hugetlb.c 113.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg)
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

384 385 386 387 388 389 390 391 392
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
393
		if (!nrg) {
394
			resv->adds_in_progress--;
395 396 397 398 399 400 401 402 403 404
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
405

406 407 408
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
421
			goto out;
422

L
Lucas De Marchi 已提交
423
		/* We overlap with this area, if it extends further than
424 425 426 427 428 429 430 431
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
432 433 434 435 436 437 438 439

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
440 441 442
	return chg;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

462
/*
463 464 465 466 467 468 469 470 471 472 473 474
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
475
 */
476
static long region_del(struct resv_map *resv, long f, long t)
477
{
478
	struct list_head *head = &resv->regions;
479
	struct file_region *rg, *trg;
480 481
	struct file_region *nrg = NULL;
	long del = 0;
482

483
retry:
484
	spin_lock(&resv->lock);
485 486 487 488
	list_for_each_entry_safe(rg, trg, head, link) {
		if (rg->to <= f)
			continue;
		if (rg->from >= t)
489 490
			break;

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
525
			break;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
542
	}
543 544

	spin_unlock(&resv->lock);
545 546
	kfree(nrg);
	return del;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

571 572 573 574
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
575
static long region_count(struct resv_map *resv, long f, long t)
576
{
577
	struct list_head *head = &resv->regions;
578 579 580
	struct file_region *rg;
	long chg = 0;

581
	spin_lock(&resv->lock);
582 583
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
584 585
		long seg_from;
		long seg_to;
586 587 588 589 590 591 592 593 594 595 596

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
597
	spin_unlock(&resv->lock);
598 599 600 601

	return chg;
}

602 603 604 605
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
606 607
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
608
{
609 610
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
611 612
}

613 614 615 616 617 618
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

632
	return 1UL << huge_page_shift(hstate);
633
}
634
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635

636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

649 650 651 652 653 654 655
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
656
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657

658 659 660 661 662 663 664 665 666
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
667 668 669 670 671 672 673 674 675
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
676
 */
677 678 679 680 681 682 683 684 685 686 687
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

688
struct resv_map *resv_map_alloc(void)
689 690
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 692 693 694 695
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
696
		return NULL;
697
	}
698 699

	kref_init(&resv_map->refs);
700
	spin_lock_init(&resv_map->lock);
701 702
	INIT_LIST_HEAD(&resv_map->regions);

703 704 705 706 707 708
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

709 710 711
	return resv_map;
}

712
void resv_map_release(struct kref *ref)
713 714
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 716
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
717 718

	/* Clear out any active regions before we release the map. */
719
	region_del(resv_map, 0, LONG_MAX);
720 721 722 723 724 725 726 727 728

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

729 730 731
	kfree(resv_map);
}

732 733 734 735 736
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

737
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738
{
739
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 741 742 743 744 745 746
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
747 748
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
749
	}
750 751
}

752
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753
{
754 755
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756

757 758
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
759 760 761 762
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
763 764
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 766

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 768 769 770
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
771
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 773

	return (get_vma_private_data(vma) & flag) != 0;
774 775
}

776
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 778
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
	if (!(vma->vm_flags & VM_MAYSHARE))
781 782 783 784
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
785
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786
{
787 788 789 790 791 792 793 794 795 796 797
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798
			return true;
799
		else
800
			return false;
801
	}
802 803

	/* Shared mappings always use reserves */
804
	if (vma->vm_flags & VM_MAYSHARE)
805
		return true;
806 807 808 809 810

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
811
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
812
		return true;
813

814
	return false;
815 816
}

817
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
818 819
{
	int nid = page_to_nid(page);
820
	list_move(&page->lru, &h->hugepage_freelists[nid]);
821 822
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
823 824
}

825 826 827 828
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

829 830 831 832 833 834 835 836
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
837
		return NULL;
838
	list_move(&page->lru, &h->hugepage_activelist);
839
	set_page_refcounted(page);
840 841 842 843 844
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

845 846 847
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
848
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
849 850 851 852 853
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

854 855
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
856 857
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
858
{
859
	struct page *page = NULL;
860
	struct mempolicy *mpol;
861
	nodemask_t *nodemask;
862
	struct zonelist *zonelist;
863 864
	struct zone *zone;
	struct zoneref *z;
865
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
866

867 868 869 870 871
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
872
	if (!vma_has_reserves(vma, chg) &&
873
			h->free_huge_pages - h->resv_huge_pages == 0)
874
		goto err;
875

876
	/* If reserves cannot be used, ensure enough pages are in the pool */
877
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
878
		goto err;
879

880
retry_cpuset:
881
	cpuset_mems_cookie = read_mems_allowed_begin();
882
	zonelist = huge_zonelist(vma, address,
883
					htlb_alloc_mask(h), &mpol, &nodemask);
884

885 886
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
887
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
888 889
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
890 891 892 893 894
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

895
				SetPagePrivate(page);
896
				h->resv_huge_pages--;
897 898
				break;
			}
A
Andrew Morton 已提交
899
		}
L
Linus Torvalds 已提交
900
	}
901

902
	mpol_cond_put(mpol);
903
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
904
		goto retry_cpuset;
L
Linus Torvalds 已提交
905
	return page;
906 907 908

err:
	return NULL;
L
Linus Torvalds 已提交
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1122
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1123 1124
{
	int i;
1125

1126 1127
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1128

1129 1130 1131
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1132 1133
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1134 1135
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1136
	}
1137
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
1138 1139
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
1140 1141 1142 1143 1144 1145
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1184
void free_huge_page(struct page *page)
1185
{
1186 1187 1188 1189
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1190
	struct hstate *h = page_hstate(page);
1191
	int nid = page_to_nid(page);
1192 1193
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1194
	bool restore_reserve;
1195

1196
	set_page_private(page, 0);
1197
	page->mapping = NULL;
1198
	BUG_ON(page_count(page));
1199
	BUG_ON(page_mapcount(page));
1200
	restore_reserve = PagePrivate(page);
1201
	ClearPagePrivate(page);
1202

1203 1204 1205 1206 1207 1208 1209 1210
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1211
	spin_lock(&hugetlb_lock);
1212
	clear_page_huge_active(page);
1213 1214
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1215 1216 1217
	if (restore_reserve)
		h->resv_huge_pages++;

