hugetlb.c 117.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg)
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

384 385 386 387 388 389 390 391 392
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
393
		if (!nrg) {
394
			resv->adds_in_progress--;
395 396 397 398 399 400 401 402 403 404
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
405

406 407 408
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
421
			goto out;
422

L
Lucas De Marchi 已提交
423
		/* We overlap with this area, if it extends further than
424 425 426 427 428 429 430 431
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
432 433 434 435 436 437 438 439

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
440 441 442
	return chg;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

462
/*
463 464 465 466 467 468 469 470 471 472 473 474
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
475
 */
476
static long region_del(struct resv_map *resv, long f, long t)
477
{
478
	struct list_head *head = &resv->regions;
479
	struct file_region *rg, *trg;
480 481
	struct file_region *nrg = NULL;
	long del = 0;
482

483
retry:
484
	spin_lock(&resv->lock);
485 486 487 488
	list_for_each_entry_safe(rg, trg, head, link) {
		if (rg->to <= f)
			continue;
		if (rg->from >= t)
489 490
			break;

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
525
			break;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
542
	}
543 544

	spin_unlock(&resv->lock);
545 546
	kfree(nrg);
	return del;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

571 572 573 574
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
575
static long region_count(struct resv_map *resv, long f, long t)
576
{
577
	struct list_head *head = &resv->regions;
578 579 580
	struct file_region *rg;
	long chg = 0;

581
	spin_lock(&resv->lock);
582 583
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
584 585
		long seg_from;
		long seg_to;
586 587 588 589 590 591 592 593 594 595 596

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
597
	spin_unlock(&resv->lock);
598 599 600 601

	return chg;
}

602 603 604 605
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
606 607
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
608
{
609 610
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
611 612
}

613 614 615 616 617 618
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

632
	return 1UL << huge_page_shift(hstate);
633
}
634
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635

636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

649 650 651 652 653 654 655
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
656
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657

658 659 660 661 662 663 664 665 666
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
667 668 669 670 671 672 673 674 675
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
676
 */
677 678 679 680 681 682 683 684 685 686 687
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

688
struct resv_map *resv_map_alloc(void)
689 690
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 692 693 694 695
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
696
		return NULL;
697
	}
698 699

	kref_init(&resv_map->refs);
700
	spin_lock_init(&resv_map->lock);
701 702
	INIT_LIST_HEAD(&resv_map->regions);

703 704 705 706 707 708
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

709 710 711
	return resv_map;
}

712
void resv_map_release(struct kref *ref)
713 714
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 716
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
717 718

	/* Clear out any active regions before we release the map. */
719
	region_del(resv_map, 0, LONG_MAX);
720 721 722 723 724 725 726 727 728

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

729 730 731
	kfree(resv_map);
}

732 733 734 735 736
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

737
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738
{
739
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 741 742 743 744 745 746
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
747 748
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
749
	}
750 751
}

752
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753
{
754 755
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756

757 758
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
759 760 761 762
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
763 764
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 766

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 768 769 770
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
771
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 773

	return (get_vma_private_data(vma) & flag) != 0;
774 775
}

776
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 778
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
	if (!(vma->vm_flags & VM_MAYSHARE))
781 782 783 784
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
785
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786
{
787 788 789 790 791 792 793 794 795 796 797
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798
			return true;
799
		else
800
			return false;
801
	}
802 803

	/* Shared mappings always use reserves */
804 805 806 807 808 809 810 811 812 813 814 815 816
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
817 818 819 820 821

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
822
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823
		return true;
824

825
	return false;
826 827
}

828
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
829 830
{
	int nid = page_to_nid(page);
831
	list_move(&page->lru, &h->hugepage_freelists[nid]);
832 833
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
834 835
}

836 837 838 839
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

840 841 842 843 844 845 846 847
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
848
		return NULL;
849
	list_move(&page->lru, &h->hugepage_activelist);
850
	set_page_refcounted(page);
851 852 853 854 855
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

856 857 858
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
859
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 861 862 863 864
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

865 866
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
867 868
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
869
{
870
	struct page *page = NULL;
871
	struct mempolicy *mpol;
872
	nodemask_t *nodemask;
873
	struct zonelist *zonelist;
874 875
	struct zone *zone;
	struct zoneref *z;
876
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
877

878 879 880 881 882
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
883
	if (!vma_has_reserves(vma, chg) &&
884
			h->free_huge_pages - h->resv_huge_pages == 0)
885
		goto err;
886

887
	/* If reserves cannot be used, ensure enough pages are in the pool */
888
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889
		goto err;
890

891
retry_cpuset:
892
	cpuset_mems_cookie = read_mems_allowed_begin();
893
	zonelist = huge_zonelist(vma, address,
894
					htlb_alloc_mask(h), &mpol, &nodemask);
895

896 897
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
898
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 900
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
901 902 903 904 905
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

906
				SetPagePrivate(page);
907
				h->resv_huge_pages--;
908 909
				break;
			}
A
Andrew Morton 已提交
910
		}
L
Linus Torvalds 已提交
911
	}
912

913
	mpol_cond_put(mpol);
914
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915
		goto retry_cpuset;
L
Linus Torvalds 已提交
916
	return page;
917 918 919

err:
	return NULL;
L
Linus Torvalds 已提交
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

995 996 997 998 999 1000 1001 1002 1003
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004
		clear_compound_head(p);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1132
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1133 1134
{
	int i;
1135

1136 1137
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1138

1139 1140 1141
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1142 1143
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1144 1145
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1146
	}
1147
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1148
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1149
	set_page_refcounted(page);
1150 1151 1152 1153 1154 1155
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1194
void free_huge_page(struct page *page)
1195
{
1196 1197 1198 1199
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1200
	struct hstate *h = page_hstate(page);
1201
	int nid = page_to_nid(page);
1202 1203
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1204
	bool restore_reserve;
1205

1206
	set_page_private(page, 0);
1207
	page->mapping = NULL;
1208
	BUG_ON(page_count(page));
1209
	BUG_ON(page_mapcount(page));
1210
	restore_reserve = PagePrivate(page);
1211
	ClearPagePrivate(page);
1212

1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1221
	spin_lock(&hugetlb_lock);
1222
	clear_page_huge_active(page);
1223 1224
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1225 1226 1227
	if (restore_reserve)
		h->resv_huge_pages++;

