hugetlb.c 77.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <linux/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
65
 *	down_write(&mm->mmap_sem);
66
 * or
67 68
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
149
		/* We overlap with this area, if it extends further than
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

431
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
432 433
{
	int nid = page_to_nid(page);
434 435 436
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
437 438
}

439 440 441 442 443 444 445 446
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
447
	set_page_refcounted(page);
448 449 450 451 452
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

453 454
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
455
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
456
{
457
	struct page *page;
458
	struct mempolicy *mpol;
459
	nodemask_t *nodemask;
460
	struct zonelist *zonelist;
461 462
	struct zone *zone;
	struct zoneref *z;
463
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
464

465 466
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
467 468
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
469 470 471 472 473
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
474
	if (!vma_has_reserves(vma) &&
475
			h->free_huge_pages - h->resv_huge_pages == 0)
476
		goto err;
477

478
	/* If reserves cannot be used, ensure enough pages are in the pool */
479
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
480
		goto err;
481

482 483
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
484 485 486 487 488 489 490
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
491
		}
L
Linus Torvalds 已提交
492
	}
493

494
	mpol_cond_put(mpol);
495 496
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
497
	return page;
498 499 500 501

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
502 503
}

504
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
505 506
{
	int i;
507

508 509
	VM_BUG_ON(h->order >= MAX_ORDER);

510 511 512
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
513 514 515 516
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
517 518 519
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
520
	arch_release_hugepage(page);
521
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
522 523
}

524 525 526 527 528 529 530 531 532 533 534
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

535 536
static void free_huge_page(struct page *page)
{
537 538 539 540
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
541
	struct hstate *h = page_hstate(page);
542
	int nid = page_to_nid(page);
543
	struct address_space *mapping;
544

545
	mapping = (struct address_space *) page_private(page);
546
	set_page_private(page, 0);
547
	page->mapping = NULL;
548
	BUG_ON(page_count(page));
549
	BUG_ON(page_mapcount(page));
550 551 552
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
553
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554 555 556
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
557
	} else {
558
		enqueue_huge_page(h, page);
559
	}
560
	spin_unlock(&hugetlb_lock);
561
	if (mapping)
562
		hugetlb_put_quota(mapping, 1);
563 564
}

565
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 567 568
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
569 570
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
571 572 573 574
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

575 576 577 578 579 580 581 582 583 584 585
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
586
		set_page_count(p, 0);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
603 604
EXPORT_SYMBOL_GPL(PageHuge);

605
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
606 607
{
	struct page *page;
608

609 610 611
	if (h->order >= MAX_ORDER)
		return NULL;

612
	page = alloc_pages_exact_node(nid,
613 614
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
615
		huge_page_order(h));
L
Linus Torvalds 已提交
616
	if (page) {
617
		if (arch_prepare_hugepage(page)) {
618
			__free_pages(page, huge_page_order(h));
619
			return NULL;
620
		}
621
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
622
	}
623 624 625 626

	return page;
}

627
/*
628 629 630 631 632
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
633
 */
634
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
635
{
636
	nid = next_node(nid, *nodes_allowed);
637
	if (nid == MAX_NUMNODES)
638
		nid = first_node(*nodes_allowed);
639 640 641 642 643
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

644 645 646 647 648 649 650
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

651
/*
652 653 654 655
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
656
 */
657 658
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
659
{
660 661 662 663 664 665
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
666 667

	return nid;
668 669
}

670
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
671 672 673 674 675 676
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

677
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
678
	next_nid = start_nid;
679 680

	do {
681
		page = alloc_fresh_huge_page_node(h, next_nid);
682
		if (page) {
683
			ret = 1;
684 685
			break;
		}
686
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
687
	} while (next_nid != start_nid);
688

689 690 691 692 693
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

694
	return ret;
L
Linus Torvalds 已提交
695 696
}

697
/*
698 699 700 701
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
702
 */
703
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
704
{
705 706 707 708 709 710
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
711 712

	return nid;
713 714 715 716 717 718 719 720
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
721 722
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
723 724 725 726 727
{
	int start_nid;
	int next_nid;
	int ret = 0;