1218
	if (h->surplus_huge_pages_node[nid]) {
1219 1220
		/* remove the page from active list */
		list_del(&page->lru);
1221 1222 1223
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1224
	} else {
1225
		arch_clear_hugepage_flags(page);
1226
		enqueue_huge_page(h, page);
1227
	}
1228 1229 1230
	spin_unlock(&hugetlb_lock);
}

1231
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1232
{
1233
	INIT_LIST_HEAD(&page->lru);
1234 1235
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1236
	set_hugetlb_cgroup(page, NULL);
1237 1238
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1239 1240 1241 1242
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1243
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1244 1245 1246 1247 1248 1249 1250 1251
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1252
	__ClearPageReserved(page);
1253
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1267
		set_page_count(p, 0);
1268
		p->first_page = page;
1269 1270 1271
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1272 1273 1274
	}
}

A
Andrew Morton 已提交
1275 1276 1277 1278 1279
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1280 1281 1282 1283 1284 1285
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1286
	return get_compound_page_dtor(page) == free_huge_page;
1287
}
1288 1289
EXPORT_SYMBOL_GPL(PageHuge);

1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1299
	return get_compound_page_dtor(page_head) == free_huge_page;
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1319
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1320 1321
{
	struct page *page;
1322

1323
	page = alloc_pages_exact_node(nid,
1324
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1325
						__GFP_REPEAT|__GFP_NOWARN,
1326
		huge_page_order(h));
L
Linus Torvalds 已提交
1327
	if (page) {
1328
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1329
	}
1330 1331 1332 1333

	return page;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1356 1357 1358 1359 1360 1361
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1362 1363
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1364
{
1365
	int nr_nodes, node;
1366 1367
	int ret = 0;

1368
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1369 1370 1371 1372
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1373 1374
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1375
			struct page *page =
1376
				list_entry(h->hugepage_freelists[node].next,
1377 1378 1379
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1380
			h->free_huge_pages_node[node]--;
1381 1382
			if (acct_surplus) {
				h->surplus_huge_pages--;
1383
				h->surplus_huge_pages_node[node]--;
1384
			}
1385 1386
			update_and_free_page(h, page);
			ret = 1;
1387
			break;
1388
		}
1389
	}
1390 1391 1392 1393

	return ret;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1421 1422 1423
	if (!hugepages_supported())
		return;

1424 1425
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1426 1427 1428
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1429
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1430 1431
{
	struct page *page;
1432
	unsigned int r_nid;
1433

1434
	if (hstate_is_gigantic(h))
1435 1436
		return NULL;

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1461
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1462 1463 1464
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1465 1466
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1467 1468 1469
	}
	spin_unlock(&hugetlb_lock);

1470
	if (nid == NUMA_NO_NODE)
1471
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1472 1473 1474 1475
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1476
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1477
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1478 1479

	spin_lock(&hugetlb_lock);
1480
	if (page) {
1481
		INIT_LIST_HEAD(&page->lru);
1482
		r_nid = page_to_nid(page);
1483
		set_compound_page_dtor(page, free_huge_page);
1484
		set_hugetlb_cgroup(page, NULL);
1485 1486 1487
		/*
		 * We incremented the global counters already
		 */
1488 1489
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1490
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1491
	} else {
1492 1493
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1494
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1495
	}
1496
	spin_unlock(&hugetlb_lock);
1497 1498 1499 1500

	return page;
}

1501 1502 1503 1504 1505 1506 1507
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1508
	struct page *page = NULL;
1509 1510

	spin_lock(&hugetlb_lock);
1511 1512
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1513 1514
	spin_unlock(&hugetlb_lock);

1515
	if (!page)
1516 1517 1518 1519 1520
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1521
/*
L
Lucas De Marchi 已提交
1522
 * Increase the hugetlb pool such that it can accommodate a reservation
1523 1524
 * of size 'delta'.
 */
1525
static int gather_surplus_pages(struct hstate *h, int delta)
1526 1527 1528 1529 1530
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1531
	bool alloc_ok = true;
1532

1533
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1534
	if (needed <= 0) {
1535
		h->resv_huge_pages += delta;
1536
		return 0;
1537
	}
1538 1539 1540 1541 1542 1543 1544 1545

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1546
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1547 1548 1549 1550
		if (!page) {
			alloc_ok = false;
			break;
		}
1551 1552
		list_add(&page->lru, &surplus_list);
	}
1553
	allocated += i;
1554 1555 1556 1557 1558 1559

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1560 1561
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1572 1573
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1574
	 * needed to accommodate the reservation.  Add the appropriate number
1575
	 * of pages to the hugetlb pool and free the extras back to the buddy
1576 1577 1578
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1579 1580
	 */
	needed += allocated;
1581
	h->resv_huge_pages += delta;
1582
	ret = 0;
1583

1584
	/* Free the needed pages to the hugetlb pool */
1585
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1586 1587
		if ((--needed) < 0)
			break;
1588 1589 1590 1591 1592
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1593
		VM_BUG_ON_PAGE(page_count(page), page);
1594
		enqueue_huge_page(h, page);
1595
	}
1596
free:
1597
	spin_unlock(&hugetlb_lock);
1598 1599

	/* Free unnecessary surplus pages to the buddy allocator */
1600 1601
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1602
	spin_lock(&hugetlb_lock);
1603 1604 1605 1606 1607 1608 1609 1610

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1611
 * Called with hugetlb_lock held.
1612
 */
1613 1614
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1615 1616 1617
{
	unsigned long nr_pages;

1618
	/* Uncommit the reservation */
1619
	h->resv_huge_pages -= unused_resv_pages;
1620

1621
	/* Cannot return gigantic pages currently */
1622
	if (hstate_is_gigantic(h))
1623 1624
		return;

1625
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1626

1627 1628
	/*
	 * We want to release as many surplus pages as possible, spread
1629 1630 1631 1632 1633
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1634 1635
	 */
	while (nr_pages--) {
1636
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1637
			break;
1638
		cond_resched_lock(&hugetlb_lock);
1639 1640 1641
	}
}