1228
	if (h->surplus_huge_pages_node[nid]) {
1229 1230
		/* remove the page from active list */
		list_del(&page->lru);
1231 1232 1233
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1234
	} else {
1235
		arch_clear_hugepage_flags(page);
1236
		enqueue_huge_page(h, page);
1237
	}
1238 1239 1240
	spin_unlock(&hugetlb_lock);
}

1241
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1242
{
1243
	INIT_LIST_HEAD(&page->lru);
1244
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1245
	spin_lock(&hugetlb_lock);
1246
	set_hugetlb_cgroup(page, NULL);
1247 1248
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1249 1250 1251 1252
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1253
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1254 1255 1256 1257 1258 1259 1260 1261
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1262
	__ClearPageReserved(page);
1263
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1277
		set_page_count(p, 0);
1278
		set_compound_head(p, page);
1279 1280 1281
	}
}

A
Andrew Morton 已提交
1282 1283 1284 1285 1286
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1287 1288 1289 1290 1291 1292
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1293
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1294
}
1295 1296
EXPORT_SYMBOL_GPL(PageHuge);

1297 1298 1299 1300 1301 1302 1303 1304 1305
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1306
	return get_compound_page_dtor(page_head) == free_huge_page;
1307 1308
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1326
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1327 1328
{
	struct page *page;
1329

1330
	page = __alloc_pages_node(nid,
1331
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1332
						__GFP_REPEAT|__GFP_NOWARN,
1333
		huge_page_order(h));
L
Linus Torvalds 已提交
1334
	if (page) {
1335
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1336
	}
1337 1338 1339 1340

	return page;
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1363 1364 1365 1366 1367 1368
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1369 1370
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1371
{
1372
	int nr_nodes, node;
1373 1374
	int ret = 0;

1375
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1376 1377 1378 1379
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1380 1381
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1382
			struct page *page =
1383
				list_entry(h->hugepage_freelists[node].next,
1384 1385 1386
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1387
			h->free_huge_pages_node[node]--;
1388 1389
			if (acct_surplus) {
				h->surplus_huge_pages--;
1390
				h->surplus_huge_pages_node[node]--;
1391
			}
1392 1393
			update_and_free_page(h, page);
			ret = 1;
1394
			break;
1395
		}
1396
	}
1397 1398 1399 1400

	return ret;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1428 1429 1430
	if (!hugepages_supported())
		return;

1431 1432
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1433 1434 1435
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1454 1455 1456 1457 1458 1459
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1460
	 */
D
Dave Hansen 已提交
1461
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1478 1479
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1512 1513
{
	struct page *page;
1514
	unsigned int r_nid;
1515

1516
	if (hstate_is_gigantic(h))
1517 1518
		return NULL;

1519 1520 1521 1522 1523 1524
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1525 1526
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1527
	}
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1552
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1553 1554 1555
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1556 1557
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1558 1559 1560
	}
	spin_unlock(&hugetlb_lock);

1561
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1562 1563

	spin_lock(&hugetlb_lock);
1564
	if (page) {
1565
		INIT_LIST_HEAD(&page->lru);
1566
		r_nid = page_to_nid(page);
1567
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1568
		set_hugetlb_cgroup(page, NULL);
1569 1570 1571
		/*
		 * We incremented the global counters already
		 */
1572 1573
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1574
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1575
	} else {
1576 1577
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1578
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1579
	}
1580
	spin_unlock(&hugetlb_lock);
1581 1582 1583 1584

	return page;
}

1585 1586 1587 1588 1589
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1590
static
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1601
static
1602 1603 1604 1605 1606 1607
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1608 1609 1610 1611 1612 1613 1614
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1615
	struct page *page = NULL;
1616 1617

	spin_lock(&hugetlb_lock);
1618 1619
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1620 1621
	spin_unlock(&hugetlb_lock);

1622
	if (!page)
1623
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1624 1625 1626 1627

	return page;
}

1628
/*
L
Lucas De Marchi 已提交
1629
 * Increase the hugetlb pool such that it can accommodate a reservation
1630 1631
 * of size 'delta'.
 */
1632
static int gather_surplus_pages(struct hstate *h, int delta)
1633 1634 1635 1636 1637
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1638
	bool alloc_ok = true;
1639

1640
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1641
	if (needed <= 0) {
1642
		h->resv_huge_pages += delta;
1643
		return 0;
1644
	}
1645 1646 1647 1648 1649 1650 1651 1652

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1653
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1654 1655 1656 1657
		if (!page) {
			alloc_ok = false;
			break;
		}
1658 1659
		list_add(&page->lru, &surplus_list);
	}
1660
	allocated += i;
1661 1662 1663 1664 1665 1666

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1667 1668
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1679 1680
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1681
	 * needed to accommodate the reservation.  Add the appropriate number
1682
	 * of pages to the hugetlb pool and free the extras back to the buddy
1683 1684 1685
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1686 1687
	 */
	needed += allocated;
1688
	h->resv_huge_pages += delta;
1689
	ret = 0;
1690

1691
	/* Free the needed pages to the hugetlb pool */
1692
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1693 1694
		if ((--needed) < 0)
			break;
1695 1696 1697 1698 1699
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1700
		VM_BUG_ON_PAGE(page_count(page), page);
1701
		enqueue_huge_page(h, page);
1702
	}
1703
free:
1704
	spin_unlock(&hugetlb_lock);
1705 1706

	/* Free unnecessary surplus pages to the buddy allocator */
1707 1708
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1709
	spin_lock(&hugetlb_lock);
1710 1711 1712 1713 1714 1715 1716 1717

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1718
 * Called with hugetlb_lock held.
1719
 */
1720 1721
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1722 1723 1724
{
	unsigned long nr_pages;

1725
	/* Uncommit the reservation */
1726
	h->resv_huge_pages -= unused_resv_pages;
1727

1728
	/* Cannot return gigantic pages currently */
1729
	if (hstate_is_gigantic(h))
1730 1731
		return;

1732
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1733

1734 1735
	/*
	 * We want to release as many surplus pages as possible, spread
1736 1737 1738 1739 1740
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1741 1742
	 */
	while (nr_pages--) {
1743
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1744
			break;
1745
		cond_resched_lock(&hugetlb_lock);
1746 1747 1748
	}
}

