- 07 11月, 2021 40 次提交
-
-
由 Mina Almasry 提交于
Support mremap() for hugepage backed vma segment by simply repositioning page table entries. The page table entries are repositioned to the new virtual address on mremap(). Hugetlb mremap() support is of course generic; my motivating use case is a library (hugepage_text), which reloads the ELF text of executables in hugepages. This significantly increases the execution performance of said executables. Restrict the mremap operation on hugepages to up to the size of the original mapping as the underlying hugetlb reservation is not yet capable of handling remapping to a larger size. During the mremap() operation we detect pmd_share'd mappings and we unshare those during the mremap(). On access and fault the sharing is established again. Link: https://lkml.kernel.org/r/20211013195825.3058275-1-almasrymina@google.comSigned-off-by: NMina Almasry <almasrymina@google.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Ken Chen <kenchen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill Shutemov <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Liangcai Fan 提交于
When initializing transparent huge pages, min_free_kbytes would be calculated according to what khugepaged expected. So when transparent huge pages get disabled, min_free_kbytes should be recalculated instead of the higher value set by khugepaged. Link: https://lkml.kernel.org/r/1633937809-16558-1-git-send-email-liangcaifan19@gmail.comSigned-off-by: NLiangcai Fan <liangcaifan19@gmail.com> Signed-off-by: NChunyan Zhang <zhang.lyra@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Kravetz 提交于
Demote page functionality will split a huge page into a number of huge pages of a smaller size. For example, on x86 a 1GB huge page can be demoted into 512 2M huge pages. Demotion is done 'in place' by simply splitting the huge page. Added '*_for_demote' wrappers for remove_hugetlb_page, destroy_compound_hugetlb_page and prep_compound_gigantic_page for use by demote code. [mike.kravetz@oracle.com: v4] Link: https://lkml.kernel.org/r/6ca29b8e-527c-d6ec-900e-e6a43e4f8b73@oracle.com Link: https://lkml.kernel.org/r/20211007181918.136982-6-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Kravetz 提交于
The routines remove_hugetlb_page and destroy_compound_gigantic_page will remove a gigantic page and make the set of base pages ready to be returned to a lower level allocator. In the process of doing this, they make all base pages reference counted. The routine prep_compound_gigantic_page creates a gigantic page from a set of base pages. It assumes that all these base pages are reference counted. During demotion, a gigantic page will be split into huge pages of a smaller size. This logically involves use of the routines, remove_hugetlb_page, and destroy_compound_gigantic_page followed by prep_compound*_page for each smaller huge page. When pages are reference counted (ref count >= 0), additional speculative ref counts could be taken as described in previous commits [1] and [2]. This could result in errors while demoting a huge page. Quite a bit of code would need to be created to handle all possible issues. Instead of dealing with the possibility of speculative ref counts, avoid the possibility by keeping ref counts at zero during the demote process. Add a boolean 'demote' to the routines remove_hugetlb_page, destroy_compound_gigantic_page and prep_compound_gigantic_page. If the boolean is set, the remove and destroy routines will not reference count pages and the prep routine will not expect reference counted pages. '*_for_demote' wrappers of the routines will be added in a subsequent patch where this functionality is used. [1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@oracle.com/ [2] https://lore.kernel.org/linux-mm/20210809184832.18342-3-mike.kravetz@oracle.com/ Link: https://lkml.kernel.org/r/20211007181918.136982-5-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Kravetz 提交于
When huge page demotion is fully implemented, gigantic pages can be demoted to a smaller huge page size. For example, on x86 a 1G page can be demoted to 512 2M pages. However, gigantic pages can potentially be allocated from CMA. If a gigantic page which was allocated from CMA is demoted, the corresponding demoted pages needs to be returned to CMA. Use the new interface cma_pages_valid() to determine if a non-gigantic hugetlb page should be freed to CMA. Also, clear mapping field of these pages as expected by cma_release. This also requires a change to CMA region creation for gigantic pages. CMA uses a per-region bit map to track allocations. When setting up the region, you specify how many pages each bit represents. Currently, only gigantic pages are allocated/freed from CMA so the region is set up such that one bit represents a gigantic page size allocation. With demote, a gigantic page (allocation) could be split into smaller size pages. And, these smaller size pages will be freed to CMA. So, since the per-region bit map needs to be set up to represent the smallest allocation/free size, it now needs to be set to the smallest huge page size which can be freed to CMA. Unfortunately, we set up the CMA region for huge pages before we set up huge pages sizes (hstates). So, technically we do not know the smallest huge page size as this can change via command line options and architecture specific code. Therefore, at region setup time we use HUGETLB_PAGE_ORDER as the smallest possible huge page size that can be given back to CMA. It is possible that this value is sub-optimal for some architectures/config options. If needed, this can be addressed in follow on work. Link: https://lkml.kernel.org/r/20211007181918.136982-4-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Kravetz 提交于
