hugetlb.c 129.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/sched/signal.h>
22
#include <linux/rmap.h>
23
#include <linux/string_helpers.h>
24 25
#include <linux/swap.h>
#include <linux/swapops.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include <linux/userfaultfd_k.h>
37
#include <linux/page_owner.h>
38
#include "internal.h"
L
Linus Torvalds 已提交
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55
static bool __initdata parsed_valid_hugepagesz = true;
56

57
/*
58 59
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
60
 */
61
DEFINE_SPINLOCK(hugetlb_lock);
62

63 64 65 66 67
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
68
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69

70 71 72
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

73 74 75 76 77 78 79
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
80 81 82 83 84 85
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
86
		kfree(spool);
87
	}
88 89
}

90 91
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
92 93 94
{
	struct hugepage_subpool *spool;

95
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 97 98 99 100
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
101 102 103 104 105 106 107 108 109
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
110 111 112 113 114 115 116 117 118 119 120 121

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

122 123 124 125 126 127 128 129 130
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 132
				      long delta)
{
133
	long ret = delta;
134 135

	if (!spool)
136
		return ret;
137 138

	spin_lock(&spool->lock);
139 140 141 142 143 144 145 146

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
147 148
	}

149 150
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
166 167 168
	return ret;
}

169 170 171 172 173 174 175
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 177
				       long delta)
{
178 179
	long ret = delta;

180
	if (!spool)
181
		return delta;
182 183

	spin_lock(&spool->lock);
184 185 186 187

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

188 189
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
204
	unlock_or_release_subpool(spool);
205 206

	return ret;
207 208 209 210 211 212 213 214 215
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
216
	return subpool_inode(file_inode(vma->vm_file));
217 218
}

219 220 221
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
222
 *
223 224 225 226 227 228 229 230 231 232 233 234 235 236
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
237 238 239 240 241 242 243
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

244 245
/*
 * Add the huge page range represented by [f, t) to the reserve
246 247 248 249 250 251 252 253
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
254 255 256
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
257
 */
258
static long region_add(struct resv_map *resv, long f, long t)
259
{
260
	struct list_head *head = &resv->regions;
261
	struct file_region *rg, *nrg, *trg;
262
	long add = 0;
263

264
	spin_lock(&resv->lock);
265 266 267 268 269
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
310 311 312 313 314
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
315 316 317 318
			list_del(&rg->link);
			kfree(rg);
		}
	}
319 320

	add += (nrg->from - f);		/* Added to beginning of region */
321
	nrg->from = f;
322
	add += t - nrg->to;		/* Added to end of region */
323
	nrg->to = t;
324

325 326
out_locked:
	resv->adds_in_progress--;
327
	spin_unlock(&resv->lock);
328 329
	VM_BUG_ON(add < 0);
	return add;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
345 346 347 348 349 350 351 352
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
353
 */
354
static long region_chg(struct resv_map *resv, long f, long t)
355
{
356
	struct list_head *head = &resv->regions;
357
	struct file_region *rg, *nrg = NULL;
358 359
	long chg = 0;

360 361
retry:
	spin_lock(&resv->lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 379
		if (!trg) {
			kfree(nrg);
380
			return -ENOMEM;
381
		}
382 383 384 385 386 387 388

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

389 390 391 392 393 394 395 396 397
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
398
		if (!nrg) {
399
			resv->adds_in_progress--;
400 401 402 403 404 405 406 407 408 409
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
410

411 412 413
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
414 415 416 417 418 419 420 421 422 423 424 425
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
426
			goto out;
427

L
Lucas De Marchi 已提交
428
		/* We overlap with this area, if it extends further than
429 430 431 432 433 434 435 436
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
437 438 439 440 441 442 443 444

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
445 446 447
	return chg;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

467
/*
468 469 470 471 472 473 474 475 476 477 478 479
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
480
 */
481
static long region_del(struct resv_map *resv, long f, long t)
482
{
483
	struct list_head *head = &resv->regions;
484
	struct file_region *rg, *trg;
485 486
	struct file_region *nrg = NULL;
	long del = 0;
487

488
retry:
489
	spin_lock(&resv->lock);
490
	list_for_each_entry_safe(rg, trg, head, link) {
491 492 493 494 495 496 497 498
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499
			continue;
500

501
		if (rg->from >= t)
502 503
			break;

504 505 506 507 508 509 510 511 512 513 514 515 516
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
538
			break;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
555
	}
556 557

	spin_unlock(&resv->lock);
558 559
	kfree(nrg);
	return del;
560 561
}

562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
571
void hugetlb_fix_reserve_counts(struct inode *inode)
572 573 574 575 576
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577
	if (rsv_adjust) {
578 579 580 581 582 583
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

584 585 586 587
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
588
static long region_count(struct resv_map *resv, long f, long t)
589
{
590
	struct list_head *head = &resv->regions;
591 592 593
	struct file_region *rg;
	long chg = 0;

594
	spin_lock(&resv->lock);
595 596
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
597 598
		long seg_from;
		long seg_to;
599 600 601 602 603 604 605 606 607 608 609

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
610
	spin_unlock(&resv->lock);
611 612 613 614

	return chg;
}

615 616 617 618
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
619 620
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
621
{
622 623
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
624 625
}

626 627 628 629 630
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
631
EXPORT_SYMBOL_GPL(linear_hugepage_index);
632

633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

646
	return 1UL << huge_page_shift(hstate);
647
}
648
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649

650 651 652 653 654 655 656 657 658 659 660 661 662
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

663 664 665 666 667 668 669
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
670
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671

672 673 674 675 676 677 678 679 680
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
681 682 683 684 685 686 687 688 689
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
690
 */
691 692 693 694 695 696 697 698 699 700 701
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

702
struct resv_map *resv_map_alloc(void)
703 704
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 706 707 708 709
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
710
		return NULL;
711
	}
712 713

	kref_init(&resv_map->refs);
714
	spin_lock_init(&resv_map->lock);
715 716
	INIT_LIST_HEAD(&resv_map->regions);

717 718 719 720 721 722
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

723 724 725
	return resv_map;
}

726
void resv_map_release(struct kref *ref)
727 728
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 730
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
731 732

	/* Clear out any active regions before we release the map. */
733
	region_del(resv_map, 0, LONG_MAX);
734 735 736 737 738 739 740 741 742

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

743 744 745
	kfree(resv_map);
}

746 747 748 749 750
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

751
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752
{
753
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 755 756 757 758 759 760
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
761 762
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
763
	}
764 765
}

766
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767
{
768 769
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770

771 772
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
773 774 775 776
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
777 778
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 780

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 782 783 784
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
785
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 787

	return (get_vma_private_data(vma) & flag) != 0;
788 789
}

790
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 792
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
793
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794
	if (!(vma->vm_flags & VM_MAYSHARE))
795 796 797 798
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
799
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800
{
801 802 803 804 805 806 807 808 809 810 811
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812
			return true;
813
		else
814
			return false;
815
	}
816 817

	/* Shared mappings always use reserves */
818 819 820 821 822 823 824 825 826 827 828 829 830
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
831 832 833 834 835

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
857

858
	return false;
859 860
}

861
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
862 863
{
	int nid = page_to_nid(page);
864
	list_move(&page->lru, &h->hugepage_freelists[nid]);
865 866
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
867 868
}

869
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 871 872
{
	struct page *page;