728
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
729 730 731
	next_nid = start_nid;

	do {
732 733 734 735 736 737
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
738 739 740 741 742 743
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
744 745 746 747
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
748 749
			update_and_free_page(h, page);
			ret = 1;
750
			break;
751
		}
752
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
753
	} while (next_nid != start_nid);
754 755 756 757

	return ret;
}

758
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
759 760
{
	struct page *page;
761
	unsigned int r_nid;
762

763 764 765
	if (h->order >= MAX_ORDER)
		return NULL;

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
790
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
791 792 793
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
794 795
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
796 797 798
	}
	spin_unlock(&hugetlb_lock);

799 800 801 802 803 804 805 806
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
807

808 809
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
810
		page = NULL;
811 812
	}

813
	spin_lock(&hugetlb_lock);
814
	if (page) {
815
		r_nid = page_to_nid(page);
816
		set_compound_page_dtor(page, free_huge_page);
817 818 819
		/*
		 * We incremented the global counters already
		 */
820 821
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
822
		__count_vm_event(HTLB_BUDDY_PGALLOC);
823
	} else {
824 825
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
826
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827
	}
828
	spin_unlock(&hugetlb_lock);
829 830 831 832

	return page;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

852
/*
L
Lucas De Marchi 已提交
853
 * Increase the hugetlb pool such that it can accommodate a reservation
854 855
 * of size 'delta'.
 */
856
static int gather_surplus_pages(struct hstate *h, int delta)
857 858 859 860 861
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
862
	bool alloc_ok = true;
863

864
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
865
	if (needed <= 0) {
866
		h->resv_huge_pages += delta;
867
		return 0;
868
	}
869 870 871 872 873 874 875 876

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
877
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
878 879 880 881
		if (!page) {
			alloc_ok = false;
			break;
		}
882 883
		list_add(&page->lru, &surplus_list);
	}
884
	allocated += i;
885 886 887 888 889 890

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
891 892
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
893 894 895 896 897 898 899 900 901 902
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
903 904
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
905
	 * needed to accommodate the reservation.  Add the appropriate number
906
	 * of pages to the hugetlb pool and free the extras back to the buddy
907 908 909
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
910 911
	 */
	needed += allocated;
912
	h->resv_huge_pages += delta;
913
	ret = 0;
914

915
	/* Free the needed pages to the hugetlb pool */
916
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
917 918
		if ((--needed) < 0)
			break;
919
		list_del(&page->lru);
920 921 922 923 924 925
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
926
		enqueue_huge_page(h, page);
927
	}
928
free:
929
	spin_unlock(&hugetlb_lock);
930 931 932 933 934

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
935
			put_page(page);
936
		}
937
	}
938
	spin_lock(&hugetlb_lock);
939 940 941 942 943 944 945 946

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
947
 * Called with hugetlb_lock held.
948
 */
949 950
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
951 952 953
{
	unsigned long nr_pages;

954
	/* Uncommit the reservation */
955
	h->resv_huge_pages -= unused_resv_pages;
956

957 958 959 960
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

961
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
962

963 964
	/*
	 * We want to release as many surplus pages as possible, spread
965 966 967 968 969
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
970 971
	 */
	while (nr_pages--) {
972
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
973
			break;
974 975 976
	}
}

977 978 979 980 981 982 983 984 985
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
986
static long vma_needs_reservation(struct hstate *h,
987
			struct vm_area_struct *vma, unsigned long addr)
988 989 990 991
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

992
	if (vma->vm_flags & VM_MAYSHARE) {
993
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
994 995 996
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

997 998
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
999

1000
	} else  {
1001
		long err;
1002
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003 1004 1005 1006 1007 1008 1009
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1010
}
1011 1012
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1013 1014 1015 1016
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1017
	if (vma->vm_flags & VM_MAYSHARE) {
1018
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1019
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1020 1021

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1022
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1023 1024 1025 1026
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1027 1028 1029
	}
}

1030
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1031
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1032
{
1033
	struct hstate *h = hstate_vma(vma);
1034
	struct page *page;
1035 1036
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1037
	long chg;
1038 1039 1040 1041 1042

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1043 1044
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1045
	 */
1046
	chg = vma_needs_reservation(h, vma, addr);
1047
	if (chg < 0)
1048
		return ERR_PTR(-VM_FAULT_OOM);
1049
	if (chg)
1050
		if (hugetlb_get_quota(inode->i_mapping, chg))
1051
			return ERR_PTR(-VM_FAULT_SIGBUS);
L
Linus Torvalds 已提交
1052 1053

	spin_lock(&hugetlb_lock);
1054
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1055
	spin_unlock(&hugetlb_lock);
1056

