODE, NULL);
2010 2011 2012 2013
		if (!page) {
			alloc_ok = false;
			break;
		}
2014
		list_add(&page->lru, &surplus_list);
2015
		cond_resched();
2016
	}
2017
	allocated += i;
2018 2019 2020 2021 2022 2023

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
2024 2025
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2036 2037
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2038
	 * needed to accommodate the reservation.  Add the appropriate number
2039
	 * of pages to the hugetlb pool and free the extras back to the buddy
2040 2041 2042
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2043 2044
	 */
	needed += allocated;
2045
	h->resv_huge_pages += delta;
2046
	ret = 0;
2047

2048
	/* Free the needed pages to the hugetlb pool */
2049
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2050 2051
		int zeroed;

2052 2053
		if ((--needed) < 0)
			break;
2054 2055 2056 2057
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
2058 2059
		zeroed = put_page_testzero(page);
		VM_BUG_ON_PAGE(!zeroed, page);
2060
		enqueue_huge_page(h, page);
2061
	}
2062
free:
2063
	spin_unlock(&hugetlb_lock);
2064 2065

	/* Free unnecessary surplus pages to the buddy allocator */
2066 2067
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2068
	spin_lock(&hugetlb_lock);
2069 2070 2071 2072 2073

	return ret;
}

/*
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2086
 */
2087 2088
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2089 2090 2091
{
	unsigned long nr_pages;

2092
	/* Cannot return gigantic pages currently */
2093
	if (hstate_is_gigantic(h))
2094
		goto out;
2095

2096 2097 2098 2099
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2100
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2101

2102 2103
	/*
	 * We want to release as many surplus pages as possible, spread
2104 2105 2106
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2107
	 * free_pool_huge_page() will balance the freed pages across the
2108
	 * on-line nodes with memory and will handle the hstate accounting.
2109 2110 2111 2112
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2113 2114
	 */
	while (nr_pages--) {
2115 2116
		h->resv_huge_pages--;
		unused_resv_pages--;
2117
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2118
			goto out;
2119
		cond_resched_lock(&hugetlb_lock);
2120
	}
2121 2122 2123 2124

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2125 2126
}

2127

2128
/*
2129
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2130
 * are used by the huge page allocation routines to manage reservations.
2131 2132 2133 2134 2135 2136
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2137 2138 2139
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2140 2141 2142 2143 2144 2145
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2146 2147 2148 2149 2150
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2151
 */
2152 2153 2154
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2155
	VMA_END_RESV,
2156
	VMA_ADD_RESV,
2157
};
2158 2159
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2160
				enum vma_resv_mode mode)
2161
{
2162 2163
	struct resv_map *resv;
	pgoff_t idx;
2164
	long ret;
2165
	long dummy_out_regions_needed;
2166

2167 2168
	resv = vma_resv_map(vma);
	if (!resv)
2169
		return 1;
2170

2171
	idx = vma_hugecache_offset(h, vma, addr);
2172 2173
	switch (mode) {
	case VMA_NEEDS_RESV:
2174 2175 2176 2177 2178 2179
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2180 2181
		break;
	case VMA_COMMIT_RESV:
2182
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2183 2184
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2185
		break;
2186
	case VMA_END_RESV:
2187
		region_abort(resv, idx, idx + 1, 1);
2188 2189
		ret = 0;
		break;
2190
	case VMA_ADD_RESV:
2191
		if (vma->vm_flags & VM_MAYSHARE) {
2192
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2193 2194 2195 2196
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2197 2198 2199
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2200 2201 2202
	default:
		BUG();
	}
2203

2204
	if (vma->vm_flags & VM_MAYSHARE)
2205
		return ret;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2225
	else
2226
		return ret < 0 ? ret : 0;
2227
}
2228 2229

static long vma_needs_reservation(struct hstate *h,
2230
			struct vm_area_struct *vma, unsigned long addr)
2231
{
2232
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2233
}
2234

2235 2236 2237
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2238 2239 2240
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2241
static void vma_end_reservation(struct hstate *h,
2242 2243
			struct vm_area_struct *vma, unsigned long addr)
{
2244
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2297
struct page *alloc_huge_page(struct vm_area_struct *vma,
2298
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2299
{
2300
	struct hugepage_subpool *spool = subpool_vma(vma);
2301
	struct hstate *h = hstate_vma(vma);
2302
	struct page *page;
2303 2304
	long map_chg, map_commit;
	long gbl_chg;
2305 2306
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2307
	bool deferred_reserve;
2308

2309
	idx = hstate_index(h);
2310
	/*
2311 2312 2313
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2314
	 */
2315 2316
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2317
		return ERR_PTR(-ENOMEM);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2329
			vma_end_reservation(h, vma, addr);
2330
			return ERR_PTR(-ENOSPC);
2331
		}
L
Linus Torvalds 已提交
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2355
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2356
	if (ret)
2357
		goto out_uncharge_cgroup_reservation;
2358

L
Linus Torvalds 已提交
2359
	spin_lock(&hugetlb_lock);
2360 2361 2362 2363 2364 2365
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2366
	if (!page) {
2367
		spin_unlock(&hugetlb_lock);
2368
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2369 2370
		if (!page)
			goto out_uncharge_cgroup;
2371 2372 2373 2374
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2375
		spin_lock(&hugetlb_lock);
2376
		list_add(&page->lru, &h->hugepage_activelist);
2377
		/* Fall through */
K
Ken Chen 已提交
2378
	}
2379
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2380 2381 2382 2383 2384 2385 2386 2387
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2388
	spin_unlock(&hugetlb_lock);
2389

2390
	set_page_private(page, (unsigned long)spool);
2391

2392 2393
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2407 2408 2409
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2410
	}
2411
	return page;
2412 2413 2414

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2415 2416 2417 2418
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2419
out_subpool_put:
2420
	if (map_chg || avoid_reserve)
2421
		hugepage_subpool_put_pages(spool, 1);
2422
	vma_end_reservation(h, vma, addr);
2423
	return ERR_PTR(-ENOSPC);
2424 2425
}

2426 2427 2428
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2429 2430
{
	struct huge_bootmem_page *m;
2431
	int nr_nodes, node;
2432

2433
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2434 2435
		void *addr;