1642

1643
/*
1644
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1645
 * are used by the huge page allocation routines to manage reservations.
1646 1647 1648 1649 1650 1651
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1652 1653 1654
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1655 1656 1657 1658 1659 1660
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1661
 */
1662 1663 1664
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1665
	VMA_END_RESV,
1666
};
1667 1668
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1669
				enum vma_resv_mode mode)
1670
{
1671 1672
	struct resv_map *resv;
	pgoff_t idx;
1673
	long ret;
1674

1675 1676
	resv = vma_resv_map(vma);
	if (!resv)
1677
		return 1;
1678

1679
	idx = vma_hugecache_offset(h, vma, addr);
1680 1681
	switch (mode) {
	case VMA_NEEDS_RESV:
1682
		ret = region_chg(resv, idx, idx + 1);
1683 1684 1685 1686
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1687
	case VMA_END_RESV:
1688 1689 1690 1691 1692 1693
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1694

1695
	if (vma->vm_flags & VM_MAYSHARE)
1696
		return ret;
1697
	else
1698
		return ret < 0 ? ret : 0;
1699
}
1700 1701

static long vma_needs_reservation(struct hstate *h,
1702
			struct vm_area_struct *vma, unsigned long addr)
1703
{
1704
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1705
}
1706

1707 1708 1709
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1710 1711 1712
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1713
static void vma_end_reservation(struct hstate *h,
1714 1715
			struct vm_area_struct *vma, unsigned long addr)
{
1716
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1717 1718
}

1719
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1720
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1721
{
1722
	struct hugepage_subpool *spool = subpool_vma(vma);
1723
	struct hstate *h = hstate_vma(vma);
1724
	struct page *page;
1725
	long chg, commit;
1726 1727
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1728

1729
	idx = hstate_index(h);
1730
	/*
1731 1732 1733 1734 1735 1736
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1737
	 */
1738
	chg = vma_needs_reservation(h, vma, addr);
1739
	if (chg < 0)
1740
		return ERR_PTR(-ENOMEM);
1741
	if (chg || avoid_reserve)
1742
		if (hugepage_subpool_get_pages(spool, 1) < 0) {
1743
			vma_end_reservation(h, vma, addr);
1744
			return ERR_PTR(-ENOSPC);
1745
		}
L
Linus Torvalds 已提交
1746

1747
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1748 1749 1750
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1751
	spin_lock(&hugetlb_lock);
1752
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1753
	if (!page) {
1754
		spin_unlock(&hugetlb_lock);
1755
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1756 1757 1758
		if (!page)
			goto out_uncharge_cgroup;

1759 1760
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1761
		/* Fall through */
K
Ken Chen 已提交
1762
	}
1763 1764
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1765

1766
	set_page_private(page, (unsigned long)spool);
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(chg > commit)) {
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1784
	return page;
1785 1786 1787 1788 1789 1790

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
1791
	vma_end_reservation(h, vma, addr);
1792
	return ERR_PTR(-ENOSPC);
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1809
int __weak alloc_bootmem_huge_page(struct hstate *h)
1810 1811
{
	struct huge_bootmem_page *m;
1812
	int nr_nodes, node;
1813

1814
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1815 1816
		void *addr;

1817 1818 1819
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1820 1821 1822 1823 1824 1825 1826
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1827
			goto found;
1828 1829 1830 1831 1832
		}
	}
	return 0;

found:
1833
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1834 1835 1836 1837 1838 1839
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1840
static void __init prep_compound_huge_page(struct page *page, int order)
1841 1842 1843 1844 1845 1846 1847
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1848 1849 1850 1851 1852 1853 1854
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1855 1856 1857 1858
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1859 1860
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1861 1862 1863
#else
		page = virt_to_page(m);
#endif
1864
		WARN_ON(page_count(page) != 1);
1865
		prep_compound_huge_page(page, h->order);
1866
		WARN_ON(PageReserved(page));
1867
		prep_new_huge_page(h, page, page_to_nid(page));
1868 1869 1870 1871 1872 1873
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1874
		if (hstate_is_gigantic(h))
1875
			adjust_managed_page_count(page, 1 << h->order);
1876 1877 1878
	}
}

1879
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1880 1881
{
	unsigned long i;
1882

1883
	for (i = 0; i < h->max_huge_pages; ++i) {
1884
		if (hstate_is_gigantic(h)) {
1885 1886
			if (!alloc_bootmem_huge_page(h))
				break;
1887
		} else if (!alloc_fresh_huge_page(h,
1888
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1889 1890
			break;
	}
1891
	h->max_huge_pages = i;
1892 1893 1894 1895 1896 1897 1898
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1899 1900 1901
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

1902
		/* oversize hugepages were init'ed in early boot */
1903
		if (!hstate_is_gigantic(h))
1904
			hugetlb_hstate_alloc_pages(h);
1905
	}
1906
	VM_BUG_ON(minimum_order == UINT_MAX);
1907 1908
}

A
Andi Kleen 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1920 1921 1922 1923 1924
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1925
		char buf[32];
1926
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1927 1928
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1929 1930 1931
	}
}

L
Linus Torvalds 已提交
1932
#ifdef CONFIG_HIGHMEM
1933 1934
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1935
{
1936 1937
	int i;

1938
	if (hstate_is_gigantic(h))
1939 1940
		return;

1941
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1942
		struct page *page, *next;
1943 1944 1945
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1946
				return;
L
Linus Torvalds 已提交
1947 1948 1949
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1950
			update_and_free_page(h, page);
1951 1952
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1953 1954 1955 1956
		}
	}
}
#else
1957 1958
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1959 1960 1961 1962
{
}
#endif

1963 1964 1965 1966 1967
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1968 1969
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1970
{
1971
	int nr_nodes, node;
1972 1973 1974

	VM_BUG_ON(delta != -1 && delta != 1);

1975 1976 1977 1978
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1979
		}
1980 1981 1982 1983 1984
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1985
		}
1986 1987
	}
	return 0;
1988

1989 1990 1991 1992
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1993 1994
}

1995
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1996 1997
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1998
{
1999
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2000

2001
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2002 2003
		return h->max_huge_pages;