K
Ken Chen 已提交
1057
	if (!page) {
1058
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1059
		if (!page) {
1060
			hugetlb_put_quota(inode->i_mapping, chg);
1061
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1062 1063
		}
	}
1064

1065
	set_page_private(page, (unsigned long) mapping);
1066

1067
	vma_commit_reservation(h, vma, addr);
1068

1069
	return page;
1070 1071
}

1072
int __weak alloc_bootmem_huge_page(struct hstate *h)
1073 1074
{
	struct huge_bootmem_page *m;
1075
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1076 1077 1078 1079 1080

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1081
				NODE_DATA(hstate_next_node_to_alloc(h,
1082
						&node_states[N_HIGH_MEMORY])),
1083 1084 1085 1086 1087 1088 1089 1090 1091
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1092
			goto found;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1106 1107 1108 1109 1110 1111 1112 1113
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1114 1115 1116 1117 1118 1119 1120
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1121 1122 1123 1124 1125 1126 1127 1128 1129
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1130 1131
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1132
		prep_compound_huge_page(page, h->order);
1133
		prep_new_huge_page(h, page, page_to_nid(page));
1134 1135 1136 1137 1138 1139 1140 1141
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1142 1143 1144
	}
}

1145
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1146 1147
{
	unsigned long i;
1148

1149
	for (i = 0; i < h->max_huge_pages; ++i) {
1150 1151 1152
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1153 1154
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1155 1156
			break;
	}
1157
	h->max_huge_pages = i;
1158 1159 1160 1161 1162 1163 1164
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1165 1166 1167
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1168 1169 1170
	}
}

A
Andi Kleen 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1182 1183 1184 1185 1186
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1187 1188 1189 1190 1191
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1192 1193 1194
	}
}

L
Linus Torvalds 已提交
1195
#ifdef CONFIG_HIGHMEM
1196 1197
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1198
{
1199 1200
	int i;

1201 1202 1203
	if (h->order >= MAX_ORDER)
		return;

1204
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1205
		struct page *page, *next;
1206 1207 1208
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1209
				return;
L
Linus Torvalds 已提交
1210 1211 1212
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1213
			update_and_free_page(h, page);
1214 1215
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1216 1217 1218 1219
		}
	}
}
#else
1220 1221
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1222 1223 1224 1225
{
}
#endif

1226 1227 1228 1229 1230
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1231 1232
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1233
{
1234
	int start_nid, next_nid;
1235 1236 1237 1238
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1239
	if (delta < 0)
1240
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1241
	else
1242
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1243 1244 1245 1246 1247 1248 1249 1250
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1251
			if (!h->surplus_huge_pages_node[nid]) {
1252 1253
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1254
				continue;
1255
			}
1256 1257 1258 1259 1260 1261
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1262
						h->nr_huge_pages_node[nid]) {
1263 1264
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1265
				continue;
1266
			}
1267
		}
1268 1269 1270 1271 1272

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1273
	} while (next_nid != start_nid);
1274 1275 1276 1277

	return ret;
}

1278
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1279 1280
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1281
{
1282
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1283

1284 1285 1286
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1287 1288 1289 1290
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1291 1292 1293 1294 1295 1296
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1297
	 */
L
Linus Torvalds 已提交
1298
	spin_lock(&hugetlb_lock);
1299
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1300
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1301 1302 1303
			break;
	}

1304
	while (count > persistent_huge_pages(h)) {
1305 1306 1307 1308 1309 1310
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1311
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1312 1313 1314 1315
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1316 1317 1318
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1319 1320 1321 1322 1323 1324 1325 1326
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1327 1328 1329 1330 1331 1332 1333 1334
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1335
	 */
1336
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1337
	min_count = max(count, min_count);
1338
	try_to_free_low(h, min_count, nodes_allowed);
1339
	while (min_count < persistent_huge_pages(h)) {
1340
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1341 1342
			break;
	}
1343
	while (count < persistent_huge_pages(h)) {
1344
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1345 1346 1347
			break;
	}
out:
1348
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1349
	spin_unlock(&hugetlb_lock);
1350
	return ret;
L
Linus Torvalds 已提交
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1363 1364 1365
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1366 1367
{
	int i;
1368

