hugetlb.c 133.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/memblock.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/mmdebug.h>
22
#include <linux/sched/signal.h>
23
#include <linux/rmap.h>
24
#include <linux/string_helpers.h>
25 26
#include <linux/swap.h>
#include <linux/swapops.h>
27
#include <linux/jhash.h>
28
#include <linux/numa.h>
29

D
David Gibson 已提交
30 31
#include <asm/page.h>
#include <asm/pgtable.h>
32
#include <asm/tlb.h>
D
David Gibson 已提交
33

34
#include <linux/io.h>
D
David Gibson 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/node.h>
38
#include <linux/userfaultfd_k.h>
39
#include <linux/page_owner.h>
40
#include "internal.h"
L
Linus Torvalds 已提交
41

42
int hugetlb_max_hstate __read_mostly;
43 44
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
45 46 47 48 49
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
50

51 52
__initdata LIST_HEAD(huge_boot_pages);

53 54 55
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
56
static unsigned long __initdata default_hstate_size;
57
static bool __initdata parsed_valid_hugepagesz = true;
58

59
/*
60 61
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
62
 */
63
DEFINE_SPINLOCK(hugetlb_lock);
64

65 66 67 68 69
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
70
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71

72 73 74
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

75 76 77 78 79 80 81
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
82 83 84 85 86 87
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
88
		kfree(spool);
89
	}
90 91
}

92 93
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
94 95 96
{
	struct hugepage_subpool *spool;

97
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 99 100 101 102
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
103 104 105 106 107 108 109 110 111
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
112 113 114 115 116 117 118 119 120 121 122 123

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

124 125 126 127 128 129 130 131 132
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 134
				      long delta)
{
135
	long ret = delta;
136 137

	if (!spool)
138
		return ret;
139 140

	spin_lock(&spool->lock);
141 142 143 144 145 146 147 148

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
149 150
	}

151 152
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
168 169 170
	return ret;
}

171 172 173 174 175 176 177
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 179
				       long delta)
{
180 181
	long ret = delta;

182
	if (!spool)
183
		return delta;
184 185

	spin_lock(&spool->lock);
186 187 188 189

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

190 191
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
206
	unlock_or_release_subpool(spool);
207 208

	return ret;
209 210 211 212 213 214 215 216 217
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
218
	return subpool_inode(file_inode(vma->vm_file));
219 220
}

221 222 223
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
224
 *
225 226 227 228 229 230 231 232 233 234 235 236 237 238
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
239 240 241 242 243 244 245
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

246 247
/*
 * Add the huge page range represented by [f, t) to the reserve
248 249 250 251 252 253 254 255
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
256 257 258
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
259
 */
260
static long region_add(struct resv_map *resv, long f, long t)
261
{
262
	struct list_head *head = &resv->regions;
263
	struct file_region *rg, *nrg, *trg;
264
	long add = 0;
265

266
	spin_lock(&resv->lock);
267 268 269 270 271
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
312 313 314 315 316
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
317 318 319 320
			list_del(&rg->link);
			kfree(rg);
		}
	}
321 322

	add += (nrg->from - f);		/* Added to beginning of region */
323
	nrg->from = f;
324
	add += t - nrg->to;		/* Added to end of region */
325
	nrg->to = t;
326

327 328
out_locked:
	resv->adds_in_progress--;
329
	spin_unlock(&resv->lock);
330 331
	VM_BUG_ON(add < 0);
	return add;
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
347 348 349 350 351 352 353 354
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
355
 */
356
static long region_chg(struct resv_map *resv, long f, long t)
357
{
358
	struct list_head *head = &resv->regions;
359
	struct file_region *rg, *nrg = NULL;
360 361
	long chg = 0;

362 363
retry:
	spin_lock(&resv->lock);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 381
		if (!trg) {
			kfree(nrg);
382
			return -ENOMEM;
383
		}
384 385 386 387 388 389 390

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

391 392 393 394 395 396 397 398 399
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
400
		if (!nrg) {
401
			resv->adds_in_progress--;
402 403 404 405 406 407 408 409 410 411
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
412

413 414 415
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
416 417 418 419 420 421 422 423 424 425 426 427
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
428
			goto out;
429

L
Lucas De Marchi 已提交
430
		/* We overlap with this area, if it extends further than
431 432 433 434 435 436 437 438
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
439 440 441 442 443 444 445 446

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
447 448 449
	return chg;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

469
/*
470 471 472 473 474 475 476 477 478 479 480 481
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
482
 */
483
static long region_del(struct resv_map *resv, long f, long t)
484
{
485
	struct list_head *head = &resv->regions;
486
	struct file_region *rg, *trg;
487 488
	struct file_region *nrg = NULL;
	long del = 0;
489

490
retry:
491
	spin_lock(&resv->lock);
492
	list_for_each_entry_safe(rg, trg, head, link) {
493 494 495 496 497 498 499 500
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501
			continue;
502

503
		if (rg->from >= t)
504 505
			break;

506 507 508 509 510 511 512 513 514 515 516 517 518
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
540
			break;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
557
	}
558 559

	spin_unlock(&resv->lock);
560 561
	kfree(nrg);
	return del;
562 563
}

564 565 566 567 568 569 570 571 572
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
573
void hugetlb_fix_reserve_counts(struct inode *inode)
574 575 576 577 578
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579
	if (rsv_adjust) {
580 581 582 583 584 585
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

586 587 588 589
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
590
static long region_count(struct resv_map *resv, long f, long t)
591
{
592
	struct list_head *head = &resv->regions;
593 594 595
	struct file_region *rg;
	long chg = 0;

596
	spin_lock(&resv->lock);
597 598
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
599 600
		long seg_from;
		long seg_to;
601 602 603 604 605 606 607 608 609 610 611

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
612
	spin_unlock(&resv->lock);
613 614 615 616

	return chg;
}

617 618 619 620
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
621 622
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
623
{
624 625
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
626 627
}

628 629 630 631 632
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
633
EXPORT_SYMBOL_GPL(linear_hugepage_index);
634

635 636 637 638 639 640
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
641 642 643
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
644
}
645
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646

647 648 649
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
650 651
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
652
 */
653
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 655 656 657
{
	return vma_kernel_pagesize(vma);
}

658 659 660 661 662 663 664
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
665
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666

667 668 669 670 671 672 673 674 675
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
676 677 678 679 680 681 682 683 684
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
685
 */
686 687 688 689 690 691 692 693 694 695 696
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

697
struct resv_map *resv_map_alloc(void)
698 699
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 701 702 703 704
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
705
		return NULL;
706
	}
707 708

	kref_init(&resv_map->refs);
709
	spin_lock_init(&resv_map->lock);
710 711
	INIT_LIST_HEAD(&resv_map->regions);

712 713 714 715 716 717
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

718 719 720
	return resv_map;
}

721
void resv_map_release(struct kref *ref)
722 723
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 725
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
726 727

	/* Clear out any active regions before we release the map. */
728
	region_del(resv_map, 0, LONG_MAX);
729 730 731 732 733 734 735 736 737

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

738 739 740
	kfree(resv_map);
}

741 742 743 744 745
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

746
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747
{
748
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749 750 751 752 753 754 755
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
756 757
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
758
	}
759 760
}

761
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762
{
763 764
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765

766 767
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
768 769 770 771
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
772 773
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 775

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 777 778 779
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
780
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 782

	return (get_vma_private_data(vma) & flag) != 0;
783 784
}

785
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 787
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
788
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789
	if (!(vma->vm_flags & VM_MAYSHARE))
790 791 792 793
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
794
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795
{
796 797 798 799 800 801 802 803 804 805 806
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807
			return true;
808
		else
809
			return false;
810
	}
811 812

	/* Shared mappings always use reserves */
813 814 815 816 817 818 819 820 821 822 823 824 825
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
826 827 828 829 830

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
852

853
	return false;
854 855
}

856
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
857 858
{
	int nid = page_to_nid(page);
859
	list_move(&page->lru, &h->hugepage_freelists[nid]);
860 861
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
862 863
}