2004 2005 2006 2007
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2008 2009 2010 2011 2012 2013
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2014
	 */
L
Linus Torvalds 已提交
2015
	spin_lock(&hugetlb_lock);
2016
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2017
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2018 2019 2020
			break;
	}

2021
	while (count > persistent_huge_pages(h)) {
2022 2023 2024 2025 2026 2027
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2028 2029 2030 2031
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2032 2033 2034 2035
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2036 2037 2038
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2039 2040 2041 2042 2043 2044 2045 2046
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2047 2048 2049 2050 2051 2052 2053 2054
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2055
	 */
2056
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2057
	min_count = max(count, min_count);
2058
	try_to_free_low(h, min_count, nodes_allowed);
2059
	while (min_count < persistent_huge_pages(h)) {
2060
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2061
			break;
2062
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2063
	}
2064
	while (count < persistent_huge_pages(h)) {
2065
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2066 2067 2068
			break;
	}
out:
2069
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2070
	spin_unlock(&hugetlb_lock);
2071
	return ret;
L
Linus Torvalds 已提交
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2084 2085 2086
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2087 2088
{
	int i;
2089

2090
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2091 2092 2093
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2094
			return &hstates[i];
2095 2096 2097
		}

	return kobj_to_node_hstate(kobj, nidp);
2098 2099
}

2100
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2101 2102
					struct kobj_attribute *attr, char *buf)
{
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2114
}
2115

2116 2117 2118
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2119 2120
{
	int err;
2121
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2122

2123
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2124 2125 2126 2127
		err = -EINVAL;
		goto out;
	}

2128 2129 2130 2131 2132 2133 2134
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2135
			nodes_allowed = &node_states[N_MEMORY];
2136 2137 2138 2139 2140 2141 2142 2143 2144
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2145
		nodes_allowed = &node_states[N_MEMORY];
2146

2147
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2148

2149
	if (nodes_allowed != &node_states[N_MEMORY])
2150 2151 2152
		NODEMASK_FREE(nodes_allowed);

	return len;
2153 2154 2155
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2175 2176 2177 2178 2179 2180 2181 2182 2183
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2184
	return nr_hugepages_store_common(false, kobj, buf, len);
2185 2186 2187
}
HSTATE_ATTR(nr_hugepages);

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2203
	return nr_hugepages_store_common(true, kobj, buf, len);
2204 2205 2206 2207 2208
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2209 2210 2211
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2212
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2213 2214
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2215

2216 2217 2218 2219 2220
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2221
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2222

2223
	if (hstate_is_gigantic(h))
2224 2225
		return -EINVAL;

2226
	err = kstrtoul(buf, 10, &input);
2227
	if (err)
2228
		return err;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2252 2253 2254 2255 2256 2257
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2258
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2259 2260 2261 2262 2263 2264 2265
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2277 2278 2279 2280 2281 2282 2283 2284 2285
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2286 2287 2288
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2289 2290 2291 2292 2293 2294 2295
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2296 2297 2298
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2299 2300
{
	int retval;
2301
	int hi = hstate_index(h);
2302

2303 2304
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2305 2306
		return -ENOMEM;

2307
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2308
	if (retval)
2309
		kobject_put(hstate_kobjs[hi]);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2324 2325
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2326
		if (err)
2327
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2328 2329 2330
	}
}

2331 2332 2333 2334
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2335 2336 2337
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2338 2339 2340 2341 2342 2343 2344 2345 2346
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2347
 * A subset of global hstate attributes for node devices
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2361
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2384
 * Unregister hstate attributes from a single node device.
2385 2386
 * No-op if no hstate attributes attached.
 */
2387
static void hugetlb_unregister_node(struct node *node)
2388 2389
{
	struct hstate *h;
2390
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2391 2392

	if (!nhs->hugepages_kobj)
2393
		return;		/* no hstate attributes */
2394

2395 2396 2397 2398 2399
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2400
		}
2401
	}
2402 2403 2404 2405 2406 2407

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2408
 * hugetlb module exit:  unregister hstate attributes from node devices
2409 2410 2411 2412 2413 2414 2415
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2416
	 * disable node device registrations.
2417 2418 2419 2420 2421 2422 2423
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2424
		hugetlb_unregister_node(node_devices[nid]);
2425 2426 2427
}

/*
2428
 * Register hstate attributes for a single node device.
2429 2430
 * No-op if attributes already registered.
 */
2431
static void hugetlb_register_node(struct node *node)
2432 2433
{
	struct hstate *h;
2434
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2435 2436 2437 2438 2439 2440
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2441
							&node->dev.kobj);
2442 2443 2444 2445 2446 2447 2448 2449
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2450 2451
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2452 2453 2454 2455 2456 2457 2458
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2459
 * hugetlb init time:  register hstate attributes for all registered node
2460 2461
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2462
 */
2463
static void __init hugetlb_register_all_nodes(void)
2464 2465 2466
{
	int nid;

2467
	for_each_node_state(nid, N_MEMORY) {
2468
		struct node *node = node_devices[nid];
2469
		if (node->dev.id == nid)
2470 2471 2472 2473
			hugetlb_register_node(node);
	}

	/*
2474
	 * Let the node device driver know we're here so it can
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2496 2497 2498 2499
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2500 2501
	hugetlb_unregister_all_nodes();

2502
	for_each_hstate(h) {
2503
		kobject_put(hstate_kobjs[hstate_index(h)]);
2504 2505 2506
	}

	kobject_put(hugepages_kobj);
2507
	kfree(hugetlb_fault_mutex_table);
2508 2509 2510 2511 2512
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2513 2514
	int i;

2515
	if (!hugepages_supported())
2516
		return 0;
2517

2518 2519 2520 2521
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2522
	}
2523
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2524 2525
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2526 2527

	hugetlb_init_hstates();
2528
	gather_bootmem_prealloc();
2529 2530 2531
	report_hugepages();

	hugetlb_sysfs_init();
2532
	hugetlb_register_all_nodes();
2533
	hugetlb_cgroup_file_init();
2534