2436
		addr = memblock_alloc_try_nid_raw(
2437
				huge_page_size(h), huge_page_size(h),
2438
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2439 2440 2441 2442 2443 2444 2445
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2446
			goto found;
2447 2448 2449 2450 2451
		}
	}
	return 0;

found:
2452
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2453
	/* Put them into a private list first because mem_map is not up yet */
2454
	INIT_LIST_HEAD(&m->list);
2455 2456 2457 2458 2459
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2460 2461
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2462 2463 2464 2465 2466 2467 2468
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2469 2470 2471 2472 2473 2474
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2475
		struct page *page = virt_to_page(m);
2476
		struct hstate *h = m->hstate;
2477

2478
		WARN_ON(page_count(page) != 1);
2479
		prep_compound_huge_page(page, h->order);
2480
		WARN_ON(PageReserved(page));
2481
		prep_new_huge_page(h, page, page_to_nid(page));
2482 2483
		put_page(page); /* free it into the hugepage allocator */

2484 2485 2486 2487 2488 2489
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2490
		if (hstate_is_gigantic(h))
2491
			adjust_managed_page_count(page, 1 << h->order);
2492
		cond_resched();
2493 2494 2495
	}
}

2496
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2497 2498
{
	unsigned long i;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2518

2519
	for (i = 0; i < h->max_huge_pages; ++i) {
2520
		if (hstate_is_gigantic(h)) {
2521
			if (hugetlb_cma_size) {
2522 2523 2524
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
				break;
			}
2525 2526
			if (!alloc_bootmem_huge_page(h))
				break;
2527
		} else if (!alloc_pool_huge_page(h,
2528 2529
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2530
			break;
2531
		cond_resched();
L
Linus Torvalds 已提交
2532
	}
2533 2534 2535
	if (i < h->max_huge_pages) {
		char buf[32];

2536
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2537 2538 2539 2540
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2541 2542

	kfree(node_alloc_noretry);
2543 2544 2545 2546 2547 2548 2549
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2550 2551 2552
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2553
		/* oversize hugepages were init'ed in early boot */
2554
		if (!hstate_is_gigantic(h))
2555
			hugetlb_hstate_alloc_pages(h);
2556
	}
2557
	VM_BUG_ON(minimum_order == UINT_MAX);
2558 2559 2560 2561 2562 2563 2564
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2565
		char buf[32];
2566 2567

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2569
			buf, h->free_huge_pages);
2570 2571 2572
	}
}

L
Linus Torvalds 已提交
2573
#ifdef CONFIG_HIGHMEM
2574 2575
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2576
{
2577 2578
	int i;

2579
	if (hstate_is_gigantic(h))
2580 2581
		return;

2582
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2583
		struct page *page, *next;
2584 2585 2586
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2587
				return;
L
Linus Torvalds 已提交
2588 2589 2590
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2591
			update_and_free_page(h, page);
2592 2593
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2594 2595 2596 2597
		}
	}
}
#else
2598 2599
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2600 2601 2602 2603
{
}
#endif

2604 2605 2606 2607 2608
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2609 2610
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2611
{
2612
	int nr_nodes, node;
2613 2614 2615

	VM_BUG_ON(delta != -1 && delta != 1);

2616 2617 2618 2619
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2620
		}
2621 2622 2623 2624 2625
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2626
		}
2627 2628
	}
	return 0;
2629

2630 2631 2632 2633
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2634 2635
}

2636
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2637
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2638
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2639
{
2640
	unsigned long min_count, ret;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2652

2653 2654
	spin_lock(&hugetlb_lock);

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2685
			NODEMASK_FREE(node_alloc_noretry);
2686 2687 2688 2689
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2690

2691 2692 2693 2694
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2695
	 *
2696
	 * We might race with alloc_surplus_huge_page() here and be unable
2697 2698 2699 2700
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2701
	 */
2702
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2703
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2704 2705 2706
			break;
	}

2707
	while (count > persistent_huge_pages(h)) {
2708 2709 2710 2711 2712 2713
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2714 2715 2716 2717

		/* yield cpu to avoid soft lockup */
		cond_resched();

2718 2719
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2720 2721 2722 2723
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2724 2725 2726
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2727 2728 2729 2730 2731 2732 2733 2734
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2735 2736 2737 2738
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2739
	 * alloc_surplus_huge_page() is checking the global counter,
2740 2741 2742
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2743
	 */
2744
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2745
	min_count = max(count, min_count);
2746
	try_to_free_low(h, min_count, nodes_allowed);
2747
	while (min_count < persistent_huge_pages(h)) {
2748
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2749
			break;
2750
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2751
	}
2752
	while (count < persistent_huge_pages(h)) {
2753
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2754 2755 2756
			break;
	}
out:
2757
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2758
	spin_unlock(&hugetlb_lock);
2759

2760 2761
	NODEMASK_FREE(node_alloc_noretry);

2762
	return 0;
L
Linus Torvalds 已提交
2763 2764
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2775 2776 2777
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2778 2779
{
	int i;
2780

2781
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2782 2783 2784
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2785
			return &hstates[i];
2786 2787 2788
		}

	return kobj_to_node_hstate(kobj, nidp);
2789 2790
}

2791
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2792 2793
					struct kobj_attribute *attr, char *buf)
{
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

2804
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2805
}
2806

2807 2808 2809
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2810 2811
{
	int err;
2812
	nodemask_t nodes_allowed, *n_mask;
2813

2814 2815
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2816

2817 2818 2819 2820 2821
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2822 2823 2824 2825 2826
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2827
		/*
2828 2829
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2830
		 */
2831 2832
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2833
	}
2834

2835
	err = set_max_huge_pages(h, count, nid, n_mask);
2836

2837
	return err ? err : len;
2838 2839
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2857 2858 2859 2860 2861 2862 2863 2864 2865
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2866
	return nr_hugepages_store_common(false, kobj, buf, len);
2867 2868 2869
}
HSTATE_ATTR(nr_hugepages);

2870 2871 2872 2873 2874 2875 2876
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2877 2878
					   struct kobj_attribute *attr,
					   char *buf)
2879 2880 2881 2882 2883 2884 2885
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2886
	return nr_hugepages_store_common(true, kobj, buf, len);
2887 2888 2889 2890 2891
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2892 2893 2894
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2895
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2896
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2897
}
2898

2899 2900 2901 2902 2903
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2904
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2905

2906
	if (hstate_is_gigantic(h))
2907 2908
		return -EINVAL;

2909
	err = kstrtoul(buf, 10, &input);
2910
	if (err)
2911
		return err;
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