873
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874
		if (!PageHWPoison(page))
875 876 877 878 879 880
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
881
		return NULL;
882
	list_move(&page->lru, &h->hugepage_activelist);
883
	set_page_refcounted(page);
884 885 886 887 888
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

889 890
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
891
{
892 893 894 895 896
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	int node = -1;
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
914 915 916 917 918

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
919 920 921
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

922 923 924
	return NULL;
}

925 926 927
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
928
	if (hugepage_migration_supported(h))
929 930 931 932 933
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

934 935
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
936 937
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
938
{
939
	struct page *page;
940
	struct mempolicy *mpol;
941
	gfp_t gfp_mask;
942
	nodemask_t *nodemask;
943
	int nid;
L
Linus Torvalds 已提交
944

945 946 947 948 949
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
950
	if (!vma_has_reserves(vma, chg) &&
951
			h->free_huge_pages - h->resv_huge_pages == 0)
952
		goto err;
953

954
	/* If reserves cannot be used, ensure enough pages are in the pool */
955
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956
		goto err;
957

958 959
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960 961 962 963
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
964
	}
965

966
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
967
	return page;
968 969 970

err:
	return NULL;
L
Linus Torvalds 已提交
971 972
}

973 974 975 976 977 978 979 980 981
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
982
	nid = next_node_in(nid, *nodes_allowed);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1044
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045
static void destroy_compound_gigantic_page(struct page *page,
1046
					unsigned int order)
1047 1048 1049 1050 1051
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1052
	atomic_set(compound_mapcount_ptr(page), 0);
1053
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054
		clear_compound_head(p);
1055 1056 1057 1058 1059 1060 1061
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1062
static void free_gigantic_page(struct page *page, unsigned int order)
1063 1064 1065 1066 1067
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
1068
				unsigned long nr_pages, gfp_t gfp_mask)
1069 1070
{
	unsigned long end_pfn = start_pfn + nr_pages;
1071
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072
				  gfp_mask);
1073 1074
}

1075 1076
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1087 1088 1089
		if (page_zone(page) != z)
			return false;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1110 1111
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1112
{
1113
	unsigned int order = huge_page_order(h);
1114 1115
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
1116 1117 1118
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1119

1120
	zonelist = node_zonelist(nid, gfp_mask);
1121
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122
		spin_lock_irqsave(&zone->lock, flags);
1123

1124 1125 1126
		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127 1128 1129 1130 1131 1132 1133
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
1134 1135
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136 1137
				if (!ret)
					return pfn_to_page(pfn);
1138
				spin_lock_irqsave(&zone->lock, flags);
1139 1140 1141 1142
			}
			pfn += nr_pages;
		}

1143
		spin_unlock_irqrestore(&zone->lock, flags);
1144 1145 1146 1147 1148 1149
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151

1152
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153
static inline bool gigantic_page_supported(void) { return false; }
1154 1155
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask) { return NULL; }
1156
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157
static inline void destroy_compound_gigantic_page(struct page *page,
1158
						unsigned int order) { }
1159 1160
#endif

1161
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1162 1163
{
	int i;
1164

1165 1166
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1167

1168 1169 1170
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1171 1172
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1173 1174
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1175
	}
1176
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1178
	set_page_refcounted(page);
1179 1180 1181 1182 1183 1184
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1185 1186
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1245
void free_huge_page(struct page *page)
1246
{
1247 1248 1249 1250
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1251
	struct hstate *h = page_hstate(page);
1252
	int nid = page_to_nid(page);
1253 1254
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1255
	bool restore_reserve;
1256

1257
	set_page_private(page, 0);
1258
	page->mapping = NULL;
1259 1260
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1261
	restore_reserve = PagePrivate(page);
1262
	ClearPagePrivate(page);
1263

1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1272
	spin_lock(&hugetlb_lock);
1273
	clear_page_huge_active(page);
1274 1275
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1276 1277 1278
	if (restore_reserve)
		h->resv_huge_pages++;

1279 1280 1281 1282 1283
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1284 1285
		/* remove the page from active list */
		list_del(&page->lru);
1286 1287 1288
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1289
	} else {
1290
		arch_clear_hugepage_flags(page);
1291
		enqueue_huge_page(h, page);
1292
	}
1293 1294 1295
	spin_unlock(&hugetlb_lock);
}

1296
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297
{
1298
	INIT_LIST_HEAD(&page->lru);
1299
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300
	spin_lock(&hugetlb_lock);
1301
	set_hugetlb_cgroup(page, NULL);
1302 1303
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1304 1305 1306
	spin_unlock(&hugetlb_lock);
}

1307
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 1309 1310 1311 1312 1313 1314
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1315
	__ClearPageReserved(page);
1316
	__SetPageHead(page);
1317
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1331
		set_page_count(p, 0);
1332
		set_compound_head(p, page);
1333
	}
1334
	atomic_set(compound_mapcount_ptr(page), -1);
1335 1336
}

A
Andrew Morton 已提交
1337 1338 1339 1340 1341
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1342 1343 1344 1345 1346 1347
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1348
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349
}
1350 1351
EXPORT_SYMBOL_GPL(PageHuge);

1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1361
	return get_compound_page_dtor(page_head) == free_huge_page;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1381
static struct page *alloc_buddy_huge_page(struct hstate *h,
1382
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
L
Linus Torvalds 已提交
1383
{
1384
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1385
	struct page *page;
1386

1387 1388 1389 1390 1391 1392 1393 1394
	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395 1396 1397 1398

	return page;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
				nid, nmask);
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1423 1424 1425 1426
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1427
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 1429 1430
{
	struct page *page;
	int nr_nodes, node;
1431
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432 1433

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435
		if (page)
1436 1437 1438
			break;
	}

1439 1440
	if (!page)
		return 0;
1441

1442 1443 1444
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1445 1446
}

1447 1448 1449 1450 1451 1452
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1453 1454
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1455
{
1456
	int nr_nodes, node;
1457 1458
	int ret = 0;

1459
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460 1461 1462 1463
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1464 1465
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1466
			struct page *page =
1467
				list_entry(h->hugepage_freelists[node].next,
1468 1469 1470
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1471
			h->free_huge_pages_node[node]--;
1472 1473
			if (acct_surplus) {
				h->surplus_huge_pages--;
1474
				h->surplus_huge_pages_node[node]--;
1475
			}
1476 1477
			update_and_free_page(h, page);
			ret = 1;
1478
			break;
1479
		}
1480
	}
1481 1482 1483 1484

	return ret;
}

1485 1486
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1487 1488 1489
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1490
 */
1491
int dissolve_free_huge_page(struct page *page)
1492
{
1493 1494
	int rc = 0;

1495 1496
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1497 1498 1499
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1500 1501 1502 1503
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1504 1505 1506 1507 1508 1509 1510 1511
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1512
		list_del(&head->lru);
1513 1514
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1515
		h->max_huge_pages--;
1516
		update_and_free_page(h, head);
1517
	}
1518
out:
1519
	spin_unlock(&hugetlb_lock);
1520
	return rc;
1521 1522 1523 1524 1525
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1526 1527
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1528 1529
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1530
 */
1531
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 1533
{
	unsigned long pfn;
1534
	struct page *page;
1535
	int rc = 0;
1536

1537
	if (!hugepages_supported())
1538
		return rc;
1539

1540 1541 1542 1543 1544 1545 1546 1547
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1548 1549

	return rc;
1550 1551
}

1552 1553 1554
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1555
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556
		int nid, nodemask_t *nmask)
1557
{
1558
	struct page *page = NULL;
1559