2535 2536 2537 2538 2539
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2540
	hugetlb_fault_mutex_table =
2541
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2542
	BUG_ON(!hugetlb_fault_mutex_table);
2543 2544

	for (i = 0; i < num_fault_mutexes; i++)
2545
		mutex_init(&hugetlb_fault_mutex_table[i]);
2546 2547 2548 2549 2550 2551 2552 2553
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2554 2555
	unsigned long i;

2556
	if (size_to_hstate(PAGE_SIZE << order)) {
2557
		pr_warning("hugepagesz= specified twice, ignoring\n");
2558 2559
		return;
	}
2560
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2561
	BUG_ON(order == 0);
2562
	h = &hstates[hugetlb_max_hstate++];
2563 2564
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2565 2566 2567 2568
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2569
	INIT_LIST_HEAD(&h->hugepage_activelist);
2570 2571
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2572 2573
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2574

2575 2576 2577
	parsed_hstate = h;
}

2578
static int __init hugetlb_nrpages_setup(char *s)
2579 2580
{
	unsigned long *mhp;
2581
	static unsigned long *last_mhp;
2582 2583

	/*
2584
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2585 2586
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2587
	if (!hugetlb_max_hstate)
2588 2589 2590 2591
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2592
	if (mhp == last_mhp) {
2593 2594
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2595 2596 2597
		return 1;
	}

2598 2599 2600
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2601 2602 2603 2604 2605
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2606
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2607 2608 2609 2610
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2611 2612
	return 1;
}
2613 2614 2615 2616 2617 2618 2619 2620
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2621

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2634 2635 2636
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2637
{
2638
	struct hstate *h = &default_hstate;
2639
	unsigned long tmp = h->max_huge_pages;
2640
	int ret;
2641

2642 2643 2644
	if (!hugepages_supported())
		return -ENOTSUPP;

2645 2646
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2647 2648 2649
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2650

2651 2652 2653
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2654 2655
out:
	return ret;
L
Linus Torvalds 已提交
2656
}
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2675
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2676
			void __user *buffer,
2677 2678
			size_t *length, loff_t *ppos)
{
2679
	struct hstate *h = &default_hstate;
2680
	unsigned long tmp;
2681
	int ret;
2682

2683 2684 2685
	if (!hugepages_supported())
		return -ENOTSUPP;

2686
	tmp = h->nr_overcommit_huge_pages;
2687

2688
	if (write && hstate_is_gigantic(h))
2689 2690
		return -EINVAL;

2691 2692
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2693 2694 2695
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2696 2697 2698 2699 2700 2701

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2702 2703
out:
	return ret;
2704 2705
}

L
Linus Torvalds 已提交
2706 2707
#endif /* CONFIG_SYSCTL */

2708
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2709
{
2710
	struct hstate *h = &default_hstate;
2711 2712
	if (!hugepages_supported())
		return;
2713
	seq_printf(m,
2714 2715 2716 2717 2718
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2719 2720 2721 2722 2723
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2724 2725 2726 2727
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2728
	struct hstate *h = &default_hstate;
2729 2730
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2731 2732
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2733 2734
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2735 2736 2737
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2738 2739
}

2740 2741 2742 2743 2744
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2745 2746 2747
	if (!hugepages_supported())
		return;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2758 2759 2760
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2761 2762 2763 2764 2765 2766
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2767 2768
}

2769
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2792
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2793 2794
			goto out;

2795 2796
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2797 2798 2799 2800 2801 2802
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2803
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2804 2805 2806 2807 2808 2809

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2810 2811
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2812
	struct resv_map *resv = vma_resv_map(vma);
2813 2814 2815 2816 2817

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2818
	 * has a reference to the reservation map it cannot disappear until
2819 2820 2821
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2822
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2823
		kref_get(&resv->refs);
2824 2825
}

2826 2827
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2828
	struct hstate *h = hstate_vma(vma);
2829
	struct resv_map *resv = vma_resv_map(vma);
2830
	struct hugepage_subpool *spool = subpool_vma(vma);
2831
	unsigned long reserve, start, end;
2832
	long gbl_reserve;
2833

2834 2835
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2836

2837 2838
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2839

2840
	reserve = (end - start) - region_count(resv, start, end);
2841

2842 2843 2844
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2845 2846 2847 2848 2849 2850
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2851
	}
2852 2853
}

L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2860
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2861 2862
{
	BUG();
N
Nick Piggin 已提交
2863
	return 0;
L
Linus Torvalds 已提交
2864 2865
}

2866
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2867
	.fault = hugetlb_vm_op_fault,
2868
	.open = hugetlb_vm_op_open,
2869
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2870 2871
};

2872 2873
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2874 2875 2876
{
	pte_t entry;

2877
	if (writable) {
2878 2879
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2880
	} else {
2881 2882
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2883 2884 2885
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2886
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2887 2888 2889 2890

	return entry;
}

2891 2892 2893 2894 2895
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2896
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2897
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2898
		update_mmu_cache(vma, address, ptep);
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2926

D
David Gibson 已提交
2927 2928 2929 2930 2931
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2932
	unsigned long addr;
2933
	int cow;
2934 2935
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2936 2937 2938
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2939 2940

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2941

2942 2943 2944 2945 2946
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2947
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2948
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2949 2950 2951
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2952
		dst_pte = huge_pte_alloc(dst, addr, sz);
2953 2954 2955 2956
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2957 2958 2959 2960 2961

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2962 2963 2964
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2983
			if (cow) {
2984
				huge_ptep_set_wrprotect(src, addr, src_pte);
2985 2986 2987
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2988
			entry = huge_ptep_get(src_pte);
2989 2990
			ptepage = pte_page(entry);
			get_page(ptepage);
2991
			page_dup_rmap(ptepage);
2992 2993
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2994 2995
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2996 2997
	}

2998 2999 3000 3001
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3002 3003
}

3004 3005 3006
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3007
{
3008
	int force_flush = 0;
D
David Gibson 已提交
3009 3010
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3011
	pte_t *ptep;
D
David Gibson 已提交
3012
	pte_t pte;
3013
	spinlock_t *ptl;
D
David Gibson 已提交
3014
	struct page *page;
3015 3016
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3017 3018
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3019

D
David Gibson 已提交
3020
	WARN_ON(!is_vm_hugetlb_page(vma));
3021 3022
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3023