2934
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2935 2936 2937 2938 2939 2940
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2941
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2943 2944 2945 2946 2947 2948
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

2959
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2960 2961 2962 2963 2964 2965 2966 2967 2968
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2969 2970 2971
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2972 2973 2974
	NULL,
};

2975
static const struct attribute_group hstate_attr_group = {
2976 2977 2978
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2979 2980
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2981
				    const struct attribute_group *hstate_attr_group)
2982 2983
{
	int retval;
2984
	int hi = hstate_index(h);
2985

2986 2987
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2988 2989
		return -ENOMEM;

2990
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2991
	if (retval)
2992
		kobject_put(hstate_kobjs[hi]);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3007 3008
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3009
		if (err)
3010
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3011 3012 3013
	}
}

3014 3015 3016 3017
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3018 3019 3020
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3021 3022 3023 3024 3025 3026
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3027
static struct node_hstate node_hstates[MAX_NUMNODES];
3028 3029

/*
3030
 * A subset of global hstate attributes for node devices
3031 3032 3033 3034 3035 3036 3037 3038
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3039
static const struct attribute_group per_node_hstate_attr_group = {
3040 3041 3042 3043
	.attrs = per_node_hstate_attrs,
};

/*
3044
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3067
 * Unregister hstate attributes from a single node device.
3068 3069
 * No-op if no hstate attributes attached.
 */
3070
static void hugetlb_unregister_node(struct node *node)
3071 3072
{
	struct hstate *h;
3073
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3074 3075

	if (!nhs->hugepages_kobj)
3076
		return;		/* no hstate attributes */
3077

3078 3079 3080 3081 3082
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3083
		}
3084
	}
3085 3086 3087 3088 3089 3090 3091

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3092
 * Register hstate attributes for a single node device.
3093 3094
 * No-op if attributes already registered.
 */
3095
static void hugetlb_register_node(struct node *node)
3096 3097
{
	struct hstate *h;
3098
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3099 3100 3101 3102 3103 3104
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3105
							&node->dev.kobj);
3106 3107 3108 3109 3110 3111 3112 3113
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3114
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3115
				h->name, node->dev.id);
3116 3117 3118 3119 3120 3121 3122
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3123
 * hugetlb init time:  register hstate attributes for all registered node
3124 3125
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3126
 */
3127
static void __init hugetlb_register_all_nodes(void)
3128 3129 3130
{
	int nid;

3131
	for_each_node_state(nid, N_MEMORY) {
3132
		struct node *node = node_devices[nid];
3133
		if (node->dev.id == nid)
3134 3135 3136 3137
			hugetlb_register_node(node);
	}

	/*
3138
	 * Let the node device driver know we're here so it can
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3158 3159
static int __init hugetlb_init(void)
{
3160 3161
	int i;

3162 3163 3164
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3165
		return 0;
3166
	}
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3196
		}
3197
	}
3198

3199
	hugetlb_cma_check();
3200
	hugetlb_init_hstates();
3201
	gather_bootmem_prealloc();
3202 3203 3204
	report_hugepages();

	hugetlb_sysfs_init();
3205
	hugetlb_register_all_nodes();
3206
	hugetlb_cgroup_file_init();
3207

3208 3209 3210 3211 3212
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3213
	hugetlb_fault_mutex_table =
3214 3215
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3216
	BUG_ON(!hugetlb_fault_mutex_table);
3217 3218

	for (i = 0; i < num_fault_mutexes; i++)
3219
		mutex_init(&hugetlb_fault_mutex_table[i]);
3220 3221
	return 0;
}
3222
subsys_initcall(hugetlb_init);
3223

3224 3225
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3226
{
3227
	return size == HPAGE_SIZE;
3228 3229
}

3230
void __init hugetlb_add_hstate(unsigned int order)
3231 3232
{
	struct hstate *h;
3233 3234
	unsigned long i;

3235 3236 3237
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3238
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3239
	BUG_ON(order == 0);
3240
	h = &hstates[hugetlb_max_hstate++];
3241 3242
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3243 3244
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3245
	INIT_LIST_HEAD(&h->hugepage_activelist);
3246 3247
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3248 3249
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3250

3251 3252 3253
	parsed_hstate = h;
}

3254 3255 3256 3257 3258 3259 3260 3261
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3262 3263
{
	unsigned long *mhp;
3264
	static unsigned long *last_mhp;
3265

3266
	if (!parsed_valid_hugepagesz) {
3267
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3268
		parsed_valid_hugepagesz = true;
3269
		return 0;
3270
	}
3271

3272
	/*
3273 3274 3275 3276
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3277
	 */
3278
	else if (!hugetlb_max_hstate)
3279 3280 3281 3282
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3283
	if (mhp == last_mhp) {
3284 3285
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3286 3287
	}

3288 3289 3290
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3291 3292 3293 3294 3295
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3296
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3297 3298 3299 3300
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3301 3302
	return 1;
}
3303
__setup("hugepages=", hugepages_setup);
3304

3305 3306 3307 3308 3309 3310 3311
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3312
static int __init hugepagesz_setup(char *s)
3313
{
3314
	unsigned long size;
3315 3316 3317
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3318 3319 3320
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3321
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3322 3323 3324
		return 0;
	}

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3348 3349
	}

3350
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3351
	parsed_valid_hugepagesz = true;
3352 3353
	return 1;
}
3354 3355
__setup("hugepagesz=", hugepagesz_setup);

3356 3357 3358 3359
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3360
static int __init default_hugepagesz_setup(char *s)
3361
{
3362 3363
	unsigned long size;

3364 3365 3366 3367 3368 3369
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3370 3371 3372
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3373
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3374 3375 3376
		return 0;
	}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3396 3397
	return 1;
}
3398
__setup("default_hugepagesz=", default_hugepagesz_setup);
3399

3400
static unsigned int allowed_mems_nr(struct hstate *h)
3401 3402 3403
{
	int node;
	unsigned int nr = 0;
3404 3405 3406 3407 3408
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3409

3410 3411 3412 3413 3414
	for_each_node_mask(node, cpuset_current_mems_allowed) {
		if (!mpol_allowed ||
		    (mpol_allowed && node_isset(node, *mpol_allowed)))
			nr += array[node];
	}
3415 3416 3417 3418 3419

	return nr;
}

#ifdef CONFIG_SYSCTL
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

3436 3437
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3438
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3439
{
3440
	struct hstate *h = &default_hstate;
3441
	unsigned long tmp = h->max_huge_pages;
3442
	int ret;
3443