864
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 866 867
{
	struct page *page;

868
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869
		if (!PageHWPoison(page))
870 871 872 873 874 875
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
876
		return NULL;
877
	list_move(&page->lru, &h->hugepage_activelist);
878
	set_page_refcounted(page);
879 880 881 882 883
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

884 885
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
886
{
887 888 889 890
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
891
	int node = NUMA_NO_NODE;
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
909 910 911 912 913

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
914 915 916
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

917 918 919
	return NULL;
}

920 921 922
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
923
	if (hugepage_movable_supported(h))
924 925 926 927 928
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

929 930
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
931 932
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
933
{
934
	struct page *page;
935
	struct mempolicy *mpol;
936
	gfp_t gfp_mask;
937
	nodemask_t *nodemask;
938
	int nid;
L
Linus Torvalds 已提交
939

940 941 942 943 944
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
945
	if (!vma_has_reserves(vma, chg) &&
946
			h->free_huge_pages - h->resv_huge_pages == 0)
947
		goto err;
948

949
	/* If reserves cannot be used, ensure enough pages are in the pool */
950
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951
		goto err;
952

953 954
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955 956 957 958
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
959
	}
960

961
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
962
	return page;
963 964 965

err:
	return NULL;
L
Linus Torvalds 已提交
966 967
}

968 969 970 971 972 973 974 975 976
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
977
	nid = next_node_in(nid, *nodes_allowed);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1039
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040
static void destroy_compound_gigantic_page(struct page *page,
1041
					unsigned int order)
1042 1043 1044 1045 1046
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1047
	atomic_set(compound_mapcount_ptr(page), 0);
1048
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049
		clear_compound_head(p);
1050 1051 1052 1053 1054 1055 1056
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1057
static void free_gigantic_page(struct page *page, unsigned int order)
1058 1059 1060 1061 1062
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
1063
				unsigned long nr_pages, gfp_t gfp_mask)
1064 1065
{
	unsigned long end_pfn = start_pfn + nr_pages;
1066
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067
				  gfp_mask);
1068 1069
}

1070 1071
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1082 1083 1084
		if (page_zone(page) != z)
			return false;

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1105 1106
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1107
{
1108
	unsigned int order = huge_page_order(h);
1109 1110
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
1111 1112 1113
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1114

1115
	zonelist = node_zonelist(nid, gfp_mask);
1116
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117
		spin_lock_irqsave(&zone->lock, flags);
1118

1119 1120 1121
		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122 1123 1124 1125 1126 1127 1128
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
1129 1130
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131 1132
				if (!ret)
					return pfn_to_page(pfn);
1133
				spin_lock_irqsave(&zone->lock, flags);
1134 1135 1136 1137
			}
			pfn += nr_pages;
		}

1138
		spin_unlock_irqrestore(&zone->lock, flags);
1139 1140 1141 1142 1143 1144
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146

1147
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148
static inline bool gigantic_page_supported(void) { return false; }
1149 1150
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask) { return NULL; }
1151
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152
static inline void destroy_compound_gigantic_page(struct page *page,
1153
						unsigned int order) { }
1154 1155
#endif

1156
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1157 1158
{
	int i;
1159

1160 1161
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1162

1163 1164 1165
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1166 1167
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1168 1169
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1170
	}
1171
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1173
	set_page_refcounted(page);
1174 1175 1176 1177 1178 1179
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1240
void free_huge_page(struct page *page)
1241
{
1242 1243 1244 1245
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1246
	struct hstate *h = page_hstate(page);
1247
	int nid = page_to_nid(page);
1248 1249
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1250
	bool restore_reserve;
1251

1252 1253
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1254 1255 1256

	set_page_private(page, 0);
	page->mapping = NULL;
1257
	restore_reserve = PagePrivate(page);
1258
	ClearPagePrivate(page);
1259

1260 1261 1262 1263 1264 1265 1266 1267
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1268
	spin_lock(&hugetlb_lock);
1269
	clear_page_huge_active(page);
1270 1271
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1272 1273 1274
	if (restore_reserve)
		h->resv_huge_pages++;

1275 1276 1277 1278 1279
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1280 1281
		/* remove the page from active list */
		list_del(&page->lru);
1282 1283 1284
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1285
	} else {
1286
		arch_clear_hugepage_flags(page);
1287
		enqueue_huge_page(h, page);
1288
	}
1289 1290 1291
	spin_unlock(&hugetlb_lock);
}

1292
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293
{
1294
	INIT_LIST_HEAD(&page->lru);
1295
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1296
	spin_lock(&hugetlb_lock);
1297
	set_hugetlb_cgroup(page, NULL);
1298 1299
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1300 1301 1302
	spin_unlock(&hugetlb_lock);
}

1303
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 1305 1306 1307 1308 1309 1310
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1311
	__ClearPageReserved(page);
1312
	__SetPageHead(page);
1313
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1327
		set_page_count(p, 0);
1328
		set_compound_head(p, page);
1329
	}
1330
	atomic_set(compound_mapcount_ptr(page), -1);
1331 1332
}

A
Andrew Morton 已提交
1333 1334 1335 1336 1337
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1338 1339 1340 1341 1342 1343
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1344
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345
}
1346 1347
EXPORT_SYMBOL_GPL(PageHuge);

1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1357
	return get_compound_page_dtor(page_head) == free_huge_page;
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1377
static struct page *alloc_buddy_huge_page(struct hstate *h,
1378
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
L
Linus Torvalds 已提交
1379
{
1380
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1381
	struct page *page;
1382

1383 1384 1385 1386 1387 1388 1389 1390
	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391 1392 1393 1394

	return page;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
				nid, nmask);
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1419 1420 1421 1422
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1423
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424 1425 1426
{
	struct page *page;
	int nr_nodes, node;
1427
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428 1429

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1431
		if (page)
1432 1433 1434
			break;
	}

1435 1436
	if (!page)
		return 0;
1437

1438 1439 1440
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1441 1442
}

1443 1444 1445 1446 1447 1448
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1449 1450
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1451
{
1452
	int nr_nodes, node;
1453 1454
	int ret = 0;

1455
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456 1457 1458 1459
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1460 1461
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1462
			struct page *page =
1463
				list_entry(h->hugepage_freelists[node].next,
1464 1465 1466
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1467
			h->free_huge_pages_node[node]--;
1468 1469
			if (acct_surplus) {
				h->surplus_huge_pages--;
1470
				h->surplus_huge_pages_node[node]--;
1471
			}
1472 1473
			update_and_free_page(h, page);
			ret = 1;
1474
			break;
1475
		}
1476
	}
1477 1478 1479 1480

	return ret;
}

1481 1482
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1483
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484 1485
 * dissolution fails because a give page is not a free hugepage, or because
 * free hugepages are fully reserved.
1486
 */
1487
int dissolve_free_huge_page(struct page *page)
1488
{
1489
	int rc = -EBUSY;
1490

1491 1492
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1493 1494 1495
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1496
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1497
			goto out;
1498 1499 1500 1501 1502 1503 1504 1505
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1506
		list_del(&head->lru);
1507 1508
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1509
		h->max_huge_pages--;
1510
		update_and_free_page(h, head);
1511
		rc = 0;
1512
	}
1513
out:
1514
	spin_unlock(&hugetlb_lock);
1515
	return rc;
1516 1517 1518 1519 1520
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1521 1522
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1523 1524
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1525
 */
1526
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527 1528
{
	unsigned long pfn;
1529
	struct page *page;
1530
	int rc = 0;
1531

1532
	if (!hugepages_supported())
1533
		return rc;
1534

1535 1536 1537 1538 1539 1540 1541 1542
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1543 1544

	return rc;
1545 1546
}

1547 1548 1549
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1550
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1551
		int nid, nodemask_t *nmask)
1552
{
1553
	struct page *page = NULL;
1554

1555
	if (hstate_is_gigantic(h))
1556 1557
		return NULL;

1558
	spin_lock(&hugetlb_lock);
1559 1560
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1561 1562
	spin_unlock(&hugetlb_lock);