3024
	tlb_start_vma(tlb, vma);
3025
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3026
	address = start;
3027
again:
3028
	for (; address < end; address += sz) {
3029
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3030
		if (!ptep)
3031 3032
			continue;

3033
		ptl = huge_pte_lock(h, mm, ptep);
3034
		if (huge_pmd_unshare(mm, &address, ptep))
3035
			goto unlock;
3036

3037 3038
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3039
			goto unlock;
3040 3041

		/*
3042 3043
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3044
		 */
3045
		if (unlikely(!pte_present(pte))) {
3046
			huge_pte_clear(mm, address, ptep);
3047
			goto unlock;
3048
		}
3049 3050

		page = pte_page(pte);
3051 3052 3053 3054 3055 3056 3057
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3058
				goto unlock;
3059 3060 3061 3062 3063 3064 3065 3066 3067

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3068
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3069
		tlb_remove_tlb_entry(tlb, ptep, address);
3070
		if (huge_pte_dirty(pte))
3071
			set_page_dirty(page);
3072

3073 3074
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3075
		if (force_flush) {
3076
			address += sz;
3077
			spin_unlock(ptl);
3078
			break;
3079
		}
3080
		/* Bail out after unmapping reference page if supplied */
3081 3082
		if (ref_page) {
			spin_unlock(ptl);
3083
			break;
3084 3085 3086
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3087
	}
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3098
	}
3099
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3100
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3101
}
D
David Gibson 已提交
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3115
	 * is to clear it before releasing the i_mmap_rwsem. This works
3116
	 * because in the context this is called, the VMA is about to be
3117
	 * destroyed and the i_mmap_rwsem is held.
3118 3119 3120 3121
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3122
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3123
			  unsigned long end, struct page *ref_page)
3124
{
3125 3126 3127 3128 3129
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3130
	tlb_gather_mmu(&tlb, mm, start, end);
3131 3132
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3133 3134
}

3135 3136 3137 3138 3139 3140
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3141 3142
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3143
{
3144
	struct hstate *h = hstate_vma(vma);
3145 3146 3147 3148 3149 3150 3151 3152
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3153
	address = address & huge_page_mask(h);
3154 3155
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3156
	mapping = file_inode(vma->vm_file)->i_mapping;
3157

3158 3159 3160 3161 3162
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3163
	i_mmap_lock_write(mapping);
3164
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3177 3178
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3179
	}
3180
	i_mmap_unlock_write(mapping);
3181 3182
}

3183 3184
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3185 3186 3187
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3188
 */
3189
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3190
			unsigned long address, pte_t *ptep, pte_t pte,
3191
			struct page *pagecache_page, spinlock_t *ptl)
3192
{
3193
	struct hstate *h = hstate_vma(vma);
3194
	struct page *old_page, *new_page;
3195
	int ret = 0, outside_reserve = 0;
3196 3197
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3198 3199 3200

	old_page = pte_page(pte);

3201
retry_avoidcopy:
3202 3203
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3204 3205
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3206
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3207
		return 0;
3208 3209
	}

3210 3211 3212 3213 3214 3215 3216 3217 3218
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3219
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3220 3221 3222
			old_page != pagecache_page)
		outside_reserve = 1;

3223
	page_cache_get(old_page);
3224

3225 3226 3227 3228
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3229
	spin_unlock(ptl);
3230
	new_page = alloc_huge_page(vma, address, outside_reserve);
3231

3232
	if (IS_ERR(new_page)) {
3233 3234 3235 3236 3237 3238 3239 3240
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3241
			page_cache_release(old_page);
3242
			BUG_ON(huge_pte_none(pte));
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3255 3256
		}

3257 3258 3259
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3260 3261
	}

3262 3263 3264 3265
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3266
	if (unlikely(anon_vma_prepare(vma))) {
3267 3268
		ret = VM_FAULT_OOM;
		goto out_release_all;
3269
	}
3270

A
Andrea Arcangeli 已提交
3271 3272
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3273
	__SetPageUptodate(new_page);
3274
	set_page_huge_active(new_page);
3275

3276 3277 3278
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3279

3280
	/*
3281
	 * Retake the page table lock to check for racing updates
3282 3283
	 * before the page tables are altered
	 */
3284
	spin_lock(ptl);
3285
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3286
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3287 3288
		ClearPagePrivate(new_page);

3289
		/* Break COW */
3290
		huge_ptep_clear_flush(vma, address, ptep);
3291
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3292 3293
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3294
		page_remove_rmap(old_page);
3295
		hugepage_add_new_anon_rmap(new_page, vma, address);
3296 3297 3298
		/* Make the old page be freed below */
		new_page = old_page;
	}
3299
	spin_unlock(ptl);
3300
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3301
out_release_all:
3302
	page_cache_release(new_page);
3303
out_release_old:
3304
	page_cache_release(old_page);
3305

3306 3307
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3308 3309
}

3310
/* Return the pagecache page at a given address within a VMA */
3311 3312
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3313 3314
{
	struct address_space *mapping;
3315
	pgoff_t idx;
3316 3317

	mapping = vma->vm_file->f_mapping;
3318
	idx = vma_hugecache_offset(h, vma, address);
3319 3320 3321 3322

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3323 3324 3325 3326 3327
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3343
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3344 3345
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3346
{
3347
	struct hstate *h = hstate_vma(vma);
3348
	int ret = VM_FAULT_SIGBUS;
3349
	int anon_rmap = 0;
A
Adam Litke 已提交
3350 3351
	unsigned long size;
	struct page *page;
3352
	pte_t new_pte;
3353
	spinlock_t *ptl;
A
Adam Litke 已提交
3354

3355 3356 3357
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3358
	 * COW. Warn that such a situation has occurred as it may not be obvious
3359 3360
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3361 3362
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3363 3364 3365
		return ret;
	}

A
Adam Litke 已提交
3366 3367 3368 3369
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3370 3371 3372
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3373
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3374 3375
		if (idx >= size)
			goto out;
3376
		page = alloc_huge_page(vma, address, 0);
3377
		if (IS_ERR(page)) {
3378 3379 3380 3381 3382
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3383 3384
			goto out;
		}
A
Andrea Arcangeli 已提交
3385
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3386
		__SetPageUptodate(page);
3387
		set_page_huge_active(page);
3388