1749

1750
/*
1751
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1752
 * are used by the huge page allocation routines to manage reservations.
1753 1754 1755 1756 1757 1758
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1759 1760 1761
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1762 1763 1764 1765 1766 1767
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1768
 */
1769 1770 1771
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1772
	VMA_END_RESV,
1773
};
1774 1775
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1776
				enum vma_resv_mode mode)
1777
{
1778 1779
	struct resv_map *resv;
	pgoff_t idx;
1780
	long ret;
1781

1782 1783
	resv = vma_resv_map(vma);
	if (!resv)
1784
		return 1;
1785

1786
	idx = vma_hugecache_offset(h, vma, addr);
1787 1788
	switch (mode) {
	case VMA_NEEDS_RESV:
1789
		ret = region_chg(resv, idx, idx + 1);
1790 1791 1792 1793
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1794
	case VMA_END_RESV:
1795 1796 1797 1798 1799 1800
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1801

1802
	if (vma->vm_flags & VM_MAYSHARE)
1803
		return ret;
1804
	else
1805
		return ret < 0 ? ret : 0;
1806
}
1807 1808

static long vma_needs_reservation(struct hstate *h,
1809
			struct vm_area_struct *vma, unsigned long addr)
1810
{
1811
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1812
}
1813

1814 1815 1816
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1817 1818 1819
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1820
static void vma_end_reservation(struct hstate *h,
1821 1822
			struct vm_area_struct *vma, unsigned long addr)
{
1823
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1824 1825
}

1826
struct page *alloc_huge_page(struct vm_area_struct *vma,
1827
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1828
{
1829
	struct hugepage_subpool *spool = subpool_vma(vma);
1830
	struct hstate *h = hstate_vma(vma);
1831
	struct page *page;
1832 1833
	long map_chg, map_commit;
	long gbl_chg;
1834 1835
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1836

1837
	idx = hstate_index(h);
1838
	/*
1839 1840 1841
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1842
	 */
1843 1844
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1845
		return ERR_PTR(-ENOMEM);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1857
			vma_end_reservation(h, vma, addr);
1858
			return ERR_PTR(-ENOSPC);
1859
		}
L
Linus Torvalds 已提交
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1873
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1874 1875 1876
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1877
	spin_lock(&hugetlb_lock);
1878 1879 1880 1881 1882 1883
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1884
	if (!page) {
1885
		spin_unlock(&hugetlb_lock);
1886
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1887 1888 1889
		if (!page)
			goto out_uncharge_cgroup;

1890 1891
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1892
		/* Fall through */
K
Ken Chen 已提交
1893
	}
1894 1895
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1896

1897
	set_page_private(page, (unsigned long)spool);
1898

1899 1900
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1915
	return page;
1916 1917 1918 1919

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1920
	if (map_chg || avoid_reserve)
1921
		hugepage_subpool_put_pages(spool, 1);
1922
	vma_end_reservation(h, vma, addr);
1923
	return ERR_PTR(-ENOSPC);
1924 1925
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1940
int __weak alloc_bootmem_huge_page(struct hstate *h)
1941 1942
{
	struct huge_bootmem_page *m;
1943
	int nr_nodes, node;
1944

1945
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1946 1947
		void *addr;

1948 1949 1950
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1951 1952 1953 1954 1955 1956 1957
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1958
			goto found;
1959 1960 1961 1962 1963
		}
	}
	return 0;

found:
1964
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1965 1966 1967 1968 1969 1970
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1971
static void __init prep_compound_huge_page(struct page *page, int order)
1972 1973 1974 1975 1976 1977 1978
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1979 1980 1981 1982 1983 1984 1985
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1986 1987 1988 1989
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1990 1991
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1992 1993 1994
#else
		page = virt_to_page(m);
#endif
1995
		WARN_ON(page_count(page) != 1);
1996
		prep_compound_huge_page(page, h->order);
1997
		WARN_ON(PageReserved(page));
1998
		prep_new_huge_page(h, page, page_to_nid(page));
1999 2000 2001 2002 2003 2004
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2005
		if (hstate_is_gigantic(h))
2006
			adjust_managed_page_count(page, 1 << h->order);
2007 2008 2009
	}
}

2010
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2011 2012
{
	unsigned long i;
2013

2014
	for (i = 0; i < h->max_huge_pages; ++i) {
2015
		if (hstate_is_gigantic(h)) {
2016 2017
			if (!alloc_bootmem_huge_page(h))
				break;
2018
		} else if (!alloc_fresh_huge_page(h,
2019
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2020 2021
			break;
	}
2022
	h->max_huge_pages = i;
2023 2024 2025 2026 2027 2028 2029
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2030 2031 2032
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2033
		/* oversize hugepages were init'ed in early boot */
2034
		if (!hstate_is_gigantic(h))
2035
			hugetlb_hstate_alloc_pages(h);
2036
	}
2037
	VM_BUG_ON(minimum_order == UINT_MAX);
2038 2039
}

A
Andi Kleen 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2051 2052 2053 2054 2055
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2056
		char buf[32];
2057
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2058 2059
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2060 2061 2062
	}
}

L
Linus Torvalds 已提交
2063
#ifdef CONFIG_HIGHMEM
2064 2065
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2066
{
2067 2068
	int i;

2069
	if (hstate_is_gigantic(h))
2070 2071
		return;

2072
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2073
		struct page *page, *next;
2074 2075 2076
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2077
				return;
L
Linus Torvalds 已提交
2078 2079 2080
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2081
			update_and_free_page(h, page);
2082 2083
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2084 2085 2086 2087
		}
	}
}
#else
2088 2089
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2090 2091 2092 2093
{
}
#endif

2094 2095 2096 2097 2098
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2099 2100
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2101
{
2102
	int nr_nodes, node;
2103 2104 2105

	VM_BUG_ON(delta != -1 && delta != 1);

2106 2107 2108 2109
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2110
		}
2111 2112 2113 2114 2115
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2116
		}
2117 2118
	}
	return 0;
2119

2120 2121 2122 2123
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2124 2125
}

2126
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2127 2128
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2129
{
2130
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2131