1563
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1564
	if (!page)
1565
		return NULL;
1566 1567

	spin_lock(&hugetlb_lock);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
		put_page(page);
		page = NULL;
	} else {
		h->surplus_huge_pages++;
1581
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1582
	}
1583 1584

out_unlock:
1585
	spin_unlock(&hugetlb_lock);
1586 1587 1588 1589

	return page;
}

1590 1591
struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
				     int nid, nodemask_t *nmask)
1592 1593 1594 1595 1596 1597
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1598
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1611 1612 1613
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1614
static
1615
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1616 1617
		struct vm_area_struct *vma, unsigned long addr)
{
1618 1619 1620 1621 1622 1623 1624
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1625
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1626 1627 1628
	mpol_cond_put(mpol);

	return page;
1629 1630
}

1631
/* page migration callback function */
1632 1633
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1634
	gfp_t gfp_mask = htlb_alloc_mask(h);
1635
	struct page *page = NULL;
1636

1637 1638 1639
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1640
	spin_lock(&hugetlb_lock);
1641
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1642
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1643 1644
	spin_unlock(&hugetlb_lock);

1645
	if (!page)
1646
		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1647 1648 1649 1650

	return page;
}

1651
/* page migration callback function */
1652 1653
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1654
{
1655
	gfp_t gfp_mask = htlb_alloc_mask(h);
1656 1657 1658

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1659 1660 1661 1662 1663 1664
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1665 1666 1667 1668
		}
	}
	spin_unlock(&hugetlb_lock);

1669
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 1671
}

1672
/* mempolicy aware migration callback */
1673 1674
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	page = alloc_huge_page_nodemask(h, node, nodemask);
	mpol_cond_put(mpol);

	return page;
}

1690
/*
L
Lucas De Marchi 已提交
1691
 * Increase the hugetlb pool such that it can accommodate a reservation
1692 1693
 * of size 'delta'.
 */
1694
static int gather_surplus_pages(struct hstate *h, int delta)
1695 1696 1697 1698 1699
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1700
	bool alloc_ok = true;
1701

1702
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703
	if (needed <= 0) {
1704
		h->resv_huge_pages += delta;
1705
		return 0;
1706
	}
1707 1708 1709 1710 1711 1712 1713 1714

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1715
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1716
				NUMA_NO_NODE, NULL);
1717 1718 1719 1720
		if (!page) {
			alloc_ok = false;
			break;
		}
1721
		list_add(&page->lru, &surplus_list);
1722
		cond_resched();
1723
	}
1724
	allocated += i;
1725 1726 1727 1728 1729 1730

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1731 1732
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1743 1744
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1745
	 * needed to accommodate the reservation.  Add the appropriate number
1746
	 * of pages to the hugetlb pool and free the extras back to the buddy
1747 1748 1749
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1750 1751
	 */
	needed += allocated;
1752
	h->resv_huge_pages += delta;
1753
	ret = 0;
1754

1755
	/* Free the needed pages to the hugetlb pool */
1756
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 1758
		if ((--needed) < 0)
			break;
1759 1760 1761 1762 1763
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1764
		VM_BUG_ON_PAGE(page_count(page), page);
1765
		enqueue_huge_page(h, page);
1766
	}
1767
free:
1768
	spin_unlock(&hugetlb_lock);
1769 1770

	/* Free unnecessary surplus pages to the buddy allocator */
1771 1772
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1773
	spin_lock(&hugetlb_lock);
1774 1775 1776 1777 1778

	return ret;
}

/*
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1791
 */
1792 1793
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1794 1795 1796
{
	unsigned long nr_pages;

1797
	/* Cannot return gigantic pages currently */
1798
	if (hstate_is_gigantic(h))
1799
		goto out;
1800

1801 1802 1803 1804
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1805
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806

1807 1808
	/*
	 * We want to release as many surplus pages as possible, spread
1809 1810 1811 1812 1813
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1814 1815 1816 1817
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1818 1819
	 */
	while (nr_pages--) {
1820 1821
		h->resv_huge_pages--;
		unused_resv_pages--;
1822
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823
			goto out;
1824
		cond_resched_lock(&hugetlb_lock);
1825
	}
1826 1827 1828 1829

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1830 1831
}

1832

1833
/*
1834
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835
 * are used by the huge page allocation routines to manage reservations.
1836 1837 1838 1839 1840 1841
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1842 1843 1844
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1845 1846 1847 1848 1849 1850
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1851 1852 1853 1854 1855
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1856
 */
1857 1858 1859
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1860
	VMA_END_RESV,
1861
	VMA_ADD_RESV,
1862
};
1863 1864
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1865
				enum vma_resv_mode mode)
1866
{
1867 1868
	struct resv_map *resv;
	pgoff_t idx;
1869
	long ret;
1870

1871 1872
	resv = vma_resv_map(vma);
	if (!resv)
1873
		return 1;
1874

1875
	idx = vma_hugecache_offset(h, vma, addr);
1876 1877
	switch (mode) {
	case VMA_NEEDS_RESV:
1878
		ret = region_chg(resv, idx, idx + 1);
1879 1880 1881 1882
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1883
	case VMA_END_RESV:
1884 1885 1886
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1887 1888 1889 1890 1891 1892 1893 1894
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1895 1896 1897
	default:
		BUG();
	}
1898

1899
	if (vma->vm_flags & VM_MAYSHARE)
1900
		return ret;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1920
	else
1921
		return ret < 0 ? ret : 0;
1922
}
1923 1924

static long vma_needs_reservation(struct hstate *h,
1925
			struct vm_area_struct *vma, unsigned long addr)
1926
{
1927
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928
}
1929

1930 1931 1932
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1933 1934 1935
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1936
static void vma_end_reservation(struct hstate *h,
1937 1938
			struct vm_area_struct *vma, unsigned long addr)
{
1939
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1992
struct page *alloc_huge_page(struct vm_area_struct *vma,
1993
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1994
{
1995
	struct hugepage_subpool *spool = subpool_vma(vma);
1996
	struct hstate *h = hstate_vma(vma);
1997
	struct page *page;
1998 1999
	long map_chg, map_commit;
	long gbl_chg;
2000 2001
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2002

2003
	idx = hstate_index(h);
2004
	/*
2005 2006 2007
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2008
	 */
2009 2010
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2011
		return ERR_PTR(-ENOMEM);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2023
			vma_end_reservation(h, vma, addr);
2024
			return ERR_PTR(-ENOSPC);
2025
		}
L
Linus Torvalds 已提交
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2039
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 2041 2042
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2043
	spin_lock(&hugetlb_lock);
2044 2045 2046 2047 2048 2049
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050
	if (!page) {
2051
		spin_unlock(&hugetlb_lock);
2052
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 2054
		if (!page)
			goto out_uncharge_cgroup;
2055 2056 2057 2058
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2059 2060
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2061
		/* Fall through */
K
Ken Chen 已提交
2062
	}
2063 2064
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2065

2066
	set_page_private(page, (unsigned long)spool);
2067

2068 2069
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2084
	return page;
2085 2086 2087 2088

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2089
	if (map_chg || avoid_reserve)
2090
		hugepage_subpool_put_pages(spool, 1);
2091
	vma_end_reservation(h, vma, addr);
2092
	return ERR_PTR(-ENOSPC);
2093 2094
}

2095 2096 2097
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2098 2099
{
	struct huge_bootmem_page *m;
2100
	int nr_nodes, node;
2101

2102
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2103 2104
		void *addr;

2105
		addr = memblock_alloc_try_nid_raw(
2106
				huge_page_size(h), huge_page_size(h),
2107
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2108 2109 2110 2111 2112 2113 2114
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2115
			goto found;
2116 2117 2118 2119 2120
		}
	}
	return 0;

found:
2121
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2122
	/* Put them into a private list first because mem_map is not up yet */
2123
	INIT_LIST_HEAD(&m->list);
2124 2125 2126 2127 2128
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2129 2130
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2131 2132 2133 2134 2135 2136 2137
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2138 2139 2140 2141 2142 2143
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2144
		struct page *page = virt_to_page(m);
2145
		struct hstate *h = m->hstate;
2146