3389
		if (vma->vm_flags & VM_MAYSHARE) {
3390
			int err;
K
Ken Chen 已提交
3391
			struct inode *inode = mapping->host;
3392 3393 3394 3395 3396 3397 3398 3399

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3400
			ClearPagePrivate(page);
K
Ken Chen 已提交
3401 3402

			spin_lock(&inode->i_lock);
3403
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3404
			spin_unlock(&inode->i_lock);
3405
		} else {
3406
			lock_page(page);
3407 3408 3409 3410
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3411
			anon_rmap = 1;
3412
		}
3413
	} else {
3414 3415 3416 3417 3418 3419
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3420
			ret = VM_FAULT_HWPOISON |
3421
				VM_FAULT_SET_HINDEX(hstate_index(h));
3422 3423
			goto backout_unlocked;
		}
3424
	}
3425

3426 3427 3428 3429 3430 3431
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3432
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3433 3434 3435 3436
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3437
		/* Just decrements count, does not deallocate */
3438
		vma_end_reservation(h, vma, address);
3439
	}
3440

3441 3442
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3443
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3444 3445 3446
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3447
	ret = 0;
3448
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3449 3450
		goto backout;

3451 3452
	if (anon_rmap) {
		ClearPagePrivate(page);
3453
		hugepage_add_new_anon_rmap(page, vma, address);
3454
	} else
3455
		page_dup_rmap(page);
3456 3457 3458 3459
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3460
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3461
		/* Optimization, do the COW without a second fault */
3462
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3463 3464
	}

3465
	spin_unlock(ptl);
A
Adam Litke 已提交
3466 3467
	unlock_page(page);
out:
3468
	return ret;
A
Adam Litke 已提交
3469 3470

backout:
3471
	spin_unlock(ptl);
3472
backout_unlocked:
A
Adam Litke 已提交
3473 3474 3475
	unlock_page(page);
	put_page(page);
	goto out;
3476 3477
}

3478
#ifdef CONFIG_SMP
3479
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3504
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3505 3506 3507 3508 3509 3510 3511 3512
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3513
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3514
			unsigned long address, unsigned int flags)
3515
{
3516
	pte_t *ptep, entry;
3517
	spinlock_t *ptl;
3518
	int ret;
3519 3520
	u32 hash;
	pgoff_t idx;
3521
	struct page *page = NULL;
3522
	struct page *pagecache_page = NULL;
3523
	struct hstate *h = hstate_vma(vma);
3524
	struct address_space *mapping;
3525
	int need_wait_lock = 0;
3526

3527 3528
	address &= huge_page_mask(h);

3529 3530 3531
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3532
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3533
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3534 3535
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3536
			return VM_FAULT_HWPOISON_LARGE |
3537
				VM_FAULT_SET_HINDEX(hstate_index(h));
3538 3539
	}

3540
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3541 3542 3543
	if (!ptep)
		return VM_FAULT_OOM;

3544 3545 3546
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3547 3548 3549 3550 3551
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3552 3553
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3554

3555 3556
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3557
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3558
		goto out_mutex;
3559
	}
3560

N
Nick Piggin 已提交
3561
	ret = 0;
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3573 3574 3575 3576 3577 3578 3579 3580
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3581
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3582 3583
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3584
			goto out_mutex;
3585
		}
3586
		/* Just decrements count, does not deallocate */
3587
		vma_end_reservation(h, vma, address);
3588

3589
		if (!(vma->vm_flags & VM_MAYSHARE))
3590 3591 3592 3593
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3594 3595 3596 3597 3598 3599
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3600 3601 3602 3603 3604 3605 3606
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3607 3608 3609 3610
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3611

3612
	get_page(page);
3613

3614
	if (flags & FAULT_FLAG_WRITE) {
3615
		if (!huge_pte_write(entry)) {
3616
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3617
					pagecache_page, ptl);
3618
			goto out_put_page;
3619
		}
3620
		entry = huge_pte_mkdirty(entry);
3621 3622
	}
	entry = pte_mkyoung(entry);
3623 3624
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3625
		update_mmu_cache(vma, address, ptep);
3626 3627 3628 3629
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3630 3631
out_ptl:
	spin_unlock(ptl);
3632 3633 3634 3635 3636

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3637
out_mutex:
3638
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3639 3640 3641 3642 3643 3644 3645 3646 3647
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3648
	return ret;
3649 3650
}

3651 3652 3653 3654
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3655
{
3656 3657
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3658
	unsigned long remainder = *nr_pages;
3659
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3660 3661

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3662
		pte_t *pte;
3663
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3664
		int absent;
A
Adam Litke 已提交
3665
		struct page *page;
D
David Gibson 已提交
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3676 3677
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3678
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3679
		 * first, for the page indexing below to work.
3680 3681
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3682
		 */
3683
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3684 3685
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3686 3687 3688 3689
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3690 3691 3692 3693
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3694
		 */
H
Hugh Dickins 已提交
3695 3696
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3697 3698
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3699 3700 3701
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3714 3715
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3716
			int ret;
D
David Gibson 已提交
3717

3718 3719
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3720 3721
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3722
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3723
				continue;
D
David Gibson 已提交
3724

A
Adam Litke 已提交
3725 3726 3727 3728
			remainder = 0;
			break;
		}

3729
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3730
		page = pte_page(huge_ptep_get(pte));
3731
same_page:
3732
		if (pages) {
H
Hugh Dickins 已提交
3733
			pages[i] = mem_map_offset(page, pfn_offset);
3734
			get_page_foll(pages[i]);
3735
		}
D
David Gibson 已提交
3736 3737 3738 3739 3740

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3741
		++pfn_offset;
D
David Gibson 已提交
3742 3743
		--remainder;
		++i;
3744
		if (vaddr < vma->vm_end && remainder &&
3745
				pfn_offset < pages_per_huge_page(h)) {
3746 3747 3748 3749 3750 3751
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3752
		spin_unlock(ptl);
D
David Gibson 已提交
3753
	}
3754
	*nr_pages = remainder;
D
David Gibson 已提交
3755 3756
	*position = vaddr;