Add new interface cma_pages_valid() which indicates if the specified pages are part of a CMA region. This interface will be used in a subsequent patch by hugetlb code. In order to keep the same amount of DEBUG information, a pr_debug() call was added to cma_pages_valid(). In the case where the page passed to cma_release is not in cma region, the debug message will be printed from cma_pages_valid as opposed to cma_release. Link: https://lkml.kernel.org/r/20211007181918.136982-3-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Nghia Le <nghialm78@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Kravetz 提交于
Patch series "hugetlb: add demote/split page functionality", v4. The concurrent use of multiple hugetlb page sizes on a single system is becoming more common. One of the reasons is better TLB support for gigantic page sizes on x86 hardware. In addition, hugetlb pages are being used to back VMs in hosting environments. When using hugetlb pages to back VMs, it is often desirable to preallocate hugetlb pools. This avoids the delay and uncertainty of allocating hugetlb pages at VM startup. In addition, preallocating huge pages minimizes the issue of memory fragmentation that increases the longer the system is up and running. In such environments, a combination of larger and smaller hugetlb pages are preallocated in anticipation of backing VMs of various sizes. Over time, the preallocated pool of smaller hugetlb pages may become depleted while larger hugetlb pages still remain. In such situations, it is desirable to convert larger hugetlb pages to smaller hugetlb pages. Converting larger to smaller hugetlb pages can be accomplished today by first freeing the larger page to the buddy allocator and then allocating the smaller pages. For example, to convert 50 GB pages on x86: gb_pages=`cat .../hugepages-1048576kB/nr_hugepages` m2_pages=`cat .../hugepages-2048kB/nr_hugepages` echo $(($gb_pages - 50)) > .../hugepages-1048576kB/nr_hugepages echo $(($m2_pages + 25600)) > .../hugepages-2048kB/nr_hugepages On an idle system this operation is fairly reliable and results are as expected. The number of 2MB pages is increased as expected and the time of the operation is a second or two. However, when there is activity on the system the following issues arise: 1) This process can take quite some time, especially if allocation of the smaller pages is not immediate and requires migration/compaction. 2) There is no guarantee that the total size of smaller pages allocated will match the size of the larger page which was freed. This is because the area freed by the larger page could quickly be fragmented. In a test environment with a load that continually fills the page cache with clean pages, results such as the following can be observed: Unexpected number of 2MB pages allocated: Expected 25600, have 19944 real 0m42.092s user 0m0.008s sys 0m41.467s To address these issues, introduce the concept of hugetlb page demotion. Demotion provides a means of 'in place' splitting of a hugetlb page to pages of a smaller size. This avoids freeing pages to buddy and then trying to allocate from buddy. Page demotion is controlled via sysfs files that reside in the per-hugetlb page size and per node directories. - demote_size Target page size for demotion, a smaller huge page size. File can be written to chose a smaller huge page size if multiple are available. - demote Writable number of hugetlb pages to be demoted To demote 50 GB huge pages, one would: cat .../hugepages-1048576kB/free_hugepages /* optional, verify free pages */ cat .../hugepages-1048576kB/demote_size /* optional, verify target size */ echo 50 > .../hugepages-1048576kB/demote Only hugetlb pages which are free at the time of the request can be demoted. Demotion does not add to the complexity of surplus pages and honors reserved huge pages. Therefore, when a value is written to the sysfs demote file, that value is only the maximum number of pages which will be demoted. It is possible fewer will actually be demoted. The recently introduced per-hstate mutex is used to synchronize demote operations with other operations that modify hugetlb pools. Real world use cases -------------------- The above scenario describes a real world use case where hugetlb pages are used to back VMs on x86. Both issues of long allocation times and not necessarily getting the expected number of smaller huge pages after a free and allocate cycle have been experienced. The occurrence of these issues is dependent on other activity within the host and can not be predicted. This patch (of 5): Two new sysfs files are added to demote hugtlb pages. These files are both per-hugetlb page size and per node. Files are: demote_size - The size in Kb that pages are demoted to. (read-write) demote - The number of huge pages to demote. (write-only) By default, demote_size is the next smallest huge page size. Valid huge page sizes less than huge page size may be written to this file. When huge pages are demoted, they are demoted to this size. Writing a value to demote will result in an attempt to demote that number of hugetlb pages to an appropriate number of demote_size pages. NOTE: Demote interfaces are only provided for huge page sizes if there is a smaller target demote huge page size. For example, on x86 1GB huge pages will have demote interfaces. 2MB huge pages will not have demote interfaces. This patch does not provide full demote functionality. It only provides the sysfs interfaces. It also provides documentation for the new interfaces. [mike.kravetz@oracle.com: n_mask initialization does not need to be protected by the mutex] Link: https://lkml.kernel.org/r/0530e4ef-2492-5186-f919-5db68edea654@oracle.com Link: https://lkml.kernel.org/r/20211007181918.136982-2-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: David Rientjes <rientjes@google.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Nghia Le <nghialm78@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Xu 提交于