1560
	if (hstate_is_gigantic(h))
1561 1562
		return NULL;

1563
	spin_lock(&hugetlb_lock);
1564 1565
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1566 1567
	spin_unlock(&hugetlb_lock);

1568
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569
	if (!page)
1570
		return NULL;
1571 1572

	spin_lock(&hugetlb_lock);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
		put_page(page);
		page = NULL;
	} else {
		h->surplus_huge_pages++;
1586
		h->nr_huge_pages_node[page_to_nid(page)]++;
1587
	}
1588 1589

out_unlock:
1590
	spin_unlock(&hugetlb_lock);
1591 1592 1593 1594

	return page;
}

1595
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596 1597 1598 1599 1600 1601 1602
		int nid, nodemask_t *nmask)
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1603
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1616 1617 1618
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1619
static
1620
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 1622
		struct vm_area_struct *vma, unsigned long addr)
{
1623 1624 1625 1626 1627 1628 1629
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631 1632 1633
	mpol_cond_put(mpol);

	return page;
1634 1635
}

1636
/* page migration callback function */
1637 1638
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1639
	gfp_t gfp_mask = htlb_alloc_mask(h);
1640
	struct page *page = NULL;
1641

1642 1643 1644
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1645
	spin_lock(&hugetlb_lock);
1646
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1647
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648 1649
	spin_unlock(&hugetlb_lock);

1650
	if (!page)
1651
		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652 1653 1654 1655

	return page;
}

1656
/* page migration callback function */
1657 1658
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1659
{
1660
	gfp_t gfp_mask = htlb_alloc_mask(h);
1661 1662 1663

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664 1665 1666 1667 1668 1669
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1670 1671 1672 1673
		}
	}
	spin_unlock(&hugetlb_lock);

1674
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
/* mempolicy aware migration callback */
struct page *alloc_huge_page_vma(struct vm_area_struct *vma, unsigned long address)
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	struct hstate *h;
	gfp_t gfp_mask;
	int node;

	h = hstate_vma(vma);
	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	page = alloc_huge_page_nodemask(h, node, nodemask);
	mpol_cond_put(mpol);

	return page;
}

1696
/*
L
Lucas De Marchi 已提交
1697
 * Increase the hugetlb pool such that it can accommodate a reservation
1698 1699
 * of size 'delta'.
 */
1700
static int gather_surplus_pages(struct hstate *h, int delta)
1701 1702 1703 1704 1705
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1706
	bool alloc_ok = true;
1707

1708
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1709
	if (needed <= 0) {
1710
		h->resv_huge_pages += delta;
1711
		return 0;
1712
	}
1713 1714 1715 1716 1717 1718 1719 1720

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1721
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1722
				NUMA_NO_NODE, NULL);
1723 1724 1725 1726
		if (!page) {
			alloc_ok = false;
			break;
		}
1727
		list_add(&page->lru, &surplus_list);
1728
		cond_resched();
1729
	}
1730
	allocated += i;
1731 1732 1733 1734 1735 1736

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1737 1738
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1749 1750
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1751
	 * needed to accommodate the reservation.  Add the appropriate number
1752
	 * of pages to the hugetlb pool and free the extras back to the buddy
1753 1754 1755
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1756 1757
	 */
	needed += allocated;
1758
	h->resv_huge_pages += delta;
1759
	ret = 0;
1760

1761
	/* Free the needed pages to the hugetlb pool */
1762
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1763 1764
		if ((--needed) < 0)
			break;
1765 1766 1767 1768 1769
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1770
		VM_BUG_ON_PAGE(page_count(page), page);
1771
		enqueue_huge_page(h, page);
1772
	}
1773
free:
1774
	spin_unlock(&hugetlb_lock);
1775 1776

	/* Free unnecessary surplus pages to the buddy allocator */
1777 1778
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1779
	spin_lock(&hugetlb_lock);
1780 1781 1782 1783 1784

	return ret;
}

/*
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1797
 */
1798 1799
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1800 1801 1802
{
	unsigned long nr_pages;

1803
	/* Cannot return gigantic pages currently */
1804
	if (hstate_is_gigantic(h))
1805
		goto out;
1806

1807 1808 1809 1810
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1811
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1812

1813 1814
	/*
	 * We want to release as many surplus pages as possible, spread
1815 1816 1817 1818 1819
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1820 1821 1822 1823
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1824 1825
	 */
	while (nr_pages--) {
1826 1827
		h->resv_huge_pages--;
		unused_resv_pages--;
1828
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1829
			goto out;
1830
		cond_resched_lock(&hugetlb_lock);
1831
	}
1832 1833 1834 1835

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1836 1837
}

1838

1839
/*
1840
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1841
 * are used by the huge page allocation routines to manage reservations.
1842 1843 1844 1845 1846 1847
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1848 1849 1850
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1851 1852 1853 1854 1855 1856
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1857 1858 1859 1860 1861
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1862
 */
1863 1864 1865
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1866
	VMA_END_RESV,
1867
	VMA_ADD_RESV,
1868
};
1869 1870
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1871
				enum vma_resv_mode mode)
1872
{
1873 1874
	struct resv_map *resv;
	pgoff_t idx;
1875
	long ret;
1876

1877 1878
	resv = vma_resv_map(vma);
	if (!resv)
1879
		return 1;
1880

1881
	idx = vma_hugecache_offset(h, vma, addr);
1882 1883
	switch (mode) {
	case VMA_NEEDS_RESV:
1884
		ret = region_chg(resv, idx, idx + 1);
1885 1886 1887 1888
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1889
	case VMA_END_RESV:
1890 1891 1892
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1893 1894 1895 1896 1897 1898 1899 1900
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1901 1902 1903
	default:
		BUG();
	}
1904

1905
	if (vma->vm_flags & VM_MAYSHARE)
1906
		return ret;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1926
	else
1927
		return ret < 0 ? ret : 0;
1928
}
1929 1930

static long vma_needs_reservation(struct hstate *h,
1931
			struct vm_area_struct *vma, unsigned long addr)
1932
{
1933
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1934
}
1935

1936 1937 1938
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1939 1940 1941
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1942
static void vma_end_reservation(struct hstate *h,
1943 1944
			struct vm_area_struct *vma, unsigned long addr)
{
1945
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1946 1947
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1998
struct page *alloc_huge_page(struct vm_area_struct *vma,
1999
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2000
{
2001
	struct hugepage_subpool *spool = subpool_vma(vma);
2002
	struct hstate *h = hstate_vma(vma);
2003
	struct page *page;
2004 2005
	long map_chg, map_commit;
	long gbl_chg;
2006 2007
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2008

2009
	idx = hstate_index(h);
2010
	/*
2011 2012 2013
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2014
	 */
2015 2016
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2017
		return ERR_PTR(-ENOMEM);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2029
			vma_end_reservation(h, vma, addr);
2030
			return ERR_PTR(-ENOSPC);
2031
		}
L
Linus Torvalds 已提交
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2045
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2046 2047 2048
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2049
	spin_lock(&hugetlb_lock);
2050 2051 2052 2053 2054 2055
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2056
	if (!page) {
2057
		spin_unlock(&hugetlb_lock);
2058
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2059 2060
		if (!page)
			goto out_uncharge_cgroup;
2061 2062 2063 2064
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2065 2066
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2067
		/* Fall through */
K
Ken Chen 已提交
2068
	}
2069 2070
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2071