2147
		WARN_ON(page_count(page) != 1);
2148
		prep_compound_huge_page(page, h->order);
2149
		WARN_ON(PageReserved(page));
2150
		prep_new_huge_page(h, page, page_to_nid(page));
2151 2152
		put_page(page); /* free it into the hugepage allocator */

2153 2154 2155 2156 2157 2158
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2159
		if (hstate_is_gigantic(h))
2160
			adjust_managed_page_count(page, 1 << h->order);
2161
		cond_resched();
2162 2163 2164
	}
}

2165
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2166 2167
{
	unsigned long i;
2168

2169
	for (i = 0; i < h->max_huge_pages; ++i) {
2170
		if (hstate_is_gigantic(h)) {
2171 2172
			if (!alloc_bootmem_huge_page(h))
				break;
2173
		} else if (!alloc_pool_huge_page(h,
2174
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2175
			break;
2176
		cond_resched();
L
Linus Torvalds 已提交
2177
	}
2178 2179 2180
	if (i < h->max_huge_pages) {
		char buf[32];

2181
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2182 2183 2184 2185
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2186 2187 2188 2189 2190 2191 2192
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2193 2194 2195
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2196
		/* oversize hugepages were init'ed in early boot */
2197
		if (!hstate_is_gigantic(h))
2198
			hugetlb_hstate_alloc_pages(h);
2199
	}
2200
	VM_BUG_ON(minimum_order == UINT_MAX);
2201 2202 2203 2204 2205 2206 2207
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2208
		char buf[32];
2209 2210

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2212
			buf, h->free_huge_pages);
2213 2214 2215
	}
}

L
Linus Torvalds 已提交
2216
#ifdef CONFIG_HIGHMEM
2217 2218
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2219
{
2220 2221
	int i;

2222
	if (hstate_is_gigantic(h))
2223 2224
		return;

2225
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2226
		struct page *page, *next;
2227 2228 2229
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2230
				return;
L
Linus Torvalds 已提交
2231 2232 2233
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2234
			update_and_free_page(h, page);
2235 2236
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2237 2238 2239 2240
		}
	}
}
#else
2241 2242
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2243 2244 2245 2246
{
}
#endif

2247 2248 2249 2250 2251
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2252 2253
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2254
{
2255
	int nr_nodes, node;
2256 2257 2258

	VM_BUG_ON(delta != -1 && delta != 1);

2259 2260 2261 2262
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2263
		}
2264 2265 2266 2267 2268
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2269
		}
2270 2271
	}
	return 0;
2272

2273 2274 2275 2276
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2277 2278
}

2279
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2280 2281
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2282
{
2283
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2284

2285
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2286 2287
		return h->max_huge_pages;

2288 2289 2290 2291
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2292
	 *
2293
	 * We might race with alloc_surplus_huge_page() here and be unable
2294 2295 2296 2297
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2298
	 */
L
Linus Torvalds 已提交
2299
	spin_lock(&hugetlb_lock);
2300
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2301
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2302 2303 2304
			break;
	}

2305
	while (count > persistent_huge_pages(h)) {
2306 2307 2308 2309 2310 2311
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2312 2313 2314 2315

		/* yield cpu to avoid soft lockup */
		cond_resched();

2316
		ret = alloc_pool_huge_page(h, nodes_allowed);
2317 2318 2319 2320
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2321 2322 2323
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2324 2325 2326 2327 2328 2329 2330 2331
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2332 2333 2334 2335
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2336
	 * alloc_surplus_huge_page() is checking the global counter,
2337 2338 2339
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2340
	 */
2341
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2342
	min_count = max(count, min_count);
2343
	try_to_free_low(h, min_count, nodes_allowed);
2344
	while (min_count < persistent_huge_pages(h)) {
2345
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2346
			break;
2347
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2348
	}
2349
	while (count < persistent_huge_pages(h)) {
2350
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2351 2352 2353
			break;
	}
out:
2354
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2355
	spin_unlock(&hugetlb_lock);
2356
	return ret;
L
Linus Torvalds 已提交
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2369 2370 2371
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2372 2373
{
	int i;
2374

2375
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2376 2377 2378
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2379
			return &hstates[i];
2380 2381 2382
		}

	return kobj_to_node_hstate(kobj, nidp);
2383 2384
}

2385
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2386 2387
					struct kobj_attribute *attr, char *buf)
{
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2399
}
2400

2401 2402 2403
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2404 2405
{
	int err;
2406
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2407

2408
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2409 2410 2411 2412
		err = -EINVAL;
		goto out;
	}

2413 2414 2415 2416 2417 2418 2419
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2420
			nodes_allowed = &node_states[N_MEMORY];
2421 2422 2423 2424 2425 2426 2427 2428 2429
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2430
		nodes_allowed = &node_states[N_MEMORY];
2431

2432
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2433

2434
	if (nodes_allowed != &node_states[N_MEMORY])
2435 2436 2437
		NODEMASK_FREE(nodes_allowed);

	return len;
2438 2439 2440
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2460 2461 2462 2463 2464 2465 2466 2467 2468
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2469
	return nr_hugepages_store_common(false, kobj, buf, len);
2470 2471 2472
}
HSTATE_ATTR(nr_hugepages);

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2488
	return nr_hugepages_store_common(true, kobj, buf, len);
2489 2490 2491 2492 2493
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2494 2495 2496
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2497
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2498 2499
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2500

2501 2502 2503 2504 2505
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2506
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2507

2508
	if (hstate_is_gigantic(h))
2509 2510
		return -EINVAL;

2511
	err = kstrtoul(buf, 10, &input);
2512
	if (err)
2513
		return err;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2537 2538 2539 2540 2541 2542
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2543
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2544 2545 2546 2547 2548 2549 2550
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2562 2563 2564 2565 2566 2567 2568 2569 2570
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2571 2572 2573
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2574 2575 2576
	NULL,
};

2577
static const struct attribute_group hstate_attr_group = {
2578 2579 2580
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2581 2582
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2583
				    const struct attribute_group *hstate_attr_group)
2584 2585
{
	int retval;
2586
	int hi = hstate_index(h);
2587

2588 2589
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2590 2591
		return -ENOMEM;

2592
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2593
	if (retval)
2594
		kobject_put(hstate_kobjs[hi]);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2609 2610
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2611
		if (err)
2612
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2613 2614 2615
	}
}

2616 2617 2618 2619
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2620 2621 2622
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2623 2624 2625 2626 2627 2628
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2629
static struct node_hstate node_hstates[MAX_NUMNODES];
2630 2631

/*
2632
 * A subset of global hstate attributes for node devices
2633 2634 2635 2636 2637 2638 2639 2640
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2641
static const struct attribute_group per_node_hstate_attr_group = {
2642 2643 2644 2645
	.attrs = per_node_hstate_attrs,
};

/*
2646
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2669
 * Unregister hstate attributes from a single node device.
2670 2671
 * No-op if no hstate attributes attached.
 */
2672
static void hugetlb_unregister_node(struct node *node)
2673 2674
{
	struct hstate *h;
2675
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2676 2677

	if (!nhs->hugepages_kobj)
2678
		return;		/* no hstate attributes */
2679

2680 2681 2682 2683 2684
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2685
		}
2686
	}
2687 2688 2689 2690 2691 2692 2693

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2694
 * Register hstate attributes for a single node device.
2695 2696
 * No-op if attributes already registered.
 */
2697
static void hugetlb_register_node(struct node *node)
2698 2699
{
	struct hstate *h;
2700
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2701 2702 2703 2704 2705 2706
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2707
							&node->dev.kobj);
2708 2709 2710 2711 2712 2713 2714 2715
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2716 2717
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2718 2719 2720 2721 2722 2723 2724
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2725
 * hugetlb init time:  register hstate attributes for all registered node
2726 2727
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2728
 */
2729
static void __init hugetlb_register_all_nodes(void)
2730 2731 2732
{
	int nid;

