hugetlb.c 129.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/sched/signal.h>
22
#include <linux/rmap.h>
23
#include <linux/string_helpers.h>
24 25
#include <linux/swap.h>
#include <linux/swapops.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include <linux/userfaultfd_k.h>
37
#include "internal.h"
L
Linus Torvalds 已提交
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
570
void hugetlb_fix_reserve_counts(struct inode *inode)
571 572 573 574 575
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576
	if (rsv_adjust) {
577 578 579 580 581 582
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
630
EXPORT_SYMBOL_GPL(linear_hugepage_index);
631

632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

645
	return 1UL << huge_page_shift(hstate);
646
}
647
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

662 663 664 665 666 667 668
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
669
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670

671 672 673 674 675 676 677 678 679
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
680 681 682 683 684 685 686 687 688
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
689
 */
690 691 692 693 694 695 696 697 698 699 700
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

701
struct resv_map *resv_map_alloc(void)
702 703
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 705 706 707 708
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
709
		return NULL;
710
	}
711 712

	kref_init(&resv_map->refs);
713
	spin_lock_init(&resv_map->lock);
714 715
	INIT_LIST_HEAD(&resv_map->regions);

716 717 718 719 720 721
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

722 723 724
	return resv_map;
}

725
void resv_map_release(struct kref *ref)
726 727
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 729
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
730 731

	/* Clear out any active regions before we release the map. */
732
	region_del(resv_map, 0, LONG_MAX);
733 734 735 736 737 738 739 740 741

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

742 743 744
	kfree(resv_map);
}

745 746 747 748 749
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

750
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751
{
752
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 754 755 756 757 758 759
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
760 761
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
762
	}
763 764
}

765
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766
{
767 768
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769

770 771
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
772 773 774 775
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
776 777
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 779

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 781 782 783
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
784
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 786

	return (get_vma_private_data(vma) & flag) != 0;
787 788
}

789
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 791
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
792
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793
	if (!(vma->vm_flags & VM_MAYSHARE))
794 795 796 797
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
798
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799
{
800 801 802 803 804 805 806 807 808 809 810
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811
			return true;
812
		else
813
			return false;
814
	}
815 816

	/* Shared mappings always use reserves */
817 818 819 820 821 822 823 824 825 826 827 828 829
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
830 831 832 833 834

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
856

857
	return false;
858 859
}

860
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
861 862
{
	int nid = page_to_nid(page);
863
	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 865
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
866 867
}

868
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
869 870 871
{
	struct page *page;

872
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873
		if (!PageHWPoison(page))
874 875 876 877 878 879
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
880
		return NULL;
881
	list_move(&page->lru, &h->hugepage_activelist);
882
	set_page_refcounted(page);
883 884 885 886 887
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

888 889
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
890
{
891 892 893 894 895
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	int node = -1;
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
913 914 915 916 917

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
918 919 920
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

921 922 923
	return NULL;
}

924 925 926
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
927
	if (hugepage_migration_supported(h))
928 929 930 931 932
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

933 934
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
935 936
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
937
{
938
	struct page *page;
939
	struct mempolicy *mpol;
940
	gfp_t gfp_mask;
941
	nodemask_t *nodemask;
942
	int nid;
L
Linus Torvalds 已提交
943

944 945 946 947 948
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
949
	if (!vma_has_reserves(vma, chg) &&
950
			h->free_huge_pages - h->resv_huge_pages == 0)
951
		goto err;
952

953
	/* If reserves cannot be used, ensure enough pages are in the pool */
954
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
955
		goto err;
956

957 958
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
959 960 961 962
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
963
	}
964

965
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
966
	return page;
967 968 969

err:
	return NULL;
L
Linus Torvalds 已提交
970 971
}

972 973 974 975 976 977 978 979 980
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
981
	nid = next_node_in(nid, *nodes_allowed);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1043
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1044
static void destroy_compound_gigantic_page(struct page *page,
1045
					unsigned int order)
1046 1047 1048 1049 1050
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1051
	atomic_set(compound_mapcount_ptr(page), 0);
1052
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1053
		clear_compound_head(p);
1054 1055 1056 1057 1058 1059 1060
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1061
static void free_gigantic_page(struct page *page, unsigned int order)
1062 1063 1064 1065 1066
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
1067
				unsigned long nr_pages, gfp_t gfp_mask)
1068 1069
{
	unsigned long end_pfn = start_pfn + nr_pages;
1070
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1071
				  gfp_mask);
1072 1073
}

1074 1075
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1086 1087 1088
		if (page_zone(page) != z)
			return false;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1109
static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1110
{
1111
	unsigned int order = huge_page_order(h);
1112 1113
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
1114 1115 1116 1117
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	gfp_t gfp_mask;
1118

1119 1120 1121 1122
	gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
		spin_lock_irqsave(&zone->lock, flags);
1123

1124 1125 1126
		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127 1128 1129 1130 1131 1132 1133
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
1134 1135
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136 1137
				if (!ret)
					return pfn_to_page(pfn);
1138
				spin_lock_irqsave(&zone->lock, flags);
1139 1140 1141 1142
			}
			pfn += nr_pages;
		}

1143
		spin_unlock_irqrestore(&zone->lock, flags);
1144 1145 1146 1147 1148 1149
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151 1152 1153 1154 1155

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

1156
	page = alloc_gigantic_page(nid, h);
1157 1158 1159
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
1160
		put_page(page); /* free it into the hugepage allocator */
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

1181
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1182
static inline bool gigantic_page_supported(void) { return false; }
1183
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1184
static inline void destroy_compound_gigantic_page(struct page *page,
1185
						unsigned int order) { }
1186 1187 1188 1189
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1190
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1191 1192
{
	int i;
1193

1194 1195
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1196

1197 1198 1199
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1200 1201
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1202 1203
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1204
	}
1205
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1206
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1207
	set_page_refcounted(page);
1208 1209 1210 1211 1212 1213
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1252
void free_huge_page(struct page *page)
1253
{
1254 1255 1256 1257
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1258
	struct hstate *h = page_hstate(page);
1259
	int nid = page_to_nid(page);
1260 1261
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1262
	bool restore_reserve;
1263

1264
	set_page_private(page, 0);
1265
	page->mapping = NULL;
1266 1267
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1268
	restore_reserve = PagePrivate(page);
1269
	ClearPagePrivate(page);
1270

1271 1272 1273 1274 1275 1276 1277 1278
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1279
	spin_lock(&hugetlb_lock);
1280
	clear_page_huge_active(page);
1281 1282
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1283 1284 1285
	if (restore_reserve)
		h->resv_huge_pages++;

1286
	if (h->surplus_huge_pages_node[nid]) {
1287 1288
		/* remove the page from active list */
		list_del(&page->lru);
1289 1290 1291
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1292
	} else {
1293
		arch_clear_hugepage_flags(page);
1294
		enqueue_huge_page(h, page);
1295
	}
1296 1297 1298
	spin_unlock(&hugetlb_lock);
}