Remove __unmap_hugepage_range() from the header file, because it is only used in hugetlb.c. Link: https://lkml.kernel.org/r/20210917165108.9341-1-peterx@redhat.comSigned-off-by: NPeter Xu <peterx@redhat.com> Suggested-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Reviewed-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Currently hwpoison doesn't handle non-anonymous THP, but since v4.8 THP support for tmpfs and read-only file cache has been added. They could be offlined by split THP, just like anonymous THP. Link: https://lkml.kernel.org/r/20211020210755.23964-7-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Acked-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
The current behavior of memory failure is to truncate the page cache regardless of dirty or clean. If the page is dirty the later access will get the obsolete data from disk without any notification to the users. This may cause silent data loss. It is even worse for shmem since shmem is in-memory filesystem, truncating page cache means discarding data blocks. The later read would return all zero. The right approach is to keep the corrupted page in page cache, any later access would return error for syscalls or SIGBUS for page fault, until the file is truncated, hole punched or removed. The regular storage backed filesystems would be more complicated so this patch is focused on shmem. This also unblock the support for soft offlining shmem THP. [arnd@arndb.de: fix uninitialized variable use in me_pagecache_clean()] Link: https://lkml.kernel.org/r/20211022064748.4173718-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20211020210755.23964-6-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Memory failure will report failure if the page still has extra pinned refcount other than from hwpoison after the handler is done. Actually the check is not necessary for all handlers, so move the check into specific handlers. This would make the following keeping shmem page in page cache patch easier. There may be expected extra pin for some cases, for example, when the page is dirty and in swapcache. Link: https://lkml.kernel.org/r/20211020210755.23964-5-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Suggested-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5. When discussing the patch that splits page cache THP in order to offline the poisoned page, Noaya mentioned there is a bigger problem [1] that prevents this from working since the page cache page will be truncated if uncorrectable errors happen. By looking this deeper it turns out this approach (truncating poisoned page) may incur silent data loss for all non-readonly filesystems if the page is dirty. It may be worse for in-memory filesystem, e.g. shmem/tmpfs since the data blocks are actually gone. To solve this problem we could keep the poisoned dirty page in page cache then notify the users on any later access, e.g. page fault, read/write, etc. The clean page could be truncated as is since they can be reread from disk later on. The consequence is the filesystems may find poisoned page and manipulate it as healthy page since all the filesystems actually don't check if the page is poisoned or not in all the relevant paths except page fault. In general, we need make the filesystems be aware of poisoned page before we could keep the poisoned page in page cache in order to solve the data loss problem. To make filesystems be aware of poisoned page we should consider: - The page should be not written back: clearing dirty flag could prevent from writeback. - The page should not be dropped (it shows as a clean page) by drop caches or other callers: the refcount pin from hwpoison could prevent from invalidating (called by cache drop, inode cache shrinking, etc), but it doesn't avoid invalidation in DIO path. - The page should be able to get truncated/hole punched/unlinked: it works as it is. - Notify users when the page is accessed, e.g. read/write, page fault and other paths (compression, encryption, etc). The scope of the last one is huge since almost all filesystems need do it once a page is returned from page cache lookup. There are a couple of options to do it: 1. Check hwpoison flag for every path, the most straightforward way. 2. Return NULL for poisoned page from page cache lookup, the most callsites check if NULL is returned, this should have least work I think. But the error handling in filesystems just return -ENOMEM, the error code will incur confusion to the users obviously. 