3444
	if (!hugepages_supported())
3445
		return -EOPNOTSUPP;
3446

3447 3448
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3449 3450
	if (ret)
		goto out;
3451

3452 3453 3454
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3455 3456
out:
	return ret;
L
Linus Torvalds 已提交
3457
}
3458

3459
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3460
			  void *buffer, size_t *length, loff_t *ppos)
3461 3462 3463 3464 3465 3466 3467 3468
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3469
			  void *buffer, size_t *length, loff_t *ppos)
3470 3471 3472 3473 3474 3475
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3476
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3477
		void *buffer, size_t *length, loff_t *ppos)
3478
{
3479
	struct hstate *h = &default_hstate;
3480
	unsigned long tmp;
3481
	int ret;
3482

3483
	if (!hugepages_supported())
3484
		return -EOPNOTSUPP;
3485

3486
	tmp = h->nr_overcommit_huge_pages;
3487

3488
	if (write && hstate_is_gigantic(h))
3489 3490
		return -EINVAL;

3491 3492
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
3493 3494
	if (ret)
		goto out;
3495 3496 3497 3498 3499 3500

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3501 3502
out:
	return ret;
3503 3504
}

L
Linus Torvalds 已提交
3505 3506
#endif /* CONFIG_SYSCTL */

3507
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3508
{
3509 3510 3511
	struct hstate *h;
	unsigned long total = 0;

3512 3513
	if (!hugepages_supported())
		return;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3535 3536
}

3537
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
3538
{
3539
	struct hstate *h = &default_hstate;
3540

3541 3542
	if (!hugepages_supported())
		return 0;
3543 3544 3545 3546 3547 3548 3549 3550

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3551 3552
}

3553 3554 3555 3556 3557
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3558 3559 3560
	if (!hugepages_supported())
		return;

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3571 3572 3573 3574 3575 3576
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3577 3578 3579
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3580 3581 3582 3583 3584 3585
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3586 3587
}

3588
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3609 3610 3611 3612 3613 3614
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3615 3616
	 */
	if (delta > 0) {
3617
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3618 3619
			goto out;

3620
		if (delta > allowed_mems_nr(h)) {
3621
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3622 3623 3624 3625 3626 3627
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3628
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3629 3630 3631 3632 3633 3634

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3635 3636
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3637
	struct resv_map *resv = vma_resv_map(vma);
3638 3639 3640 3641 3642

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3643
	 * has a reference to the reservation map it cannot disappear until
3644 3645 3646
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3647
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3648
		kref_get(&resv->refs);
3649 3650
}

3651 3652
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3653
	struct hstate *h = hstate_vma(vma);
3654
	struct resv_map *resv = vma_resv_map(vma);
3655
	struct hugepage_subpool *spool = subpool_vma(vma);
3656
	unsigned long reserve, start, end;
3657
	long gbl_reserve;
3658

3659 3660
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3661

3662 3663
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3664

3665
	reserve = (end - start) - region_count(resv, start, end);
3666
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3667
	if (reserve) {
3668 3669 3670 3671 3672 3673
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3674
	}
3675 3676

	kref_put(&resv->refs, resv_map_release);
3677 3678
}

3679 3680 3681 3682 3683 3684 3685
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3686 3687 3688 3689 3690 3691 3692
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3699
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3700 3701
{
	BUG();
N
Nick Piggin 已提交
3702
	return 0;
L
Linus Torvalds 已提交
3703 3704
}

3705 3706 3707 3708 3709 3710 3711
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3712
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3713
	.fault = hugetlb_vm_op_fault,
3714
	.open = hugetlb_vm_op_open,
3715
	.close = hugetlb_vm_op_close,
3716
	.may_split = hugetlb_vm_op_split,
3717
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3718 3719
};

3720 3721
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3722 3723 3724
{
	pte_t entry;

3725
	if (writable) {
3726 3727
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3728
	} else {
3729 3730
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3731 3732 3733
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3734
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3735 3736 3737 3738

	return entry;
}

3739 3740 3741 3742 3743
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3744
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3745
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3746
		update_mmu_cache(vma, address, ptep);
3747 3748
}

3749
bool is_hugetlb_entry_migration(pte_t pte)
3750 3751 3752 3753
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3754
		return false;
3755
	swp = pte_to_swp_entry(pte);
3756
	if (is_migration_entry(swp))
3757
		return true;
3758
	else
3759
		return false;
3760 3761
}

3762
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3763 3764 3765 3766
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3767
		return false;
3768
	swp = pte_to_swp_entry(pte);
3769
	if (is_hwpoison_entry(swp))
3770
		return true;
3771
	else
3772
		return false;
3773
}
3774

D
David Gibson 已提交
3775 3776 3777
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3778
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3779
	struct page *ptepage;
3780
	unsigned long addr;
3781
	int cow;
3782 3783
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3784
	struct address_space *mapping = vma->vm_file->f_mapping;
3785
	struct mmu_notifier_range range;
3786
	int ret = 0;
3787 3788

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3789

3790
	if (cow) {
3791
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3792
					vma->vm_start,
3793 3794
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3795 3796 3797 3798 3799 3800 3801 3802
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3803
	}
3804

3805
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3806
		spinlock_t *src_ptl, *dst_ptl;
3807
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3808 3809
		if (!src_pte)
			continue;
3810
		dst_pte = huge_pte_alloc(dst, addr, sz);
3811 3812 3813 3814
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3827 3828
			continue;

3829 3830 3831
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3832
		entry = huge_ptep_get(src_pte);
3833 3834 3835 3836 3837 3838 3839
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3852 3853
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3854
			}
3855
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3856
		} else {
3857
			if (cow) {
3858 3859 3860 3861 3862
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3863
				 * See Documentation/vm/mmu_notifier.rst
3864
				 */
3865
				huge_ptep_set_wrprotect(src, addr, src_pte);
3866
			}
3867
			entry = huge_ptep_get(src_pte);
3868 3869
			ptepage = pte_page(entry);
			get_page(ptepage);
3870
			page_dup_rmap(ptepage, true);
3871
			set_huge_pte_at(dst, addr, dst_pte, entry);
3872
			hugetlb_count_add(pages_per_huge_page(h), dst);
3873
		}
3874 3875
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3876 3877
	}