2072
	set_page_private(page, (unsigned long)spool);
2073

2074 2075
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2090
	return page;
2091 2092 2093 2094

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2095
	if (map_chg || avoid_reserve)
2096
		hugepage_subpool_put_pages(spool, 1);
2097
	vma_end_reservation(h, vma, addr);
2098
	return ERR_PTR(-ENOSPC);
2099 2100
}

2101 2102 2103
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2104 2105
{
	struct huge_bootmem_page *m;
2106
	int nr_nodes, node;
2107

2108
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2109 2110
		void *addr;

2111 2112 2113
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2114 2115 2116 2117 2118 2119 2120
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2121
			goto found;
2122 2123 2124 2125 2126
		}
	}
	return 0;

found:
2127
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2128 2129 2130 2131 2132 2133
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2134 2135
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2136 2137 2138 2139 2140 2141 2142
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2143 2144 2145 2146 2147 2148 2149
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2150 2151 2152 2153
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2154 2155
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2156 2157 2158
#else
		page = virt_to_page(m);
#endif
2159
		WARN_ON(page_count(page) != 1);
2160
		prep_compound_huge_page(page, h->order);
2161
		WARN_ON(PageReserved(page));
2162
		prep_new_huge_page(h, page, page_to_nid(page));
2163 2164
		put_page(page); /* free it into the hugepage allocator */

2165 2166 2167 2168 2169 2170
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2171
		if (hstate_is_gigantic(h))
2172
			adjust_managed_page_count(page, 1 << h->order);
2173 2174 2175
	}
}

2176
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2177 2178
{
	unsigned long i;
2179

2180
	for (i = 0; i < h->max_huge_pages; ++i) {
2181
		if (hstate_is_gigantic(h)) {
2182 2183
			if (!alloc_bootmem_huge_page(h))
				break;
2184
		} else if (!alloc_pool_huge_page(h,
2185
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2186
			break;
2187
		cond_resched();
L
Linus Torvalds 已提交
2188
	}
2189 2190 2191
	if (i < h->max_huge_pages) {
		char buf[32];

2192
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 2194 2195 2196
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2197 2198 2199 2200 2201 2202 2203
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2204 2205 2206
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2207
		/* oversize hugepages were init'ed in early boot */
2208
		if (!hstate_is_gigantic(h))
2209
			hugetlb_hstate_alloc_pages(h);
2210
	}
2211
	VM_BUG_ON(minimum_order == UINT_MAX);
2212 2213 2214 2215 2216 2217 2218
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2219
		char buf[32];
2220 2221

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223
			buf, h->free_huge_pages);
2224 2225 2226
	}
}

L
Linus Torvalds 已提交
2227
#ifdef CONFIG_HIGHMEM
2228 2229
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2230
{
2231 2232
	int i;

2233
	if (hstate_is_gigantic(h))
2234 2235
		return;

2236
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2237
		struct page *page, *next;
2238 2239 2240
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2241
				return;
L
Linus Torvalds 已提交
2242 2243 2244
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2245
			update_and_free_page(h, page);
2246 2247
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2248 2249 2250 2251
		}
	}
}
#else
2252 2253
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2254 2255 2256 2257
{
}
#endif

2258 2259 2260 2261 2262
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2263 2264
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2265
{
2266
	int nr_nodes, node;
2267 2268 2269

	VM_BUG_ON(delta != -1 && delta != 1);

2270 2271 2272 2273
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2274
		}
2275 2276 2277 2278 2279
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2280
		}
2281 2282
	}
	return 0;
2283

2284 2285 2286 2287
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2288 2289
}

2290
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 2292
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2293
{
2294
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2295

2296
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297 2298
		return h->max_huge_pages;

2299 2300 2301 2302
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2303
	 *
2304
	 * We might race with alloc_surplus_huge_page() here and be unable
2305 2306 2307 2308
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2309
	 */
L
Linus Torvalds 已提交
2310
	spin_lock(&hugetlb_lock);
2311
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313 2314 2315
			break;
	}

2316
	while (count > persistent_huge_pages(h)) {
2317 2318 2319 2320 2321 2322
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2323 2324 2325 2326

		/* yield cpu to avoid soft lockup */
		cond_resched();

2327
		ret = alloc_pool_huge_page(h, nodes_allowed);
2328 2329 2330 2331
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2332 2333 2334
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2335 2336 2337 2338 2339 2340 2341 2342
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2343 2344 2345 2346
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2347
	 * alloc_surplus_huge_page() is checking the global counter,
2348 2349 2350
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2351
	 */
2352
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2353
	min_count = max(count, min_count);
2354
	try_to_free_low(h, min_count, nodes_allowed);
2355
	while (min_count < persistent_huge_pages(h)) {
2356
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2357
			break;
2358
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2359
	}
2360
	while (count < persistent_huge_pages(h)) {
2361
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2362 2363 2364
			break;
	}
out:
2365
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2366
	spin_unlock(&hugetlb_lock);
2367
	return ret;
L
Linus Torvalds 已提交
2368 2369
}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2380 2381 2382
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2383 2384
{
	int i;
2385

2386
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2387 2388 2389
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2390
			return &hstates[i];
2391 2392 2393
		}

	return kobj_to_node_hstate(kobj, nidp);
2394 2395
}

2396
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2397 2398
					struct kobj_attribute *attr, char *buf)
{
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2410
}
2411

2412 2413 2414
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2415 2416
{
	int err;
2417
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2418

2419
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2420 2421 2422 2423
		err = -EINVAL;
		goto out;
	}

2424 2425 2426 2427 2428 2429 2430
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2431
			nodes_allowed = &node_states[N_MEMORY];
2432 2433 2434 2435 2436 2437 2438 2439 2440
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2441
		nodes_allowed = &node_states[N_MEMORY];
2442

2443
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2444

2445
	if (nodes_allowed != &node_states[N_MEMORY])
2446 2447 2448
		NODEMASK_FREE(nodes_allowed);

	return len;
2449 2450 2451
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2471 2472 2473 2474 2475 2476 2477 2478 2479
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2480
	return nr_hugepages_store_common(false, kobj, buf, len);
2481 2482 2483
}
HSTATE_ATTR(nr_hugepages);

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2499
	return nr_hugepages_store_common(true, kobj, buf, len);
2500 2501 2502 2503 2504
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2505 2506 2507
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2508
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2509 2510
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2511

2512 2513 2514 2515 2516
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2517
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2518

2519
	if (hstate_is_gigantic(h))
2520 2521
		return -EINVAL;

2522
	err = kstrtoul(buf, 10, &input);
2523
	if (err)
2524
		return err;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2548 2549 2550 2551 2552 2553
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2554
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2555 2556 2557 2558 2559 2560 2561
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2573 2574 2575 2576 2577 2578 2579 2580 2581
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2582 2583 2584
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2585 2586 2587
	NULL,
};

2588
static const struct attribute_group hstate_attr_group = {
2589 2590 2591
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2592 2593
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2594
				    const struct attribute_group *hstate_attr_group)
2595 2596
{
	int retval;
2597
	int hi = hstate_index(h);
2598

2599 2600
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2601 2602
		return -ENOMEM;

2603
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2604
	if (retval)
2605
		kobject_put(hstate_kobjs[hi]);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2620 2621
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2622
		if (err)
2623
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2624 2625 2626
	}
}

2627 2628 2629 2630
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2631 2632 2633
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2634 2635 2636 2637 2638 2639
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2640
static struct node_hstate node_hstates[MAX_NUMNODES];
2641 2642