2733
	for_each_node_state(nid, N_MEMORY) {
2734
		struct node *node = node_devices[nid];
2735
		if (node->dev.id == nid)
2736 2737 2738 2739
			hugetlb_register_node(node);
	}

	/*
2740
	 * Let the node device driver know we're here so it can
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2760 2761
static int __init hugetlb_init(void)
{
2762 2763
	int i;

2764
	if (!hugepages_supported())
2765
		return 0;
2766

2767
	if (!size_to_hstate(default_hstate_size)) {
2768 2769 2770 2771 2772
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2773 2774 2775
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2776
	}
2777
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2778 2779 2780 2781
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2782 2783

	hugetlb_init_hstates();
2784
	gather_bootmem_prealloc();
2785 2786 2787
	report_hugepages();

	hugetlb_sysfs_init();
2788
	hugetlb_register_all_nodes();
2789
	hugetlb_cgroup_file_init();
2790

2791 2792 2793 2794 2795
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2796
	hugetlb_fault_mutex_table =
2797 2798
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
2799
	BUG_ON(!hugetlb_fault_mutex_table);
2800 2801

	for (i = 0; i < num_fault_mutexes; i++)
2802
		mutex_init(&hugetlb_fault_mutex_table[i]);
2803 2804
	return 0;
}
2805
subsys_initcall(hugetlb_init);
2806 2807

/* Should be called on processing a hugepagesz=... option */
2808 2809 2810 2811 2812
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2813
void __init hugetlb_add_hstate(unsigned int order)
2814 2815
{
	struct hstate *h;
2816 2817
	unsigned long i;

2818
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2819
		pr_warn("hugepagesz= specified twice, ignoring\n");
2820 2821
		return;
	}
2822
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2823
	BUG_ON(order == 0);
2824
	h = &hstates[hugetlb_max_hstate++];
2825 2826
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2827 2828 2829 2830
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2831
	INIT_LIST_HEAD(&h->hugepage_activelist);
2832 2833
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2834 2835
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2836

2837 2838 2839
	parsed_hstate = h;
}

2840
static int __init hugetlb_nrpages_setup(char *s)
2841 2842
{
	unsigned long *mhp;
2843
	static unsigned long *last_mhp;
2844

2845 2846 2847 2848 2849 2850
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2851
	/*
2852
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2853 2854
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2855
	else if (!hugetlb_max_hstate)
2856 2857 2858 2859
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2860
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2861
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2862 2863 2864
		return 1;
	}

2865 2866 2867
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2868 2869 2870 2871 2872
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2873
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2874 2875 2876 2877
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2878 2879
	return 1;
}
2880 2881 2882 2883 2884 2885 2886 2887
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2901 2902 2903
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2904
{
2905
	struct hstate *h = &default_hstate;
2906
	unsigned long tmp = h->max_huge_pages;
2907
	int ret;
2908

2909
	if (!hugepages_supported())
2910
		return -EOPNOTSUPP;
2911

2912 2913
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2914 2915 2916
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2917

2918 2919 2920
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2921 2922
out:
	return ret;
L
Linus Torvalds 已提交
2923
}
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2942
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2943
			void __user *buffer,
2944 2945
			size_t *length, loff_t *ppos)
{
2946
	struct hstate *h = &default_hstate;
2947
	unsigned long tmp;
2948
	int ret;
2949

2950
	if (!hugepages_supported())
2951
		return -EOPNOTSUPP;
2952

2953
	tmp = h->nr_overcommit_huge_pages;
2954

2955
	if (write && hstate_is_gigantic(h))
2956 2957
		return -EINVAL;

2958 2959
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2960 2961 2962
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2963 2964 2965 2966 2967 2968

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2969 2970
out:
	return ret;
2971 2972
}

L
Linus Torvalds 已提交
2973 2974
#endif /* CONFIG_SYSCTL */

2975
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2976
{
2977 2978 2979
	struct hstate *h;
	unsigned long total = 0;

2980 2981
	if (!hugepages_supported())
		return;
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3003 3004 3005 3006
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3007
	struct hstate *h = &default_hstate;
3008 3009
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3010 3011
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3012 3013
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3014 3015 3016
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3017 3018
}

3019 3020 3021 3022 3023
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3024 3025 3026
	if (!hugepages_supported())
		return;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3037 3038 3039 3040 3041 3042
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3043 3044 3045
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3046 3047 3048 3049 3050 3051
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3052 3053
}

3054
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3077
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3078 3079
			goto out;

3080 3081
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3082 3083 3084 3085 3086 3087
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3088
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3089 3090 3091 3092 3093 3094

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3095 3096
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3097
	struct resv_map *resv = vma_resv_map(vma);
3098 3099 3100 3101 3102

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3103
	 * has a reference to the reservation map it cannot disappear until
3104 3105 3106
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3107
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108
		kref_get(&resv->refs);
3109 3110
}

3111 3112
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3113
	struct hstate *h = hstate_vma(vma);
3114
	struct resv_map *resv = vma_resv_map(vma);
3115
	struct hugepage_subpool *spool = subpool_vma(vma);
3116
	unsigned long reserve, start, end;
3117
	long gbl_reserve;
3118

3119 3120
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3121

3122 3123
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3124

3125
	reserve = (end - start) - region_count(resv, start, end);
3126

3127 3128 3129
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3130 3131 3132 3133 3134 3135
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3136
	}
3137 3138
}

3139 3140 3141 3142 3143 3144 3145
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3146 3147 3148 3149 3150 3151 3152
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3159
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3160 3161
{
	BUG();
N
Nick Piggin 已提交
3162
	return 0;
L
Linus Torvalds 已提交
3163 3164
}

3165 3166 3167 3168 3169 3170 3171
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3172
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3173
	.fault = hugetlb_vm_op_fault,
3174
	.open = hugetlb_vm_op_open,
3175
	.close = hugetlb_vm_op_close,
3176
	.split = hugetlb_vm_op_split,
3177
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3178 3179
};

3180 3181
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3182 3183 3184
{
	pte_t entry;

3185
	if (writable) {
3186 3187
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3188
	} else {
3189 3190
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3191 3192 3193
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3194
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3195 3196 3197 3198

	return entry;
}

3199 3200 3201 3202 3203
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3204
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3205
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3206
		update_mmu_cache(vma, address, ptep);
3207 3208
}

3209
bool is_hugetlb_entry_migration(pte_t pte)
3210 3211 3212 3213
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3214
		return false;
3215 3216
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3217
		return true;
3218
	else
3219
		return false;
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3234

D
David Gibson 已提交
3235 3236 3237
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3238
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3239
	struct page *ptepage;
3240
	unsigned long addr;
3241
	int cow;
3242 3243
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3244
	struct mmu_notifier_range range;
3245
	int ret = 0;
3246 3247

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3248

3249 3250 3251 3252 3253
	if (cow) {
		mmu_notifier_range_init(&range, src, vma->vm_start,
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
	}
3254

3255
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3256
		spinlock_t *src_ptl, *dst_ptl;
3257
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3258 3259
		if (!src_pte)
			continue;
3260
		dst_pte = huge_pte_alloc(dst, addr, sz);
3261 3262 3263 3264
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3277 3278
			continue;

3279 3280 3281
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3282
		entry = huge_ptep_get(src_pte);
3283 3284 3285 3286 3287 3288 3289
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3302 3303
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3304
			}
3305
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3306
		} else {
3307
			if (cow) {
3308 3309 3310 3311 3312
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3313
				 * See Documentation/vm/mmu_notifier.rst
3314
				 */
3315
				huge_ptep_set_wrprotect(src, addr, src_pte);
3316
			}
3317
			entry = huge_ptep_get(src_pte);
3318 3319
			ptepage = pte_page(entry);
			get_page(ptepage);
3320
			page_dup_rmap(ptepage, true);
3321
			set_huge_pte_at(dst, addr, dst_pte, entry);
3322
			hugetlb_count_add(pages_per_huge_page(h), dst);
3323
		}
3324 3325
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3326 3327
	}