1369
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1370 1371 1372
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1373
			return &hstates[i];
1374 1375 1376
		}

	return kobj_to_node_hstate(kobj, nidp);
1377 1378
}

1379
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1380 1381
					struct kobj_attribute *attr, char *buf)
{
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1393
}
1394

1395 1396 1397
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1398 1399
{
	int err;
1400
	int nid;
1401
	unsigned long count;
1402
	struct hstate *h;
1403
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1404

1405
	err = strict_strtoul(buf, 10, &count);
1406
	if (err)
1407
		goto out;
1408

1409
	h = kobj_to_hstate(kobj, &nid);
1410 1411 1412 1413 1414
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1434
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1435

1436
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1437 1438 1439
		NODEMASK_FREE(nodes_allowed);

	return len;
1440 1441 1442
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1455 1456 1457
}
HSTATE_ATTR(nr_hugepages);

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1479 1480 1481
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1482
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1483 1484
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1485

1486 1487 1488 1489 1490
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1491
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1492

1493 1494 1495
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1496 1497
	err = strict_strtoul(buf, 10, &input);
	if (err)
1498
		return err;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1522 1523 1524 1525 1526 1527
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1528
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1529 1530 1531 1532 1533 1534 1535
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1547 1548 1549 1550 1551 1552 1553 1554 1555
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1556 1557 1558
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1559 1560 1561 1562 1563 1564 1565
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1566 1567 1568
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1569 1570
{
	int retval;
1571
	int hi = h - hstates;
1572

1573 1574
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1575 1576
		return -ENOMEM;

1577
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1578
	if (retval)
1579
		kobject_put(hstate_kobjs[hi]);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1594 1595
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1596 1597 1598 1599 1600 1601
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1602 1603 1604 1605
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1606 1607 1608
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1609 1610 1611 1612 1613 1614 1615 1616 1617
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1618
 * A subset of global hstate attributes for node devices
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1632
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1655
 * Unregister hstate attributes from a single node device.
1656 1657 1658 1659 1660
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1661
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1662 1663

	if (!nhs->hugepages_kobj)
1664
		return;		/* no hstate attributes */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1677
 * hugetlb module exit:  unregister hstate attributes from node devices
1678 1679 1680 1681 1682 1683 1684
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1685
	 * disable node device registrations.
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1697
 * Register hstate attributes for a single node device.
1698 1699 1700 1701 1702
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1703
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1704 1705 1706 1707 1708 1709
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1710
							&node->dev.kobj);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1721
						h->name, node->dev.id);
1722 1723 1724 1725 1726 1727 1728
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1729
 * hugetlb init time:  register hstate attributes for all registered node
1730 1731
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1732 1733 1734 1735 1736
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1737
	for_each_node_state(nid, N_HIGH_MEMORY) {
1738
		struct node *node = &node_devices[nid];
1739
		if (node->dev.id == nid)
1740 1741 1742 1743
			hugetlb_register_node(node);
	}

	/*
1744
	 * Let the node device driver know we're here so it can
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1766 1767 1768 1769
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1770 1771
	hugetlb_unregister_all_nodes();

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1782 1783 1784 1785 1786 1787
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1788

1789 1790 1791 1792
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1793
	}
1794 1795 1796
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1797 1798 1799

	hugetlb_init_hstates();

1800 1801
	gather_bootmem_prealloc();

1802 1803 1804 1805
	report_hugepages();

	hugetlb_sysfs_init();

1806 1807
	hugetlb_register_all_nodes();

1808 1809 1810 1811 1812 1813 1814 1815
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1816 1817
	unsigned long i;

1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1827 1828 1829 1830
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1831 1832
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1833 1834
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1835

1836 1837 1838
	parsed_hstate = h;
}

1839
static int __init hugetlb_nrpages_setup(char *s)
1840 1841
{
	unsigned long *mhp;
1842
	static unsigned long *last_mhp;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1853 1854 1855 1856 1857 1858
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1859 1860 1861
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1872 1873
	return 1;
}
1874 1875 1876 1877 1878 1879 1880 1881
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1895 1896 1897
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1898
{
1899 1900
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1901
	int ret;
1902