3878
	if (cow)
3879
		mmu_notifier_invalidate_range_end(&range);
3880 3881
	else
		i_mmap_unlock_read(mapping);
3882 3883

	return ret;
D
David Gibson 已提交
3884 3885
}

3886 3887 3888
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3889 3890 3891
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3892
	pte_t *ptep;
D
David Gibson 已提交
3893
	pte_t pte;
3894
	spinlock_t *ptl;
D
David Gibson 已提交
3895
	struct page *page;
3896 3897
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3898
	struct mmu_notifier_range range;
3899

D
David Gibson 已提交
3900
	WARN_ON(!is_vm_hugetlb_page(vma));
3901 3902
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3903

3904 3905 3906 3907
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3908
	tlb_change_page_size(tlb, sz);
3909
	tlb_start_vma(tlb, vma);
3910 3911 3912 3913

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3914 3915
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3916 3917
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3918 3919
	address = start;
	for (; address < end; address += sz) {
3920
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3921
		if (!ptep)
3922 3923
			continue;

3924
		ptl = huge_pte_lock(h, mm, ptep);
3925
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3926
			spin_unlock(ptl);
3927 3928 3929 3930
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3931 3932
			continue;
		}
3933

3934
		pte = huge_ptep_get(ptep);
3935 3936 3937 3938
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3939 3940

		/*
3941 3942
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3943
		 */
3944
		if (unlikely(!pte_present(pte))) {
3945
			huge_pte_clear(mm, address, ptep, sz);
3946 3947
			spin_unlock(ptl);
			continue;
3948
		}
3949 3950

		page = pte_page(pte);
3951 3952 3953 3954 3955 3956
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3957 3958 3959 3960
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3961 3962 3963 3964 3965 3966 3967 3968
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3969
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3970
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3971
		if (huge_pte_dirty(pte))
3972
			set_page_dirty(page);
3973

3974
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3975
		page_remove_rmap(page, true);
3976

3977
		spin_unlock(ptl);
3978
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3979 3980 3981 3982 3983
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3984
	}
3985
	mmu_notifier_invalidate_range_end(&range);
3986
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3987
}
D
David Gibson 已提交
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4001
	 * is to clear it before releasing the i_mmap_rwsem. This works
4002
	 * because in the context this is called, the VMA is about to be
4003
	 * destroyed and the i_mmap_rwsem is held.
4004 4005 4006 4007
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4008
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4009
			  unsigned long end, struct page *ref_page)
4010
{
4011
	struct mmu_gather tlb;
4012

4013
	tlb_gather_mmu(&tlb, vma->vm_mm);
4014
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4015
	tlb_finish_mmu(&tlb);
4016 4017
}

4018 4019 4020 4021 4022 4023
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4024 4025
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4026
{
4027
	struct hstate *h = hstate_vma(vma);
4028 4029 4030 4031 4032 4033 4034 4035
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4036
	address = address & huge_page_mask(h);
4037 4038
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4039
	mapping = vma->vm_file->f_mapping;
4040

4041 4042 4043 4044 4045
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4046
	i_mmap_lock_write(mapping);
4047
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4048 4049 4050 4051
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4052 4053 4054 4055 4056 4057 4058 4059
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4060 4061 4062 4063 4064 4065 4066 4067
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4068 4069
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4070
	}
4071
	i_mmap_unlock_write(mapping);
4072 4073
}

4074 4075
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4076 4077 4078
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4079
 */
4080
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4081
		       unsigned long address, pte_t *ptep,
4082
		       struct page *pagecache_page, spinlock_t *ptl)
4083
{
4084
	pte_t pte;
4085
	struct hstate *h = hstate_vma(vma);
4086
	struct page *old_page, *new_page;
4087 4088
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4089
	unsigned long haddr = address & huge_page_mask(h);
4090
	struct mmu_notifier_range range;
4091

4092
	pte = huge_ptep_get(ptep);
4093 4094
	old_page = pte_page(pte);

4095
retry_avoidcopy:
4096 4097
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4098
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4099
		page_move_anon_rmap(old_page, vma);
4100
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4101
		return 0;
4102 4103
	}

4104 4105 4106 4107 4108 4109 4110 4111 4112
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4113
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4114 4115 4116
			old_page != pagecache_page)
		outside_reserve = 1;

4117
	get_page(old_page);
4118

4119 4120 4121 4122
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4123
	spin_unlock(ptl);
4124
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4125

4126
	if (IS_ERR(new_page)) {
4127 4128 4129 4130 4131 4132 4133 4134
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4135 4136 4137 4138
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

4139
			put_page(old_page);
4140
			BUG_ON(huge_pte_none(pte));
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

4155
			unmap_ref_private(mm, vma, old_page, haddr);
4156 4157 4158

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4159
			spin_lock(ptl);
4160
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4161 4162 4163 4164 4165 4166 4167 4168
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4169 4170
		}

4171
		ret = vmf_error(PTR_ERR(new_page));
4172
		goto out_release_old;
4173 4174
	}

4175 4176 4177 4178
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4179
	if (unlikely(anon_vma_prepare(vma))) {
4180 4181
		ret = VM_FAULT_OOM;
		goto out_release_all;
4182
	}
4183

4184
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4185
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4186
	__SetPageUptodate(new_page);
4187

4188
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4189
				haddr + huge_page_size(h));
4190
	mmu_notifier_invalidate_range_start(&range);
4191

4192
	/*
4193
	 * Retake the page table lock to check for racing updates
4194 4195
	 * before the page tables are altered
	 */
4196
	spin_lock(ptl);
4197
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4198
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4199 4200
		ClearPagePrivate(new_page);

4201
		/* Break COW */
4202
		huge_ptep_clear_flush(vma, haddr, ptep);
4203
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4204
		set_huge_pte_at(mm, haddr, ptep,
4205
				make_huge_pte(vma, new_page, 1));
4206
		page_remove_rmap(old_page, true);
4207
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4208
		set_page_huge_active(new_page);
4209 4210 4211
		/* Make the old page be freed below */
		new_page = old_page;
	}
4212
	spin_unlock(ptl);
4213
	mmu_notifier_invalidate_range_end(&range);
4214
out_release_all:
4215
	restore_reserve_on_error(h, vma, haddr, new_page);
4216
	put_page(new_page);
4217
out_release_old:
4218
	put_page(old_page);
4219