H
Hugh Dickins 已提交
3757
	return i ? i : -EFAULT;
D
David Gibson 已提交
3758
}
3759

3760
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3761 3762 3763 3764 3765 3766
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3767
	struct hstate *h = hstate_vma(vma);
3768
	unsigned long pages = 0;
3769 3770 3771 3772

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3773
	mmu_notifier_invalidate_range_start(mm, start, end);
3774
	i_mmap_lock_write(vma->vm_file->f_mapping);
3775
	for (; address < end; address += huge_page_size(h)) {
3776
		spinlock_t *ptl;
3777 3778 3779
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3780
		ptl = huge_pte_lock(h, mm, ptep);
3781 3782
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3783
			spin_unlock(ptl);
3784
			continue;
3785
		}
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3806
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3807
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3808
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3809
			set_huge_pte_at(mm, address, ptep, pte);
3810
			pages++;
3811
		}
3812
		spin_unlock(ptl);
3813
	}
3814
	/*
3815
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3816
	 * may have cleared our pud entry and done put_page on the page table:
3817
	 * once we release i_mmap_rwsem, another task can do the final put_page
3818 3819
	 * and that page table be reused and filled with junk.
	 */
3820
	flush_tlb_range(vma, start, end);
3821
	mmu_notifier_invalidate_range(mm, start, end);
3822
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3823
	mmu_notifier_invalidate_range_end(mm, start, end);
3824 3825

	return pages << h->order;
3826 3827
}

3828 3829
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3830
					struct vm_area_struct *vma,
3831
					vm_flags_t vm_flags)
3832
{
3833
	long ret, chg;
3834
	struct hstate *h = hstate_inode(inode);
3835
	struct hugepage_subpool *spool = subpool_inode(inode);
3836
	struct resv_map *resv_map;
3837
	long gbl_reserve;
3838

3839 3840 3841
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3842
	 * without using reserves
3843
	 */
3844
	if (vm_flags & VM_NORESERVE)
3845 3846
		return 0;

3847 3848 3849 3850 3851 3852
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3853
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3854
		resv_map = inode_resv_map(inode);
3855

3856
		chg = region_chg(resv_map, from, to);
3857 3858 3859

	} else {
		resv_map = resv_map_alloc();
3860 3861 3862
		if (!resv_map)
			return -ENOMEM;

3863
		chg = to - from;
3864

3865 3866 3867 3868
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3869 3870 3871 3872
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3873

3874 3875 3876 3877 3878 3879 3880
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3881 3882 3883
		ret = -ENOSPC;
		goto out_err;
	}
3884 3885

	/*
3886
	 * Check enough hugepages are available for the reservation.
3887
	 * Hand the pages back to the subpool if there are not
3888
	 */
3889
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3890
	if (ret < 0) {
3891 3892
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3893
		goto out_err;
K
Ken Chen 已提交
3894
	}
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
3925
	return 0;
3926
out_err:
3927 3928
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
3929 3930
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3931
	return ret;
3932 3933
}

3934 3935
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
3936
{
3937
	struct hstate *h = hstate_inode(inode);
3938
	struct resv_map *resv_map = inode_resv_map(inode);
3939
	long chg = 0;
3940
	struct hugepage_subpool *spool = subpool_inode(inode);
3941
	long gbl_reserve;
K
Ken Chen 已提交
3942

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
3954
	spin_lock(&inode->i_lock);
3955
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3956 3957
	spin_unlock(&inode->i_lock);

3958 3959 3960 3961 3962 3963
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3964 3965

	return 0;
3966
}
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

3994
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3995 3996 3997 3998 3999 4000 4001 4002 4003
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4004 4005
		return true;
	return false;
4006 4007 4008 4009 4010 4011 4012
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4013
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4027
	spinlock_t *ptl;
4028 4029 4030 4031

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4032
	i_mmap_lock_write(mapping);
4033 4034 4035 4036 4037 4038 4039 4040
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4041
				mm_inc_nr_pmds(mm);
4042 4043 4044 4045 4046 4047 4048 4049 4050
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4051 4052
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4053
	if (pud_none(*pud)) {
4054 4055
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4056
	} else {
4057
		put_page(virt_to_page(spte));
4058 4059
		mm_inc_nr_pmds(mm);
	}
4060
	spin_unlock(ptl);
4061 4062
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4063
	i_mmap_unlock_write(mapping);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4074
 * called with page table lock held.
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4090
	mm_dec_nr_pmds(mm);
4091 4092 4093
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4094 4095 4096 4097 4098 4099
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4100 4101 4102 4103 4104

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4105
#define want_pmd_share()	(0)
4106 4107
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4166
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4167
		pmd_t *pmd, int flags)
4168
{
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4181
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4197 4198 4199
	return page;
}

4200
struct page * __weak
4201
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4202
		pud_t *pud, int flags)
4203
{
4204 4205
	if (flags & FOLL_GET)
		return NULL;
4206

4207
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4208 4209
}

4210 4211
#ifdef CONFIG_MEMORY_FAILURE

4212 4213 4214 4215
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4216
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4217 4218 4219
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4220
	int ret = -EBUSY;
4221 4222

	spin_lock(&hugetlb_lock);
4223 4224 4225 4226 4227
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4228 4229 4230 4231 4232 4233 4234
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4235
		set_page_refcounted(hpage);
4236 4237 4238 4239
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4240
	spin_unlock(&hugetlb_lock);
4241
	return ret;
4242
}
4243
#endif
4244 4245 4246

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4247 4248
	bool ret = true;

4249
	VM_BUG_ON_PAGE(!PageHead(page), page);
4250
	spin_lock(&hugetlb_lock);
4251 4252 4253 4254 4255
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4256
	list_move_tail(&page->lru, list);
4257
unlock:
4258
	spin_unlock(&hugetlb_lock);
4259
	return ret;
4260 4261 4262 4263
}

void putback_active_hugepage(struct page *page)
{
4264
	VM_BUG_ON_PAGE(!PageHead(page), page);
4265
	spin_lock(&hugetlb_lock);
4266
	set_page_huge_active(page);
4267 4268 4269 4270
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}