3328
	if (cow)
3329
		mmu_notifier_invalidate_range_end(&range);
3330 3331

	return ret;
D
David Gibson 已提交
3332 3333
}

3334 3335 3336
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3337 3338 3339
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3340
	pte_t *ptep;
D
David Gibson 已提交
3341
	pte_t pte;
3342
	spinlock_t *ptl;
D
David Gibson 已提交
3343
	struct page *page;
3344 3345
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3346
	struct mmu_notifier_range range;
3347

D
David Gibson 已提交
3348
	WARN_ON(!is_vm_hugetlb_page(vma));
3349 3350
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3351

3352 3353 3354 3355
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3356
	tlb_change_page_size(tlb, sz);
3357
	tlb_start_vma(tlb, vma);
3358 3359 3360 3361

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3362 3363 3364
	mmu_notifier_range_init(&range, mm, start, end);
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3365 3366
	address = start;
	for (; address < end; address += sz) {
3367
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3368
		if (!ptep)
3369 3370
			continue;

3371
		ptl = huge_pte_lock(h, mm, ptep);
3372 3373
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
3374 3375 3376 3377
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3378 3379
			continue;
		}
3380

3381
		pte = huge_ptep_get(ptep);
3382 3383 3384 3385
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3386 3387

		/*
3388 3389
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3390
		 */
3391
		if (unlikely(!pte_present(pte))) {
3392
			huge_pte_clear(mm, address, ptep, sz);
3393 3394
			spin_unlock(ptl);
			continue;
3395
		}
3396 3397

		page = pte_page(pte);
3398 3399 3400 3401 3402 3403
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3404 3405 3406 3407
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3408 3409 3410 3411 3412 3413 3414 3415
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3416
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3417
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3418
		if (huge_pte_dirty(pte))
3419
			set_page_dirty(page);
3420

3421
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3422
		page_remove_rmap(page, true);
3423

3424
		spin_unlock(ptl);
3425
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3426 3427 3428 3429 3430
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3431
	}
3432
	mmu_notifier_invalidate_range_end(&range);
3433
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3434
}
D
David Gibson 已提交
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3448
	 * is to clear it before releasing the i_mmap_rwsem. This works
3449
	 * because in the context this is called, the VMA is about to be
3450
	 * destroyed and the i_mmap_rwsem is held.
3451 3452 3453 3454
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3455
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3456
			  unsigned long end, struct page *ref_page)
3457
{
3458 3459
	struct mm_struct *mm;
	struct mmu_gather tlb;
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3471 3472 3473

	mm = vma->vm_mm;

3474
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3475
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3476
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3477 3478
}

3479 3480 3481 3482 3483 3484
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3485 3486
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3487
{
3488
	struct hstate *h = hstate_vma(vma);
3489 3490 3491 3492 3493 3494 3495 3496
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3497
	address = address & huge_page_mask(h);
3498 3499
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3500
	mapping = vma->vm_file->f_mapping;
3501

3502 3503 3504 3505 3506
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3507
	i_mmap_lock_write(mapping);
3508
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3509 3510 3511 3512
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3513 3514 3515 3516 3517 3518 3519 3520
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3521 3522 3523 3524 3525 3526 3527 3528
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3529 3530
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3531
	}
3532
	i_mmap_unlock_write(mapping);
3533 3534
}

3535 3536
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3537 3538 3539
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3540
 */
3541
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3542
		       unsigned long address, pte_t *ptep,
3543
		       struct page *pagecache_page, spinlock_t *ptl)
3544
{
3545
	pte_t pte;
3546
	struct hstate *h = hstate_vma(vma);
3547
	struct page *old_page, *new_page;
3548 3549
	int outside_reserve = 0;
	vm_fault_t ret = 0;
3550
	unsigned long haddr = address & huge_page_mask(h);
3551
	struct mmu_notifier_range range;
3552

3553
	pte = huge_ptep_get(ptep);
3554 3555
	old_page = pte_page(pte);

3556
retry_avoidcopy:
3557 3558
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3559
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3560
		page_move_anon_rmap(old_page, vma);
3561
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
3562
		return 0;
3563 3564
	}

3565 3566 3567 3568 3569 3570 3571 3572 3573
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3574
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3575 3576 3577
			old_page != pagecache_page)
		outside_reserve = 1;

3578
	get_page(old_page);
3579

3580 3581 3582 3583
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3584
	spin_unlock(ptl);
3585
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3586

3587
	if (IS_ERR(new_page)) {
3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3596
			put_page(old_page);
3597
			BUG_ON(huge_pte_none(pte));
3598
			unmap_ref_private(mm, vma, old_page, haddr);
3599 3600
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3601
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3602 3603 3604 3605 3606 3607 3608 3609
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3610 3611
		}

3612
		ret = vmf_error(PTR_ERR(new_page));
3613
		goto out_release_old;
3614 3615
	}

3616 3617 3618 3619
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3620
	if (unlikely(anon_vma_prepare(vma))) {
3621 3622
		ret = VM_FAULT_OOM;
		goto out_release_all;
3623
	}
3624

3625
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
3626
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3627
	__SetPageUptodate(new_page);
3628

3629 3630
	mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
	mmu_notifier_invalidate_range_start(&range);
3631

3632
	/*
3633
	 * Retake the page table lock to check for racing updates
3634 3635
	 * before the page tables are altered
	 */
3636
	spin_lock(ptl);
3637
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3638
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3639 3640
		ClearPagePrivate(new_page);

3641
		/* Break COW */
3642
		huge_ptep_clear_flush(vma, haddr, ptep);
3643
		mmu_notifier_invalidate_range(mm, range.start, range.end);
3644
		set_huge_pte_at(mm, haddr, ptep,
3645
				make_huge_pte(vma, new_page, 1));
3646
		page_remove_rmap(old_page, true);
3647
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3648
		set_page_huge_active(new_page);
3649 3650 3651
		/* Make the old page be freed below */
		new_page = old_page;
	}
3652
	spin_unlock(ptl);
3653
	mmu_notifier_invalidate_range_end(&range);
3654
out_release_all:
3655
	restore_reserve_on_error(h, vma, haddr, new_page);
3656
	put_page(new_page);
3657
out_release_old:
3658
	put_page(old_page);
3659

3660 3661
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3662 3663
}

3664
/* Return the pagecache page at a given address within a VMA */
3665 3666
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3667 3668
{
	struct address_space *mapping;
3669
	pgoff_t idx;
3670 3671

	mapping = vma->vm_file->f_mapping;
3672
	idx = vma_hugecache_offset(h, vma, address);
3673 3674 3675 3676

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3677 3678 3679 3680 3681
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

3708 3709 3710 3711 3712 3713
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

3714 3715 3716 3717 3718 3719
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3720 3721 3722 3723
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
3724
{
3725
	struct hstate *h = hstate_vma(vma);
3726
	vm_fault_t ret = VM_FAULT_SIGBUS;
3727
	int anon_rmap = 0;
A
Adam Litke 已提交
3728 3729
	unsigned long size;
	struct page *page;
3730
	pte_t new_pte;
3731
	spinlock_t *ptl;
3732
	unsigned long haddr = address & huge_page_mask(h);
3733
	bool new_page = false;
A
Adam Litke 已提交
3734

3735 3736 3737
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3738
	 * COW. Warn that such a situation has occurred as it may not be obvious
3739 3740
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3741
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3742
			   current->pid);
3743 3744 3745
		return ret;
	}

A
Adam Litke 已提交
3746
	/*
3747 3748
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
A
Adam Litke 已提交
3749
	 */
3750 3751 3752
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3753 3754 3755 3756
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;

3757 3758 3759 3760 3761 3762 3763
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
3764
				.address = haddr,
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
3776 3777 3778
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
3779 3780
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3781
							idx, haddr);
3782 3783 3784 3785 3786 3787
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3788
		page = alloc_huge_page(vma, haddr, 0);
3789
		if (IS_ERR(page)) {
3790
			ret = vmf_error(PTR_ERR(page));
3791 3792
			goto out;
		}
A
Andrea Arcangeli 已提交
3793
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3794
		__SetPageUptodate(page);
3795
		new_page = true;
3796