/*
2643
 * A subset of global hstate attributes for node devices
2644 2645 2646 2647 2648 2649 2650 2651
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2652
static const struct attribute_group per_node_hstate_attr_group = {
2653 2654 2655 2656
	.attrs = per_node_hstate_attrs,
};

/*
2657
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2680
 * Unregister hstate attributes from a single node device.
2681 2682
 * No-op if no hstate attributes attached.
 */
2683
static void hugetlb_unregister_node(struct node *node)
2684 2685
{
	struct hstate *h;
2686
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2687 2688

	if (!nhs->hugepages_kobj)
2689
		return;		/* no hstate attributes */
2690

2691 2692 2693 2694 2695
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2696
		}
2697
	}
2698 2699 2700 2701 2702 2703 2704

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2705
 * Register hstate attributes for a single node device.
2706 2707
 * No-op if attributes already registered.
 */
2708
static void hugetlb_register_node(struct node *node)
2709 2710
{
	struct hstate *h;
2711
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2712 2713 2714 2715 2716 2717
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2718
							&node->dev.kobj);
2719 2720 2721 2722 2723 2724 2725 2726
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2727 2728
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2729 2730 2731 2732 2733 2734 2735
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2736
 * hugetlb init time:  register hstate attributes for all registered node
2737 2738
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2739
 */
2740
static void __init hugetlb_register_all_nodes(void)
2741 2742 2743
{
	int nid;

2744
	for_each_node_state(nid, N_MEMORY) {
2745
		struct node *node = node_devices[nid];
2746
		if (node->dev.id == nid)
2747 2748 2749 2750
			hugetlb_register_node(node);
	}

	/*
2751
	 * Let the node device driver know we're here so it can
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2771 2772
static int __init hugetlb_init(void)
{
2773 2774
	int i;

2775
	if (!hugepages_supported())
2776
		return 0;
2777

2778
	if (!size_to_hstate(default_hstate_size)) {
2779 2780 2781 2782 2783
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2784 2785 2786
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2787
	}
2788
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2789 2790 2791 2792
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2793 2794

	hugetlb_init_hstates();
2795
	gather_bootmem_prealloc();
2796 2797 2798
	report_hugepages();

	hugetlb_sysfs_init();
2799
	hugetlb_register_all_nodes();
2800
	hugetlb_cgroup_file_init();
2801

2802 2803 2804 2805 2806
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2807
	hugetlb_fault_mutex_table =
2808
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2809
	BUG_ON(!hugetlb_fault_mutex_table);
2810 2811

	for (i = 0; i < num_fault_mutexes; i++)
2812
		mutex_init(&hugetlb_fault_mutex_table[i]);
2813 2814
	return 0;
}
2815
subsys_initcall(hugetlb_init);
2816 2817

/* Should be called on processing a hugepagesz=... option */
2818 2819 2820 2821 2822
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2823
void __init hugetlb_add_hstate(unsigned int order)
2824 2825
{
	struct hstate *h;
2826 2827
	unsigned long i;

2828
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2829
		pr_warn("hugepagesz= specified twice, ignoring\n");
2830 2831
		return;
	}
2832
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2833
	BUG_ON(order == 0);
2834
	h = &hstates[hugetlb_max_hstate++];
2835 2836
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2837 2838 2839 2840
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2841
	INIT_LIST_HEAD(&h->hugepage_activelist);
2842 2843
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2844 2845
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2846

2847 2848 2849
	parsed_hstate = h;
}

2850
static int __init hugetlb_nrpages_setup(char *s)
2851 2852
{
	unsigned long *mhp;
2853
	static unsigned long *last_mhp;
2854

2855 2856 2857 2858 2859 2860
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2861
	/*
2862
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2863 2864
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2865
	else if (!hugetlb_max_hstate)
2866 2867 2868 2869
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2870
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2871
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2872 2873 2874
		return 1;
	}

2875 2876 2877
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2878 2879 2880 2881 2882
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2883
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2884 2885 2886 2887
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2888 2889
	return 1;
}
2890 2891 2892 2893 2894 2895 2896 2897
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2911 2912 2913
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2914
{
2915
	struct hstate *h = &default_hstate;
2916
	unsigned long tmp = h->max_huge_pages;
2917
	int ret;
2918

2919
	if (!hugepages_supported())
2920
		return -EOPNOTSUPP;
2921

2922 2923
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2924 2925 2926
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2927

2928 2929 2930
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2931 2932
out:
	return ret;
L
Linus Torvalds 已提交
2933
}
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2952
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2953
			void __user *buffer,
2954 2955
			size_t *length, loff_t *ppos)
{
2956
	struct hstate *h = &default_hstate;
2957
	unsigned long tmp;
2958
	int ret;
2959

2960
	if (!hugepages_supported())
2961
		return -EOPNOTSUPP;
2962

2963
	tmp = h->nr_overcommit_huge_pages;
2964

2965
	if (write && hstate_is_gigantic(h))
2966 2967
		return -EINVAL;

2968 2969
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2970 2971 2972
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2973 2974 2975 2976 2977 2978

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2979 2980
out:
	return ret;
2981 2982
}

L
Linus Torvalds 已提交
2983 2984
#endif /* CONFIG_SYSCTL */

2985
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2986
{
2987 2988 2989
	struct hstate *h;
	unsigned long total = 0;

2990 2991
	if (!hugepages_supported())
		return;
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3013 3014 3015 3016
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3017
	struct hstate *h = &default_hstate;
3018 3019
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3020 3021
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3022 3023
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3024 3025 3026
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3027 3028
}

3029 3030 3031 3032 3033
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3034 3035 3036
	if (!hugepages_supported())
		return;

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3047 3048 3049 3050 3051 3052
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3053 3054 3055
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3056 3057 3058 3059 3060 3061
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3062 3063
}

3064
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3087
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3088 3089
			goto out;

3090 3091
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3092 3093 3094 3095 3096 3097
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3098
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3099 3100 3101 3102 3103 3104

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3105 3106
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3107
	struct resv_map *resv = vma_resv_map(vma);
3108 3109 3110 3111 3112

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3113
	 * has a reference to the reservation map it cannot disappear until
3114 3115 3116
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3117
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118
		kref_get(&resv->refs);
3119 3120
}

3121 3122
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3123
	struct hstate *h = hstate_vma(vma);
3124
	struct resv_map *resv = vma_resv_map(vma);
3125
	struct hugepage_subpool *spool = subpool_vma(vma);
3126
	unsigned long reserve, start, end;
3127
	long gbl_reserve;
3128

3129 3130
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3131

3132 3133
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3134

3135
	reserve = (end - start) - region_count(resv, start, end);
3136

3137 3138 3139
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3140 3141 3142 3143 3144 3145
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3146
	}
3147 3148
}

3149 3150 3151 3152 3153 3154 3155
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

L
Linus Torvalds 已提交
3156 3157 3158 3159 3160 3161
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3162
static int hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3163 3164
{
	BUG();
N
Nick Piggin 已提交
3165
	return 0;
L
Linus Torvalds 已提交
3166 3167
}

3168
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3169
	.fault = hugetlb_vm_op_fault,
3170
	.open = hugetlb_vm_op_open,
3171
	.close = hugetlb_vm_op_close,
3172
	.split = hugetlb_vm_op_split,
L
Linus Torvalds 已提交
3173 3174
};

3175 3176
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3177 3178 3179
{
	pte_t entry;