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this will involve significant amount of code change as well since all the paths need check if the pointer is ERR or not just like option #1. I did prototypes for both #1 and #3, but it seems #3 may require more changes than #1. For #3 ERR_PTR will be returned so all the callers need to check the return value otherwise invalid pointer may be dereferenced, but not all callers really care about the content of the page, for example, partial truncate which just sets the truncated range in one page to 0. So for such paths it needs additional modification if ERR_PTR is returned. And if the callers have their own way to handle the problematic pages we need to add a new FGP flag to tell FGP functions to return the pointer to the page. It may happen very rarely, but once it happens the consequence (data corruption) could be very bad and it is very hard to debug. It seems this problem had been slightly discussed before, but seems no action was taken at that time. [2] As the aforementioned investigation, it needs huge amount of work to solve the potential data loss for all filesystems. But it is much easier for in-memory filesystems and such filesystems actually suffer more than others since even the data blocks are gone due to truncating. So this patchset starts from shmem/tmpfs by taking option #1. TODO: * The unpoison has been broken since commit 0ed950d1 ("mm,hwpoison: make get_hwpoison_page() call get_any_page()"), and this patch series make refcount check for unpoisoning shmem page fail. * Expand to other filesystems. But I haven't heard feedback from filesystem developers yet. Patch breakdown: Patch #1: cleanup, depended by patch #2 Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug Patch #3: coding style cleanup Patch #4: refactor and preparation. Patch #5: keep the poisoned page in page cache and handle such case for all the paths. Patch #6: the previous patches unblock page cache THP split, so this patch add page cache THP split support. This patch (of 4): A minor cleanup to the indent. Link: https://lkml.kernel.org/r/20211020210755.23964-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20211020210755.23964-4-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Reviewed-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rikard Falkeborn 提交于
The only usage of hwp_walk_ops is to pass its address to walk_page_range() which takes a pointer to const mm_walk_ops as argument. Make it const to allow the compiler to put it in read-only memory. Link: https://lkml.kernel.org/r/20211014075042.17174-3-rikard.falkeborn@gmail.comSigned-off-by: NRikard Falkeborn <rikard.falkeborn@gmail.com> Acked-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marco Elver 提交于
PagePoisoned() accesses page->flags which can be updated concurrently: | BUG: KCSAN: data-race in next_uptodate_page / unlock_page | | write (marked) to 0xffffea00050f37c0 of 8 bytes by task 1872 on cpu 1: | instrument_atomic_write include/linux/instrumented.h:87 [inline] | clear_bit_unlock_is_negative_byte include/asm-generic/bitops/instrumented-lock.h:74 [inline] | unlock_page+0x102/0x1b0 mm/filemap.c:1465 | filemap_map_pages+0x6c6/0x890 mm/filemap.c:3057 | ... | read to 0xffffea00050f37c0 of 8 bytes by task 1873 on cpu 0: | PagePoisoned include/linux/page-flags.h:204 [inline] | PageReadahead include/linux/page-flags.h:382 [inline] | next_uptodate_page+0x456/0x830 mm/filemap.c:2975 | ... | CPU: 0 PID: 1873 Comm: systemd-udevd Not tainted 5.11.0-rc4-00001-gf9ce0be7 #1 To avoid the compiler tearing or otherwise optimizing the access, use READ_ONCE() to access flags. Link: https://lore.kernel.org/all/20210826144157.GA26950@xsang-OptiPlex-9020/ Link: https://lkml.kernel.org/r/20210913113542.2658064-1-elver@google.comReported-by: Nkernel test robot <oliver.sang@intel.com> Signed-off-by: NMarco Elver <elver@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NWill Deacon <will@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wang ShaoBo 提交于
This patch uses clamp() to simplify code in init_per_zone_wmark_min(). Link: https://lkml.kernel.org/r/20211021034830.1049150-1-bobo.shaobowang@huawei.comSigned-off-by: NWang ShaoBo <bobo.shaobowang@huawei.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Wei Yongjun <weiyongjun1@huawei.com> Cc: Li Bin <huawei.libin@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
drain_local_pages_wq() disables preemption to avoid CPU migration during CPU hotplug and can't use cpus_read_lock(). Using migrate_disable() works here, too. The scheduler won't take the CPU offline until the task left the migrate-disable section. The problem with disabled preemption here is that drain_local_pages() acquires locks which are turned into sleeping locks on PREEMPT_RT and can't be acquired with disabled preemption. Use migrate_disable() in drain_local_pages_wq(). Link: https://lkml.kernel.org/r/20211015210933.viw6rjvo64qtqxn4@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christophe Leroy 提交于
The generic version of arch_is_kernel_initmem_freed() now does the same as s390 version. Remove the s390 version. Link: https://lkml.kernel.org/r/b6feb5dfe611a322de482762fc2df3a9eece70c7.1633001016.git.christophe.leroy@csgroup.euSigned-off-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Acked-by: NHeiko Carstens <hca@linux.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christophe Leroy 提交于
The generic version of arch_is_kernel_initmem_freed() now does the same as powerpc version. Remove the powerpc version. Link: https://lkml.kernel.org/r/c53764eb45d41491e2b21da2e7812239897dbebb.1633001016.git.christophe.leroy@csgroup.euSigned-off-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christophe Leroy 提交于
Commit 7a5da02d ("locking/lockdep: check for freed initmem in static_obj()") added arch_is_kernel_initmem_freed() which is supposed to report whether an object is part of already freed init memory. For the time being, the generic version of arch_is_kernel_initmem_freed() always reports 'false', allthough free_initmem() is generically called on all architectures. Therefore, change the generic version of arch_is_kernel_initmem_freed() to check whether free_initmem() has been called. If so, then check if a given address falls into init memory. To ease the use of system_state, move it out of line into its only caller which is lockdep.c Link: https://lkml.kernel.org/r/1d40783e676e07858be97d881f449ee7ea8adfb1.1633001016.git.christophe.leroy@csgroup.euSigned-off-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christophe Leroy 提交于
core_kernel_text() considers that until system_state in at least SYSTEM_RUNNING, init memory is valid. But init memory is freed a few lines before setting SYSTEM_RUNNING, so we have a small period of time when core_kernel_text() is wrong. Create an intermediate system state called SYSTEM_FREEING_INIT that is set before starting freeing init memory, and use it in core_kernel_text() to report init memory invalid earlier. Link: https://lkml.kernel.org/r/9ecfdee7dd4d741d172cb93ff1d87f1c58127c9a.1633001016.git.christophe.leroy@csgroup.euSigned-off-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Liangcai Fan 提交于
min/low/high_wmark_pages(z) is defined as (z->_watermark[WMARK_MIN/LOW/HIGH] + z->watermark_boost) If kswapd is frequently woken up due to the increase of min/low/high_wmark_pages, printing watermark_boost can quickly locate whether watermark_boost or _watermark[WMARK_MIN/LOW/HIGH] caused min/low/high_wmark_pages to increase. Link: https://lkml.kernel.org/r/1632472566-12246-1-git-send-email-liangcaifan19@gmail.comSigned-off-by: NLiangcai Fan <liangcaifan19@gmail.com> Cc: Chunyan Zhang <zhang.lyra@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Feng Tang 提交于
There was a report that starting an Ubuntu in docker while using cpuset to bind it to movable nodes (a node only has movable zone, like a node for hotplug or a Persistent Memory node in normal usage) will fail due to memory allocation failure, and then OOM is involved and many other innocent processes got killed. It can be reproduced with command: $ docker run -it --rm --cpuset-mems 4 ubuntu:latest bash -c "grep Mems_allowed /proc/self/status" (where node 4 is a movable node) runc:[2:INIT] invoked oom-killer: gfp_mask=0x500cc2(GFP_HIGHUSER|__GFP_ACCOUNT), order=0, oom_score_adj=0 CPU: 8 PID: 8291 Comm: runc:[2:INIT] Tainted: G W I E 5.8.2-0.g71b519a-default #1 openSUSE Tumbleweed (unreleased) Hardware name: Dell Inc. PowerEdge R640/0PHYDR, BIOS 2.6.4 04/09/2020 Call Trace: dump_stack+0x6b/0x88 dump_header+0x4a/0x1e2 oom_kill_process.cold+0xb/0x10 out_of_memory.part.0+0xaf/0x230 out_of_memory+0x3d/0x80 __alloc_pages_slowpath.constprop.0+0x954/0xa20 __alloc_pages_nodemask+0x2d3/0x300 pipe_write+0x322/0x590 new_sync_write+0x196/0x1b0 vfs_write+0x1c3/0x1f0 ksys_write+0xa7/0xe0 do_syscall_64+0x52/0xd0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Mem-Info: active_anon:392832 inactive_anon:182 isolated_anon:0 active_file:68130 inactive_file:151527 isolated_file:0 unevictable:2701 dirty:0 writeback:7 slab_reclaimable:51418 slab_unreclaimable:116300 mapped:45825 shmem:735 pagetables:2540 bounce:0 free:159849484 free_pcp:73 free_cma:0 Node 4 active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB all_unreclaimable? no Node 4 Movable free:130021408kB min:9140kB low:139160kB high:269180kB reserved_highatomic:0KB active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:130023424kB managed:130023424kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:292kB local_pcp:84kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 0 Node 4 Movable: 1*4kB (M) 0*8kB 0*16kB 1*32kB (M) 0*64kB 0*128kB 1*256kB (M) 1*512kB (M) 1*1024kB (M) 0*2048kB 31743*4096kB (M) = 130021156kB oom-kill:constraint=CONSTRAINT_CPUSET,nodemask=(null),cpuset=docker-9976a269caec812c134fa317f27487ee36e1129beba7278a463dd53e5fb9997b.scope,mems_allowed=4,global_oom,task_memcg=/system.slice/containerd.service,task=containerd,pid=4100,uid=0 Out of memory: Killed process 4100 (containerd) total-vm:4077036kB, anon-rss:51184kB, file-rss:26016kB, shmem-rss:0kB, UID:0 pgtables:676kB oom_score_adj:0 oom_reaper: reaped process 8248 (docker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB oom_reaper: reaped process 2054 (node_exporter), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB oom_reaper: reaped process 1452 (systemd-journal), now anon-rss:0kB, file-rss:8564kB, shmem-rss:4kB oom_reaper: reaped process 2146 (munin-node), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB oom_reaper: reaped process 8291 (runc:[2:INIT]), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB The reason is that in this case, the target cpuset nodes only have movable zone, while the creation of an OS in docker sometimes needs to allocate memory in non-movable zones (dma/dma32/normal) like GFP_HIGHUSER, and the cpuset limit forbids the allocation, then out-of-memory killing is involved even when normal nodes and movable nodes both have many free memory. The OOM killer cannot help to resolve the situation as there is no usable memory for the request in the cpuset scope. The only reasonable measure to take is to fail the allocation right away and have the caller to deal with it. So add a check for cases like this in the slowpath of allocation, and bail out early returning NULL for the allocation. As page allocation is one of the hottest path in kernel, this check will hurt all users with sane cpuset configuration, add a static branch check and detect the abnormal config in cpuset memory binding setup so that the extra check cost in page allocation is not paid by everyone. [thanks to Micho Hocko and David Rientjes for suggesting not handling it inside OOM code, adding cpuset check, refining comments] Link: https://lkml.kernel.org/r/1632481657-68112-1-git-send-email-feng.tang@intel.comSigned-off-by: NFeng Tang <feng.tang@intel.com> Suggested-by: NMichal Hocko <mhocko@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eric Dumazet 提交于
Grabbing zone lock in is_free_buddy_page() gives a wrong sense of safety, and has potential performance implications when zone is experiencing lock contention. In any case, if a caller needs a stable result, it should grab zone lock before calling this function. Link: https://lkml.kernel.org/r/20210922152833.4023972-1-eric.dumazet@gmail.comSigned-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Geert Uytterhoeven 提交于
If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig): sh4-linux-gnu-ld: mm/vmstat.o: in function `vmstat_start': vmstat.c:(.text+0x97c): undefined reference to `fold_vm_numa_events' sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_vmstat': node.c:(.text+0x140): undefined reference to `fold_vm_numa_events' sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_numastat': node.c:(.text+0x1d0): undefined reference to `fold_vm_numa_events' Fix this by moving fold_vm_numa_events() outside the SMP-only section. Link: https://lkml.kernel.org/r/9d16ccdd9ef32803d7100c84f737de6a749314fb.1631781495.git.geert+renesas@glider.be Fixes: f19298b9 ("mm/vmstat: convert NUMA statistics to basic NUMA counters") Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Gon Solo <gonsolo@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Geert Uytterhoeven 提交于
Patch series "Fix NUMA without SMP". SuperH is the only architecture which still supports NUMA without SMP, for good reasons (various memories scattered around the address space, each with varying latencies). This series fixes two build errors due to variables and functions used by the NUMA code being provided by SMP-only source files or sections. This patch (of 2): If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig): sh4-linux-gnu-ld: mm/page_alloc.o: in function `get_page_from_freelist': page_alloc.c:(.text+0x2c24): undefined reference to `node_reclaim_distance' Fix this by moving the declaration of node_reclaim_distance from an SMP-only to a generic file. Link: https://lkml.kernel.org/r/cover.1631781495.git.geert+renesas@glider.be Link: https://lkml.kernel.org/r/6432666a648dde85635341e6c918cee97c97d264.1631781495.git.geert+renesas@glider.be Fixes: a55c7454 ("sched/topology: Improve load balancing on AMD EPYC systems") Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Suggested-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yoshinori Sato <ysato@users.osdn.me> Cc: Rich Felker <dalias@libc.org> Cc: Gon Solo <gonsolo@gmail.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Krupa Ramakrishnan 提交于
In build_zonelists(), when the fallback list is built for the nodes, the node load gets reinitialized during each iteration. This results in nodes with same distances occupying the same slot in different node fallback lists rather than appearing in the intended round- robin manner. This results in one node getting picked for allocation more compared to other nodes with the same distance. As an example, consider a 4 node system with the following distance matrix. Node 0 1 2 3 ---------------- 0 10 12 32 32 1 12 10 32 32 2 32 32 10 12 3 32 32 12 10 For this case, the node fallback list gets built like this: Node Fallback list --------------------- 0 0 1 2 3 1 1 0 3 2 2 2 3 0 1 3 3 2 0 1 <-- Unexpected fallback order In the fallback list for nodes 2 and 3, the nodes 0 and 1 appear in the same order which results in more allocations getting satisfied from node 0 compared to node 1. The effect of this on remote memory bandwidth as seen by stream benchmark is shown below: Case 1: Bandwidth from cores on nodes 2 & 3 to memory on nodes 0 & 1 (numactl -m 0,1 ./stream_lowOverhead ... --cores <from 2, 3>) Case 2: Bandwidth from cores on nodes 0 & 1 to memory on nodes 2 & 3 (numactl -m 2,3 ./stream_lowOverhead ... --cores <from 0, 1>) ---------------------------------------- BANDWIDTH (MB/s) TEST Case 1 Case 2 ---------------------------------------- COPY 57479.6 110791.8 SCALE 55372.9 105685.9 ADD 50460.6 96734.2 TRIADD 50397.6 97119.1 ---------------------------------------- The bandwidth drop in Case 1 occurs because most of the allocations get satisfied by node 0 as it appears first in the fallback order for both nodes 2 and 3. This can be fixed by accumulating the node load in build_zonelists() rather than reinitializing it during each iteration. With this the nodes with the same distance rightly get assigned in the round robin manner. In fact this was how it was originally until commit f0c0b2b8 ("change zonelist order: zonelist order selection logic") dropped the load accumulation and resorted to initializing the load during each iteration. While zonelist ordering was removed by commit c9bff3ee ("mm, page_alloc: rip out ZONELIST_ORDER_ZONE"), the change to the node load accumulation in build_zonelists() remained. So essentially this patch reverts back to the accumulated node load logic. After this fix, the fallback order gets built like this: Node Fallback list ------------------ 0 0 1 2 3 1 1 0 3 2 2 2 3 0 1 3 3 2 1 0 <-- Note the change here The bandwidth in Case 1 improves and matches Case 2 as shown below. ---------------------------------------- BANDWIDTH (MB/s) TEST Case 1 Case 2 ---------------------------------------- COPY 110438.9 110107.2 SCALE 105930.5 105817.5 ADD 97005.1 96159.8 TRIADD 97441.5 96757.1 ---------------------------------------- The correctness of the fallback list generation has been verified for the above node configuration where the node 3 starts as memory-less node and comes up online only during memory hotplug. [bharata@amd.com: Added changelog, review, test validation] Link: https://lkml.kernel.org/r/20210830121603.1081-3-bharata@amd.com Fixes: f0c0b2b8 ("change zonelist order: zonelist order selection logic") Signed-off-by: NKrupa Ramakrishnan <krupa.ramakrishnan@amd.com> Co-developed-by: NSadagopan Srinivasan <Sadagopan.Srinivasan@amd.com> Signed-off-by: NSadagopan Srinivasan <Sadagopan.Srinivasan@amd.com> Signed-off-by: NBharata B Rao <bharata@amd.com> Acked-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bharata B Rao 提交于
Patch series "Fix NUMA nodes fallback list ordering". For a NUMA system that has multiple nodes at same distance from other nodes, the fallback list generation prefers same node order for them instead of round-robin thereby penalizing one node over others. This series fixes it. More description of the problem and the fix is present in the patch description. This patch (of 2): Print information message about the allocation fallback order for each NUMA node during boot. No functional changes here. This makes it easier to illustrate the problem in the node fallback list generation, which the next patch fixes. Link: https://lkml.kernel.org/r/20210830121603.1081-1-bharata@amd.com Link: https://lkml.kernel.org/r/20210830121603.1081-2-bharata@amd.comSigned-off-by: NBharata B Rao <bharata@amd.com> Acked-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Krupa Ramakrishnan <krupa.ramakrishnan@amd.com> Cc: Sadagopan Srinivasan <Sadagopan.Srinivasan@amd.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
Don't use with __GFP_HIGHMEM because page_address() cannot represent highmem pages without kmap(). Newly allocated pages would leak as page_address() will return NULL for highmem pages here. But It works now because the callers do not specify __GFP_HIGHMEM now. Link: https://lkml.kernel.org/r/20210902121242.41607-6-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
Use helper function zone_spans_pfn() to check whether pfn is within a zone to simplify the code slightly. Link: https://lkml.kernel.org/r/20210902121242.41607-5-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
The second two paragraphs about "all pages pinned" and pages_scanned is obsolete. And There are PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP orders in pcp. So the same order assumption is not held now. Link: https://lkml.kernel.org/r/20210902121242.41607-4-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Cc: David Hildenbrand <david@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
Use helper macro K() to convert the pages to the corresponding size. Minor readability improvement. Link: https://lkml.kernel.org/r/20210902121242.41607-3-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
Patch series "Cleanups and fixup for page_alloc", v2. This series contains cleanups to remove meaningless VM_BUG_ON(), use helpers to simplify the code and remove obsolete comment. Also we avoid allocating highmem pages via alloc_pages_exact[_nid]. More details can be found in the respective changelogs. This patch (of 5): It's meaningless to VM_BUG_ON() order != pageblock_order just after setting order to pageblock_order. Remove it. Link: https://lkml.kernel.org/r/20210902121242.41607-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210902121242.41607-2-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eric Dumazet 提交于
If __vmalloc() returned NULL, is_vm_area_hugepages(NULL) will fault if CONFIG_HAVE_ARCH_HUGE_VMALLOC=y Link: https://lkml.kernel.org/r/20210915212530.2321545-1-eric.dumazet@gmail.com Fixes: 121e6f32 ("mm/vmalloc: hugepage vmalloc mappings") Signed-off-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Changcheng Deng 提交于
Use swap() in order to make code cleaner. Issue found by coccinelle. Link: https://lkml.kernel.org/r/20211028111443.15744-1-deng.changcheng@zte.com.cnSigned-off-by: NChangcheng Deng <deng.changcheng@zte.com.cn> Reported-by: NZeal Robot <zealci@zte.com.cn> Reviewed-by: NUladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chen Wandun 提交于
Commit ffb29b1c ("mm/vmalloc: fix numa spreading for large hash tables") can cause significant performance regressions in some situations as Andrew mentioned in [1]. The main situation is vmalloc, vmalloc will allocate pages with NUMA_NO_NODE by default, that will result in alloc page one by one; In order to solve this, __alloc_pages_bulk and mempolicy should be considered at the same time. 1) If node is specified in memory allocation request, it will alloc all pages by __alloc_pages_bulk. 2) If interleaving allocate memory, it will cauculate how many pages should be allocated in each node, and use __alloc_pages_bulk to alloc pages in each node. [1]: https://lore.kernel.org/lkml/CALvZod4G3SzP3kWxQYn0fj+VgG-G3yWXz=gz17+3N57ru1iajw@mail.gmail.com/t/#m750c8e3231206134293b089feaa090590afa0f60 [akpm@linux-foundation.org: coding style fixes] [akpm@linux-foundation.org: make two functions static] [akpm@linux-foundation.org: fix CONFIG_NUMA=n build] Link: https://lkml.kernel.org/r/20211021080744.874701-3-chenwandun@huawei.comSigned-off-by: NChen Wandun <chenwandun@huawei.com> Reviewed-by: NUladzislau Rezki (Sony) <urezki@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
The core of the vmalloc allocator __vmalloc_area_node doesn't say anything about gfp mask argument. Not all gfp flags are supported though. Be more explicit about constraints. Link: https://lkml.kernel.org/r/20211020082545.4830-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
With KASAN_VMALLOC and NEED_PER_CPU_PAGE_FIRST_CHUNK the kernel crashes: Unable to handle kernel paging request at virtual address ffff7000028f2000 ... swapper pgtable: 64k pages, 48-bit VAs, pgdp=0000000042440000 [ffff7000028f2000] pgd=000000063e7c0003, p4d=000000063e7c0003, pud=000000063e7c0003, pmd=000000063e7b0003, pte=0000000000000000 Internal error: Oops: 96000007 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 5.13.0-rc4-00003-gc6e6e28f3f30-dirty #62 Hardware name: linux,dummy-virt (DT) pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO BTYPE=--) pc : kasan_check_range+0x90/0x1a0 lr : memcpy+0x88/0xf4 sp : ffff80001378fe20 ... Call trace: kasan_check_range+0x90/0x1a0 pcpu_page_first_chunk+0x3f0/0x568 setup_per_cpu_areas+0xb8/0x184 start_kernel+0x8c/0x328 The vm area used in vm_area_register_early() has no kasan shadow memory, Let's add a new kasan_populate_early_vm_area_shadow() function to populate the vm area shadow memory to fix the issue. [wangkefeng.wang@huawei.com: fix redefinition of 'kasan_populate_early_vm_area_shadow'] Link: https://lkml.kernel.org/r/20211011123211.3936196-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210910053354.26721-4-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Marco Elver <elver@google.com> [KASAN] Acked-by: Andrey Konovalov <andreyknvl@gmail.com> [KASAN] Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
Percpu embedded first chunk allocator is the firstly option, but it could fails on ARM64, eg, percpu: max_distance=0x5fcfdc640000 too large for vmalloc space 0x781fefff0000 percpu: max_distance=0x600000540000 too large for vmalloc space 0x7dffb7ff0000 percpu: max_distance=0x5fff9adb0000 too large for vmalloc space 0x5dffb7ff0000 then we could get WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838 and the system could not boot successfully. Let's implement page mapping percpu first chunk allocator as a fallback to the embedding allocator to increase the robustness of the system. Link: https://lkml.kernel.org/r/20210910053354.26721-3-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Marco Elver <elver@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
Percpu embedded first chunk allocator is the firstly option, but it could fail on ARM64, eg, percpu: max_distance=0x5fcfdc640000 too large for vmalloc space 0x781fefff0000 percpu: max_distance=0x600000540000 too large for vmalloc space 0x7dffb7ff0000 percpu: max_distance=0x5fff9adb0000 too large for vmalloc space 0x5dffb7ff0000 then we could get to WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838 and the system cannot boot successfully. Let's implement page mapping percpu first chunk allocator as a fallback to the embedding allocator to increase the robustness of the system. Also fix a crash when both NEED_PER_CPU_PAGE_FIRST_CHUNK and KASAN_VMALLOC enabled. Tested on ARM64 qemu with cmdline "percpu_alloc=page". This patch (of 3): There are some fixed locations in the vmalloc area be reserved in ARM(see iotable_init()) and ARM64(see map_kernel()), but for pcpu_page_first_chunk(), it calls vm_area_register_early() and choose VMALLOC_START as the start address of vmap area which could be conflicted with above address, then could trigger a BUG_ON in vm_area_add_early(). Let's choose a suit start address by traversing the vmlist. Link: https://lkml.kernel.org/r/20210910053354.26721-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210910053354.26721-2-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vasily Averin 提交于
Huge vmalloc allocation on heavy loaded node can lead to a global memory shortage. Task called vmalloc can have worst badness and be selected by OOM-killer, however taken fatal signal does not interrupt allocation cycle. Vmalloc repeat page allocaions again and again, exacerbating the crisis and consuming the memory freed up by another killed tasks. After a successful completion of the allocation procedure, a fatal signal will be processed and task will be destroyed finally. However it may not release the consumed memory, since the allocated object may have a lifetime unrelated to the completed task. In the worst case, this can lead to the host will panic due to "Out of memory and no killable processes..." This patch allows OOM-killer to break vmalloc cycle, makes OOM more effective and avoid host panic. It does not check oom condition directly, however, and breaks page allocation cycle when fatal signal was received. This may trigger some hidden problems, when caller does not handle vmalloc failures, or when rollaback after failed vmalloc calls own vmallocs inside. However all of these scenarios are incorrect: vmalloc does not guarantee successful allocation, it has never been called with __GFP_NOFAIL and threfore either should not be used for any rollbacks or should handle such errors correctly and not lead to critical failures. Link: https://lkml.kernel.org/r/83efc664-3a65-2adb-d7c4-2885784cf109@virtuozzo.comSigned-off-by: NVasily Averin <vvs@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-