1903
	tmp = h->max_huge_pages;
1904

1905 1906 1907
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1908 1909
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1910 1911 1912
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1913

1914
	if (write) {
1915 1916
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1927 1928
out:
	return ret;
L
Linus Torvalds 已提交
1929
}
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1948
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1949
			void __user *buffer,
1950 1951
			size_t *length, loff_t *ppos)
{
1952
	proc_dointvec(table, write, buffer, length, ppos);
1953 1954 1955 1956 1957 1958 1959
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1960
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1961
			void __user *buffer,
1962 1963
			size_t *length, loff_t *ppos)
{
1964
	struct hstate *h = &default_hstate;
1965
	unsigned long tmp;
1966
	int ret;
1967

1968
	tmp = h->nr_overcommit_huge_pages;
1969

1970 1971 1972
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1973 1974
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1975 1976 1977
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1978 1979 1980 1981 1982 1983

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
1984 1985
out:
	return ret;
1986 1987
}

L
Linus Torvalds 已提交
1988 1989
#endif /* CONFIG_SYSCTL */

1990
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1991
{
1992
	struct hstate *h = &default_hstate;
1993
	seq_printf(m,
1994 1995 1996 1997 1998
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1999 2000 2001 2002 2003
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2004 2005 2006 2007
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2008
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2009 2010
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2011 2012
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2013 2014 2015
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2016 2017 2018 2019 2020
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2021 2022
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2023 2024
}

2025
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2048
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2049 2050
			goto out;

2051 2052
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2053 2054 2055 2056 2057 2058
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2059
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2060 2061 2062 2063 2064 2065

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2066 2067 2068 2069 2070 2071 2072 2073
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2074
	 * has a reference to the reservation map it cannot disappear until
2075 2076 2077 2078 2079 2080 2081
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2082 2083
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2084
	struct hstate *h = hstate_vma(vma);
2085 2086 2087 2088 2089 2090
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2091 2092
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2093 2094 2095 2096 2097 2098

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2099
		if (reserve) {
2100
			hugetlb_acct_memory(h, -reserve);
2101 2102
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2103
	}
2104 2105
}

L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2112
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2113 2114
{
	BUG();
N
Nick Piggin 已提交
2115
	return 0;
L
Linus Torvalds 已提交
2116 2117
}

2118
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2119
	.fault = hugetlb_vm_op_fault,
2120
	.open = hugetlb_vm_op_open,
2121
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2122 2123
};

2124 2125
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2126 2127 2128
{
	pte_t entry;

2129
	if (writable) {
D
David Gibson 已提交
2130 2131 2132
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2133
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2134 2135 2136 2137 2138 2139 2140
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2141 2142 2143 2144 2145
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2146
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2147
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2148
		update_mmu_cache(vma, address, ptep);
2149 2150 2151
}


D
David Gibson 已提交
2152 2153 2154 2155 2156
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2157
	unsigned long addr;
2158
	int cow;
2159 2160
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2161 2162

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2163

2164
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2165 2166 2167
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2168
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2169 2170
		if (!dst_pte)
			goto nomem;
2171 2172 2173 2174 2175

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2176
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2177
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2178
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2179
			if (cow)
2180 2181
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2182 2183
			ptepage = pte_page(entry);
			get_page(ptepage);
2184
			page_dup_rmap(ptepage);
2185 2186 2187
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2188
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2189 2190 2191 2192 2193 2194 2195
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2196 2197 2198 2199 2200 2201 2202
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2203
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2204
		return 1;
2205
	else
N
Naoya Horiguchi 已提交
2206 2207 2208
		return 0;
}

2209 2210 2211 2212 2213 2214 2215
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2216
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2217
		return 1;
2218
	else
2219 2220 2221
		return 0;
}

2222
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2223
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2224 2225 2226
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2227
	pte_t *ptep;
D
David Gibson 已提交
2228 2229
	pte_t pte;
	struct page *page;
2230
	struct page *tmp;
2231 2232 2233
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2234
	/*
2235
	 * A page gathering list, protected by per file i_mmap_mutex. The
2236 2237 2238
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2239
	LIST_HEAD(page_list);
D
David Gibson 已提交
2240 2241

	WARN_ON(!is_vm_hugetlb_page(vma));
2242 2243
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2244