2132
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2133 2134
		return h->max_huge_pages;

2135 2136 2137 2138
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2139 2140 2141 2142 2143 2144
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2145
	 */
L
Linus Torvalds 已提交
2146
	spin_lock(&hugetlb_lock);
2147
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2148
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2149 2150 2151
			break;
	}

2152
	while (count > persistent_huge_pages(h)) {
2153 2154 2155 2156 2157 2158
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2159 2160 2161 2162
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2163 2164 2165 2166
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2167 2168 2169
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2170 2171 2172 2173 2174 2175 2176 2177
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2178 2179 2180 2181 2182 2183 2184 2185
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2186
	 */
2187
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2188
	min_count = max(count, min_count);
2189
	try_to_free_low(h, min_count, nodes_allowed);
2190
	while (min_count < persistent_huge_pages(h)) {
2191
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2192
			break;
2193
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2194
	}
2195
	while (count < persistent_huge_pages(h)) {
2196
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2197 2198 2199
			break;
	}
out:
2200
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2201
	spin_unlock(&hugetlb_lock);
2202
	return ret;
L
Linus Torvalds 已提交
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2215 2216 2217
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2218 2219
{
	int i;
2220

2221
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2222 2223 2224
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2225
			return &hstates[i];
2226 2227 2228
		}

	return kobj_to_node_hstate(kobj, nidp);
2229 2230
}

2231
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2232 2233
					struct kobj_attribute *attr, char *buf)
{
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2245
}
2246

2247 2248 2249
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2250 2251
{
	int err;
2252
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2253

2254
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2255 2256 2257 2258
		err = -EINVAL;
		goto out;
	}

2259 2260 2261 2262 2263 2264 2265
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2266
			nodes_allowed = &node_states[N_MEMORY];
2267 2268 2269 2270 2271 2272 2273 2274 2275
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2276
		nodes_allowed = &node_states[N_MEMORY];
2277

2278
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2279

2280
	if (nodes_allowed != &node_states[N_MEMORY])
2281 2282 2283
		NODEMASK_FREE(nodes_allowed);

	return len;
2284 2285 2286
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2287 2288
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2315
	return nr_hugepages_store_common(false, kobj, buf, len);
2316 2317 2318
}
HSTATE_ATTR(nr_hugepages);

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2334
	return nr_hugepages_store_common(true, kobj, buf, len);
2335 2336 2337 2338 2339
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2340 2341 2342
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2343
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2344 2345
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2346

2347 2348 2349 2350 2351
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2352
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2353

2354
	if (hstate_is_gigantic(h))
2355 2356
		return -EINVAL;

2357
	err = kstrtoul(buf, 10, &input);
2358
	if (err)
2359
		return err;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2383 2384 2385 2386 2387 2388
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2389
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2390 2391 2392 2393 2394 2395 2396
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2408 2409 2410 2411 2412 2413 2414 2415 2416
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2417 2418 2419
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2420 2421 2422 2423 2424 2425 2426
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2427 2428 2429
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2430 2431
{
	int retval;
2432
	int hi = hstate_index(h);
2433

2434 2435
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2436 2437
		return -ENOMEM;

2438
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2439
	if (retval)
2440
		kobject_put(hstate_kobjs[hi]);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2455 2456
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2457
		if (err)
2458
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2459 2460 2461
	}
}

2462 2463 2464 2465
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2466 2467 2468
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2469 2470 2471 2472 2473 2474
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2475
static struct node_hstate node_hstates[MAX_NUMNODES];
2476 2477

/*
2478
 * A subset of global hstate attributes for node devices
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2492
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2515
 * Unregister hstate attributes from a single node device.
2516 2517
 * No-op if no hstate attributes attached.
 */
2518
static void hugetlb_unregister_node(struct node *node)
2519 2520
{
	struct hstate *h;
2521
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2522 2523

	if (!nhs->hugepages_kobj)
2524
		return;		/* no hstate attributes */
2525

2526 2527 2528 2529 2530
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2531
		}
2532
	}
2533 2534 2535 2536 2537 2538

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2539
 * hugetlb module exit:  unregister hstate attributes from node devices
2540 2541 2542 2543 2544 2545 2546
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2547
	 * disable node device registrations.
2548 2549 2550 2551 2552 2553 2554
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2555
		hugetlb_unregister_node(node_devices[nid]);
2556 2557 2558
}

/*
2559
 * Register hstate attributes for a single node device.
2560 2561
 * No-op if attributes already registered.
 */
2562
static void hugetlb_register_node(struct node *node)
2563 2564
{
	struct hstate *h;
2565
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2566 2567 2568 2569 2570 2571
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2572
							&node->dev.kobj);
2573 2574 2575 2576 2577 2578 2579 2580
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2581 2582
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2583 2584 2585 2586 2587 2588 2589
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2590
 * hugetlb init time:  register hstate attributes for all registered node
2591 2592
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2593
 */
2594
static void __init hugetlb_register_all_nodes(void)
2595 2596 2597
{
	int nid;

2598
	for_each_node_state(nid, N_MEMORY) {
2599
		struct node *node = node_devices[nid];
2600
		if (node->dev.id == nid)
2601 2602 2603 2604
			hugetlb_register_node(node);
	}

	/*
2605
	 * Let the node device driver know we're here so it can
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2627 2628 2629 2630
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2631 2632
	hugetlb_unregister_all_nodes();

2633
	for_each_hstate(h) {
2634
		kobject_put(hstate_kobjs[hstate_index(h)]);
2635 2636 2637
	}

	kobject_put(hugepages_kobj);
2638
	kfree(hugetlb_fault_mutex_table);
2639 2640 2641 2642 2643
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2644 2645
	int i;

2646
	if (!hugepages_supported())
2647
		return 0;
2648

2649 2650 2651 2652
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2653
	}
2654
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2655 2656
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2657 2658

	hugetlb_init_hstates();
2659
	gather_bootmem_prealloc();
2660 2661 2662
	report_hugepages();

	hugetlb_sysfs_init();
2663
	hugetlb_register_all_nodes();
2664
	hugetlb_cgroup_file_init();
2665

2666 2667 2668 2669 2670
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2671
	hugetlb_fault_mutex_table =
2672
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2673
	BUG_ON(!hugetlb_fault_mutex_table);
2674 2675

	for (i = 0; i < num_fault_mutexes; i++)
2676
		mutex_init(&hugetlb_fault_mutex_table[i]);
2677 2678 2679 2680 2681 2682 2683 2684
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2685 2686
	unsigned long i;

2687
	if (size_to_hstate(PAGE_SIZE << order)) {
2688
		pr_warning("hugepagesz= specified twice, ignoring\n");
2689 2690
		return;
	}
2691
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2692
	BUG_ON(order == 0);
2693
	h = &hstates[hugetlb_max_hstate++];
2694 2695
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2696 2697 2698 2699
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2700
	INIT_LIST_HEAD(&h->hugepage_activelist);
2701 2702
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2703 2704
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2705

2706 2707 2708
	parsed_hstate = h;
}

2709
static int __init hugetlb_nrpages_setup(char *s)
2710 2711
{
	unsigned long *mhp;
2712
	static unsigned long *last_mhp;
2713 2714

	/*
2715
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2716 2717
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2718
	if (!hugetlb_max_hstate)
2719 2720 2721 2722
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2723
	if (mhp == last_mhp) {
2724 2725
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2726 2727 2728
		return 1;
	}

2729 2730 2731
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2732 2733 2734 2735 2736
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2737
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2738 2739 2740 2741
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2742 2743
	return 1;
}
2744 2745 2746 2747 2748 2749 2750 2751
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2765 2766 2767
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2768
{
2769
	struct hstate *h = &default_hstate;
2770
	unsigned long tmp = h->max_huge_pages;
2771
	int ret;
2772

2773 2774 2775
	if (!hugepages_supported())
		return -ENOTSUPP;

2776 2777
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2778 2779 2780
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2781

2782 2783 2784
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2785 2786
out:
	return ret;
L
Linus Torvalds 已提交
2787
}
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2806
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2807
			void __user *buffer,
2808 2809
			size_t *length, loff_t *ppos)
{
2810
	struct hstate *h = &default_hstate;
2811
	unsigned long tmp;
2812
	int ret;
2813

2814 2815 2816
	if (!hugepages_supported())
		return -ENOTSUPP;

2817
	tmp = h->nr_overcommit_huge_pages;
2818

2819
	if (write && hstate_is_gigantic(h))
2820 2821
		return -EINVAL;

2822 2823
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2824 2825 2826
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2827 2828 2829 2830 2831 2832

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2833 2834
out:
	return ret;
2835 2836
}

L
Linus Torvalds 已提交
2837 2838
#endif /* CONFIG_SYSCTL */

2839
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2840
{
2841
	struct hstate *h = &default_hstate;
2842 2843
	if (!hugepages_supported())
		return;
2844
	seq_printf(m,
2845 2846 2847 2848 2849
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2850 2851 2852 2853 2854
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2855 2856 2857 2858
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2859
	struct hstate *h = &default_hstate;
2860 2861
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2862 2863
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2864 2865
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2866 2867 2868
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2869 2870
}

2871 2872 2873 2874 2875
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2876 2877 2878
	if (!hugepages_supported())
		return;

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2889 2890 2891 2892 2893 2894
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2895 2896 2897
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2898 2899 2900 2901 2902 2903
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2904 2905
}

2906
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2929
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2930 2931
			goto out;

2932 2933
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2934 2935 2936 2937 2938 2939
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2940
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2941 2942 2943 2944 2945 2946

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2947 2948
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2949
	struct resv_map *resv = vma_resv_map(vma);
2950 2951 2952 2953 2954

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2955
	 * has a reference to the reservation map it cannot disappear until
2956 2957 2958
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2959
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2960
		kref_get(&resv->refs);
2961 2962
}

2963 2964
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2965
	struct hstate *h = hstate_vma(vma);
2966
	struct resv_map *resv = vma_resv_map(vma);
2967
	struct hugepage_subpool *spool = subpool_vma(vma);
2968
	unsigned long reserve, start, end;
2969
	long gbl_reserve;
2970

2971 2972
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2973

2974 2975
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2976

2977
	reserve = (end - start) - region_count(resv, start, end);
2978

2979 2980 2981
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2982 2983 2984 2985 2986 2987
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2988
	}
2989 2990
}

L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2997
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2998 2999
{
	BUG();
N
Nick Piggin 已提交
3000
	return 0;
L
Linus Torvalds 已提交
3001 3002
}

3003
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3004
	.fault = hugetlb_vm_op_fault,
3005
	.open = hugetlb_vm_op_open,
3006
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3007 3008
};

3009 3010
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3011 3012 3013
{
	pte_t entry;

3014
	if (writable) {
3015 3016
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3017
	} else {
3018 3019
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3020 3021 3022
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3023
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3024 3025 3026 3027

	return entry;
}

3028 3029 3030 3031 3032
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3033
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3034
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3035
		update_mmu_cache(vma, address, ptep);
3036 3037
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3063

D
David Gibson 已提交
3064 3065 3066 3067 3068
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3069
	unsigned long addr;
3070
	int cow;
3071 3072
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3073 3074 3075
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3076 3077

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3078

3079 3080 3081 3082 3083
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3084
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3085
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3086 3087 3088
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3089
		dst_pte = huge_pte_alloc(dst, addr, sz);
3090 3091 3092 3093
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3094 3095 3096 3097 3098

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3099 3100 3101
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3120
			if (cow) {
3121
				huge_ptep_set_wrprotect(src, addr, src_pte);
3122 3123 3124
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3125
			entry = huge_ptep_get(src_pte);
3126 3127
			ptepage = pte_page(entry);
			get_page(ptepage);
3128
			page_dup_rmap(ptepage);
3129
			set_huge_pte_at(dst, addr, dst_pte, entry);
3130
			hugetlb_count_add(pages_per_huge_page(h), dst);
3131
		}
3132 3133
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3134 3135
	}

3136 3137 3138 3139
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3140 3141
}

3142 3143 3144
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3145
{
3146
	int force_flush = 0;
D
David Gibson 已提交
3147 3148
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3149
	pte_t *ptep;
D
David Gibson 已提交
3150
	pte_t pte;
3151
	spinlock_t *ptl;
D
David Gibson 已提交
3152
	struct page *page;
3153 3154
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3155 3156
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3157

D
David Gibson 已提交
3158
	WARN_ON(!is_vm_hugetlb_page(vma));
3159 3160
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3161

3162
	tlb_start_vma(tlb, vma);
3163
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3164
	address = start;
3165
again:
3166
	for (; address < end; address += sz) {
3167
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3168
		if (!ptep)
3169 3170
			continue;

3171
		ptl = huge_pte_lock(h, mm, ptep);
3172
		if (huge_pmd_unshare(mm, &address, ptep))
3173
			goto unlock;
3174

3175 3176
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3177
			goto unlock;
3178 3179

		/*
3180 3181
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3182
		 */
3183
		if (unlikely(!pte_present(pte))) {
3184
			huge_pte_clear(mm, address, ptep);
3185
			goto unlock;
3186
		}
3187 3188

		page = pte_page(pte);
3189 3190 3191 3192 3193 3194 3195
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3196
				goto unlock;
3197 3198 3199 3200 3201 3202 3203 3204 3205

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3206
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3207
		tlb_remove_tlb_entry(tlb, ptep, address);
3208
		if (huge_pte_dirty(pte))
3209
			set_page_dirty(page);
3210

3211
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3212 3213
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3214
		if (force_flush) {
3215
			address += sz;
3216
			spin_unlock(ptl);
3217
			break;
3218
		}
3219
		/* Bail out after unmapping reference page if supplied */
3220 3221
		if (ref_page) {
			spin_unlock(ptl);
3222
			break;
3223 3224 3225
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3226
	}
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3237
	}
3238
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3239
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3240
}
D
David Gibson 已提交
3241

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3254
	 * is to clear it before releasing the i_mmap_rwsem. This works
3255
	 * because in the context this is called, the VMA is about to be
3256
	 * destroyed and the i_mmap_rwsem is held.
3257 3258 3259 3260
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3261
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3262
			  unsigned long end, struct page *ref_page)
3263
{
3264 3265 3266 3267 3268
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3269
	tlb_gather_mmu(&tlb, mm, start, end);
3270 3271
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3272 3273
}

3274 3275 3276 3277 3278 3279
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3280 3281
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3282
{
3283
	struct hstate *h = hstate_vma(vma);
3284 3285 3286 3287 3288 3289 3290 3291
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3292
	address = address & huge_page_mask(h);
3293 3294
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3295
	mapping = file_inode(vma->vm_file)->i_mapping;
3296

3297 3298 3299 3300 3301
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3302
	i_mmap_lock_write(mapping);
3303
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3304 3305 3306 3307
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3308 3309 3310 3311 3312 3313 3314 3315
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3316 3317 3318 3319 3320 3321 3322 3323
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3324 3325
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3326
	}
3327
	i_mmap_unlock_write(mapping);
3328 3329
}

3330 3331
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3332 3333 3334
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3335
 */
3336
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3337
			unsigned long address, pte_t *ptep, pte_t pte,
3338
			struct page *pagecache_page, spinlock_t *ptl)
3339
{
3340
	struct hstate *h = hstate_vma(vma);
3341
	struct page *old_page, *new_page;
3342
	int ret = 0, outside_reserve = 0;
3343 3344
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3345 3346 3347

	old_page = pte_page(pte);

3348
retry_avoidcopy:
3349 3350
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3351 3352
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3353
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3354
		return 0;
3355 3356
	}

3357 3358 3359 3360 3361 3362 3363 3364 3365
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3366
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3367 3368 3369
			old_page != pagecache_page)
		outside_reserve = 1;

3370
	page_cache_get(old_page);
3371

3372 3373 3374 3375
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3376
	spin_unlock(ptl);
3377
	new_page = alloc_huge_page(vma, address, outside_reserve);
3378

3379
	if (IS_ERR(new_page)) {
3380 3381 3382 3383 3384 3385 3386 3387
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3388
			page_cache_release(old_page);
3389
			BUG_ON(huge_pte_none(pte));
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3402 3403
		}

3404 3405 3406
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3407 3408
	}

3409 3410 3411 3412
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3413
	if (unlikely(anon_vma_prepare(vma))) {
3414 3415
		ret = VM_FAULT_OOM;
		goto out_release_all;
3416
	}
3417

A
Andrea Arcangeli 已提交
3418 3419
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3420
	__SetPageUptodate(new_page);
3421
	set_page_huge_active(new_page);
3422

3423 3424 3425
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3426

3427
	/*
3428
	 * Retake the page table lock to check for racing updates
3429 3430
	 * before the page tables are altered
	 */
3431
	spin_lock(ptl);
3432
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3433
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3434 3435
		ClearPagePrivate(new_page);

3436
		/* Break COW */
3437
		huge_ptep_clear_flush(vma, address, ptep);
3438
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3439 3440
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3441
		page_remove_rmap(old_page);
3442
		hugepage_add_new_anon_rmap(new_page, vma, address);
3443 3444 3445
		/* Make the old page be freed below */
		new_page = old_page;
	}
3446
	spin_unlock(ptl);
3447
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3448
out_release_all:
3449
	page_cache_release(new_page);
3450
out_release_old:
3451
	page_cache_release(old_page);
3452

3453 3454
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3455 3456
}

3457
/* Return the pagecache page at a given address within a VMA */
3458 3459
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3460 3461
{
	struct address_space *mapping;
3462
	pgoff_t idx;
3463 3464

	mapping = vma->vm_file->f_mapping;
3465
	idx = vma_hugecache_offset(h, vma, address);
3466 3467 3468 3469

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3470 3471 3472 3473 3474
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3507
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3508 3509
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3510
{
3511
	struct hstate *h = hstate_vma(vma);
3512
	int ret = VM_FAULT_SIGBUS;
3513
	int anon_rmap = 0;
A
Adam Litke 已提交
3514 3515
	unsigned long size;
	struct page *page;
3516
	pte_t new_pte;
3517
	spinlock_t *ptl;
A
Adam Litke 已提交
3518

3519 3520 3521
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3522
	 * COW. Warn that such a situation has occurred as it may not be obvious
3523 3524
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3525 3526
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3527 3528 3529
		return ret;
	}

A
Adam Litke 已提交
3530 3531 3532 3533
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3534 3535 3536
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3537
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3538 3539
		if (idx >= size)
			goto out;
3540
		page = alloc_huge_page(vma, address, 0);
3541
		if (IS_ERR(page)) {
3542 3543 3544 3545 3546
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3547 3548
			goto out;
		}
A
Andrea Arcangeli 已提交
3549
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3550
		__SetPageUptodate(page);
3551
		set_page_huge_active(page);
3552

3553
		if (vma->vm_flags & VM_MAYSHARE) {
3554
			int err = huge_add_to_page_cache(page, mapping, idx);
3555 3556 3557 3558 3559 3560
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3561
		} else {
3562
			lock_page(page);
3563 3564 3565 3566
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3567
			anon_rmap = 1;
3568
		}
3569
	} else {
3570 3571 3572 3573 3574 3575
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3576
			ret = VM_FAULT_HWPOISON |
3577
				VM_FAULT_SET_HINDEX(hstate_index(h));
3578 3579
			goto backout_unlocked;
		}
3580
	}
3581

3582 3583 3584 3585 3586 3587
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3588
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3589 3590 3591 3592
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3593
		/* Just decrements count, does not deallocate */
3594
		vma_end_reservation(h, vma, address);
3595
	}
3596

3597 3598
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3599
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3600 3601 3602
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3603
	ret = 0;
3604
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3605 3606
		goto backout;

3607 3608
	if (anon_rmap) {
		ClearPagePrivate(page);
3609
		hugepage_add_new_anon_rmap(page, vma, address);
3610
	} else
3611
		page_dup_rmap(page);
3612 3613 3614 3615
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3616
	hugetlb_count_add(pages_per_huge_page(h), mm);
3617
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3618
		/* Optimization, do the COW without a second fault */
3619
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3620 3621
	}

3622
	spin_unlock(ptl);
A
Adam Litke 已提交
3623 3624
	unlock_page(page);
out:
3625
	return ret;
A
Adam Litke 已提交
3626 3627

backout:
3628
	spin_unlock(ptl);
3629
backout_unlocked:
A
Adam Litke 已提交
3630 3631 3632
	unlock_page(page);
	put_page(page);
	goto out;
3633 3634
}

3635
#ifdef CONFIG_SMP
3636
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3661
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3662 3663 3664 3665 3666 3667 3668 3669
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3670
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3671
			unsigned long address, unsigned int flags)
3672
{
3673
	pte_t *ptep, entry;
3674
	spinlock_t *ptl;
3675
	int ret;
3676 3677
	u32 hash;
	pgoff_t idx;
3678
	struct page *page = NULL;
3679
	struct page *pagecache_page = NULL;
3680
	struct hstate *h = hstate_vma(vma);
3681
	struct address_space *mapping;
3682
	int need_wait_lock = 0;
3683

3684 3685
	address &= huge_page_mask(h);

3686 3687 3688
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3689
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3690
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3691 3692
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3693
			return VM_FAULT_HWPOISON_LARGE |
3694
				VM_FAULT_SET_HINDEX(hstate_index(h));
3695 3696
	}

3697
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3698 3699 3700
	if (!ptep)
		return VM_FAULT_OOM;

3701 3702 3703
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3704 3705 3706 3707 3708
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3709 3710
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3711

3712 3713
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3714
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3715
		goto out_mutex;
3716
	}
3717

N
Nick Piggin 已提交
3718
	ret = 0;
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3730 3731 3732 3733 3734 3735 3736 3737
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3738
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3739 3740
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3741
			goto out_mutex;
3742
		}
3743
		/* Just decrements count, does not deallocate */
3744
		vma_end_reservation(h, vma, address);
3745

3746
		if (!(vma->vm_flags & VM_MAYSHARE))
3747 3748 3749 3750
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3751 3752 3753 3754 3755 3756
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3757 3758 3759 3760 3761 3762 3763
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3764 3765 3766 3767
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3768

3769
	get_page(page);
3770

3771
	if (flags & FAULT_FLAG_WRITE) {
3772
		if (!huge_pte_write(entry)) {
3773
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3774
					pagecache_page, ptl);
3775
			goto out_put_page;
3776
		}
3777
		entry = huge_pte_mkdirty(entry);
3778 3779
	}
	entry = pte_mkyoung(entry);
3780 3781
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3782
		update_mmu_cache(vma, address, ptep);
3783 3784 3785 3786
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3787 3788
out_ptl:
	spin_unlock(ptl);
3789 3790 3791 3792 3793

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3794
out_mutex:
3795
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3796 3797 3798 3799 3800 3801 3802 3803 3804
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3805
	return ret;
3806 3807
}

3808 3809 3810 3811
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3812
{
3813 3814
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3815
	unsigned long remainder = *nr_pages;
3816
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3817 3818

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3819
		pte_t *pte;
3820
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3821
		int absent;
A
Adam Litke 已提交
3822
		struct page *page;
D
David Gibson 已提交
3823

3824 3825 3826 3827 3828 3829 3830 3831 3832
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3833 3834
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3835
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3836
		 * first, for the page indexing below to work.
3837 3838
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3839
		 */
3840
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3841 3842
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3843 3844 3845 3846
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3847 3848 3849 3850
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3851
		 */
H
Hugh Dickins 已提交
3852 3853
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3854 3855
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3856 3857 3858
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3871 3872
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3873
			int ret;
D
David Gibson 已提交
3874

3875 3876
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3877 3878
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3879
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3880
				continue;
D
David Gibson 已提交
3881

A
Adam Litke 已提交
3882 3883 3884 3885
			remainder = 0;
			break;
		}

3886
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3887
		page = pte_page(huge_ptep_get(pte));
3888
same_page:
3889
		if (pages) {
H
Hugh Dickins 已提交
3890
			pages[i] = mem_map_offset(page, pfn_offset);
3891
			get_page_foll(pages[i]);
3892
		}
D
David Gibson 已提交
3893 3894 3895 3896 3897

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3898
		++pfn_offset;
D
David Gibson 已提交
3899 3900
		--remainder;
		++i;
3901
		if (vaddr < vma->vm_end && remainder &&
3902
				pfn_offset < pages_per_huge_page(h)) {
3903 3904 3905 3906 3907 3908
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3909
		spin_unlock(ptl);
D
David Gibson 已提交
3910
	}
3911
	*nr_pages = remainder;
D
David Gibson 已提交
3912 3913
	*position = vaddr;

H
Hugh Dickins 已提交
3914
	return i ? i : -EFAULT;
D
David Gibson 已提交
3915
}
3916

3917
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3918 3919 3920 3921 3922 3923
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3924
	struct hstate *h = hstate_vma(vma);
3925
	unsigned long pages = 0;
3926 3927 3928 3929

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3930
	mmu_notifier_invalidate_range_start(mm, start, end);
3931
	i_mmap_lock_write(vma->vm_file->f_mapping);
3932
	for (; address < end; address += huge_page_size(h)) {
3933
		spinlock_t *ptl;
3934 3935 3936
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3937
		ptl = huge_pte_lock(h, mm, ptep);
3938 3939
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3940
			spin_unlock(ptl);
3941
			continue;
3942
		}
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3963
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3964
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3965
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3966
			set_huge_pte_at(mm, address, ptep, pte);
3967
			pages++;
3968
		}
3969
		spin_unlock(ptl);
3970
	}
3971
	/*
3972
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3973
	 * may have cleared our pud entry and done put_page on the page table:
3974
	 * once we release i_mmap_rwsem, another task can do the final put_page
3975 3976
	 * and that page table be reused and filled with junk.
	 */
3977
	flush_tlb_range(vma, start, end);
3978
	mmu_notifier_invalidate_range(mm, start, end);
3979
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3980
	mmu_notifier_invalidate_range_end(mm, start, end);
3981 3982

	return pages << h->order;
3983 3984
}

3985 3986
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3987
					struct vm_area_struct *vma,
3988
					vm_flags_t vm_flags)
3989
{
3990
	long ret, chg;
3991
	struct hstate *h = hstate_inode(inode);
3992
	struct hugepage_subpool *spool = subpool_inode(inode);
3993
	struct resv_map *resv_map;
3994
	long gbl_reserve;
3995

3996 3997 3998
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3999
	 * without using reserves
4000
	 */
4001
	if (vm_flags & VM_NORESERVE)
4002 4003
		return 0;

4004 4005 4006 4007 4008 4009
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4010
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4011
		resv_map = inode_resv_map(inode);
4012

4013
		chg = region_chg(resv_map, from, to);
4014 4015 4016

	} else {
		resv_map = resv_map_alloc();
4017 4018 4019
		if (!resv_map)
			return -ENOMEM;

4020
		chg = to - from;
4021

4022 4023 4024 4025
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4026 4027 4028 4029
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4030

4031 4032 4033 4034 4035 4036 4037
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4038 4039 4040
		ret = -ENOSPC;
		goto out_err;
	}
4041 4042

	/*
4043
	 * Check enough hugepages are available for the reservation.
4044
	 * Hand the pages back to the subpool if there are not
4045
	 */
4046
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4047
	if (ret < 0) {
4048 4049
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4050
		goto out_err;
K
Ken Chen 已提交
4051
	}
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4082
	return 0;
4083
out_err:
4084 4085
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4086 4087
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4088
	return ret;
4089 4090
}

4091 4092
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4093
{
4094
	struct hstate *h = hstate_inode(inode);
4095
	struct resv_map *resv_map = inode_resv_map(inode);
4096
	long chg = 0;
4097
	struct hugepage_subpool *spool = subpool_inode(inode);
4098
	long gbl_reserve;
K
Ken Chen 已提交
4099

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4111
	spin_lock(&inode->i_lock);
4112
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4113 4114
	spin_unlock(&inode->i_lock);

4115 4116 4117 4118 4119 4120
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4121 4122

	return 0;
4123
}
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4136 4137
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4151
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4152 4153 4154 4155 4156 4157 4158 4159 4160
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4161 4162
		return true;
	return false;
4163 4164 4165 4166 4167 4168 4169
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4170
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4184
	spinlock_t *ptl;
4185 4186 4187 4188

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4189
	i_mmap_lock_write(mapping);
4190 4191 4192 4193 4194 4195 4196 4197
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4198
				mm_inc_nr_pmds(mm);
4199 4200 4201 4202 4203 4204 4205 4206 4207
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4208 4209
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4210
	if (pud_none(*pud)) {
4211 4212
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4213
	} else {
4214
		put_page(virt_to_page(spte));
4215 4216
		mm_inc_nr_pmds(mm);
	}
4217
	spin_unlock(ptl);
4218 4219
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4220
	i_mmap_unlock_write(mapping);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4231
 * called with page table lock held.
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4247
	mm_dec_nr_pmds(mm);
4248 4249 4250
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4251 4252 4253 4254 4255 4256
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4257 4258 4259 4260 4261

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4262
#define want_pmd_share()	(0)
4263 4264
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4323
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4324
		pmd_t *pmd, int flags)
4325
{
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4338
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4354 4355 4356
	return page;
}

4357
struct page * __weak
4358
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4359
		pud_t *pud, int flags)
4360
{
4361 4362
	if (flags & FOLL_GET)
		return NULL;
4363

4364
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4365 4366
}

4367 4368
#ifdef CONFIG_MEMORY_FAILURE

4369 4370 4371 4372
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4373
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4374 4375 4376
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4377
	int ret = -EBUSY;
4378 4379

	spin_lock(&hugetlb_lock);
4380 4381 4382 4383 4384
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4385 4386 4387 4388 4389 4390 4391
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4392
		set_page_refcounted(hpage);
4393 4394 4395 4396
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4397
	spin_unlock(&hugetlb_lock);
4398
	return ret;
4399
}
4400
#endif
4401 4402 4403

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4404 4405
	bool ret = true;

4406
	VM_BUG_ON_PAGE(!PageHead(page), page);
4407
	spin_lock(&hugetlb_lock);
4408 4409 4410 4411 4412
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4413
	list_move_tail(&page->lru, list);
4414
unlock:
4415
	spin_unlock(&hugetlb_lock);
4416
	return ret;
4417 4418 4419 4420
}

void putback_active_hugepage(struct page *page)
{
4421
	VM_BUG_ON_PAGE(!PageHead(page), page);
4422
	spin_lock(&hugetlb_lock);
4423
	set_page_huge_active(page);
4424 4425 4426 4427
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}