4220 4221
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4222 4223
}

4224
/* Return the pagecache page at a given address within a VMA */
4225 4226
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4227 4228
{
	struct address_space *mapping;
4229
	pgoff_t idx;
4230 4231

	mapping = vma->vm_file->f_mapping;
4232
	idx = vma_hugecache_offset(h, vma, address);
4233 4234 4235 4236

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4237 4238 4239 4240 4241
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

4268 4269 4270 4271 4272 4273
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4274 4275 4276 4277 4278 4279
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4280 4281 4282 4283
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4284
{
4285
	struct hstate *h = hstate_vma(vma);
4286
	vm_fault_t ret = VM_FAULT_SIGBUS;
4287
	int anon_rmap = 0;
A
Adam Litke 已提交
4288 4289
	unsigned long size;
	struct page *page;
4290
	pte_t new_pte;
4291
	spinlock_t *ptl;
4292
	unsigned long haddr = address & huge_page_mask(h);
4293
	bool new_page = false;
A
Adam Litke 已提交
4294

4295 4296 4297
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4298
	 * COW. Warn that such a situation has occurred as it may not be obvious
4299 4300
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4301
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4302
			   current->pid);
4303 4304 4305
		return ret;
	}

A
Adam Litke 已提交
4306
	/*
4307 4308 4309
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4310
	 */
4311 4312 4313 4314
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4315 4316 4317
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4318 4319 4320 4321 4322 4323 4324
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4325
				.address = haddr,
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4337 4338 4339
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4340
			 */
4341
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4342
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4343
			i_mmap_unlock_read(mapping);
4344
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4345
			i_mmap_lock_read(mapping);
4346 4347 4348 4349
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4350
		page = alloc_huge_page(vma, haddr, 0);
4351
		if (IS_ERR(page)) {
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4371
			ret = vmf_error(PTR_ERR(page));
4372 4373
			goto out;
		}
A
Andrea Arcangeli 已提交
4374
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4375
		__SetPageUptodate(page);
4376
		new_page = true;
4377

4378
		if (vma->vm_flags & VM_MAYSHARE) {
4379
			int err = huge_add_to_page_cache(page, mapping, idx);
4380 4381 4382 4383 4384 4385
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4386
		} else {
4387
			lock_page(page);
4388 4389 4390 4391
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4392
			anon_rmap = 1;
4393
		}
4394
	} else {
4395 4396 4397 4398 4399 4400
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4401
			ret = VM_FAULT_HWPOISON_LARGE |
4402
				VM_FAULT_SET_HINDEX(hstate_index(h));
4403 4404
			goto backout_unlocked;
		}
4405
	}
4406

4407 4408 4409 4410 4411 4412
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4413
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4414
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4415 4416 4417
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4418
		/* Just decrements count, does not deallocate */
4419
		vma_end_reservation(h, vma, haddr);
4420
	}
4421

4422
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4423
	ret = 0;
4424
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4425 4426
		goto backout;

4427 4428
	if (anon_rmap) {
		ClearPagePrivate(page);
4429
		hugepage_add_new_anon_rmap(page, vma, haddr);
4430
	} else
4431
		page_dup_rmap(page, true);
4432 4433
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4434
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4435

4436
	hugetlb_count_add(pages_per_huge_page(h), mm);
4437
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4438
		/* Optimization, do the COW without a second fault */
4439
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4440 4441
	}

4442
	spin_unlock(ptl);
4443 4444 4445 4446 4447 4448 4449 4450 4451

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
4452 4453
	unlock_page(page);
out:
4454
	return ret;
A
Adam Litke 已提交
4455 4456

backout:
4457
	spin_unlock(ptl);
4458
backout_unlocked:
A
Adam Litke 已提交
4459
	unlock_page(page);
4460
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4461 4462
	put_page(page);
	goto out;
4463 4464
}

4465
#ifdef CONFIG_SMP
4466
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4467 4468 4469 4470
{
	unsigned long key[2];
	u32 hash;

4471 4472
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4473

4474
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4475 4476 4477 4478 4479 4480 4481 4482

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
4483
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4484 4485 4486 4487 4488
{
	return 0;
}
#endif

4489
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4490
			unsigned long address, unsigned int flags)
4491
{
4492
	pte_t *ptep, entry;
4493
	spinlock_t *ptl;
4494
	vm_fault_t ret;
4495 4496
	u32 hash;
	pgoff_t idx;
4497
	struct page *page = NULL;
4498
	struct page *pagecache_page = NULL;
4499
	struct hstate *h = hstate_vma(vma);
4500
	struct address_space *mapping;
4501
	int need_wait_lock = 0;
4502
	unsigned long haddr = address & huge_page_mask(h);
4503

4504
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4505
	if (ptep) {
4506 4507 4508 4509 4510
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4511
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4512
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4513
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4514 4515
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4516
			return VM_FAULT_HWPOISON_LARGE |
4517
				VM_FAULT_SET_HINDEX(hstate_index(h));
4518 4519
	}

4520 4521
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4522 4523 4524 4525
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4526 4527 4528 4529 4530
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4531
	mapping = vma->vm_file->f_mapping;
4532 4533 4534 4535 4536 4537
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4538

4539 4540 4541 4542 4543
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4544
	idx = vma_hugecache_offset(h, vma, haddr);
4545
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4546
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4547

4548 4549
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4550
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4551
		goto out_mutex;
4552
	}
4553

N
Nick Piggin 已提交
4554
	ret = 0;
4555

4556 4557 4558
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4559 4560 4561
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4562 4563 4564 4565
	 */
	if (!pte_present(entry))
		goto out_mutex;

4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4574
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4575
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4576
			ret = VM_FAULT_OOM;
4577
			goto out_mutex;
4578
		}
4579
		/* Just decrements count, does not deallocate */
4580
		vma_end_reservation(h, vma, haddr);
4581

4582
		if (!(vma->vm_flags & VM_MAYSHARE))
4583
			pagecache_page = hugetlbfs_pagecache_page(h,
4584
								vma, haddr);
4585 4586
	}

4587 4588 4589 4590 4591 4592
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4593 4594 4595 4596 4597 4598 4599
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4600 4601 4602 4603
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4604

4605
	get_page(page);
4606

4607
	if (flags & FAULT_FLAG_WRITE) {
4608
		if (!huge_pte_write(entry)) {
4609
			ret = hugetlb_cow(mm, vma, address, ptep,
4610
					  pagecache_page, ptl);
4611
			goto out_put_page;
4612
		}
4613
		entry = huge_pte_mkdirty(entry);
4614 4615
	}
	entry = pte_mkyoung(entry);
4616
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4617
						flags & FAULT_FLAG_WRITE))
4618
		update_mmu_cache(vma, haddr, ptep);
4619 4620 4621 4622
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4623 4624
out_ptl:
	spin_unlock(ptl);
4625 4626 4627 4628 4629