A
Andrea Arcangeli 已提交
2245
	mmu_notifier_invalidate_range_start(mm, start, end);
2246
	spin_lock(&mm->page_table_lock);
2247
	for (address = start; address < end; address += sz) {
2248
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2249
		if (!ptep)
2250 2251
			continue;

2252 2253 2254
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2276
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2277
		if (huge_pte_none(pte))
D
David Gibson 已提交
2278
			continue;
2279

2280 2281 2282 2283 2284 2285
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2286
		page = pte_page(pte);
2287 2288
		if (pte_dirty(pte))
			set_page_dirty(page);
2289
		list_add(&page->lru, &page_list);
2290 2291 2292 2293

		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2294
	}
2295
	flush_tlb_range(vma, start, end);
2296
	spin_unlock(&mm->page_table_lock);
A
Andrea Arcangeli 已提交
2297
	mmu_notifier_invalidate_range_end(mm, start, end);
2298
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2299
		page_remove_rmap(page);
2300 2301 2302
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2303
}
D
David Gibson 已提交
2304

2305
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2306
			  unsigned long end, struct page *ref_page)
2307
{
2308
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2309
	__unmap_hugepage_range(vma, start, end, ref_page);
2310
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2311 2312
}

2313 2314 2315 2316 2317 2318
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2319 2320
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2321
{
2322
	struct hstate *h = hstate_vma(vma);
2323 2324 2325 2326 2327 2328 2329 2330 2331
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2332
	address = address & huge_page_mask(h);
2333
	pgoff = vma_hugecache_offset(h, vma, address);
2334 2335
	mapping = (struct address_space *)page_private(page);

2336 2337 2338 2339 2340
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2341
	mutex_lock(&mapping->i_mmap_mutex);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2355
			__unmap_hugepage_range(iter_vma,
2356
				address, address + huge_page_size(h),
2357 2358
				page);
	}
2359
	mutex_unlock(&mapping->i_mmap_mutex);
2360 2361 2362 2363

	return 1;
}

2364 2365
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2366 2367 2368
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2369
 */
2370
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2371 2372
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2373
{
2374
	struct hstate *h = hstate_vma(vma);
2375
	struct page *old_page, *new_page;
2376
	int avoidcopy;
2377
	int outside_reserve = 0;
2378 2379 2380

	old_page = pte_page(pte);

2381
retry_avoidcopy:
2382 2383
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2384
	avoidcopy = (page_mapcount(old_page) == 1);
2385
	if (avoidcopy) {
2386 2387
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2388
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2389
		return 0;
2390 2391
	}

2392 2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2401
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2402 2403 2404 2405
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2406
	page_cache_get(old_page);
2407 2408 2409

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2410
	new_page = alloc_huge_page(vma, address, outside_reserve);
2411

2412
	if (IS_ERR(new_page)) {
2413
		page_cache_release(old_page);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2427
				spin_lock(&mm->page_table_lock);
2428 2429 2430 2431 2432 2433 2434 2435
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2436 2437 2438 2439
			}
			WARN_ON_ONCE(1);
		}

2440 2441
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2442
		return -PTR_ERR(new_page);
2443 2444
	}

2445 2446 2447 2448
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2449
	if (unlikely(anon_vma_prepare(vma))) {
2450 2451
		page_cache_release(new_page);
		page_cache_release(old_page);
2452 2453
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2454
		return VM_FAULT_OOM;
2455
	}
2456

A
Andrea Arcangeli 已提交
2457 2458
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2459
	__SetPageUptodate(new_page);
2460

2461 2462 2463 2464 2465
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2466
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2467
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2468
		/* Break COW */
2469 2470 2471
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2472
		huge_ptep_clear_flush(vma, address, ptep);
2473 2474
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2475
		page_remove_rmap(old_page);
2476
		hugepage_add_new_anon_rmap(new_page, vma, address);
2477 2478
		/* Make the old page be freed below */
		new_page = old_page;
2479 2480 2481
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2482 2483 2484
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2485
	return 0;
2486 2487
}

2488
/* Return the pagecache page at a given address within a VMA */
2489 2490
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2491 2492
{
	struct address_space *mapping;
2493
	pgoff_t idx;
2494 2495

	mapping = vma->vm_file->f_mapping;
2496
	idx = vma_hugecache_offset(h, vma, address);
2497 2498 2499 2500