3797
		if (vma->vm_flags & VM_MAYSHARE) {
3798
			int err = huge_add_to_page_cache(page, mapping, idx);
3799 3800 3801 3802 3803 3804
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3805
		} else {
3806
			lock_page(page);
3807 3808 3809 3810
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3811
			anon_rmap = 1;
3812
		}
3813
	} else {
3814 3815 3816 3817 3818 3819
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3820
			ret = VM_FAULT_HWPOISON |
3821
				VM_FAULT_SET_HINDEX(hstate_index(h));
3822 3823
			goto backout_unlocked;
		}
3824
	}
3825

3826 3827 3828 3829 3830 3831
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3832
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3833
		if (vma_needs_reservation(h, vma, haddr) < 0) {
3834 3835 3836
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3837
		/* Just decrements count, does not deallocate */
3838
		vma_end_reservation(h, vma, haddr);
3839
	}
3840

3841
	ptl = huge_pte_lock(h, mm, ptep);
3842 3843 3844
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;
A
Adam Litke 已提交
3845

N
Nick Piggin 已提交
3846
	ret = 0;
3847
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3848 3849
		goto backout;

3850 3851
	if (anon_rmap) {
		ClearPagePrivate(page);
3852
		hugepage_add_new_anon_rmap(page, vma, haddr);
3853
	} else
3854
		page_dup_rmap(page, true);
3855 3856
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
3857
	set_huge_pte_at(mm, haddr, ptep, new_pte);
3858

3859
	hugetlb_count_add(pages_per_huge_page(h), mm);
3860
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3861
		/* Optimization, do the COW without a second fault */
3862
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3863 3864
	}

3865
	spin_unlock(ptl);
3866 3867 3868 3869 3870 3871 3872 3873 3874

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
3875 3876
	unlock_page(page);
out:
3877
	return ret;
A
Adam Litke 已提交
3878 3879

backout:
3880
	spin_unlock(ptl);
3881
backout_unlocked:
A
Adam Litke 已提交
3882
	unlock_page(page);
3883
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
3884 3885
	put_page(page);
	goto out;
3886 3887
}

3888
#ifdef CONFIG_SMP
3889
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3914
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3915 3916 3917 3918 3919 3920 3921 3922
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3923
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3924
			unsigned long address, unsigned int flags)
3925
{
3926
	pte_t *ptep, entry;
3927
	spinlock_t *ptl;
3928
	vm_fault_t ret;
3929 3930
	u32 hash;
	pgoff_t idx;
3931
	struct page *page = NULL;
3932
	struct page *pagecache_page = NULL;
3933
	struct hstate *h = hstate_vma(vma);
3934
	struct address_space *mapping;
3935
	int need_wait_lock = 0;
3936
	unsigned long haddr = address & huge_page_mask(h);
3937

3938
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3939 3940
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3941
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3942
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3943 3944
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3945
			return VM_FAULT_HWPOISON_LARGE |
3946
				VM_FAULT_SET_HINDEX(hstate_index(h));
3947 3948 3949 3950
	} else {
		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3951 3952
	}

3953
	mapping = vma->vm_file->f_mapping;
3954
	idx = vma_hugecache_offset(h, vma, haddr);
3955

3956 3957 3958 3959 3960
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3961
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3962
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3963

3964 3965
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3966
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3967
		goto out_mutex;
3968
	}
3969

N
Nick Piggin 已提交
3970
	ret = 0;
3971

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3982 3983 3984 3985 3986 3987 3988 3989
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3990
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3991
		if (vma_needs_reservation(h, vma, haddr) < 0) {
3992
			ret = VM_FAULT_OOM;
3993
			goto out_mutex;
3994
		}
3995
		/* Just decrements count, does not deallocate */
3996
		vma_end_reservation(h, vma, haddr);
3997

3998
		if (!(vma->vm_flags & VM_MAYSHARE))
3999
			pagecache_page = hugetlbfs_pagecache_page(h,
4000
								vma, haddr);
4001 4002
	}

4003 4004 4005 4006 4007 4008
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4009 4010 4011 4012 4013 4014 4015
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4016 4017 4018 4019
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4020

4021
	get_page(page);
4022

4023
	if (flags & FAULT_FLAG_WRITE) {
4024
		if (!huge_pte_write(entry)) {
4025
			ret = hugetlb_cow(mm, vma, address, ptep,
4026
					  pagecache_page, ptl);
4027
			goto out_put_page;
4028
		}
4029
		entry = huge_pte_mkdirty(entry);
4030 4031
	}
	entry = pte_mkyoung(entry);
4032
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4033
						flags & FAULT_FLAG_WRITE))
4034
		update_mmu_cache(vma, haddr, ptep);
4035 4036 4037 4038
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4039 4040
out_ptl:
	spin_unlock(ptl);
4041 4042 4043 4044 4045

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4046
out_mutex:
4047
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4048 4049 4050 4051 4052 4053 4054 4055 4056
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4057
	return ret;
4058 4059
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4071 4072 4073
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4074
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4089
						pages_per_huge_page(h), false);
4090 4091 4092

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
4093
			ret = -ENOENT;
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4110 4111 4112
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4113 4114 4115 4116
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4117 4118 4119 4120
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4121

4122 4123 4124 4125 4126 4127
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4128 4129 4130 4131 4132
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4133 4134 4135
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4150 4151 4152 4153
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4154 4155 4156 4157 4158 4159
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4176
	set_page_huge_active(page);
4177 4178
	if (vm_shared)
		unlock_page(page);
4179 4180 4181 4182 4183
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4184 4185
	if (vm_shared)
		unlock_page(page);
4186
out_release_nounlock:
4187 4188 4189 4190
	put_page(page);
	goto out;
}

4191 4192 4193
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4194
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4195
{
4196 4197
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4198
	unsigned long remainder = *nr_pages;
4199
	struct hstate *h = hstate_vma(vma);
4200
	int err = -EFAULT;
D
David Gibson 已提交
4201 4202

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4203
		pte_t *pte;
4204
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4205
		int absent;
A
Adam Litke 已提交
4206
		struct page *page;
D
David Gibson 已提交
4207

4208 4209 4210 4211
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4212
		if (fatal_signal_pending(current)) {
4213 4214 4215 4216
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4217 4218
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4219
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4220
		 * first, for the page indexing below to work.
4221 4222
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4223
		 */
4224 4225
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4226 4227
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4228 4229 4230 4231
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4232 4233 4234 4235
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4236
		 */
H
Hugh Dickins 已提交
4237 4238
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4239 4240
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4241 4242 4243
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4244

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4256 4257
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4258
			vm_fault_t ret;
4259
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4260

4261 4262
			if (pte)
				spin_unlock(ptl);
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4277
				err = vm_fault_to_errno(ret, flags);
4278 4279 4280 4281
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4282 4283
				if (nonblocking &&
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4298 4299
		}

4300
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4301
		page = pte_page(huge_ptep_get(pte));
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

		/*
		 * Instead of doing 'try_get_page()' below in the same_page
		 * loop, just check the count once here.
		 */
		if (unlikely(page_count(page) <= 0)) {
			if (pages) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
		}
4315
same_page:
4316
		if (pages) {
H
Hugh Dickins 已提交
4317
			pages[i] = mem_map_offset(page, pfn_offset);
4318
			get_page(pages[i]);
4319
		}
D
David Gibson 已提交
4320 4321 4322 4323 4324

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4325
		++pfn_offset;
D
David Gibson 已提交
4326 4327
		--remainder;
		++i;
4328
		if (vaddr < vma->vm_end && remainder &&
4329
				pfn_offset < pages_per_huge_page(h)) {
4330 4331 4332 4333 4334 4335
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4336
		spin_unlock(ptl);
D
David Gibson 已提交
4337
	}
4338
	*nr_pages = remainder;
4339 4340 4341 4342 4343
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4344 4345
	*position = vaddr;