3180
	if (writable) {
3181 3182
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3183
	} else {
3184 3185
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3186 3187 3188
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3189
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3190 3191 3192 3193

	return entry;
}

3194 3195 3196 3197 3198
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3199
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201
		update_mmu_cache(vma, address, ptep);
3202 3203
}

3204
bool is_hugetlb_entry_migration(pte_t pte)
3205 3206 3207 3208
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3209
		return false;
3210 3211
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3212
		return true;
3213
	else
3214
		return false;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3229

D
David Gibson 已提交
3230 3231 3232 3233 3234
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3235
	unsigned long addr;
3236
	int cow;
3237 3238
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3239 3240 3241
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3242 3243

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3244

3245 3246 3247 3248 3249
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3250
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251
		spinlock_t *src_ptl, *dst_ptl;
3252
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3253 3254
		if (!src_pte)
			continue;
3255
		dst_pte = huge_pte_alloc(dst, addr, sz);
3256 3257 3258 3259
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3260 3261 3262 3263 3264

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3265 3266 3267
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3282 3283
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3284
			}
3285
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286
		} else {
3287
			if (cow) {
3288 3289 3290 3291 3292 3293 3294
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
				 * See Documentation/vm/mmu_notifier.txt
				 */
3295
				huge_ptep_set_wrprotect(src, addr, src_pte);
3296
			}
3297
			entry = huge_ptep_get(src_pte);
3298 3299
			ptepage = pte_page(entry);
			get_page(ptepage);
3300
			page_dup_rmap(ptepage, true);
3301
			set_huge_pte_at(dst, addr, dst_pte, entry);
3302
			hugetlb_count_add(pages_per_huge_page(h), dst);
3303
		}
3304 3305
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3306 3307
	}

3308 3309 3310 3311
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3312 3313
}

3314 3315 3316
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3317 3318 3319
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3320
	pte_t *ptep;
D
David Gibson 已提交
3321
	pte_t pte;
3322
	spinlock_t *ptl;
D
David Gibson 已提交
3323
	struct page *page;
3324 3325
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3326 3327
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3328

D
David Gibson 已提交
3329
	WARN_ON(!is_vm_hugetlb_page(vma));
3330 3331
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3332

3333 3334 3335 3336 3337
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3338
	tlb_start_vma(tlb, vma);
3339
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3340 3341
	address = start;
	for (; address < end; address += sz) {
3342
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3343
		if (!ptep)
3344 3345
			continue;

3346
		ptl = huge_pte_lock(h, mm, ptep);
3347 3348 3349 3350
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3351

3352
		pte = huge_ptep_get(ptep);
3353 3354 3355 3356
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3357 3358

		/*
3359 3360
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3361
		 */
3362
		if (unlikely(!pte_present(pte))) {
3363
			huge_pte_clear(mm, address, ptep, sz);
3364 3365
			spin_unlock(ptl);
			continue;
3366
		}
3367 3368

		page = pte_page(pte);
3369 3370 3371 3372 3373 3374
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3375 3376 3377 3378
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3379 3380 3381 3382 3383 3384 3385 3386
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3387
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3388
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3389
		if (huge_pte_dirty(pte))
3390
			set_page_dirty(page);
3391

3392
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3393
		page_remove_rmap(page, true);
3394

3395
		spin_unlock(ptl);
3396
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3397 3398 3399 3400 3401
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3402
	}
3403
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3404
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3405
}
D
David Gibson 已提交
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3419
	 * is to clear it before releasing the i_mmap_rwsem. This works
3420
	 * because in the context this is called, the VMA is about to be
3421
	 * destroyed and the i_mmap_rwsem is held.
3422 3423 3424 3425
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3426
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3427
			  unsigned long end, struct page *ref_page)
3428
{
3429 3430 3431 3432 3433
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3434
	tlb_gather_mmu(&tlb, mm, start, end);
3435 3436
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3437 3438
}

3439 3440 3441 3442 3443 3444
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3445 3446
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3447
{
3448
	struct hstate *h = hstate_vma(vma);
3449 3450 3451 3452 3453 3454 3455 3456
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3457
	address = address & huge_page_mask(h);
3458 3459
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3460
	mapping = vma->vm_file->f_mapping;
3461

3462 3463 3464 3465 3466
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3467
	i_mmap_lock_write(mapping);
3468
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3469 3470 3471 3472
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3473 3474 3475 3476 3477 3478 3479 3480
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3481 3482 3483 3484 3485 3486 3487 3488
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3489 3490
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3491
	}
3492
	i_mmap_unlock_write(mapping);
3493 3494
}

3495 3496
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3497 3498 3499
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3500
 */
3501
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3502 3503
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3504
{
3505
	pte_t pte;
3506
	struct hstate *h = hstate_vma(vma);
3507
	struct page *old_page, *new_page;
3508
	int ret = 0, outside_reserve = 0;
3509 3510
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3511

3512
	pte = huge_ptep_get(ptep);
3513 3514
	old_page = pte_page(pte);

3515
retry_avoidcopy:
3516 3517
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3518
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3519
		page_move_anon_rmap(old_page, vma);
3520
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3521
		return 0;
3522 3523
	}

3524 3525 3526 3527 3528 3529 3530 3531 3532
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3533
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3534 3535 3536
			old_page != pagecache_page)
		outside_reserve = 1;

3537
	get_page(old_page);
3538

3539 3540 3541 3542
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3543
	spin_unlock(ptl);
3544
	new_page = alloc_huge_page(vma, address, outside_reserve);
3545

3546
	if (IS_ERR(new_page)) {
3547 3548 3549 3550 3551 3552 3553 3554
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3555
			put_page(old_page);
3556
			BUG_ON(huge_pte_none(pte));
3557 3558 3559
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3560 3561
			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
					       huge_page_size(h));
3562 3563 3564 3565 3566 3567 3568 3569
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3570 3571
		}

3572 3573 3574
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3575 3576
	}

3577 3578 3579 3580
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3581
	if (unlikely(anon_vma_prepare(vma))) {
3582 3583
		ret = VM_FAULT_OOM;
		goto out_release_all;
3584
	}
3585

A
Andrea Arcangeli 已提交
3586 3587
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3588
	__SetPageUptodate(new_page);
3589
	set_page_huge_active(new_page);
3590

3591 3592 3593
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3594

3595
	/*
3596
	 * Retake the page table lock to check for racing updates
3597 3598
	 * before the page tables are altered
	 */
3599
	spin_lock(ptl);
3600 3601
	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
			       huge_page_size(h));
3602
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603 3604
		ClearPagePrivate(new_page);

3605
		/* Break COW */
3606
		huge_ptep_clear_flush(vma, address, ptep);
3607
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608 3609
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3610
		page_remove_rmap(old_page, true);
3611
		hugepage_add_new_anon_rmap(new_page, vma, address);
3612 3613 3614
		/* Make the old page be freed below */
		new_page = old_page;
	}
3615
	spin_unlock(ptl);
3616
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3617
out_release_all:
3618
	restore_reserve_on_error(h, vma, address, new_page);
3619
	put_page(new_page);
3620
out_release_old:
3621
	put_page(old_page);
3622

3623 3624
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3625 3626
}

3627
/* Return the pagecache page at a given address within a VMA */
3628 3629
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3630 3631
{
	struct address_space *mapping;
3632
	pgoff_t idx;
3633 3634

	mapping = vma->vm_file->f_mapping;
3635
	idx = vma_hugecache_offset(h, vma, address);
3636 3637 3638 3639

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3640 3641 3642 3643 3644
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3677
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678 3679
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3680
{
3681
	struct hstate *h = hstate_vma(vma);
3682
	int ret = VM_FAULT_SIGBUS;
3683
	int anon_rmap = 0;
A
Adam Litke 已提交
3684 3685
	unsigned long size;
	struct page *page;
3686
	pte_t new_pte;
3687
	spinlock_t *ptl;
A
Adam Litke 已提交
3688

3689 3690 3691
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3692
	 * COW. Warn that such a situation has occurred as it may not be obvious
3693 3694
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3695
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696
			   current->pid);
3697 3698 3699
		return ret;
	}

A
Adam Litke 已提交
3700 3701 3702 3703
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3704 3705 3706
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3707
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3708 3709
		if (idx >= size)
			goto out;
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3742
		page = alloc_huge_page(vma, address, 0);
3743
		if (IS_ERR(page)) {
3744 3745 3746 3747 3748
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3749 3750
			goto out;
		}
A
Andrea Arcangeli 已提交
3751
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3752
		__SetPageUptodate(page);
3753
		set_page_huge_active(page);
3754

3755
		if (vma->vm_flags & VM_MAYSHARE) {
3756
			int err = huge_add_to_page_cache(page, mapping, idx);
3757 3758 3759 3760 3761 3762
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3763
		} else {
3764
			lock_page(page);
3765 3766 3767 3768
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3769
			anon_rmap = 1;
3770
		}
3771
	} else {
3772 3773 3774 3775 3776 3777
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3778
			ret = VM_FAULT_HWPOISON |
3779
				VM_FAULT_SET_HINDEX(hstate_index(h));
3780 3781
			goto backout_unlocked;
		}
3782
	}
3783

3784 3785 3786 3787 3788 3789
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3790
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791 3792 3793 3794
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3795
		/* Just decrements count, does not deallocate */
3796
		vma_end_reservation(h, vma, address);
3797
	}
3798

3799
	ptl = huge_pte_lock(h, mm, ptep);
3800
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3801 3802 3803
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3804
	ret = 0;
3805
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3806 3807
		goto backout;

3808 3809
	if (anon_rmap) {
		ClearPagePrivate(page);
3810
		hugepage_add_new_anon_rmap(page, vma, address);
3811
	} else
3812
		page_dup_rmap(page, true);
3813 3814 3815 3816
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3817
	hugetlb_count_add(pages_per_huge_page(h), mm);
3818
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819
		/* Optimization, do the COW without a second fault */
3820
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3821 3822
	}

3823
	spin_unlock(ptl);
A
Adam Litke 已提交
3824 3825
	unlock_page(page);
out:
3826
	return ret;
A
Adam Litke 已提交
3827 3828

backout:
3829
	spin_unlock(ptl);
3830
backout_unlocked:
A
Adam Litke 已提交
3831
	unlock_page(page);
3832
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3833 3834
	put_page(page);
	goto out;
3835 3836
}

3837
#ifdef CONFIG_SMP
3838
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3863
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864 3865 3866 3867 3868 3869 3870 3871
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3872
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873
			unsigned long address, unsigned int flags)
3874
{
3875
	pte_t *ptep, entry;
3876
	spinlock_t *ptl;
3877
	int ret;
3878 3879
	u32 hash;
	pgoff_t idx;
3880
	struct page *page = NULL;
3881
	struct page *pagecache_page = NULL;
3882
	struct hstate *h = hstate_vma(vma);
3883
	struct address_space *mapping;
3884
	int need_wait_lock = 0;
3885

3886 3887
	address &= huge_page_mask(h);

3888
	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3889 3890
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3891
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3892
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3893 3894
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3895
			return VM_FAULT_HWPOISON_LARGE |
3896
				VM_FAULT_SET_HINDEX(hstate_index(h));
3897 3898 3899 3900
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3901 3902
	}

3903 3904 3905
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3906 3907 3908 3909 3910
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3911 3912
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3913

3914 3915
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3916
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3917
		goto out_mutex;
3918
	}
3919

N
Nick Piggin 已提交
3920
	ret = 0;
3921

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3932 3933 3934 3935 3936 3937 3938 3939
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3940
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3941 3942
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3943
			goto out_mutex;
3944
		}
3945
		/* Just decrements count, does not deallocate */
3946
		vma_end_reservation(h, vma, address);
3947

3948
		if (!(vma->vm_flags & VM_MAYSHARE))
3949 3950 3951 3952
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3953 3954 3955 3956 3957 3958
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3959 3960 3961 3962 3963 3964 3965
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3966 3967 3968 3969
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3970

3971
	get_page(page);
3972

3973
	if (flags & FAULT_FLAG_WRITE) {
3974
		if (!huge_pte_write(entry)) {
3975 3976
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3977
			goto out_put_page;
3978
		}
3979
		entry = huge_pte_mkdirty(entry);
3980 3981
	}
	entry = pte_mkyoung(entry);
3982 3983
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3984
		update_mmu_cache(vma, address, ptep);
3985 3986 3987 3988
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3989 3990
out_ptl:
	spin_unlock(ptl);
3991 3992 3993 3994 3995

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3996
out_mutex:
3997
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3998 3999 4000 4001 4002 4003 4004 4005 4006
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4007
	return ret;
4008 4009
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4021 4022 4023
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4024
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4039
						pages_per_huge_page(h), false);
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4061 4062 4063
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4064 4065 4066 4067
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4068 4069 4070 4071
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4072

4073 4074 4075 4076 4077 4078
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4079 4080 4081 4082 4083
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4084 4085 4086
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4101 4102 4103 4104
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4105 4106 4107 4108 4109 4110
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4127 4128
	if (vm_shared)
		unlock_page(page);
4129 4130 4131 4132 4133
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4134 4135
	if (vm_shared)
		unlock_page(page);
4136
out_release_nounlock:
4137 4138 4139 4140
	put_page(page);
	goto out;
}

4141 4142 4143
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4144
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4145
{
4146 4147
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4148
	unsigned long remainder = *nr_pages;
4149
	struct hstate *h = hstate_vma(vma);
4150
	int err = -EFAULT;
D
David Gibson 已提交
4151 4152

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4153
		pte_t *pte;
4154
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4155
		int absent;
A
Adam Litke 已提交
4156
		struct page *page;
D
David Gibson 已提交
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4167 4168
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4169
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4170
		 * first, for the page indexing below to work.
4171 4172
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4173
		 */
4174 4175
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4176 4177
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4178 4179 4180 4181
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4182 4183 4184 4185
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4186
		 */
H
Hugh Dickins 已提交
4187 4188
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4189 4190
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4191 4192 4193
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4194

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4206 4207
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4208
			int ret;
4209
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4210

4211 4212
			if (pte)
				spin_unlock(ptl);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4227
				err = vm_fault_to_errno(ret, flags);
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4247 4248
		}

4249
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4250
		page = pte_page(huge_ptep_get(pte));
4251
same_page:
4252
		if (pages) {
H
Hugh Dickins 已提交
4253
			pages[i] = mem_map_offset(page, pfn_offset);
4254
			get_page(pages[i]);
4255
		}
D
David Gibson 已提交
4256 4257 4258 4259 4260

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4261
		++pfn_offset;
D
David Gibson 已提交
4262 4263
		--remainder;
		++i;
4264
		if (vaddr < vma->vm_end && remainder &&
4265
				pfn_offset < pages_per_huge_page(h)) {
4266 4267 4268 4269 4270 4271
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4272
		spin_unlock(ptl);
D
David Gibson 已提交
4273
	}
4274
	*nr_pages = remainder;
4275 4276 4277 4278 4279
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4280 4281
	*position = vaddr;

4282
	return i ? i : err;
D
David Gibson 已提交
4283
}
4284

4285 4286 4287 4288 4289 4290 4291 4292
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4293
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4294 4295 4296 4297 4298 4299
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4300
	struct hstate *h = hstate_vma(vma);
4301
	unsigned long pages = 0;
4302 4303 4304 4305

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4306
	mmu_notifier_invalidate_range_start(mm, start, end);
4307
	i_mmap_lock_write(vma->vm_file->f_mapping);
4308
	for (; address < end; address += huge_page_size(h)) {
4309
		spinlock_t *ptl;
4310
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4311 4312
		if (!ptep)
			continue;
4313
		ptl = huge_pte_lock(h, mm, ptep);
4314 4315
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4316
			spin_unlock(ptl);
4317
			continue;
4318
		}
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4332 4333
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4334 4335 4336 4337 4338 4339
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4340
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4341
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4342
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4343
			set_huge_pte_at(mm, address, ptep, pte);
4344
			pages++;
4345
		}
4346
		spin_unlock(ptl);
4347
	}
4348
	/*
4349
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4350
	 * may have cleared our pud entry and done put_page on the page table:
4351
	 * once we release i_mmap_rwsem, another task can do the final put_page
4352 4353
	 * and that page table be reused and filled with junk.
	 */
4354
	flush_hugetlb_tlb_range(vma, start, end);
4355 4356 4357 4358 4359 4360
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
	 * See Documentation/vm/mmu_notifier.txt
	 */
4361
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4362
	mmu_notifier_invalidate_range_end(mm, start, end);
4363 4364

	return pages << h->order;
4365 4366
}

4367 4368
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4369
					struct vm_area_struct *vma,
4370
					vm_flags_t vm_flags)
4371
{
4372
	long ret, chg;
4373
	struct hstate *h = hstate_inode(inode);
4374
	struct hugepage_subpool *spool = subpool_inode(inode);
4375
	struct resv_map *resv_map;
4376
	long gbl_reserve;
4377

4378 4379 4380
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4381
	 * without using reserves
4382
	 */
4383
	if (vm_flags & VM_NORESERVE)
4384 4385
		return 0;

4386 4387 4388 4389 4390 4391
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4392
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4393
		resv_map = inode_resv_map(inode);
4394

4395
		chg = region_chg(resv_map, from, to);
4396 4397 4398

	} else {
		resv_map = resv_map_alloc();
4399 4400 4401
		if (!resv_map)
			return -ENOMEM;

4402
		chg = to - from;
4403

4404 4405 4406 4407
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4408 4409 4410 4411
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4412

4413 4414 4415 4416 4417 4418 4419
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4420 4421 4422
		ret = -ENOSPC;
		goto out_err;
	}
4423 4424

	/*
4425
	 * Check enough hugepages are available for the reservation.
4426
	 * Hand the pages back to the subpool if there are not
4427
	 */
4428
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4429
	if (ret < 0) {
4430 4431
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4432
		goto out_err;
K
Ken Chen 已提交
4433
	}
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4464
	return 0;
4465
out_err:
4466
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4467 4468 4469
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4470 4471
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4472
	return ret;
4473 4474
}

4475 4476
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4477
{
4478
	struct hstate *h = hstate_inode(inode);
4479
	struct resv_map *resv_map = inode_resv_map(inode);
4480
	long chg = 0;
4481
	struct hugepage_subpool *spool = subpool_inode(inode);
4482
	long gbl_reserve;
K
Ken Chen 已提交
4483

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4495
	spin_lock(&inode->i_lock);
4496
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4497 4498
	spin_unlock(&inode->i_lock);

4499 4500 4501 4502 4503 4504
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4505 4506

	return 0;
4507
}
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4520 4521
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4535
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4545 4546
		return true;
	return false;
4547 4548 4549 4550 4551 4552 4553
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4554
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4568
	spinlock_t *ptl;
4569 4570 4571 4572

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4573
	i_mmap_lock_write(mapping);
4574 4575 4576 4577 4578 4579
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4580 4581
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4592
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4593
	if (pud_none(*pud)) {
4594 4595
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4596
		mm_inc_nr_pmds(mm);
4597
	} else {
4598
		put_page(virt_to_page(spte));
4599
	}
4600
	spin_unlock(ptl);
4601 4602
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4603
	i_mmap_unlock_write(mapping);
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4614
 * called with page table lock held.
4615 4616 4617 4618 4619 4620 4621
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4622 4623
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4624 4625 4626 4627 4628 4629 4630

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4631
	mm_dec_nr_pmds(mm);
4632 4633 4634
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4635 4636 4637 4638 4639 4640
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4641 4642 4643 4644 4645

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4646
#define want_pmd_share()	(0)
4647 4648
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4649 4650 4651 4652 4653
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4654
	p4d_t *p4d;
4655 4656 4657 4658
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4659 4660 4661
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
4662
	pud = pud_alloc(mm, p4d, addr);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4674
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4675 4676 4677 4678

	return pte;
}

4679 4680 4681 4682 4683 4684 4685 4686 4687
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
4688 4689
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4690 4691
{
	pgd_t *pgd;
4692
	p4d_t *p4d;
4693
	pud_t *pud;
4694
	pmd_t *pmd;
4695 4696

	pgd = pgd_offset(mm, addr);
4697 4698 4699 4700 4701
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
4702

4703
	pud = pud_offset(p4d, addr);
4704
	if (sz != PUD_SIZE && pud_none(*pud))
4705
		return NULL;
4706 4707
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
4708
		return (pte_t *)pud;
4709

4710
	pmd = pmd_offset(pud, addr);
4711 4712 4713 4714 4715 4716 4717
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
4718 4719
}

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4733 4734 4735 4736 4737 4738 4739 4740
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4741
struct page * __weak
4742
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4743
		pmd_t *pmd, int flags)
4744
{
4745 4746
	struct page *page = NULL;
	spinlock_t *ptl;
4747
	pte_t pte;
4748 4749 4750 4751 4752 4753 4754 4755 4756
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4757 4758
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4759
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4760 4761 4762
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4763
		if (is_hugetlb_entry_migration(pte)) {
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4775 4776 4777
	return page;
}

4778
struct page * __weak
4779
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4780
		pud_t *pud, int flags)
4781
{
4782 4783
	if (flags & FOLL_GET)
		return NULL;
4784

4785
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4786 4787
}

4788 4789 4790 4791 4792 4793 4794 4795 4796
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4797 4798
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4799 4800
	bool ret = true;

4801
	VM_BUG_ON_PAGE(!PageHead(page), page);
4802
	spin_lock(&hugetlb_lock);
4803 4804 4805 4806 4807
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4808
	list_move_tail(&page->lru, list);
4809
unlock:
4810
	spin_unlock(&hugetlb_lock);
4811
	return ret;
4812 4813 4814 4815
}

void putback_active_hugepage(struct page *page)
{
4816
	VM_BUG_ON_PAGE(!PageHead(page), page);
4817
	spin_lock(&hugetlb_lock);
4818
	set_page_huge_active(page);
4819 4820 4821 4822
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}