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2501 2502 2503 2504 2505
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2521
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2522
			unsigned long address, pte_t *ptep, unsigned int flags)
2523
{
2524
	struct hstate *h = hstate_vma(vma);
2525
	int ret = VM_FAULT_SIGBUS;
2526
	int anon_rmap = 0;
2527
	pgoff_t idx;
A
Adam Litke 已提交
2528 2529 2530
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2531
	pte_t new_pte;
A
Adam Litke 已提交
2532

2533 2534 2535
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2536
	 * COW. Warn that such a situation has occurred as it may not be obvious
2537 2538 2539 2540 2541 2542 2543 2544
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2545
	mapping = vma->vm_file->f_mapping;
2546
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2547 2548 2549 2550 2551

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2552 2553 2554
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2555
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2556 2557
		if (idx >= size)
			goto out;
2558
		page = alloc_huge_page(vma, address, 0);
2559 2560
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2561 2562
			goto out;
		}
A
Andrea Arcangeli 已提交
2563
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2564
		__SetPageUptodate(page);
2565

2566
		if (vma->vm_flags & VM_MAYSHARE) {
2567
			int err;
K
Ken Chen 已提交
2568
			struct inode *inode = mapping->host;
2569 2570 2571 2572 2573 2574 2575 2576

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2577 2578

			spin_lock(&inode->i_lock);
2579
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2580
			spin_unlock(&inode->i_lock);
2581
		} else {
2582
			lock_page(page);
2583 2584 2585 2586
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2587
			anon_rmap = 1;
2588
		}
2589
	} else {
2590 2591 2592 2593 2594 2595
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2596
			ret = VM_FAULT_HWPOISON |
2597
			      VM_FAULT_SET_HINDEX(h - hstates);
2598 2599
			goto backout_unlocked;
		}
2600
	}
2601

2602 2603 2604 2605 2606 2607
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2608
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2609 2610 2611 2612
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2613

2614
	spin_lock(&mm->page_table_lock);
2615
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2616 2617 2618
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2619
	ret = 0;
2620
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2621 2622
		goto backout;

2623 2624 2625 2626
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2627 2628 2629 2630
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2631
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2632
		/* Optimization, do the COW without a second fault */
2633
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2634 2635
	}

2636
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2637 2638
	unlock_page(page);
out:
2639
	return ret;
A
Adam Litke 已提交
2640 2641 2642

backout:
	spin_unlock(&mm->page_table_lock);
2643
backout_unlocked:
A
Adam Litke 已提交
2644 2645 2646
	unlock_page(page);
	put_page(page);
	goto out;
2647 2648
}

2649
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2650
			unsigned long address, unsigned int flags)
2651 2652 2653
{
	pte_t *ptep;
	pte_t entry;
2654
	int ret;
2655
	struct page *page = NULL;
2656
	struct page *pagecache_page = NULL;
2657
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2658
	struct hstate *h = hstate_vma(vma);
2659

2660 2661
	address &= huge_page_mask(h);

2662 2663 2664
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2665 2666 2667 2668
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2669
			return VM_FAULT_HWPOISON_LARGE |
2670
			       VM_FAULT_SET_HINDEX(h - hstates);
2671 2672
	}

2673
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2674 2675 2676
	if (!ptep)
		return VM_FAULT_OOM;

2677 2678 2679 2680 2681 2682
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2683 2684
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2685
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2686
		goto out_mutex;
2687
	}
2688

N
Nick Piggin 已提交
2689
	ret = 0;
2690

2691 2692 2693 2694 2695 2696 2697 2698
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2699
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2700 2701
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2702
			goto out_mutex;
2703
		}
2704

2705
		if (!(vma->vm_flags & VM_MAYSHARE))
2706 2707 2708 2709
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2710 2711 2712 2713 2714 2715 2716 2717 2718
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2719 2720
		lock_page(page);

2721 2722
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2723 2724 2725 2726
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2727
	if (flags & FAULT_FLAG_WRITE) {
2728
		if (!pte_write(entry)) {
2729 2730
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2731 2732 2733 2734 2735
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2736 2737
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2738
		update_mmu_cache(vma, address, ptep);
2739 2740

out_page_table_lock:
2741
	spin_unlock(&mm->page_table_lock);
2742 2743 2744 2745 2746

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2747 2748
	if (page != pagecache_page)
		unlock_page(page);
2749

2750
out_mutex:
2751
	mutex_unlock(&hugetlb_instantiation_mutex);
2752 2753

	return ret;
2754 2755
}

A
Andi Kleen 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2765 2766
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2767
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2768
			unsigned int flags)
D
David Gibson 已提交
2769
{
2770 2771
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2772
	int remainder = *length;
2773
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2774

2775
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2776
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2777
		pte_t *pte;
H
Hugh Dickins 已提交
2778
		int absent;
A
Adam Litke 已提交
2779
		struct page *page;
D
David Gibson 已提交
2780

A
Adam Litke 已提交
2781 2782
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2783
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2784 2785
		 * first, for the page indexing below to work.
		 */
2786
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2787 2788 2789 2790
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2791 2792 2793 2794
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2795
		 */
H
Hugh Dickins 已提交
2796 2797
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2798 2799 2800
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2801

H
Hugh Dickins 已提交
2802 2803
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2804
			int ret;
D
David Gibson 已提交
2805

A
Adam Litke 已提交
2806
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2807 2808
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2809
			spin_lock(&mm->page_table_lock);
2810
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2811
				continue;
D
David Gibson 已提交
2812

A
Adam Litke 已提交
2813 2814 2815 2816
			remainder = 0;
			break;
		}

2817
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2818
		page = pte_page(huge_ptep_get(pte));
2819
same_page:
2820
		if (pages) {
H
Hugh Dickins 已提交
2821
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2822
			get_page(pages[i]);
2823
		}
D
David Gibson 已提交
2824 2825 2826 2827 2828

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2829
		++pfn_offset;
D
David Gibson 已提交
2830 2831
		--remainder;
		++i;
2832
		if (vaddr < vma->vm_end && remainder &&
2833
				pfn_offset < pages_per_huge_page(h)) {
2834 2835 2836 2837 2838 2839
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2840
	}
2841
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2842 2843 2844
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2845
	return i ? i : -EFAULT;
D
David Gibson 已提交
2846
}
2847 2848 2849 2850 2851 2852 2853 2854

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2855
	struct hstate *h = hstate_vma(vma);
2856 2857 2858 2859

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2860
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2861
	spin_lock(&mm->page_table_lock);
2862
	for (; address < end; address += huge_page_size(h)) {
2863 2864 2865
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2866 2867
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2868
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2869 2870 2871 2872 2873 2874
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2875
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2876 2877 2878 2879

	flush_tlb_range(vma, start, end);
}

2880 2881
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2882
					struct vm_area_struct *vma,
2883
					vm_flags_t vm_flags)
2884
{
2885
	long ret, chg;
2886
	struct hstate *h = hstate_inode(inode);
2887

2888 2889 2890 2891 2892
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
2893
	if (vm_flags & VM_NORESERVE)
2894 2895
		return 0;

2896 2897 2898 2899 2900 2901
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2902
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2903
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2904 2905 2906 2907 2908
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2909
		chg = to - from;
2910

2911 2912 2913 2914
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2915 2916
	if (chg < 0)
		return chg;
2917

2918
	/* There must be enough filesystem quota for the mapping */
2919 2920
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2921 2922

	/*
2923 2924
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2925
	 */
2926
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2927 2928
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2929
		return ret;
K
Ken Chen 已提交
2930
	}
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2943
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2944
		region_add(&inode->i_mapping->private_list, from, to);
2945 2946 2947 2948 2949
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2950
	struct hstate *h = hstate_inode(inode);
2951
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2952 2953

	spin_lock(&inode->i_lock);
2954
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2955 2956
	spin_unlock(&inode->i_lock);

2957
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2958
	hugetlb_acct_memory(h, -(chg - freed));
2959
}
2960

2961 2962
#ifdef CONFIG_MEMORY_FAILURE

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

2977 2978 2979 2980
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
2981
int dequeue_hwpoisoned_huge_page(struct page *hpage)
2982 2983 2984
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
2985
	int ret = -EBUSY;
2986 2987

	spin_lock(&hugetlb_lock);
2988 2989
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
2990
		set_page_refcounted(hpage);
2991 2992 2993 2994
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
2995
	spin_unlock(&hugetlb_lock);
2996
	return ret;
2997
}
2998
#endif