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4630
out_mutex:
4631
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4632
	i_mmap_unlock_read(mapping);
4633 4634 4635 4636 4637 4638 4639 4640 4641
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4642
	return ret;
4643 4644
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4656 4657 4658
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4659
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4674
						pages_per_huge_page(h), false);
4675

4676
		/* fallback to copy_from_user outside mmap_lock */
4677
		if (unlikely(ret)) {
4678
			ret = -ENOENT;
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4695 4696 4697
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4698 4699 4700 4701
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4702 4703 4704 4705
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4706

4707 4708 4709 4710 4711 4712
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4713 4714 4715 4716 4717
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4718 4719 4720
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4735 4736 4737 4738
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4739 4740 4741 4742 4743 4744
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4761
	set_page_huge_active(page);
4762 4763
	if (vm_shared)
		unlock_page(page);
4764 4765 4766 4767 4768
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4769 4770
	if (vm_shared)
		unlock_page(page);
4771
out_release_nounlock:
4772 4773 4774 4775
	put_page(page);
	goto out;
}

4776 4777 4778
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4779
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4780
{
4781 4782
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4783
	unsigned long remainder = *nr_pages;
4784
	struct hstate *h = hstate_vma(vma);
4785
	int err = -EFAULT;
D
David Gibson 已提交
4786 4787

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4788
		pte_t *pte;
4789
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4790
		int absent;
A
Adam Litke 已提交
4791
		struct page *page;
D
David Gibson 已提交
4792

4793 4794 4795 4796
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4797
		if (fatal_signal_pending(current)) {
4798 4799 4800 4801
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4802 4803
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4804
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4805
		 * first, for the page indexing below to work.
4806 4807
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4808
		 */
4809 4810
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4811 4812
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4813 4814 4815 4816
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4817 4818 4819 4820
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4821
		 */
H
Hugh Dickins 已提交
4822 4823
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4824 4825
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4826 4827 4828
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4829

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4841 4842
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4843
			vm_fault_t ret;
4844
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4845

4846 4847
			if (pte)
				spin_unlock(ptl);
4848 4849
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4850
			if (locked)
4851 4852
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4853 4854 4855 4856
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4857 4858 4859 4860
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4861 4862 4863 4864
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4865
				err = vm_fault_to_errno(ret, flags);
4866 4867 4868 4869
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4870
				if (locked &&
4871
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4872
					*locked = 0;
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4886 4887
		}

4888
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4889
		page = pte_page(huge_ptep_get(pte));
4890

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4905
same_page:
4906
		if (pages) {
H
Hugh Dickins 已提交
4907
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4924
		}
D
David Gibson 已提交
4925 4926 4927 4928 4929

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4930
		++pfn_offset;
D
David Gibson 已提交
4931 4932
		--remainder;
		++i;
4933
		if (vaddr < vma->vm_end && remainder &&
4934
				pfn_offset < pages_per_huge_page(h)) {
4935 4936 4937 4938 4939 4940
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4941
		spin_unlock(ptl);
D
David Gibson 已提交
4942
	}
4943
	*nr_pages = remainder;
4944 4945 4946 4947 4948
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4949 4950
	*position = vaddr;

4951
	return i ? i : err;
D
David Gibson 已提交
4952
}
4953

4954 4955 4956 4957 4958 4959 4960 4961
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4962
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4963 4964 4965 4966 4967 4968
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4969
	struct hstate *h = hstate_vma(vma);
4970
	unsigned long pages = 0;
4971
	bool shared_pmd = false;
4972
	struct mmu_notifier_range range;
4973 4974 4975

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4976
	 * start/end.  Set range.start/range.end to cover the maximum possible
4977 4978
	 * range if PMD sharing is possible.
	 */
4979 4980
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
4981
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4982 4983

	BUG_ON(address >= end);
4984
	flush_cache_range(vma, range.start, range.end);
4985

4986
	mmu_notifier_invalidate_range_start(&range);
4987
	i_mmap_lock_write(vma->vm_file->f_mapping);
4988
	for (; address < end; address += huge_page_size(h)) {
4989
		spinlock_t *ptl;
4990
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4991 4992
		if (!ptep)
			continue;
4993
		ptl = huge_pte_lock(h, mm, ptep);
4994
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4995
			pages++;
4996
			spin_unlock(ptl);
4997
			shared_pmd = true;
4998
			continue;
4999
		}
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5013 5014
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5015 5016 5017 5018 5019 5020
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5021 5022 5023 5024
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5025
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5026
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5027
			pages++;
5028
		}
5029
		spin_unlock(ptl);
5030
	}
5031
	/*
5032
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5033
	 * may have cleared our pud entry and done put_page on the page table:
5034
	 * once we release i_mmap_rwsem, another task can do the final put_page
5035 5036
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5037
	 */
5038
	if (shared_pmd)
5039
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5040 5041
	else
		flush_hugetlb_tlb_range(vma, start, end);
5042 5043 5044 5045
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5046
	 * See Documentation/vm/mmu_notifier.rst
5047
	 */
5048
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5049
	mmu_notifier_invalidate_range_end(&range);
5050 5051

	return pages << h->order;
5052 5053
}

5054 5055
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5056
					struct vm_area_struct *vma,
5057
					vm_flags_t vm_flags)
5058
{
5059
	long ret, chg, add = -1;
5060
	struct hstate *h = hstate_inode(inode);
5061
	struct hugepage_subpool *spool = subpool_inode(inode);
5062
	struct resv_map *resv_map;
5063
	struct hugetlb_cgroup *h_cg = NULL;
5064
	long gbl_reserve, regions_needed = 0;
5065

5066 5067 5068 5069 5070 5071
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5072 5073 5074
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5075
	 * without using reserves
5076
	 */
5077
	if (vm_flags & VM_NORESERVE)
5078 5079
		return 0;

5080 5081 5082 5083 5084 5085
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5086
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5087 5088 5089 5090 5091
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5092
		resv_map = inode_resv_map(inode);
5093

5094
		chg = region_chg(resv_map, from, to, &regions_needed);
5095 5096

	} else {
5097
		/* Private mapping. */
5098
		resv_map = resv_map_alloc();
5099 5100 5101
		if (!resv_map)
			return -ENOMEM;