4346
	return i ? i : err;
D
David Gibson 已提交
4347
}
4348

4349 4350 4351 4352 4353 4354 4355 4356
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4357
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4358 4359 4360 4361 4362 4363
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4364
	struct hstate *h = hstate_vma(vma);
4365
	unsigned long pages = 0;
4366
	bool shared_pmd = false;
4367
	struct mmu_notifier_range range;
4368 4369 4370

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4371
	 * start/end.  Set range.start/range.end to cover the maximum possible
4372 4373
	 * range if PMD sharing is possible.
	 */
4374 4375
	mmu_notifier_range_init(&range, mm, start, end);
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4376 4377

	BUG_ON(address >= end);
4378
	flush_cache_range(vma, range.start, range.end);
4379

4380
	mmu_notifier_invalidate_range_start(&range);
4381
	i_mmap_lock_write(vma->vm_file->f_mapping);
4382
	for (; address < end; address += huge_page_size(h)) {
4383
		spinlock_t *ptl;
4384
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4385 4386
		if (!ptep)
			continue;
4387
		ptl = huge_pte_lock(h, mm, ptep);
4388 4389
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4390
			spin_unlock(ptl);
4391
			shared_pmd = true;
4392
			continue;
4393
		}
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4407 4408
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4409 4410 4411 4412 4413 4414
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4415 4416 4417 4418
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4419
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4420
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4421
			pages++;
4422
		}
4423
		spin_unlock(ptl);
4424
	}
4425
	/*
4426
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4427
	 * may have cleared our pud entry and done put_page on the page table:
4428
	 * once we release i_mmap_rwsem, another task can do the final put_page
4429 4430
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
4431
	 */
4432
	if (shared_pmd)
4433
		flush_hugetlb_tlb_range(vma, range.start, range.end);
4434 4435
	else
		flush_hugetlb_tlb_range(vma, start, end);
4436 4437 4438 4439
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
4440
	 * See Documentation/vm/mmu_notifier.rst
4441
	 */
4442
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4443
	mmu_notifier_invalidate_range_end(&range);
4444 4445

	return pages << h->order;
4446 4447
}

4448 4449
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4450
					struct vm_area_struct *vma,
4451
					vm_flags_t vm_flags)
4452
{
4453
	long ret, chg;
4454
	struct hstate *h = hstate_inode(inode);
4455
	struct hugepage_subpool *spool = subpool_inode(inode);
4456
	struct resv_map *resv_map;
4457
	long gbl_reserve;
4458

4459 4460 4461 4462 4463 4464
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

4465 4466 4467
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4468
	 * without using reserves
4469
	 */
4470
	if (vm_flags & VM_NORESERVE)
4471 4472
		return 0;

4473 4474 4475 4476 4477 4478
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4479
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4480
		resv_map = inode_resv_map(inode);
4481

4482
		chg = region_chg(resv_map, from, to);
4483 4484 4485

	} else {
		resv_map = resv_map_alloc();
4486 4487 4488
		if (!resv_map)
			return -ENOMEM;

4489
		chg = to - from;
4490

4491 4492 4493 4494
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4495 4496 4497 4498
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4499

4500 4501 4502 4503 4504 4505 4506
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4507 4508 4509
		ret = -ENOSPC;
		goto out_err;
	}
4510 4511

	/*
4512
	 * Check enough hugepages are available for the reservation.
4513
	 * Hand the pages back to the subpool if there are not
4514
	 */
4515
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4516
	if (ret < 0) {
4517 4518
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4519
		goto out_err;
K
Ken Chen 已提交
4520
	}
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4551
	return 0;
4552
out_err:
4553
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4554 4555 4556
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4557 4558
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4559
	return ret;
4560 4561
}

4562 4563
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4564
{
4565
	struct hstate *h = hstate_inode(inode);
4566
	struct resv_map *resv_map = inode_resv_map(inode);
4567
	long chg = 0;
4568
	struct hugepage_subpool *spool = subpool_inode(inode);
4569
	long gbl_reserve;
K
Ken Chen 已提交
4570

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4582
	spin_lock(&inode->i_lock);
4583
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4584 4585
	spin_unlock(&inode->i_lock);

4586 4587 4588 4589 4590 4591
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4592 4593

	return 0;
4594
}
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4607 4608
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4622
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4623 4624 4625 4626 4627 4628 4629
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
4630
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4631 4632
		return true;
	return false;
4633 4634
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
	unsigned long check_addr = *start;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
		unsigned long a_start = check_addr & PUD_MASK;
		unsigned long a_end = a_start + PUD_SIZE;

		/*
		 * If sharing is possible, adjust start/end if necessary.
		 */
		if (range_in_vma(vma, a_start, a_end)) {
			if (a_start < *start)
				*start = a_start;
			if (a_end > *end)
				*end = a_end;
		}
	}
}

4664 4665 4666 4667
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
4668 4669 4670 4671
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4683
	spinlock_t *ptl;
4684 4685 4686 4687

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4688
	i_mmap_lock_write(mapping);
4689 4690 4691 4692 4693 4694
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4695 4696
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4707
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4708
	if (pud_none(*pud)) {
4709 4710
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4711
		mm_inc_nr_pmds(mm);
4712
	} else {
4713
		put_page(virt_to_page(spte));
4714
	}
4715
	spin_unlock(ptl);
4716 4717
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4718
	i_mmap_unlock_write(mapping);
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4729
 * called with page table lock held.
4730 4731 4732 4733 4734 4735 4736
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4737 4738
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4739 4740 4741 4742 4743 4744 4745

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4746
	mm_dec_nr_pmds(mm);
4747 4748 4749
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4750 4751 4752 4753 4754 4755
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4756 4757 4758 4759 4760

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4761 4762 4763 4764 4765

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
4766
#define want_pmd_share()	(0)
4767 4768
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4769 4770 4771 4772 4773
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4774
	p4d_t *p4d;
4775 4776 4777 4778
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4779 4780 4781
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
4782
	pud = pud_alloc(mm, p4d, addr);
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4794
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4795 4796 4797 4798

	return pte;
}

4799 4800 4801 4802 4803 4804 4805 4806 4807
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
4808 4809
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4810 4811
{
	pgd_t *pgd;
4812
	p4d_t *p4d;
4813
	pud_t *pud;
4814
	pmd_t *pmd;
4815 4816

	pgd = pgd_offset(mm, addr);
4817 4818 4819 4820 4821
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
4822

4823
	pud = pud_offset(p4d, addr);
4824
	if (sz != PUD_SIZE && pud_none(*pud))
4825
		return NULL;
4826 4827
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
4828
		return (pte_t *)pud;
4829

4830
	pmd = pmd_offset(pud, addr);
4831 4832 4833 4834 4835 4836 4837
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
4838 4839
}

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4853 4854 4855 4856 4857 4858 4859 4860
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4861
struct page * __weak
4862
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4863
		pmd_t *pmd, int flags)
4864
{
4865 4866
	struct page *page = NULL;
	spinlock_t *ptl;
4867
	pte_t pte;
4868 4869 4870 4871 4872 4873 4874 4875 4876
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4877 4878
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4879
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4880 4881 4882
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4883
		if (is_hugetlb_entry_migration(pte)) {
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4895 4896 4897
	return page;
}

4898
struct page * __weak
4899
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4900
		pud_t *pud, int flags)
4901
{
4902 4903
	if (flags & FOLL_GET)
		return NULL;
4904

4905
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4906 4907
}

4908 4909 4910 4911 4912 4913 4914 4915 4916
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4917 4918
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4919 4920
	bool ret = true;

4921
	VM_BUG_ON_PAGE(!PageHead(page), page);
4922
	spin_lock(&hugetlb_lock);
4923 4924 4925 4926 4927
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4928
	list_move_tail(&page->lru, list);
4929
unlock:
4930
	spin_unlock(&hugetlb_lock);
4931
	return ret;
4932 4933 4934 4935
}

void putback_active_hugepage(struct page *page)
{
4936
	VM_BUG_ON_PAGE(!PageHead(page), page);
4937
	spin_lock(&hugetlb_lock);
4938
	set_page_huge_active(page);
4939 4940 4941 4942
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}