1299
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1300
{
1301
	INIT_LIST_HEAD(&page->lru);
1302
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1303
	spin_lock(&hugetlb_lock);
1304
	set_hugetlb_cgroup(page, NULL);
1305 1306
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1307 1308 1309
	spin_unlock(&hugetlb_lock);
}

1310
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1311 1312 1313 1314 1315 1316 1317
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1318
	__ClearPageReserved(page);
1319
	__SetPageHead(page);
1320
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1334
		set_page_count(p, 0);
1335
		set_compound_head(p, page);
1336
	}
1337
	atomic_set(compound_mapcount_ptr(page), -1);
1338 1339
}

A
Andrew Morton 已提交
1340 1341 1342 1343 1344
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1345 1346 1347 1348 1349 1350
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1351
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1352
}
1353 1354
EXPORT_SYMBOL_GPL(PageHuge);

1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1364
	return get_compound_page_dtor(page_head) == free_huge_page;
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1384 1385
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
L
Linus Torvalds 已提交
1386
{
1387
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1388
	struct page *page;
1389

1390 1391 1392 1393 1394 1395 1396 1397
	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1398 1399 1400 1401

	return page;
}

1402 1403 1404 1405
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1406 1407 1408 1409
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
1410
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1411 1412

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1413 1414 1415
		page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask,
				node, nodes_allowed);
		if (page)
1416
			break;
1417

1418 1419
	}

1420 1421
	if (!page)
		return 0;
1422

1423 1424 1425 1426
	prep_new_huge_page(h, page, page_to_nid(page));
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1427 1428
}

1429 1430 1431 1432 1433 1434
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1435 1436
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1437
{
1438
	int nr_nodes, node;
1439 1440
	int ret = 0;

1441
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1442 1443 1444 1445
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1446 1447
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1448
			struct page *page =
1449
				list_entry(h->hugepage_freelists[node].next,
1450 1451 1452
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1453
			h->free_huge_pages_node[node]--;
1454 1455
			if (acct_surplus) {
				h->surplus_huge_pages--;
1456
				h->surplus_huge_pages_node[node]--;
1457
			}
1458 1459
			update_and_free_page(h, page);
			ret = 1;
1460
			break;
1461
		}
1462
	}
1463 1464 1465 1466

	return ret;
}

1467 1468
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1469 1470 1471
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1472
 */
1473
int dissolve_free_huge_page(struct page *page)
1474
{
1475 1476
	int rc = 0;

1477 1478
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1479 1480 1481
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1482 1483 1484 1485
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1486 1487 1488 1489 1490 1491 1492 1493
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1494
		list_del(&head->lru);
1495 1496
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1497
		h->max_huge_pages--;
1498
		update_and_free_page(h, head);
1499
	}
1500
out:
1501
	spin_unlock(&hugetlb_lock);
1502
	return rc;
1503 1504 1505 1506 1507
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1508 1509
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1510 1511
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1512
 */
1513
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1514 1515
{
	unsigned long pfn;
1516
	struct page *page;
1517
	int rc = 0;
1518

1519
	if (!hugepages_supported())
1520
		return rc;
1521

1522 1523 1524 1525 1526 1527 1528 1529
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1530 1531

	return rc;
1532 1533
}

1534 1535
static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nmask)
1536 1537
{
	struct page *page;
1538
	unsigned int r_nid;
1539

1540
	if (hstate_is_gigantic(h))
1541 1542
		return NULL;

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1567
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 1569 1570
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1571 1572
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1573 1574 1575
	}
	spin_unlock(&hugetlb_lock);

1576
	page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1577 1578

	spin_lock(&hugetlb_lock);
1579
	if (page) {
1580
		INIT_LIST_HEAD(&page->lru);
1581
		r_nid = page_to_nid(page);
1582
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583
		set_hugetlb_cgroup(page, NULL);
1584 1585 1586
		/*
		 * We incremented the global counters already
		 */
1587 1588
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1589
	} else {
1590 1591
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1592
	}
1593
	spin_unlock(&hugetlb_lock);
1594 1595 1596 1597

	return page;
}

1598 1599 1600
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1601
static
1602 1603 1604
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
	page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
	mpol_cond_put(mpol);

	return page;
1616 1617
}

1618 1619 1620 1621 1622 1623 1624
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1625
	gfp_t gfp_mask = htlb_alloc_mask(h);
1626
	struct page *page = NULL;
1627

1628 1629 1630
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1631
	spin_lock(&hugetlb_lock);
1632
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1633
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1634 1635
	spin_unlock(&hugetlb_lock);

1636
	if (!page)
1637
		page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1638 1639 1640 1641

	return page;
}

1642 1643 1644

struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1645
{
1646
	gfp_t gfp_mask = htlb_alloc_mask(h);
1647 1648 1649

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1650 1651 1652 1653 1654 1655
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1656 1657 1658 1659 1660
		}
	}
	spin_unlock(&hugetlb_lock);

	/* No reservations, try to overcommit */
1661 1662

	return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1663 1664
}

1665
/*
L
Lucas De Marchi 已提交
1666
 * Increase the hugetlb pool such that it can accommodate a reservation
1667 1668
 * of size 'delta'.
 */
1669
static int gather_surplus_pages(struct hstate *h, int delta)
1670 1671 1672 1673 1674
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1675
	bool alloc_ok = true;
1676

1677
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1678
	if (needed <= 0) {
1679
		h->resv_huge_pages += delta;
1680
		return 0;
1681
	}
1682 1683 1684 1685 1686 1687 1688 1689

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1690 1691
		page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
				NUMA_NO_NODE, NULL);
1692 1693 1694 1695
		if (!page) {
			alloc_ok = false;
			break;
		}
1696
		list_add(&page->lru, &surplus_list);
1697
		cond_resched();
1698
	}
1699
	allocated += i;
1700 1701 1702 1703 1704 1705

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1706 1707
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1718 1719
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1720
	 * needed to accommodate the reservation.  Add the appropriate number
1721
	 * of pages to the hugetlb pool and free the extras back to the buddy
1722 1723 1724
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1725 1726
	 */
	needed += allocated;
1727
	h->resv_huge_pages += delta;
1728
	ret = 0;
1729

1730
	/* Free the needed pages to the hugetlb pool */
1731
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1732 1733
		if ((--needed) < 0)
			break;
1734 1735 1736 1737 1738
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1739
		VM_BUG_ON_PAGE(page_count(page), page);
1740
		enqueue_huge_page(h, page);
1741
	}
1742
free:
1743
	spin_unlock(&hugetlb_lock);
1744 1745

	/* Free unnecessary surplus pages to the buddy allocator */
1746 1747
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1748
	spin_lock(&hugetlb_lock);
1749 1750 1751 1752 1753

	return ret;
}

/*
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1766
 */
1767 1768
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1769 1770 1771
{
	unsigned long nr_pages;

1772
	/* Cannot return gigantic pages currently */
1773
	if (hstate_is_gigantic(h))
1774
		goto out;
1775

1776 1777 1778 1779
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1780
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1781

1782 1783
	/*
	 * We want to release as many surplus pages as possible, spread
1784 1785 1786 1787 1788
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1789 1790 1791 1792
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1793 1794
	 */
	while (nr_pages--) {
1795 1796
		h->resv_huge_pages--;
		unused_resv_pages--;
1797
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1798
			goto out;
1799
		cond_resched_lock(&hugetlb_lock);
1800
	}
1801 1802 1803 1804

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1805 1806
}

1807

1808
/*
1809
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1810
 * are used by the huge page allocation routines to manage reservations.
1811 1812 1813 1814 1815 1816
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1817 1818 1819
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1820 1821 1822 1823 1824 1825
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1826 1827 1828 1829 1830
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1831
 */
1832 1833 1834
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1835
	VMA_END_RESV,
1836
	VMA_ADD_RESV,
1837
};
1838 1839
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1840
				enum vma_resv_mode mode)
1841
{
1842 1843
	struct resv_map *resv;
	pgoff_t idx;
1844
	long ret;
1845

1846 1847
	resv = vma_resv_map(vma);
	if (!resv)
1848
		return 1;
1849

1850
	idx = vma_hugecache_offset(h, vma, addr);
1851 1852
	switch (mode) {
	case VMA_NEEDS_RESV:
1853
		ret = region_chg(resv, idx, idx + 1);
1854 1855 1856 1857
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1858
	case VMA_END_RESV:
1859 1860 1861
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1862 1863 1864 1865 1866 1867 1868 1869
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1870 1871 1872
	default:
		BUG();
	}
1873

1874
	if (vma->vm_flags & VM_MAYSHARE)
1875
		return ret;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1895
	else
1896
		return ret < 0 ? ret : 0;
1897
}
1898 1899

static long vma_needs_reservation(struct hstate *h,
1900
			struct vm_area_struct *vma, unsigned long addr)
1901
{
1902
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1903
}
1904

1905 1906 1907
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1908 1909 1910
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1911
static void vma_end_reservation(struct hstate *h,
1912 1913
			struct vm_area_struct *vma, unsigned long addr)
{
1914
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1967
struct page *alloc_huge_page(struct vm_area_struct *vma,
1968
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1969
{
1970
	struct hugepage_subpool *spool = subpool_vma(vma);
1971
	struct hstate *h = hstate_vma(vma);
1972
	struct page *page;
1973 1974
	long map_chg, map_commit;
	long gbl_chg;
1975 1976
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1977

1978
	idx = hstate_index(h);
1979
	/*
1980 1981 1982
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1983
	 */
1984 1985
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1986
		return ERR_PTR(-ENOMEM);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1998
			vma_end_reservation(h, vma, addr);
1999
			return ERR_PTR(-ENOSPC);
2000
		}
L
Linus Torvalds 已提交
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2014
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2015 2016 2017
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2018
	spin_lock(&hugetlb_lock);
2019 2020 2021 2022 2023 2024
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2025
	if (!page) {
2026
		spin_unlock(&hugetlb_lock);
2027
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2028 2029
		if (!page)
			goto out_uncharge_cgroup;
2030 2031 2032 2033
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2034 2035
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2036
		/* Fall through */
K
Ken Chen 已提交
2037
	}
2038 2039
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2040

2041
	set_page_private(page, (unsigned long)spool);
2042

2043 2044
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2059
	return page;
2060 2061 2062 2063

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2064
	if (map_chg || avoid_reserve)
2065
		hugepage_subpool_put_pages(spool, 1);
2066
	vma_end_reservation(h, vma, addr);
2067
	return ERR_PTR(-ENOSPC);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2084 2085 2086
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2087 2088
{
	struct huge_bootmem_page *m;
2089
	int nr_nodes, node;
2090

2091
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2092 2093
		void *addr;

2094 2095 2096
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2097 2098 2099 2100 2101 2102 2103
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2104
			goto found;
2105 2106 2107 2108 2109
		}
	}
	return 0;

found:
2110
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2111 2112 2113 2114 2115 2116
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2117 2118
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2119 2120 2121 2122 2123 2124 2125
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2126 2127 2128 2129 2130 2131 2132
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2133 2134 2135 2136
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2137 2138
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2139 2140 2141
#else
		page = virt_to_page(m);
#endif
2142
		WARN_ON(page_count(page) != 1);
2143
		prep_compound_huge_page(page, h->order);
2144
		WARN_ON(PageReserved(page));
2145
		prep_new_huge_page(h, page, page_to_nid(page));
2146 2147
		put_page(page); /* free it into the hugepage allocator */

2148 2149 2150 2151 2152 2153
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2154
		if (hstate_is_gigantic(h))
2155
			adjust_managed_page_count(page, 1 << h->order);
2156 2157 2158
	}
}

2159
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2160 2161
{
	unsigned long i;
2162

2163
	for (i = 0; i < h->max_huge_pages; ++i) {
2164
		if (hstate_is_gigantic(h)) {
2165 2166
			if (!alloc_bootmem_huge_page(h))
				break;
2167
		} else if (!alloc_fresh_huge_page(h,
2168
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2169
			break;
2170
		cond_resched();
L
Linus Torvalds 已提交
2171
	}
2172 2173 2174
	if (i < h->max_huge_pages) {
		char buf[32];

2175
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2176 2177 2178 2179
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2180 2181 2182 2183 2184 2185 2186
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2187 2188 2189
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2190
		/* oversize hugepages were init'ed in early boot */
2191
		if (!hstate_is_gigantic(h))
2192
			hugetlb_hstate_alloc_pages(h);
2193
	}
2194
	VM_BUG_ON(minimum_order == UINT_MAX);
2195 2196 2197 2198 2199 2200 2201
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2202
		char buf[32];
2203 2204

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2205
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2206
			buf, h->free_huge_pages);
2207 2208 2209
	}
}

L
Linus Torvalds 已提交
2210
#ifdef CONFIG_HIGHMEM
2211 2212
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2213
{
2214 2215
	int i;

2216
	if (hstate_is_gigantic(h))
2217 2218
		return;

2219
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2220
		struct page *page, *next;
2221 2222 2223
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2224
				return;
L
Linus Torvalds 已提交
2225 2226 2227
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2228
			update_and_free_page(h, page);
2229 2230
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2231 2232 2233 2234
		}
	}
}
#else
2235 2236
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2237 2238 2239 2240
{
}
#endif

2241 2242 2243 2244 2245
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2246 2247
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2248
{
2249
	int nr_nodes, node;
2250 2251 2252

	VM_BUG_ON(delta != -1 && delta != 1);

2253 2254 2255 2256
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2257
		}
2258 2259 2260 2261 2262
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2263
		}
2264 2265
	}
	return 0;
2266

2267 2268 2269 2270
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2271 2272
}

2273
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2274 2275
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2276
{
2277
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2278

2279
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2280 2281
		return h->max_huge_pages;

2282 2283 2284 2285
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2286
	 *
N
Naoya Horiguchi 已提交
2287
	 * We might race with __alloc_buddy_huge_page() here and be unable
2288 2289 2290 2291
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2292
	 */
L
Linus Torvalds 已提交
2293
	spin_lock(&hugetlb_lock);
2294
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2295
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2296 2297 2298
			break;
	}

2299
	while (count > persistent_huge_pages(h)) {
2300 2301 2302 2303 2304 2305
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2306 2307 2308 2309

		/* yield cpu to avoid soft lockup */
		cond_resched();

2310 2311 2312 2313
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2314 2315 2316 2317
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2318 2319 2320
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2321 2322 2323 2324 2325 2326 2327 2328
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2329 2330 2331 2332
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2333
	 * __alloc_buddy_huge_page() is checking the global counter,
2334 2335 2336
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2337
	 */
2338
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2339
	min_count = max(count, min_count);
2340
	try_to_free_low(h, min_count, nodes_allowed);
2341
	while (min_count < persistent_huge_pages(h)) {
2342
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2343
			break;
2344
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2345
	}
2346
	while (count < persistent_huge_pages(h)) {
2347
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2348 2349 2350
			break;
	}
out:
2351
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2352
	spin_unlock(&hugetlb_lock);
2353
	return ret;
L
Linus Torvalds 已提交
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2366 2367 2368
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2369 2370
{
	int i;
2371

2372
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2373 2374 2375
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2376
			return &hstates[i];
2377 2378 2379
		}

	return kobj_to_node_hstate(kobj, nidp);
2380 2381
}

2382
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2383 2384
					struct kobj_attribute *attr, char *buf)
{
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2396
}
2397

2398 2399 2400
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2401 2402
{
	int err;
2403
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2404

2405
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2406 2407 2408 2409
		err = -EINVAL;
		goto out;
	}

2410 2411 2412 2413 2414 2415 2416
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2417
			nodes_allowed = &node_states[N_MEMORY];
2418 2419 2420 2421 2422 2423 2424 2425 2426
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2427
		nodes_allowed = &node_states[N_MEMORY];
2428

2429
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2430

2431
	if (nodes_allowed != &node_states[N_MEMORY])
2432 2433 2434
		NODEMASK_FREE(nodes_allowed);

	return len;
2435 2436 2437
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2457 2458 2459 2460 2461 2462 2463 2464 2465
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2466
	return nr_hugepages_store_common(false, kobj, buf, len);
2467 2468 2469
}
HSTATE_ATTR(nr_hugepages);

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2485
	return nr_hugepages_store_common(true, kobj, buf, len);
2486 2487 2488 2489 2490
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2491 2492 2493
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2494
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2495 2496
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2497

2498 2499 2500 2501 2502
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2503
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2504

2505
	if (hstate_is_gigantic(h))
2506 2507
		return -EINVAL;

2508
	err = kstrtoul(buf, 10, &input);
2509
	if (err)
2510
		return err;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2534 2535 2536 2537 2538 2539
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2540
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2541 2542 2543 2544 2545 2546 2547
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2559 2560 2561 2562 2563 2564 2565 2566 2567
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2568 2569 2570
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2571 2572 2573
	NULL,
};

2574
static const struct attribute_group hstate_attr_group = {
2575 2576 2577
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2578 2579
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2580
				    const struct attribute_group *hstate_attr_group)
2581 2582
{
	int retval;
2583
	int hi = hstate_index(h);
2584

2585 2586
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2587 2588
		return -ENOMEM;

2589
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2590
	if (retval)
2591
		kobject_put(hstate_kobjs[hi]);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2606 2607
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2608
		if (err)
2609
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2610 2611 2612
	}
}

2613 2614 2615 2616
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2617 2618 2619
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2620 2621 2622 2623 2624 2625
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2626
static struct node_hstate node_hstates[MAX_NUMNODES];
2627 2628

/*
2629
 * A subset of global hstate attributes for node devices
2630 2631 2632 2633 2634 2635 2636 2637
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2638
static const struct attribute_group per_node_hstate_attr_group = {
2639 2640 2641 2642
	.attrs = per_node_hstate_attrs,
};

/*
2643
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2666
 * Unregister hstate attributes from a single node device.
2667 2668
 * No-op if no hstate attributes attached.
 */
2669
static void hugetlb_unregister_node(struct node *node)
2670 2671
{
	struct hstate *h;
2672
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2673 2674

	if (!nhs->hugepages_kobj)
2675
		return;		/* no hstate attributes */
2676

2677 2678 2679 2680 2681
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2682
		}
2683
	}
2684 2685 2686 2687 2688 2689 2690

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2691
 * Register hstate attributes for a single node device.
2692 2693
 * No-op if attributes already registered.
 */
2694
static void hugetlb_register_node(struct node *node)
2695 2696
{
	struct hstate *h;
2697
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2698 2699 2700 2701 2702 2703
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2704
							&node->dev.kobj);
2705 2706 2707 2708 2709 2710 2711 2712
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2713 2714
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2715 2716 2717 2718 2719 2720 2721
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2722
 * hugetlb init time:  register hstate attributes for all registered node
2723 2724
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2725
 */
2726
static void __init hugetlb_register_all_nodes(void)
2727 2728 2729
{
	int nid;

2730
	for_each_node_state(nid, N_MEMORY) {
2731
		struct node *node = node_devices[nid];
2732
		if (node->dev.id == nid)
2733 2734 2735 2736
			hugetlb_register_node(node);
	}

	/*
2737
	 * Let the node device driver know we're here so it can
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2757 2758
static int __init hugetlb_init(void)
{
2759 2760
	int i;

2761
	if (!hugepages_supported())
2762
		return 0;
2763

2764
	if (!size_to_hstate(default_hstate_size)) {
2765 2766 2767 2768 2769
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2770 2771 2772
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2773
	}
2774
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2775 2776 2777 2778
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2779 2780

	hugetlb_init_hstates();
2781
	gather_bootmem_prealloc();
2782 2783 2784
	report_hugepages();

	hugetlb_sysfs_init();
2785
	hugetlb_register_all_nodes();
2786
	hugetlb_cgroup_file_init();
2787

2788 2789 2790 2791 2792
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2793
	hugetlb_fault_mutex_table =
2794
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2795
	BUG_ON(!hugetlb_fault_mutex_table);
2796 2797

	for (i = 0; i < num_fault_mutexes; i++)
2798
		mutex_init(&hugetlb_fault_mutex_table[i]);
2799 2800
	return 0;
}
2801
subsys_initcall(hugetlb_init);
2802 2803

/* Should be called on processing a hugepagesz=... option */
2804 2805 2806 2807 2808
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2809
void __init hugetlb_add_hstate(unsigned int order)
2810 2811
{
	struct hstate *h;
2812 2813
	unsigned long i;

2814
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2815
		pr_warn("hugepagesz= specified twice, ignoring\n");
2816 2817
		return;
	}
2818
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2819
	BUG_ON(order == 0);
2820
	h = &hstates[hugetlb_max_hstate++];
2821 2822
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2823 2824 2825 2826
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2827
	INIT_LIST_HEAD(&h->hugepage_activelist);
2828 2829
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2830 2831
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2832

2833 2834 2835
	parsed_hstate = h;
}

2836
static int __init hugetlb_nrpages_setup(char *s)
2837 2838
{
	unsigned long *mhp;
2839
	static unsigned long *last_mhp;
2840

2841 2842 2843 2844 2845 2846
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2847
	/*
2848
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2849 2850
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2851
	else if (!hugetlb_max_hstate)
2852 2853 2854 2855
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2856
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2857
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2858 2859 2860
		return 1;
	}

2861 2862 2863
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2864 2865 2866 2867 2868
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2869
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2870 2871 2872 2873
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2874 2875
	return 1;
}
2876 2877 2878 2879 2880 2881 2882 2883
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2897 2898 2899
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2900
{
2901
	struct hstate *h = &default_hstate;
2902
	unsigned long tmp = h->max_huge_pages;
2903
	int ret;
2904

2905
	if (!hugepages_supported())
2906
		return -EOPNOTSUPP;
2907

2908 2909
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2910 2911 2912
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2913

2914 2915 2916
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2917 2918
out:
	return ret;
L
Linus Torvalds 已提交
2919
}
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2938
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2939
			void __user *buffer,
2940 2941
			size_t *length, loff_t *ppos)
{
2942
	struct hstate *h = &default_hstate;
2943
	unsigned long tmp;
2944
	int ret;
2945

2946
	if (!hugepages_supported())
2947
		return -EOPNOTSUPP;
2948

2949
	tmp = h->nr_overcommit_huge_pages;
2950

2951
	if (write && hstate_is_gigantic(h))
2952 2953
		return -EINVAL;

2954 2955
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2956 2957 2958
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2959 2960 2961 2962 2963 2964

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2965 2966
out:
	return ret;
2967 2968
}

L
Linus Torvalds 已提交
2969 2970
#endif /* CONFIG_SYSCTL */

2971
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2972
{
2973 2974 2975
	struct hstate *h;
	unsigned long total = 0;

2976 2977
	if (!hugepages_supported())
		return;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
2999 3000 3001 3002
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3003
	struct hstate *h = &default_hstate;
3004 3005
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3006 3007
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3008 3009
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3010 3011 3012
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3013 3014
}

3015 3016 3017 3018 3019
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3020 3021 3022
	if (!hugepages_supported())
		return;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3033 3034 3035 3036 3037 3038
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3039 3040 3041
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3042 3043 3044 3045 3046 3047
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3048 3049
}

3050
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3073
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3074 3075
			goto out;

3076 3077
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3078 3079 3080 3081 3082 3083
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3084
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3085 3086 3087 3088 3089 3090

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3091 3092
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3093
	struct resv_map *resv = vma_resv_map(vma);
3094 3095 3096 3097 3098

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3099
	 * has a reference to the reservation map it cannot disappear until
3100 3101 3102
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3103
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3104
		kref_get(&resv->refs);
3105 3106
}

3107 3108
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3109
	struct hstate *h = hstate_vma(vma);
3110
	struct resv_map *resv = vma_resv_map(vma);
3111
	struct hugepage_subpool *spool = subpool_vma(vma);
3112
	unsigned long reserve, start, end;
3113
	long gbl_reserve;
3114

3115 3116
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3117

3118 3119
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3120

3121
	reserve = (end - start) - region_count(resv, start, end);
3122

3123 3124 3125
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3126 3127 3128 3129 3130 3131
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3132
	}
3133 3134
}

3135 3136 3137 3138 3139 3140 3141
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3148
static int hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3149 3150
{
	BUG();
N
Nick Piggin 已提交
3151
	return 0;
L
Linus Torvalds 已提交
3152 3153
}

3154
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3155
	.fault = hugetlb_vm_op_fault,
3156
	.open = hugetlb_vm_op_open,
3157
	.close = hugetlb_vm_op_close,
3158
	.split = hugetlb_vm_op_split,
L
Linus Torvalds 已提交
3159 3160
};

3161 3162
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3163 3164 3165
{
	pte_t entry;

3166
	if (writable) {
3167 3168
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3169
	} else {
3170 3171
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3172 3173 3174
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3175
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3176 3177 3178 3179

	return entry;
}

3180 3181 3182 3183 3184
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3185
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3186
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3187
		update_mmu_cache(vma, address, ptep);
3188 3189
}

3190
bool is_hugetlb_entry_migration(pte_t pte)
3191 3192 3193 3194
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3195
		return false;
3196 3197
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3198
		return true;
3199
	else
3200
		return false;
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3215

D
David Gibson 已提交
3216 3217 3218 3219 3220
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3221
	unsigned long addr;
3222
	int cow;
3223 3224
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3225 3226 3227
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3228 3229

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3230

3231 3232 3233 3234 3235
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3236
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3237
		spinlock_t *src_ptl, *dst_ptl;
3238
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3239 3240
		if (!src_pte)
			continue;
3241
		dst_pte = huge_pte_alloc(dst, addr, sz);
3242 3243 3244 3245
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3246 3247 3248 3249 3250

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3251 3252 3253
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3268 3269
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3270
			}
3271
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3272
		} else {
3273
			if (cow) {
3274 3275 3276 3277 3278 3279 3280
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
				 * See Documentation/vm/mmu_notifier.txt
				 */
3281
				huge_ptep_set_wrprotect(src, addr, src_pte);
3282
			}
3283
			entry = huge_ptep_get(src_pte);
3284 3285
			ptepage = pte_page(entry);
			get_page(ptepage);
3286
			page_dup_rmap(ptepage, true);
3287
			set_huge_pte_at(dst, addr, dst_pte, entry);
3288
			hugetlb_count_add(pages_per_huge_page(h), dst);
3289
		}
3290 3291
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3292 3293
	}

3294 3295 3296 3297
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3298 3299
}

3300 3301 3302
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3303 3304 3305
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3306
	pte_t *ptep;
D
David Gibson 已提交
3307
	pte_t pte;
3308
	spinlock_t *ptl;
D
David Gibson 已提交
3309
	struct page *page;
3310 3311
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3312 3313
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3314

D
David Gibson 已提交
3315
	WARN_ON(!is_vm_hugetlb_page(vma));
3316 3317
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3318

3319 3320 3321 3322 3323
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3324
	tlb_start_vma(tlb, vma);
3325
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3326 3327
	address = start;
	for (; address < end; address += sz) {
3328
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3329
		if (!ptep)
3330 3331
			continue;

3332
		ptl = huge_pte_lock(h, mm, ptep);
3333 3334 3335 3336
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3337

3338
		pte = huge_ptep_get(ptep);
3339 3340 3341 3342
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3343 3344

		/*
3345 3346
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3347
		 */
3348
		if (unlikely(!pte_present(pte))) {
3349
			huge_pte_clear(mm, address, ptep, sz);
3350 3351
			spin_unlock(ptl);
			continue;
3352
		}
3353 3354

		page = pte_page(pte);
3355 3356 3357 3358 3359 3360
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3361 3362 3363 3364
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3365 3366 3367 3368 3369 3370 3371 3372
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3373
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3374
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3375
		if (huge_pte_dirty(pte))
3376
			set_page_dirty(page);
3377

3378
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3379
		page_remove_rmap(page, true);
3380

3381
		spin_unlock(ptl);
3382
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3383 3384 3385 3386 3387
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3388
	}
3389
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3390
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3391
}
D
David Gibson 已提交
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3405
	 * is to clear it before releasing the i_mmap_rwsem. This works
3406
	 * because in the context this is called, the VMA is about to be
3407
	 * destroyed and the i_mmap_rwsem is held.
3408 3409 3410 3411
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3412
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3413
			  unsigned long end, struct page *ref_page)
3414
{
3415 3416 3417 3418 3419
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3420
	tlb_gather_mmu(&tlb, mm, start, end);
3421 3422
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3423 3424
}

3425 3426 3427 3428 3429 3430
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3431 3432
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3433
{
3434
	struct hstate *h = hstate_vma(vma);
3435 3436 3437 3438 3439 3440 3441 3442
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3443
	address = address & huge_page_mask(h);
3444 3445
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3446
	mapping = vma->vm_file->f_mapping;
3447

3448 3449 3450 3451 3452
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3453
	i_mmap_lock_write(mapping);
3454
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3455 3456 3457 3458
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3459 3460 3461 3462 3463 3464 3465 3466
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3467 3468 3469 3470 3471 3472 3473 3474
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3475 3476
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3477
	}
3478
	i_mmap_unlock_write(mapping);
3479 3480
}

3481 3482
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3483 3484 3485
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3486
 */
3487
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3488 3489
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3490
{
3491
	pte_t pte;
3492
	struct hstate *h = hstate_vma(vma);
3493
	struct page *old_page, *new_page;
3494
	int ret = 0, outside_reserve = 0;
3495 3496
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3497

3498
	pte = huge_ptep_get(ptep);
3499 3500
	old_page = pte_page(pte);

3501
retry_avoidcopy:
3502 3503
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3504
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3505
		page_move_anon_rmap(old_page, vma);
3506
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3507
		return 0;
3508 3509
	}

3510 3511 3512 3513 3514 3515 3516 3517 3518
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3519
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3520 3521 3522
			old_page != pagecache_page)
		outside_reserve = 1;

3523
	get_page(old_page);
3524

3525 3526 3527 3528
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3529
	spin_unlock(ptl);
3530
	new_page = alloc_huge_page(vma, address, outside_reserve);
3531

3532
	if (IS_ERR(new_page)) {
3533 3534 3535 3536 3537 3538 3539 3540
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3541
			put_page(old_page);
3542
			BUG_ON(huge_pte_none(pte));
3543 3544 3545
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3546 3547
			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
					       huge_page_size(h));
3548 3549 3550 3551 3552 3553 3554 3555
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3556 3557
		}

3558 3559 3560
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3561 3562
	}

3563 3564 3565 3566
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3567
	if (unlikely(anon_vma_prepare(vma))) {
3568 3569
		ret = VM_FAULT_OOM;
		goto out_release_all;
3570
	}
3571

A
Andrea Arcangeli 已提交
3572 3573
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3574
	__SetPageUptodate(new_page);
3575
	set_page_huge_active(new_page);
3576

3577 3578 3579
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3580

3581
	/*
3582
	 * Retake the page table lock to check for racing updates
3583 3584
	 * before the page tables are altered
	 */
3585
	spin_lock(ptl);
3586 3587
	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
			       huge_page_size(h));
3588
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3589 3590
		ClearPagePrivate(new_page);

3591
		/* Break COW */
3592
		huge_ptep_clear_flush(vma, address, ptep);
3593
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3594 3595
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3596
		page_remove_rmap(old_page, true);
3597
		hugepage_add_new_anon_rmap(new_page, vma, address);
3598 3599 3600
		/* Make the old page be freed below */
		new_page = old_page;
	}
3601
	spin_unlock(ptl);
3602
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3603
out_release_all:
3604
	restore_reserve_on_error(h, vma, address, new_page);
3605
	put_page(new_page);
3606
out_release_old:
3607
	put_page(old_page);
3608

3609 3610
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3611 3612
}

3613
/* Return the pagecache page at a given address within a VMA */
3614 3615
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3616 3617
{
	struct address_space *mapping;
3618
	pgoff_t idx;
3619 3620

	mapping = vma->vm_file->f_mapping;
3621
	idx = vma_hugecache_offset(h, vma, address);
3622 3623 3624 3625

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3626 3627 3628 3629 3630
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3663
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3664 3665
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3666
{
3667
	struct hstate *h = hstate_vma(vma);
3668
	int ret = VM_FAULT_SIGBUS;
3669
	int anon_rmap = 0;
A
Adam Litke 已提交
3670 3671
	unsigned long size;
	struct page *page;
3672
	pte_t new_pte;
3673
	spinlock_t *ptl;
A
Adam Litke 已提交
3674

3675 3676 3677
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3678
	 * COW. Warn that such a situation has occurred as it may not be obvious
3679 3680
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3681
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3682
			   current->pid);
3683 3684 3685
		return ret;
	}

A
Adam Litke 已提交
3686 3687 3688 3689
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3690 3691 3692
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3693
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3694 3695
		if (idx >= size)
			goto out;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3728
		page = alloc_huge_page(vma, address, 0);
3729
		if (IS_ERR(page)) {
3730 3731 3732 3733 3734
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3735 3736
			goto out;
		}
A
Andrea Arcangeli 已提交
3737
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3738
		__SetPageUptodate(page);
3739
		set_page_huge_active(page);
3740

3741
		if (vma->vm_flags & VM_MAYSHARE) {
3742
			int err = huge_add_to_page_cache(page, mapping, idx);
3743 3744 3745 3746 3747 3748
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3749
		} else {
3750
			lock_page(page);
3751 3752 3753 3754
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3755
			anon_rmap = 1;
3756
		}
3757
	} else {
3758 3759 3760 3761 3762 3763
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3764
			ret = VM_FAULT_HWPOISON |
3765
				VM_FAULT_SET_HINDEX(hstate_index(h));
3766 3767
			goto backout_unlocked;
		}
3768
	}
3769

3770 3771 3772 3773 3774 3775
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3776
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3777 3778 3779 3780
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3781
		/* Just decrements count, does not deallocate */
3782
		vma_end_reservation(h, vma, address);
3783
	}
3784

3785
	ptl = huge_pte_lock(h, mm, ptep);
3786
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3787 3788 3789
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3790
	ret = 0;
3791
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3792 3793
		goto backout;

3794 3795
	if (anon_rmap) {
		ClearPagePrivate(page);
3796
		hugepage_add_new_anon_rmap(page, vma, address);
3797
	} else
3798
		page_dup_rmap(page, true);
3799 3800 3801 3802
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3803
	hugetlb_count_add(pages_per_huge_page(h), mm);
3804
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3805
		/* Optimization, do the COW without a second fault */
3806
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3807 3808
	}

3809
	spin_unlock(ptl);
A
Adam Litke 已提交
3810 3811
	unlock_page(page);
out:
3812
	return ret;
A
Adam Litke 已提交
3813 3814

backout:
3815
	spin_unlock(ptl);
3816
backout_unlocked:
A
Adam Litke 已提交
3817
	unlock_page(page);
3818
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3819 3820
	put_page(page);
	goto out;
3821 3822
}

3823
#ifdef CONFIG_SMP
3824
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3849
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3850 3851 3852 3853 3854 3855 3856 3857
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3858
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3859
			unsigned long address, unsigned int flags)
3860
{
3861
	pte_t *ptep, entry;
3862
	spinlock_t *ptl;
3863
	int ret;
3864 3865
	u32 hash;
	pgoff_t idx;
3866
	struct page *page = NULL;
3867
	struct page *pagecache_page = NULL;
3868
	struct hstate *h = hstate_vma(vma);
3869
	struct address_space *mapping;
3870
	int need_wait_lock = 0;
3871

3872 3873
	address &= huge_page_mask(h);

3874
	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3875 3876
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3877
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3878
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3879 3880
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3881
			return VM_FAULT_HWPOISON_LARGE |
3882
				VM_FAULT_SET_HINDEX(hstate_index(h));
3883 3884 3885 3886
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3887 3888
	}

3889 3890 3891
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3892 3893 3894 3895 3896
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3897 3898
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3899

3900 3901
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3902
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3903
		goto out_mutex;
3904
	}
3905

N
Nick Piggin 已提交
3906
	ret = 0;
3907

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3918 3919 3920 3921 3922 3923 3924 3925
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3926
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3927 3928
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3929
			goto out_mutex;
3930
		}
3931
		/* Just decrements count, does not deallocate */
3932
		vma_end_reservation(h, vma, address);
3933

3934
		if (!(vma->vm_flags & VM_MAYSHARE))
3935 3936 3937 3938
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3939 3940 3941 3942 3943 3944
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3945 3946 3947 3948 3949 3950 3951
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3952 3953 3954 3955
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3956

3957
	get_page(page);
3958

3959
	if (flags & FAULT_FLAG_WRITE) {
3960
		if (!huge_pte_write(entry)) {
3961 3962
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3963
			goto out_put_page;
3964
		}
3965
		entry = huge_pte_mkdirty(entry);
3966 3967
	}
	entry = pte_mkyoung(entry);
3968 3969
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3970
		update_mmu_cache(vma, address, ptep);
3971 3972 3973 3974
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3975 3976
out_ptl:
	spin_unlock(ptl);
3977 3978 3979 3980 3981

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3982
out_mutex:
3983
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3984 3985 3986 3987 3988 3989 3990 3991 3992
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3993
	return ret;
3994 3995
}

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4007 4008 4009
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4010
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4025
						pages_per_huge_page(h), false);
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4047 4048 4049
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4050 4051 4052 4053
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4054 4055 4056 4057
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4058

4059 4060 4061 4062 4063 4064
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4065 4066 4067 4068 4069
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4070 4071 4072
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4087 4088 4089 4090
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4091 4092 4093 4094 4095 4096
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4113 4114
	if (vm_shared)
		unlock_page(page);
4115 4116 4117 4118 4119
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4120 4121
	if (vm_shared)
		unlock_page(page);
4122
out_release_nounlock:
4123 4124 4125 4126
	put_page(page);
	goto out;
}

4127 4128 4129
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4130
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4131
{
4132 4133
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4134
	unsigned long remainder = *nr_pages;
4135
	struct hstate *h = hstate_vma(vma);
4136
	int err = -EFAULT;
D
David Gibson 已提交
4137 4138

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4139
		pte_t *pte;
4140
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4141
		int absent;
A
Adam Litke 已提交
4142
		struct page *page;
D
David Gibson 已提交
4143

4144 4145 4146 4147 4148 4149 4150 4151 4152
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4153 4154
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4155
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4156
		 * first, for the page indexing below to work.
4157 4158
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4159
		 */
4160 4161
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4162 4163
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4164 4165 4166 4167
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4168 4169 4170 4171
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4172
		 */
H
Hugh Dickins 已提交
4173 4174
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4175 4176
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4177 4178 4179
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4192 4193
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4194
			int ret;
4195
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4196

4197 4198
			if (pte)
				spin_unlock(ptl);
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4213
				err = vm_fault_to_errno(ret, flags);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4233 4234
		}

4235
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4236
		page = pte_page(huge_ptep_get(pte));
4237
same_page:
4238
		if (pages) {
H
Hugh Dickins 已提交
4239
			pages[i] = mem_map_offset(page, pfn_offset);
4240
			get_page(pages[i]);
4241
		}
D
David Gibson 已提交
4242 4243 4244 4245 4246

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4247
		++pfn_offset;
D
David Gibson 已提交
4248 4249
		--remainder;
		++i;
4250
		if (vaddr < vma->vm_end && remainder &&
4251
				pfn_offset < pages_per_huge_page(h)) {
4252 4253 4254 4255 4256 4257
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4258
		spin_unlock(ptl);
D
David Gibson 已提交
4259
	}
4260
	*nr_pages = remainder;
4261 4262 4263 4264 4265
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4266 4267
	*position = vaddr;

4268
	return i ? i : err;
D
David Gibson 已提交
4269
}
4270

4271 4272 4273 4274 4275 4276 4277 4278
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4279
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4280 4281 4282 4283 4284 4285
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4286
	struct hstate *h = hstate_vma(vma);
4287
	unsigned long pages = 0;
4288 4289 4290 4291

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4292
	mmu_notifier_invalidate_range_start(mm, start, end);
4293
	i_mmap_lock_write(vma->vm_file->f_mapping);
4294
	for (; address < end; address += huge_page_size(h)) {
4295
		spinlock_t *ptl;
4296
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4297 4298
		if (!ptep)
			continue;
4299
		ptl = huge_pte_lock(h, mm, ptep);
4300 4301
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4302
			spin_unlock(ptl);
4303
			continue;
4304
		}
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4318 4319
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4320 4321 4322 4323 4324 4325
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4326
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4327
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4328
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4329
			set_huge_pte_at(mm, address, ptep, pte);
4330
			pages++;
4331
		}
4332
		spin_unlock(ptl);
4333
	}
4334
	/*
4335
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4336
	 * may have cleared our pud entry and done put_page on the page table:
4337
	 * once we release i_mmap_rwsem, another task can do the final put_page
4338 4339
	 * and that page table be reused and filled with junk.
	 */
4340
	flush_hugetlb_tlb_range(vma, start, end);
4341 4342 4343 4344 4345 4346
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
	 * See Documentation/vm/mmu_notifier.txt
	 */
4347
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4348
	mmu_notifier_invalidate_range_end(mm, start, end);
4349 4350

	return pages << h->order;
4351 4352
}

4353 4354
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4355
					struct vm_area_struct *vma,
4356
					vm_flags_t vm_flags)
4357
{
4358
	long ret, chg;
4359
	struct hstate *h = hstate_inode(inode);
4360
	struct hugepage_subpool *spool = subpool_inode(inode);
4361
	struct resv_map *resv_map;
4362
	long gbl_reserve;
4363

4364 4365 4366
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4367
	 * without using reserves
4368
	 */
4369
	if (vm_flags & VM_NORESERVE)
4370 4371
		return 0;

4372 4373 4374 4375 4376 4377
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4378
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4379
		resv_map = inode_resv_map(inode);
4380

4381
		chg = region_chg(resv_map, from, to);
4382 4383 4384

	} else {
		resv_map = resv_map_alloc();
4385 4386 4387
		if (!resv_map)
			return -ENOMEM;

4388
		chg = to - from;
4389

4390 4391 4392 4393
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4394 4395 4396 4397
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4398

4399 4400 4401 4402 4403 4404 4405
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4406 4407 4408
		ret = -ENOSPC;
		goto out_err;
	}
4409 4410

	/*
4411
	 * Check enough hugepages are available for the reservation.
4412
	 * Hand the pages back to the subpool if there are not
4413
	 */
4414
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4415
	if (ret < 0) {
4416 4417
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4418
		goto out_err;
K
Ken Chen 已提交
4419
	}
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4450
	return 0;
4451
out_err:
4452
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4453 4454 4455
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4456 4457
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4458
	return ret;
4459 4460
}

4461 4462
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4463
{
4464
	struct hstate *h = hstate_inode(inode);
4465
	struct resv_map *resv_map = inode_resv_map(inode);
4466
	long chg = 0;
4467
	struct hugepage_subpool *spool = subpool_inode(inode);
4468
	long gbl_reserve;
K
Ken Chen 已提交
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4481
	spin_lock(&inode->i_lock);
4482
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4483 4484
	spin_unlock(&inode->i_lock);

4485 4486 4487 4488 4489 4490
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4491 4492

	return 0;
4493
}
4494

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4506 4507
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4521
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4522 4523 4524 4525 4526 4527 4528 4529 4530
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4531 4532
		return true;
	return false;
4533 4534 4535 4536 4537 4538 4539
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4540
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4554
	spinlock_t *ptl;
4555 4556 4557 4558

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4559
	i_mmap_lock_write(mapping);
4560 4561 4562 4563 4564 4565
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4566 4567
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4578
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4579
	if (pud_none(*pud)) {
4580 4581
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4582
		mm_inc_nr_pmds(mm);
4583
	} else {
4584
		put_page(virt_to_page(spte));
4585
	}
4586
	spin_unlock(ptl);
4587 4588
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4589
	i_mmap_unlock_write(mapping);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4600
 * called with page table lock held.
4601 4602 4603 4604 4605 4606 4607
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4608 4609
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4610 4611 4612 4613 4614 4615 4616

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4617
	mm_dec_nr_pmds(mm);
4618 4619 4620
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4621 4622 4623 4624 4625 4626
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4627 4628 4629 4630 4631

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4632
#define want_pmd_share()	(0)
4633 4634
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4635 4636 4637 4638 4639
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4640
	p4d_t *p4d;
4641 4642 4643 4644
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4645 4646 4647
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
4648
	pud = pud_alloc(mm, p4d, addr);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4660
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4661 4662 4663 4664

	return pte;
}

4665 4666 4667 4668 4669 4670 4671 4672 4673
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
4674 4675
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4676 4677
{
	pgd_t *pgd;
4678
	p4d_t *p4d;
4679
	pud_t *pud;
4680
	pmd_t *pmd;
4681 4682

	pgd = pgd_offset(mm, addr);
4683 4684 4685 4686 4687
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
4688

4689
	pud = pud_offset(p4d, addr);
4690
	if (sz != PUD_SIZE && pud_none(*pud))
4691
		return NULL;
4692 4693
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
4694
		return (pte_t *)pud;
4695

4696
	pmd = pmd_offset(pud, addr);
4697 4698 4699 4700 4701 4702 4703
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
4704 4705
}

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4719 4720 4721 4722 4723 4724 4725 4726
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4727
struct page * __weak
4728
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4729
		pmd_t *pmd, int flags)
4730
{
4731 4732
	struct page *page = NULL;
	spinlock_t *ptl;
4733
	pte_t pte;
4734 4735 4736 4737 4738 4739 4740 4741 4742
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4743 4744
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4745
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4746 4747 4748
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4749
		if (is_hugetlb_entry_migration(pte)) {
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4761 4762 4763
	return page;
}

4764
struct page * __weak
4765
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4766
		pud_t *pud, int flags)
4767
{
4768 4769
	if (flags & FOLL_GET)
		return NULL;
4770

4771
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4772 4773
}

4774 4775 4776 4777 4778 4779 4780 4781 4782
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4783 4784
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4785 4786
	bool ret = true;

4787
	VM_BUG_ON_PAGE(!PageHead(page), page);
4788
	spin_lock(&hugetlb_lock);
4789 4790 4791 4792 4793
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4794
	list_move_tail(&page->lru, list);
4795
unlock:
4796
	spin_unlock(&hugetlb_lock);
4797
	return ret;
4798 4799 4800 4801
}

void putback_active_hugepage(struct page *page)
{
4802
	VM_BUG_ON_PAGE(!PageHead(page), page);
4803
	spin_lock(&hugetlb_lock);
4804
	set_page_huge_active(page);
4805 4806 4807 4808
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}