5102
		chg = to - from;
5103

5104 5105 5106 5107
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5108 5109 5110 5111
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5112

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5128 5129 5130 5131 5132 5133 5134
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5135
		ret = -ENOSPC;
5136
		goto out_uncharge_cgroup;
5137
	}
5138 5139

	/*
5140
	 * Check enough hugepages are available for the reservation.
5141
	 * Hand the pages back to the subpool if there are not
5142
	 */
5143
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5144
	if (ret < 0) {
5145
		goto out_put_pages;
K
Ken Chen 已提交
5146
	}
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5159
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5160
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5161 5162 5163

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5164
			ret = add;
5165
			goto out_put_pages;
5166
		} else if (unlikely(chg > add)) {
5167 5168 5169 5170 5171 5172 5173 5174 5175
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5176 5177 5178 5179
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5180 5181 5182 5183 5184
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5185
	return 0;
5186 5187 5188 5189 5190 5191
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5192
out_err:
5193
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5194 5195 5196 5197 5198
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5199 5200
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5201
	return ret;
5202 5203
}

5204 5205
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5206
{
5207
	struct hstate *h = hstate_inode(inode);
5208
	struct resv_map *resv_map = inode_resv_map(inode);
5209
	long chg = 0;
5210
	struct hugepage_subpool *spool = subpool_inode(inode);
5211
	long gbl_reserve;
K
Ken Chen 已提交
5212

5213 5214 5215 5216
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5228
	spin_lock(&inode->i_lock);
5229
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5230 5231
	spin_unlock(&inode->i_lock);

5232 5233 5234 5235 5236 5237
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5238 5239

	return 0;
5240
}
5241

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5253 5254
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

5268
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5269 5270 5271 5272 5273 5274 5275
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5276
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5277 5278
		return true;
	return false;
5279 5280
}

5281 5282 5283 5284 5285 5286 5287 5288
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5289
	unsigned long a_start, a_end;
5290 5291 5292 5293

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

5294 5295 5296
	/* Extend the range to be PUD aligned for a worst case scenario */
	a_start = ALIGN_DOWN(*start, PUD_SIZE);
	a_end = ALIGN(*end, PUD_SIZE);
5297

5298 5299 5300 5301 5302 5303
	/*
	 * Intersect the range with the vma range, since pmd sharing won't be
	 * across vma after all
	 */
	*start = max(vma->vm_start, a_start);
	*end = min(vma->vm_end, a_end);
5304 5305
}

5306 5307 5308 5309
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5310 5311
 * code much cleaner.
 *
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
 *
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 * huge_pte_alloc know that sharing is not possible and do not take
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 * only required for subsequent processing.
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5333
	spinlock_t *ptl;
5334 5335 5336 5337

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

5338
	i_mmap_assert_locked(mapping);
5339 5340 5341 5342 5343 5344
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5345 5346
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5357
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5358
	if (pud_none(*pud)) {
5359 5360
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5361
		mm_inc_nr_pmds(mm);
5362
	} else {
5363
		put_page(virt_to_page(spte));
5364
	}
5365
	spin_unlock(ptl);
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5378
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5379 5380 5381 5382
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5383 5384
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5385 5386
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5387 5388
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5389

5390
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5391 5392 5393 5394 5395 5396
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5397
	mm_dec_nr_pmds(mm);
5398 5399 5400
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5401 5402 5403 5404 5405 5406
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5407

5408 5409
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5410 5411 5412
{
	return 0;
}
5413 5414 5415 5416 5417

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5418
#define want_pmd_share()	(0)
5419 5420
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5421 5422 5423 5424 5425
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5426
	p4d_t *p4d;
5427 5428 5429 5430
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5431 5432 5433
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5434
	pud = pud_alloc(mm, p4d, addr);
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5446
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5447 5448 5449 5450

	return pte;
}

5451 5452 5453 5454
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5455 5456
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5457 5458 5459
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5460 5461
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5462 5463
{
	pgd_t *pgd;
5464
	p4d_t *p4d;
5465 5466
	pud_t *pud;
	pmd_t *pmd;
5467 5468

	pgd = pgd_offset(mm, addr);
5469 5470 5471 5472 5473
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5474

5475
	pud = pud_offset(p4d, addr);
5476 5477
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5478
		return (pte_t *)pud;
5479
	if (!pud_present(*pud))
5480
		return NULL;
5481
	/* must have a valid entry and size to go further */
5482

5483 5484 5485
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5486 5487
}

5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5501 5502 5503 5504 5505 5506 5507 5508
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5509
struct page * __weak
5510
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5511
		pmd_t *pmd, int flags)
5512
{
5513 5514
	struct page *page = NULL;
	spinlock_t *ptl;
5515
	pte_t pte;
J
John Hubbard 已提交
5516 5517 5518 5519 5520 5521

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5522 5523 5524 5525 5526 5527 5528 5529 5530
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5531 5532
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5533
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5546
	} else {
5547
		if (is_hugetlb_entry_migration(pte)) {
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5559 5560 5561
	return page;
}

5562
struct page * __weak
5563
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5564
		pud_t *pud, int flags)
5565
{
J
John Hubbard 已提交
5566
	if (flags & (FOLL_GET | FOLL_PIN))
5567
		return NULL;
5568

5569
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5570 5571
}

5572 5573 5574
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5575
	if (flags & (FOLL_GET | FOLL_PIN))
5576 5577 5578 5579 5580
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5581 5582
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5583 5584
	bool ret = true;

5585
	spin_lock(&hugetlb_lock);
5586 5587
	if (!PageHeadHuge(page) || !page_huge_active(page) ||
	    !get_page_unless_zero(page)) {
5588 5589 5590 5591
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
5592
	list_move_tail(&page->lru, list);
5593
unlock:
5594
	spin_unlock(&hugetlb_lock);
5595
	return ret;
5596 5597 5598 5599
}

void putback_active_hugepage(struct page *page)
{
5600
	VM_BUG_ON_PAGE(!PageHead(page), page);
5601
	spin_lock(&hugetlb_lock);
5602
	set_page_huge_active(page);
5603 5604 5605 5606
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5679
		char name[CMA_MAX_NAME];
5680 5681 5682 5683

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5684
		snprintf(name, sizeof(name), "hugetlb%d", nid);
5685
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5686
						 0, false, name,
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */