hugetlb.c 156.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33

D
David Gibson 已提交
34
#include <asm/page.h>
35
#include <asm/pgalloc.h>
36
#include <asm/tlb.h>
D
David Gibson 已提交
37

38
#include <linux/io.h>
D
David Gibson 已提交
39
#include <linux/hugetlb.h>
40
#include <linux/hugetlb_cgroup.h>
41
#include <linux/node.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
L
Linus Torvalds 已提交
45

46
int hugetlb_max_hstate __read_mostly;
47 48
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
49

50
#ifdef CONFIG_CMA
51
static struct cma *hugetlb_cma[MAX_NUMNODES];
52 53
#endif
static unsigned long hugetlb_cma_size __initdata;
54

55 56 57 58 59
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
60

61 62
__initdata LIST_HEAD(huge_boot_pages);

63 64 65
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
66
static bool __initdata parsed_valid_hugepagesz = true;
67
static bool __initdata parsed_default_hugepagesz;
68

69
/*
70 71
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
72
 */
73
DEFINE_SPINLOCK(hugetlb_lock);
74

75 76 77 78 79
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
80
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81

82 83 84
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

85 86 87 88 89 90 91
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
92
	 * remain, give up any reservations based on minimum size and
93 94 95 96 97
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
98
		kfree(spool);
99
	}
100 101
}

102 103
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
104 105 106
{
	struct hugepage_subpool *spool;

107
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 109 110 111 112
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
113 114 115 116 117 118 119 120 121
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
122 123 124 125 126 127 128 129 130 131 132 133

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

134 135 136
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
137
 * request.  Otherwise, return the number of pages by which the
138 139
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
140
 * a subpool minimum size must be maintained.
141 142
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 144
				      long delta)
{
145
	long ret = delta;
146 147

	if (!spool)
148
		return ret;
149 150

	spin_lock(&spool->lock);
151 152 153 154 155 156 157 158

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
159 160
	}

161 162
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
178 179 180
	return ret;
}

181 182 183 184 185 186 187
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 189
				       long delta)
{
190 191
	long ret = delta;

192
	if (!spool)
193
		return delta;
194 195

	spin_lock(&spool->lock);
196 197 198 199

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

200 201
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
216
	unlock_or_release_subpool(spool);
217 218

	return ret;
219 220 221 222 223 224 225 226 227
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
228
	return subpool_inode(file_inode(vma->vm_file));
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	VM_BUG_ON(!nrg);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
	return rg && org &&
	       rg->reservation_counter == org->reservation_counter &&
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
		kfree(rg);

		coalesce_file_region(resv, prg);
		return;
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
		kfree(rg);

		coalesce_file_region(resv, nrg);
		return;
	}
}

M
Mina Almasry 已提交
329 330
/* Must be called with resv->lock held. Calling this with count_only == true
 * will count the number of pages to be added but will not modify the linked
331 332 333
 * list. If regions_needed != NULL and count_only == true, then regions_needed
 * will indicate the number of file_regions needed in the cache to carry out to
 * add the regions for this range.
M
Mina Almasry 已提交
334 335
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 337 338
				     struct hugetlb_cgroup *h_cg,
				     struct hstate *h, long *regions_needed,
				     bool count_only)
M
Mina Almasry 已提交
339
{
340
	long add = 0;
M
Mina Almasry 已提交
341
	struct list_head *head = &resv->regions;
342
	long last_accounted_offset = f;
M
Mina Almasry 已提交
343 344
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;

345 346
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
362

363 364 365
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
M
Mina Almasry 已提交
366 367 368
		if (rg->from > t)
			break;

369 370 371 372 373 374 375 376
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
		if (rg->from > last_accounted_offset) {
			add += rg->from - last_accounted_offset;
			if (!count_only) {
				nrg = get_file_region_entry_from_cache(
					resv, last_accounted_offset, rg->from);
377 378
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
								    resv, nrg);
379
				list_add(&nrg->link, rg->link.prev);
380
				coalesce_file_region(resv, nrg);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			} else if (regions_needed)
				*regions_needed += 1;
		}

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
	if (last_accounted_offset < t) {
		add += t - last_accounted_offset;
		if (!count_only) {
			nrg = get_file_region_entry_from_cache(
				resv, last_accounted_offset, t);
396
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397
			list_add(&nrg->link, rg->link.prev);
398
			coalesce_file_region(resv, nrg);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		} else if (regions_needed)
			*regions_needed += 1;
	}

	VM_BUG_ON(add < 0);
	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
		 * for all the existings adds_in_progress. We should only be
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
438
		 */
439 440 441 442 443 444 445 446
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
447 448
		}

449 450 451
		spin_lock(&resv->lock);

		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
M
Mina Almasry 已提交
452
			list_del(&rg->link);
453 454
			list_add(&rg->link, &resv->region_cache);
			resv->region_cache_count++;
M
Mina Almasry 已提交
455 456 457
		}
	}

458
	return 0;
M
Mina Almasry 已提交
459

460 461 462 463 464 465
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
466 467
}

468 469
/*
 * Add the huge page range represented by [f, t) to the reserve
470 471 472 473 474
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
475
 *
476 477 478 479
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
480
 * this operation and we were not able to allocate, it returns -ENOMEM.
481 482 483
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
484
 */
485
static long region_add(struct resv_map *resv, long f, long t,
486 487
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
488
{
489
	long add = 0, actual_regions_needed = 0;
490

491
	spin_lock(&resv->lock);
492 493 494
retry:

	/* Count how many regions are actually needed to execute this add. */
495 496
	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
				 true);
497

498
	/*
499 500 501 502 503 504 505
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
506
	 */
507 508 509 510 511 512 513 514
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
515

516 517 518 519
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
520

521
		goto retry;
522 523
	}

524
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525 526

	resv->adds_in_progress -= in_regions_needed;
527

528
	spin_unlock(&resv->lock);
529 530
	VM_BUG_ON(add < 0);
	return add;
531 532
}

533 534 535 536 537 538 539
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
540 541 542 543 544 545 546
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
547 548 549 550 551
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
552
 */
553 554
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
555 556 557
{
	long chg = 0;

558
	spin_lock(&resv->lock);
559

560
	/* Count how many hugepages in this range are NOT respresented. */
561 562
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
				       out_regions_needed, true);
563

564 565
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
566

567 568
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
569

570
	resv->adds_in_progress += *out_regions_needed;
571 572

	spin_unlock(&resv->lock);
573 574 575
	return chg;
}

576 577 578 579 580
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
581 582 583
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
584 585 586 587 588
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
589 590
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
591 592 593
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
594
	resv->adds_in_progress -= regions_needed;
595 596 597
	spin_unlock(&resv->lock);
}

598
/*
599 600 601 602 603 604 605 606 607 608 609 610
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
611
 */
612
static long region_del(struct resv_map *resv, long f, long t)
613
{
614
	struct list_head *head = &resv->regions;
615
	struct file_region *rg, *trg;
616 617
	struct file_region *nrg = NULL;
	long del = 0;
618

619
retry:
620
	spin_lock(&resv->lock);
621
	list_for_each_entry_safe(rg, trg, head, link) {
622 623 624 625 626 627 628 629
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630
			continue;
631

632
		if (rg->from >= t)
633 634
			break;

635 636 637 638 639 640 641 642 643 644 645 646 647
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
648

649 650 651 652 653 654 655 656 657 658 659 660 661
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
662 663 664

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

665 666 667 668 669
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

670 671 672
			hugetlb_cgroup_uncharge_file_region(
				resv, rg, nrg->to - nrg->from);

673 674
			list_add(&nrg->link, &rg->link);
			nrg = NULL;
675
			break;
676 677 678 679
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
680 681
			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - rg->from);
682 683 684 685 686 687 688 689
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
690 691 692

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    t - rg->from);
693 694 695
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
696 697 698

			hugetlb_cgroup_uncharge_file_region(resv, rg,
							    rg->to - f);
699
		}
700
	}
701 702

	spin_unlock(&resv->lock);
703 704
	kfree(nrg);
	return del;
705 706
}

707 708 709 710 711 712 713 714 715
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
716
void hugetlb_fix_reserve_counts(struct inode *inode)
717 718 719 720 721
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722
	if (rsv_adjust) {
723 724 725 726 727 728
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

729 730 731 732
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
733
static long region_count(struct resv_map *resv, long f, long t)
734
{
735
	struct list_head *head = &resv->regions;
736 737 738
	struct file_region *rg;
	long chg = 0;

739
	spin_lock(&resv->lock);
740 741
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
742 743
		long seg_from;
		long seg_to;
744 745 746 747 748 749 750 751 752 753 754

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
755
	spin_unlock(&resv->lock);
756 757 758 759

	return chg;
}

760 761 762 763
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
764 765
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
766
{
767 768
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
769 770
}

771 772 773 774 775
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
776
EXPORT_SYMBOL_GPL(linear_hugepage_index);
777

778 779 780 781 782 783
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
784 785 786
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
787
}
788
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789

790 791 792
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
793 794
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
795
 */
796
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797 798 799 800
{
	return vma_kernel_pagesize(vma);
}

801 802 803 804 805 806 807
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
808
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809

810 811 812 813 814 815 816 817 818
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
819 820 821 822 823 824 825 826 827
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
828
 */
829 830 831 832 833 834 835 836 837 838 839
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

859
struct resv_map *resv_map_alloc(void)
860 861
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 863 864 865 866
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
867
		return NULL;
868
	}
869 870

	kref_init(&resv_map->refs);
871
	spin_lock_init(&resv_map->lock);
872 873
	INIT_LIST_HEAD(&resv_map->regions);

874
	resv_map->adds_in_progress = 0;
875 876 877 878 879 880 881
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882 883 884 885 886

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

887 888 889
	return resv_map;
}

890
void resv_map_release(struct kref *ref)
891 892
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 894
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
895 896

	/* Clear out any active regions before we release the map. */
897
	region_del(resv_map, 0, LONG_MAX);
898 899 900 901 902 903 904 905 906

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

907 908 909
	kfree(resv_map);
}

910 911
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
912 913 914 915 916 917 918 919 920
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
921 922
}

923
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924
{
925
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 927 928 929 930 931 932
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
933 934
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
935
	}
936 937
}

938
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939
{
940 941
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942

943 944
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
945 946 947 948
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
949 950
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951 952

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953 954 955 956
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
957
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 959

	return (get_vma_private_data(vma) & flag) != 0;
960 961
}

962
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 964
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
965
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966
	if (!(vma->vm_flags & VM_MAYSHARE))
967 968 969 970
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
971
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972
{
973 974 975 976 977 978 979 980 981 982 983
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984
			return true;
985
		else
986
			return false;
987
	}
988 989

	/* Shared mappings always use reserves */
990 991 992 993 994
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
995
		 * fallocate.  In this case, there really are no reserves to
996 997 998 999 1000 1001 1002
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1003 1004 1005 1006 1007

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1029

1030
	return false;
1031 1032
}

1033
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1034 1035
{
	int nid = page_to_nid(page);
1036
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 1038
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
1039 1040
}

1041
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042 1043
{
	struct page *page;
1044 1045 1046 1047 1048
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
		if (nocma && is_migrate_cma_page(page))
			continue;
1049

1050
		if (!PageHWPoison(page))
1051
			break;
1052 1053
	}

1054 1055 1056 1057 1058
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
1059
		return NULL;
1060
	list_move(&page->lru, &h->hugepage_activelist);
1061
	set_page_refcounted(page);
1062 1063 1064 1065 1066
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

1067 1068
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1069
{
1070 1071 1072 1073
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1074
	int node = NUMA_NO_NODE;
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1092 1093 1094 1095 1096

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1097 1098 1099
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1100 1101 1102
	return NULL;
}

1103 1104
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1105 1106
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1107
{
1108
	struct page *page;
1109
	struct mempolicy *mpol;
1110
	gfp_t gfp_mask;
1111
	nodemask_t *nodemask;
1112
	int nid;
L
Linus Torvalds 已提交
1113

1114 1115 1116 1117 1118
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1119
	if (!vma_has_reserves(vma, chg) &&
1120
			h->free_huge_pages - h->resv_huge_pages == 0)
1121
		goto err;
1122

1123
	/* If reserves cannot be used, ensure enough pages are in the pool */
1124
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125
		goto err;
1126

1127 1128
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 1130 1131 1132
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1133
	}
1134

1135
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1136
	return page;
1137 1138 1139

err:
	return NULL;
L
Linus Torvalds 已提交
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1151
	nid = next_node_in(nid, *nodes_allowed);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1213
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214
static void destroy_compound_gigantic_page(struct page *page,
1215
					unsigned int order)
1216 1217 1218 1219 1220
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1221
	atomic_set(compound_mapcount_ptr(page), 0);
1222 1223 1224
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);

1225
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226
		clear_compound_head(p);
1227 1228 1229 1230 1231 1232 1233
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1234
static void free_gigantic_page(struct page *page, unsigned int order)
1235
{
1236 1237 1238 1239
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1240 1241
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242
		return;
1243
#endif
1244

1245 1246 1247
	free_contig_range(page_to_pfn(page), 1 << order);
}

1248
#ifdef CONFIG_CONTIG_ALLOC
1249 1250
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1251
{
1252
	unsigned long nr_pages = 1UL << huge_page_order(h);
1253

1254 1255
#ifdef CONFIG_CMA
	{
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		struct page *page;
		int node;

		for_each_node_mask(node, *nodemask) {
			if (!hugetlb_cma[node])
				continue;

			page = cma_alloc(hugetlb_cma[node], nr_pages,
					 huge_page_order(h), true);
			if (page)
				return page;
		}
	}
1269
#endif
1270

1271
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 1273 1274
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 1277 1278 1279 1280 1281 1282
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1283

1284
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 1287 1288 1289
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1290
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291
static inline void destroy_compound_gigantic_page(struct page *page,
1292
						unsigned int order) { }
1293 1294
#endif

1295
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1296 1297
{
	int i;
1298

1299
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300
		return;
1301

1302 1303 1304
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1305 1306
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1307 1308
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1309
	}
1310
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1313
	set_page_refcounted(page);
1314
	if (hstate_is_gigantic(h)) {
1315 1316 1317 1318 1319
		/*
		 * Temporarily drop the hugetlb_lock, because
		 * we might block in free_gigantic_page().
		 */
		spin_unlock(&hugetlb_lock);
1320 1321
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
1322
		spin_lock(&hugetlb_lock);
1323 1324 1325
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1386
static void __free_huge_page(struct page *page)
1387
{
1388 1389 1390 1391
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1392
	struct hstate *h = page_hstate(page);
1393
	int nid = page_to_nid(page);
1394 1395
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1396
	bool restore_reserve;
1397

1398 1399
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1400 1401 1402

	set_page_private(page, 0);
	page->mapping = NULL;
1403
	restore_reserve = PagePrivate(page);
1404
	ClearPagePrivate(page);
1405

1406
	/*
1407 1408 1409 1410 1411 1412
	 * If PagePrivate() was set on page, page allocation consumed a
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
	 * remove the reserved page from the subpool.
1413
	 */
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1424

1425
	spin_lock(&hugetlb_lock);
1426
	clear_page_huge_active(page);
1427 1428
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1429 1430
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1431 1432 1433
	if (restore_reserve)
		h->resv_huge_pages++;

1434 1435 1436 1437 1438
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1439 1440
		/* remove the page from active list */
		list_del(&page->lru);
1441 1442 1443
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1444
	} else {
1445
		arch_clear_hugepage_flags(page);
1446
		enqueue_huge_page(h, page);
1447
	}
1448 1449 1450
	spin_unlock(&hugetlb_lock);
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/*
 * As free_huge_page() can be called from a non-task context, we have
 * to defer the actual freeing in a workqueue to prevent potential
 * hugetlb_lock deadlock.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 * be freed and frees them one-by-one. As the page->mapping pointer is
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 * llist_node structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;
	struct page *page;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		__free_huge_page(page);
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

void free_huge_page(struct page *page)
{
	/*
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
	 */
	if (!in_task()) {
		/*
		 * Only call schedule_work() if hpage_freelist is previously
		 * empty. Otherwise, schedule_work() had been called but the
		 * workfn hasn't retrieved the list yet.
		 */
		if (llist_add((struct llist_node *)&page->mapping,
			      &hpage_freelist))
			schedule_work(&free_hpage_work);
		return;
	}

	__free_huge_page(page);
}

1499
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500
{
1501
	INIT_LIST_HEAD(&page->lru);
1502
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503
	spin_lock(&hugetlb_lock);
1504
	set_hugetlb_cgroup(page, NULL);
1505
	set_hugetlb_cgroup_rsvd(page, NULL);
1506 1507
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1508 1509 1510
	spin_unlock(&hugetlb_lock);
}

1511
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 1513 1514 1515 1516 1517 1518
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1519
	__ClearPageReserved(page);
1520
	__SetPageHead(page);
1521
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522 1523 1524 1525
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1526
		 * too.  Otherwise drivers using get_user_pages() to access tail
1527 1528 1529 1530 1531 1532 1533 1534
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1535
		set_page_count(p, 0);
1536
		set_compound_head(p, page);
1537
	}
1538
	atomic_set(compound_mapcount_ptr(page), -1);
1539 1540 1541

	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
1542 1543
}

A
Andrew Morton 已提交
1544 1545 1546 1547 1548
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1549 1550 1551 1552 1553 1554
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1555
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556
}
1557 1558
EXPORT_SYMBOL_GPL(PageHuge);

1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1568
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Find address_space associated with hugetlbfs page.
 * Upon entry page is locked and page 'was' mapped although mapped state
 * could change.  If necessary, use anon_vma to find vma and associated
 * address space.  The returned mapping may be stale, but it can not be
 * invalid as page lock (which is held) is required to destroy mapping.
 */
static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
{
	struct anon_vma *anon_vma;
	pgoff_t pgoff_start, pgoff_end;
	struct anon_vma_chain *avc;
	struct address_space *mapping = page_mapping(hpage);

	/* Simple file based mapping */
	if (mapping)
		return mapping;

	/*
	 * Even anonymous hugetlbfs mappings are associated with an
	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
	 * code).  Find a vma associated with the anonymous vma, and
	 * use the file pointer to get address_space.
	 */
	anon_vma = page_lock_anon_vma_read(hpage);
	if (!anon_vma)
		return mapping;  /* NULL */

	/* Use first found vma */
	pgoff_start = page_to_pgoff(hpage);
1601
	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
					pgoff_start, pgoff_end) {
		struct vm_area_struct *vma = avc->vma;

		mapping = vma->vm_file->f_mapping;
		break;
	}

	anon_vma_unlock_read(anon_vma);
	return mapping;
}

/*
 * Find and lock address space (mapping) in write mode.
 *
 * Upon entry, the page is locked which allows us to find the mapping
 * even in the case of an anon page.  However, locking order dictates
 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
 * specific.  So, we first try to lock the sema while still holding the
 * page lock.  If this works, great!  If not, then we need to drop the
 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
 * course, need to revalidate state along the way.
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
	struct address_space *mapping, *mapping2;

	mapping = _get_hugetlb_page_mapping(hpage);
retry:
	if (!mapping)
		return mapping;

	/*
	 * If no contention, take lock and return
	 */
	if (i_mmap_trylock_write(mapping))
		return mapping;

	/*
	 * Must drop page lock and wait on mapping sema.
	 * Note:  Once page lock is dropped, mapping could become invalid.
	 * As a hack, increase map count until we lock page again.
	 */
	atomic_inc(&hpage->_mapcount);
	unlock_page(hpage);
	i_mmap_lock_write(mapping);
	lock_page(hpage);
	atomic_add_negative(-1, &hpage->_mapcount);

	/* verify page is still mapped */
	if (!page_mapped(hpage)) {
		i_mmap_unlock_write(mapping);
		return NULL;
	}

	/*
	 * Get address space again and verify it is the same one
	 * we locked.  If not, drop lock and retry.
	 */
	mapping2 = _get_hugetlb_page_mapping(hpage);
	if (mapping2 != mapping) {
		i_mmap_unlock_write(mapping);
		mapping = mapping2;
		goto retry;
	}

	return mapping;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1688
static struct page *alloc_buddy_huge_page(struct hstate *h,
1689 1690
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1691
{
1692
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1693
	struct page *page;
1694
	bool alloc_try_hard = true;
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1708 1709 1710 1711 1712 1713 1714
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1732 1733 1734
	return page;
}

1735 1736 1737 1738 1739
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1740 1741
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1742 1743 1744 1745 1746 1747 1748
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1749
				nid, nmask, node_alloc_noretry);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1760 1761 1762 1763
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1764 1765
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1766 1767 1768
{
	struct page *page;
	int nr_nodes, node;
1769
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1770 1771

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1772 1773
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1774
		if (page)
1775 1776 1777
			break;
	}

1778 1779
	if (!page)
		return 0;
1780

1781 1782 1783
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1784 1785
}

1786 1787 1788 1789 1790 1791
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1792 1793
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1794
{
1795
	int nr_nodes, node;
1796 1797
	int ret = 0;

1798
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799 1800 1801 1802
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1803 1804
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1805
			struct page *page =
1806
				list_entry(h->hugepage_freelists[node].next,
1807 1808 1809
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1810
			h->free_huge_pages_node[node]--;
1811 1812
			if (acct_surplus) {
				h->surplus_huge_pages--;
1813
				h->surplus_huge_pages_node[node]--;
1814
			}
1815 1816
			update_and_free_page(h, page);
			ret = 1;
1817
			break;
1818
		}
1819
	}
1820 1821 1822 1823

	return ret;
}

1824 1825
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1826 1827 1828 1829 1830 1831 1832
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 *          (allocated or reserved.)
 *       0: successfully dissolved free hugepages or the page is not a
 *          hugepage (considered as already dissolved)
1833
 */
1834
int dissolve_free_huge_page(struct page *page)
1835
{
1836
	int rc = -EBUSY;
1837

1838 1839 1840 1841
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

1842
	spin_lock(&hugetlb_lock);
1843 1844 1845 1846 1847 1848
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
1849 1850 1851
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1852
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1853
			goto out;
1854 1855 1856 1857 1858 1859 1860 1861
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1862
		list_del(&head->lru);
1863 1864
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1865
		h->max_huge_pages--;
1866
		update_and_free_page(h, head);
1867
		rc = 0;
1868
	}
1869
out:
1870
	spin_unlock(&hugetlb_lock);
1871
	return rc;
1872 1873 1874 1875 1876
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1877 1878
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1879 1880
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1881
 */
1882
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1883 1884
{
	unsigned long pfn;
1885
	struct page *page;
1886
	int rc = 0;
1887

1888
	if (!hugepages_supported())
1889
		return rc;
1890

1891 1892
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
1893 1894 1895
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
1896
	}
1897 1898

	return rc;
1899 1900
}

1901 1902 1903
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1904
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1905
		int nid, nodemask_t *nmask)
1906
{
1907
	struct page *page = NULL;
1908

1909
	if (hstate_is_gigantic(h))
1910 1911
		return NULL;

1912
	spin_lock(&hugetlb_lock);
1913 1914
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1915 1916
	spin_unlock(&hugetlb_lock);

1917
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1918
	if (!page)
1919
		return NULL;
1920 1921

	spin_lock(&hugetlb_lock);
1922 1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
1931
		spin_unlock(&hugetlb_lock);
1932
		put_page(page);
1933
		return NULL;
1934 1935
	} else {
		h->surplus_huge_pages++;
1936
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1937
	}
1938 1939

out_unlock:
1940
	spin_unlock(&hugetlb_lock);
1941 1942 1943 1944

	return page;
}

1945
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1946
				     int nid, nodemask_t *nmask)
1947 1948 1949 1950 1951 1952
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1953
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1966 1967 1968
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1969
static
1970
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1971 1972
		struct vm_area_struct *vma, unsigned long addr)
{
1973 1974 1975 1976 1977 1978 1979
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1980
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1981 1982 1983
	mpol_cond_put(mpol);

	return page;
1984 1985
}

1986
/* page migration callback function */
1987
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1988
		nodemask_t *nmask, gfp_t gfp_mask)
1989 1990 1991
{
	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1992 1993 1994 1995 1996 1997
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1998 1999 2000 2001
		}
	}
	spin_unlock(&hugetlb_lock);

2002
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2003 2004
}

2005
/* mempolicy aware migration callback */
2006 2007
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2017
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2018 2019 2020 2021 2022
	mpol_cond_put(mpol);

	return page;
}

2023
/*
L
Lucas De Marchi 已提交
2024
 * Increase the hugetlb pool such that it can accommodate a reservation
2025 2026
 * of size 'delta'.
 */
2027
static int gather_surplus_pages(struct hstate *h, int delta)
2028
	__must_hold(&hugetlb_lock)
2029 2030 2031 2032 2033
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
2034
	bool alloc_ok = true;
2035

2036
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2037
	if (needed <= 0) {
2038
		h->resv_huge_pages += delta;
2039
		return 0;
2040
	}
2041 2042 2043 2044 2045 2046 2047 2048

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
2049
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2050
				NUMA_NO_NODE, NULL);
2051 2052 2053 2054
		if (!page) {
			alloc_ok = false;
			break;
		}
2055
		list_add(&page->lru, &surplus_list);
2056
		cond_resched();
2057
	}
2058
	allocated += i;
2059 2060 2061 2062 2063 2064

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
2065 2066
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2077 2078
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2079
	 * needed to accommodate the reservation.  Add the appropriate number
2080
	 * of pages to the hugetlb pool and free the extras back to the buddy
2081 2082 2083
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2084 2085
	 */
	needed += allocated;
2086
	h->resv_huge_pages += delta;
2087
	ret = 0;
2088

2089
	/* Free the needed pages to the hugetlb pool */
2090
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2091 2092
		if ((--needed) < 0)
			break;
2093 2094 2095 2096 2097
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
2098
		VM_BUG_ON_PAGE(page_count(page), page);
2099
		enqueue_huge_page(h, page);
2100
	}
2101
free:
2102
	spin_unlock(&hugetlb_lock);
2103 2104

	/* Free unnecessary surplus pages to the buddy allocator */
2105 2106
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
2107
	spin_lock(&hugetlb_lock);
2108 2109 2110 2111 2112

	return ret;
}

/*
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
2125
 */
2126 2127
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2128 2129 2130
{
	unsigned long nr_pages;

2131
	/* Cannot return gigantic pages currently */
2132
	if (hstate_is_gigantic(h))
2133
		goto out;
2134

2135 2136 2137 2138
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2139
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2140

2141 2142
	/*
	 * We want to release as many surplus pages as possible, spread
2143 2144 2145
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2146
	 * free_pool_huge_page() will balance the freed pages across the
2147
	 * on-line nodes with memory and will handle the hstate accounting.
2148 2149 2150 2151
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
2152 2153
	 */
	while (nr_pages--) {
2154 2155
		h->resv_huge_pages--;
		unused_resv_pages--;
2156
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2157
			goto out;
2158
		cond_resched_lock(&hugetlb_lock);
2159
	}
2160 2161 2162 2163

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2164 2165
}

2166

2167
/*
2168
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169
 * are used by the huge page allocation routines to manage reservations.
2170 2171 2172 2173 2174 2175
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2176 2177 2178
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2179 2180 2181 2182 2183 2184
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2185 2186 2187 2188 2189
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2190
 */
2191 2192 2193
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2194
	VMA_END_RESV,
2195
	VMA_ADD_RESV,
2196
};
2197 2198
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2199
				enum vma_resv_mode mode)
2200
{
2201 2202
	struct resv_map *resv;
	pgoff_t idx;
2203
	long ret;
2204
	long dummy_out_regions_needed;
2205

2206 2207
	resv = vma_resv_map(vma);
	if (!resv)
2208
		return 1;
2209

2210
	idx = vma_hugecache_offset(h, vma, addr);
2211 2212
	switch (mode) {
	case VMA_NEEDS_RESV:
2213 2214 2215 2216 2217 2218
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2219 2220
		break;
	case VMA_COMMIT_RESV:
2221
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2222 2223
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2224
		break;
2225
	case VMA_END_RESV:
2226
		region_abort(resv, idx, idx + 1, 1);
2227 2228
		ret = 0;
		break;
2229
	case VMA_ADD_RESV:
2230
		if (vma->vm_flags & VM_MAYSHARE) {
2231
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2232 2233 2234 2235
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2236 2237 2238
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2239 2240 2241
	default:
		BUG();
	}
2242

2243
	if (vma->vm_flags & VM_MAYSHARE)
2244
		return ret;
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
2264
	else
2265
		return ret < 0 ? ret : 0;
2266
}
2267 2268

static long vma_needs_reservation(struct hstate *h,
2269
			struct vm_area_struct *vma, unsigned long addr)
2270
{
2271
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2272
}
2273

2274 2275 2276
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2277 2278 2279
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2280
static void vma_end_reservation(struct hstate *h,
2281 2282
			struct vm_area_struct *vma, unsigned long addr)
{
2283
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2284 2285
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2336
struct page *alloc_huge_page(struct vm_area_struct *vma,
2337
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2338
{
2339
	struct hugepage_subpool *spool = subpool_vma(vma);
2340
	struct hstate *h = hstate_vma(vma);
2341
	struct page *page;
2342 2343
	long map_chg, map_commit;
	long gbl_chg;
2344 2345
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2346
	bool deferred_reserve;
2347

2348
	idx = hstate_index(h);
2349
	/*
2350 2351 2352
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2353
	 */
2354 2355
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2356
		return ERR_PTR(-ENOMEM);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2368
			vma_end_reservation(h, vma, addr);
2369
			return ERR_PTR(-ENOSPC);
2370
		}
L
Linus Torvalds 已提交
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	/* If this allocation is not consuming a reservation, charge it now.
	 */
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2394
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2395
	if (ret)
2396
		goto out_uncharge_cgroup_reservation;
2397

L
Linus Torvalds 已提交
2398
	spin_lock(&hugetlb_lock);
2399 2400 2401 2402 2403 2404
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2405
	if (!page) {
2406
		spin_unlock(&hugetlb_lock);
2407
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2408 2409
		if (!page)
			goto out_uncharge_cgroup;
2410 2411 2412 2413
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2414 2415
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2416
		/* Fall through */
K
Ken Chen 已提交
2417
	}
2418
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2419 2420 2421 2422 2423 2424 2425 2426
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2427
	spin_unlock(&hugetlb_lock);
2428

2429
	set_page_private(page, (unsigned long)spool);
2430

2431 2432
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2447
	return page;
2448 2449 2450

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2451 2452 2453 2454
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2455
out_subpool_put:
2456
	if (map_chg || avoid_reserve)
2457
		hugepage_subpool_put_pages(spool, 1);
2458
	vma_end_reservation(h, vma, addr);
2459
	return ERR_PTR(-ENOSPC);
2460 2461
}

2462 2463 2464
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2465 2466
{
	struct huge_bootmem_page *m;
2467
	int nr_nodes, node;
2468

2469
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2470 2471
		void *addr;

2472
		addr = memblock_alloc_try_nid_raw(
2473
				huge_page_size(h), huge_page_size(h),
2474
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2475 2476 2477 2478 2479 2480 2481
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2482
			goto found;
2483 2484 2485 2486 2487
		}
	}
	return 0;

found:
2488
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2489
	/* Put them into a private list first because mem_map is not up yet */
2490
	INIT_LIST_HEAD(&m->list);
2491 2492 2493 2494 2495
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2496 2497
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2498 2499 2500 2501 2502 2503 2504
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2505 2506 2507 2508 2509 2510
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2511
		struct page *page = virt_to_page(m);
2512
		struct hstate *h = m->hstate;
2513

2514
		WARN_ON(page_count(page) != 1);
2515
		prep_compound_huge_page(page, h->order);
2516
		WARN_ON(PageReserved(page));
2517
		prep_new_huge_page(h, page, page_to_nid(page));
2518 2519
		put_page(page); /* free it into the hugepage allocator */

2520 2521 2522 2523 2524 2525
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2526
		if (hstate_is_gigantic(h))
2527
			adjust_managed_page_count(page, 1 << h->order);
2528
		cond_resched();
2529 2530 2531
	}
}

2532
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2533 2534
{
	unsigned long i;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
2554

2555
	for (i = 0; i < h->max_huge_pages; ++i) {
2556
		if (hstate_is_gigantic(h)) {
2557
			if (hugetlb_cma_size) {
2558 2559 2560
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
				break;
			}
2561 2562
			if (!alloc_bootmem_huge_page(h))
				break;
2563
		} else if (!alloc_pool_huge_page(h,
2564 2565
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
2566
			break;
2567
		cond_resched();
L
Linus Torvalds 已提交
2568
	}
2569 2570 2571
	if (i < h->max_huge_pages) {
		char buf[32];

2572
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2573 2574 2575 2576
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2577 2578

	kfree(node_alloc_noretry);
2579 2580 2581 2582 2583 2584 2585
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2586 2587 2588
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2589
		/* oversize hugepages were init'ed in early boot */
2590
		if (!hstate_is_gigantic(h))
2591
			hugetlb_hstate_alloc_pages(h);
2592
	}
2593
	VM_BUG_ON(minimum_order == UINT_MAX);
2594 2595 2596 2597 2598 2599 2600
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2601
		char buf[32];
2602 2603

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2604
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2605
			buf, h->free_huge_pages);
2606 2607 2608
	}
}

L
Linus Torvalds 已提交
2609
#ifdef CONFIG_HIGHMEM
2610 2611
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2612
{
2613 2614
	int i;

2615
	if (hstate_is_gigantic(h))
2616 2617
		return;

2618
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2619
		struct page *page, *next;
2620 2621 2622
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2623
				return;
L
Linus Torvalds 已提交
2624 2625 2626
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2627
			update_and_free_page(h, page);
2628 2629
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2630 2631 2632 2633
		}
	}
}
#else
2634 2635
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2636 2637 2638 2639
{
}
#endif

2640 2641 2642 2643 2644
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2645 2646
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2647
{
2648
	int nr_nodes, node;
2649 2650 2651

	VM_BUG_ON(delta != -1 && delta != 1);

2652 2653 2654 2655
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2656
		}
2657 2658 2659 2660 2661
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2662
		}
2663 2664
	}
	return 0;
2665

2666 2667 2668 2669
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2670 2671
}

2672
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2673
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2674
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2675
{
2676
	unsigned long min_count, ret;
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
2688

2689 2690
	spin_lock(&hugetlb_lock);

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
			spin_unlock(&hugetlb_lock);
2721
			NODEMASK_FREE(node_alloc_noretry);
2722 2723 2724 2725
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
2726

2727 2728 2729 2730
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2731
	 *
2732
	 * We might race with alloc_surplus_huge_page() here and be unable
2733 2734 2735 2736
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2737
	 */
2738
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2739
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2740 2741 2742
			break;
	}

2743
	while (count > persistent_huge_pages(h)) {
2744 2745 2746 2747 2748 2749
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2750 2751 2752 2753

		/* yield cpu to avoid soft lockup */
		cond_resched();

2754 2755
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
2756 2757 2758 2759
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2760 2761 2762
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2763 2764 2765 2766 2767 2768 2769 2770
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2771 2772 2773 2774
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2775
	 * alloc_surplus_huge_page() is checking the global counter,
2776 2777 2778
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2779
	 */
2780
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2781
	min_count = max(count, min_count);
2782
	try_to_free_low(h, min_count, nodes_allowed);
2783
	while (min_count < persistent_huge_pages(h)) {
2784
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2785
			break;
2786
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2787
	}
2788
	while (count < persistent_huge_pages(h)) {
2789
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2790 2791 2792
			break;
	}
out:
2793
	h->max_huge_pages = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2794
	spin_unlock(&hugetlb_lock);
2795

2796 2797
	NODEMASK_FREE(node_alloc_noretry);

2798
	return 0;
L
Linus Torvalds 已提交
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2811 2812 2813
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2814 2815
{
	int i;
2816

2817
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2818 2819 2820
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2821
			return &hstates[i];
2822 2823 2824
		}

	return kobj_to_node_hstate(kobj, nidp);
2825 2826
}

2827
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2828 2829
					struct kobj_attribute *attr, char *buf)
{
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2841
}
2842

2843 2844 2845
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2846 2847
{
	int err;
2848
	nodemask_t nodes_allowed, *n_mask;
2849

2850 2851
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
2852

2853 2854 2855 2856 2857
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
2858 2859 2860 2861 2862
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
2863
		/*
2864 2865
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
2866
		 */
2867 2868
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
2869
	}
2870

2871
	err = set_max_huge_pages(h, count, nid, n_mask);
2872

2873
	return err ? err : len;
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2893 2894 2895 2896 2897 2898 2899 2900 2901
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2902
	return nr_hugepages_store_common(false, kobj, buf, len);
2903 2904 2905
}
HSTATE_ATTR(nr_hugepages);

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2921
	return nr_hugepages_store_common(true, kobj, buf, len);
2922 2923 2924 2925 2926
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2927 2928 2929
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2930
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2931 2932
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2933

2934 2935 2936 2937 2938
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2939
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2940

2941
	if (hstate_is_gigantic(h))
2942 2943
		return -EINVAL;

2944
	err = kstrtoul(buf, 10, &input);
2945
	if (err)
2946
		return err;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2970 2971 2972 2973 2974 2975
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2976
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2977 2978 2979 2980 2981 2982 2983
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2995 2996 2997 2998 2999 3000 3001 3002 3003
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3004 3005 3006
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3007 3008 3009
	NULL,
};

3010
static const struct attribute_group hstate_attr_group = {
3011 3012 3013
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
3014 3015
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3016
				    const struct attribute_group *hstate_attr_group)
3017 3018
{
	int retval;
3019
	int hi = hstate_index(h);
3020

3021 3022
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3023 3024
		return -ENOMEM;

3025
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3026
	if (retval)
3027
		kobject_put(hstate_kobjs[hi]);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3042 3043
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3044
		if (err)
3045
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3046 3047 3048
	}
}

3049 3050 3051 3052
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3053 3054 3055
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3056 3057 3058 3059 3060 3061
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3062
static struct node_hstate node_hstates[MAX_NUMNODES];
3063 3064

/*
3065
 * A subset of global hstate attributes for node devices
3066 3067 3068 3069 3070 3071 3072 3073
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3074
static const struct attribute_group per_node_hstate_attr_group = {
3075 3076 3077 3078
	.attrs = per_node_hstate_attrs,
};

/*
3079
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3102
 * Unregister hstate attributes from a single node device.
3103 3104
 * No-op if no hstate attributes attached.
 */
3105
static void hugetlb_unregister_node(struct node *node)
3106 3107
{
	struct hstate *h;
3108
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3109 3110

	if (!nhs->hugepages_kobj)
3111
		return;		/* no hstate attributes */
3112

3113 3114 3115 3116 3117
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3118
		}
3119
	}
3120 3121 3122 3123 3124 3125 3126

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3127
 * Register hstate attributes for a single node device.
3128 3129
 * No-op if attributes already registered.
 */
3130
static void hugetlb_register_node(struct node *node)
3131 3132
{
	struct hstate *h;
3133
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3134 3135 3136 3137 3138 3139
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3140
							&node->dev.kobj);
3141 3142 3143 3144 3145 3146 3147 3148
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3149
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3150
				h->name, node->dev.id);
3151 3152 3153 3154 3155 3156 3157
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3158
 * hugetlb init time:  register hstate attributes for all registered node
3159 3160
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3161
 */
3162
static void __init hugetlb_register_all_nodes(void)
3163 3164 3165
{
	int nid;

3166
	for_each_node_state(nid, N_MEMORY) {
3167
		struct node *node = node_devices[nid];
3168
		if (node->dev.id == nid)
3169 3170 3171 3172
			hugetlb_register_node(node);
	}

	/*
3173
	 * Let the node device driver know we're here so it can
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3193 3194
static int __init hugetlb_init(void)
{
3195 3196
	int i;

3197 3198 3199
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3200
		return 0;
3201
	}
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3231
		}
3232
	}
3233

3234
	hugetlb_cma_check();
3235
	hugetlb_init_hstates();
3236
	gather_bootmem_prealloc();
3237 3238 3239
	report_hugepages();

	hugetlb_sysfs_init();
3240
	hugetlb_register_all_nodes();
3241
	hugetlb_cgroup_file_init();
3242

3243 3244 3245 3246 3247
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
3248
	hugetlb_fault_mutex_table =
3249 3250
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
3251
	BUG_ON(!hugetlb_fault_mutex_table);
3252 3253

	for (i = 0; i < num_fault_mutexes; i++)
3254
		mutex_init(&hugetlb_fault_mutex_table[i]);
3255 3256
	return 0;
}
3257
subsys_initcall(hugetlb_init);
3258

3259 3260
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3261
{
3262
	return size == HPAGE_SIZE;
3263 3264
}

3265
void __init hugetlb_add_hstate(unsigned int order)
3266 3267
{
	struct hstate *h;
3268 3269
	unsigned long i;

3270 3271 3272
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
3273
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3274
	BUG_ON(order == 0);
3275
	h = &hstates[hugetlb_max_hstate++];
3276 3277
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3278 3279 3280 3281
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3282
	INIT_LIST_HEAD(&h->hugepage_activelist);
3283 3284
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
3285 3286
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
3287

3288 3289 3290
	parsed_hstate = h;
}

3291 3292 3293 3294 3295 3296 3297 3298
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
3299 3300
{
	unsigned long *mhp;
3301
	static unsigned long *last_mhp;
3302

3303
	if (!parsed_valid_hugepagesz) {
3304
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3305
		parsed_valid_hugepagesz = true;
3306
		return 0;
3307
	}
3308

3309
	/*
3310 3311 3312 3313
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
3314
	 */
3315
	else if (!hugetlb_max_hstate)
3316 3317 3318 3319
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

3320
	if (mhp == last_mhp) {
3321 3322
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
3323 3324
	}

3325 3326 3327
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

3328 3329 3330 3331 3332
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
3333
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3334 3335 3336 3337
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

3338 3339
	return 1;
}
3340
__setup("hugepages=", hugepages_setup);
3341

3342 3343 3344 3345 3346 3347 3348
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
3349
static int __init hugepagesz_setup(char *s)
3350
{
3351
	unsigned long size;
3352 3353 3354
	struct hstate *h;

	parsed_valid_hugepagesz = false;
3355 3356 3357
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3358
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3359 3360 3361
		return 0;
	}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
3385 3386
	}

3387
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3388
	parsed_valid_hugepagesz = true;
3389 3390
	return 1;
}
3391 3392
__setup("hugepagesz=", hugepagesz_setup);

3393 3394 3395 3396
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
3397
static int __init default_hugepagesz_setup(char *s)
3398
{
3399 3400
	unsigned long size;

3401 3402 3403 3404 3405 3406
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

3407 3408 3409
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
3410
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3411 3412 3413
		return 0;
	}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

3433 3434
	return 1;
}
3435
__setup("default_hugepagesz=", default_hugepagesz_setup);
3436

3437
static unsigned int allowed_mems_nr(struct hstate *h)
3438 3439 3440
{
	int node;
	unsigned int nr = 0;
3441 3442 3443 3444 3445
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
3446

3447 3448 3449 3450 3451
	for_each_node_mask(node, cpuset_current_mems_allowed) {
		if (!mpol_allowed ||
		    (mpol_allowed && node_isset(node, *mpol_allowed)))
			nr += array[node];
	}
3452 3453 3454 3455 3456

	return nr;
}

#ifdef CONFIG_SYSCTL
3457 3458
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
3459
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
3460
{
3461
	struct hstate *h = &default_hstate;
3462
	unsigned long tmp = h->max_huge_pages;
3463
	int ret;
3464

3465
	if (!hugepages_supported())
3466
		return -EOPNOTSUPP;
3467

3468 3469
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
3470 3471 3472
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3473

3474 3475 3476
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
3477 3478
out:
	return ret;
L
Linus Torvalds 已提交
3479
}
3480

3481
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3482
			  void *buffer, size_t *length, loff_t *ppos)
3483 3484 3485 3486 3487 3488 3489 3490
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3491
			  void *buffer, size_t *length, loff_t *ppos)
3492 3493 3494 3495 3496 3497
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

3498
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3499
		void *buffer, size_t *length, loff_t *ppos)
3500
{
3501
	struct hstate *h = &default_hstate;
3502
	unsigned long tmp;
3503
	int ret;
3504

3505
	if (!hugepages_supported())
3506
		return -EOPNOTSUPP;
3507

3508
	tmp = h->nr_overcommit_huge_pages;
3509

3510
	if (write && hstate_is_gigantic(h))
3511 3512
		return -EINVAL;

3513 3514
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
3515 3516 3517
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3518 3519 3520 3521 3522 3523

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3524 3525
out:
	return ret;
3526 3527
}

L
Linus Torvalds 已提交
3528 3529
#endif /* CONFIG_SYSCTL */

3530
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3531
{
3532 3533 3534
	struct hstate *h;
	unsigned long total = 0;

3535 3536
	if (!hugepages_supported())
		return;
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3558 3559 3560 3561
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3562
	struct hstate *h = &default_hstate;
3563 3564
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3565 3566
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3567 3568
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3569 3570 3571
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3572 3573
}

3574 3575 3576 3577 3578
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3579 3580 3581
	if (!hugepages_supported())
		return;

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3592 3593 3594 3595 3596 3597
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3598 3599 3600
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3601 3602 3603 3604 3605 3606
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3607 3608
}

3609
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
3630 3631 3632 3633 3634 3635
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
3636 3637
	 */
	if (delta > 0) {
3638
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3639 3640
			goto out;

3641
		if (delta > allowed_mems_nr(h)) {
3642
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3643 3644 3645 3646 3647 3648
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3649
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3650 3651 3652 3653 3654 3655

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3656 3657
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3658
	struct resv_map *resv = vma_resv_map(vma);
3659 3660 3661 3662 3663

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3664
	 * has a reference to the reservation map it cannot disappear until
3665 3666 3667
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3668
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3669
		kref_get(&resv->refs);
3670 3671
}

3672 3673
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3674
	struct hstate *h = hstate_vma(vma);
3675
	struct resv_map *resv = vma_resv_map(vma);
3676
	struct hugepage_subpool *spool = subpool_vma(vma);
3677
	unsigned long reserve, start, end;
3678
	long gbl_reserve;
3679

3680 3681
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3682

3683 3684
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3685

3686
	reserve = (end - start) - region_count(resv, start, end);
3687
	hugetlb_cgroup_uncharge_counter(resv, start, end);
3688
	if (reserve) {
3689 3690 3691 3692 3693 3694
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3695
	}
3696 3697

	kref_put(&resv->refs, resv_map_release);
3698 3699
}

3700 3701 3702 3703 3704 3705 3706
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3707 3708 3709 3710 3711 3712 3713
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3714 3715 3716 3717 3718 3719
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3720
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3721 3722
{
	BUG();
N
Nick Piggin 已提交
3723
	return 0;
L
Linus Torvalds 已提交
3724 3725
}

3726 3727 3728 3729 3730 3731 3732
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3733
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3734
	.fault = hugetlb_vm_op_fault,
3735
	.open = hugetlb_vm_op_open,
3736
	.close = hugetlb_vm_op_close,
3737
	.split = hugetlb_vm_op_split,
3738
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3739 3740
};

3741 3742
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3743 3744 3745
{
	pte_t entry;

3746
	if (writable) {
3747 3748
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3749
	} else {
3750 3751
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3752 3753 3754
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3755
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3756 3757 3758 3759

	return entry;
}

3760 3761 3762 3763 3764
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3765
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3766
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3767
		update_mmu_cache(vma, address, ptep);
3768 3769
}

3770
bool is_hugetlb_entry_migration(pte_t pte)
3771 3772 3773 3774
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3775
		return false;
3776 3777
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3778
		return true;
3779
	else
3780
		return false;
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3795

D
David Gibson 已提交
3796 3797 3798
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
3799
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
3800
	struct page *ptepage;
3801
	unsigned long addr;
3802
	int cow;
3803 3804
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3805
	struct address_space *mapping = vma->vm_file->f_mapping;
3806
	struct mmu_notifier_range range;
3807
	int ret = 0;
3808 3809

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3810

3811
	if (cow) {
3812
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3813
					vma->vm_start,
3814 3815
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
3816 3817 3818 3819 3820 3821 3822 3823
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
3824
	}
3825

3826
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3827
		spinlock_t *src_ptl, *dst_ptl;
3828
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3829 3830
		if (!src_pte)
			continue;
3831
		dst_pte = huge_pte_alloc(dst, addr, sz);
3832 3833 3834 3835
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3836

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3848 3849
			continue;

3850 3851 3852
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3853
		entry = huge_ptep_get(src_pte);
3854 3855 3856 3857 3858 3859 3860
		dst_entry = huge_ptep_get(dst_pte);
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3873 3874
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3875
			}
3876
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3877
		} else {
3878
			if (cow) {
3879 3880 3881 3882 3883
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3884
				 * See Documentation/vm/mmu_notifier.rst
3885
				 */
3886
				huge_ptep_set_wrprotect(src, addr, src_pte);
3887
			}
3888
			entry = huge_ptep_get(src_pte);
3889 3890
			ptepage = pte_page(entry);
			get_page(ptepage);
3891
			page_dup_rmap(ptepage, true);
3892
			set_huge_pte_at(dst, addr, dst_pte, entry);
3893
			hugetlb_count_add(pages_per_huge_page(h), dst);
3894
		}
3895 3896
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3897 3898
	}

3899
	if (cow)
3900
		mmu_notifier_invalidate_range_end(&range);
3901 3902
	else
		i_mmap_unlock_read(mapping);
3903 3904

	return ret;
D
David Gibson 已提交
3905 3906
}

3907 3908 3909
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3910 3911 3912
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3913
	pte_t *ptep;
D
David Gibson 已提交
3914
	pte_t pte;
3915
	spinlock_t *ptl;
D
David Gibson 已提交
3916
	struct page *page;
3917 3918
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3919
	struct mmu_notifier_range range;
3920

D
David Gibson 已提交
3921
	WARN_ON(!is_vm_hugetlb_page(vma));
3922 3923
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3924

3925 3926 3927 3928
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
3929
	tlb_change_page_size(tlb, sz);
3930
	tlb_start_vma(tlb, vma);
3931 3932 3933 3934

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
3935 3936
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
3937 3938
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
3939 3940
	address = start;
	for (; address < end; address += sz) {
3941
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3942
		if (!ptep)
3943 3944
			continue;

3945
		ptl = huge_pte_lock(h, mm, ptep);
3946
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3947
			spin_unlock(ptl);
3948 3949 3950 3951
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
3952 3953
			continue;
		}
3954

3955
		pte = huge_ptep_get(ptep);
3956 3957 3958 3959
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3960 3961

		/*
3962 3963
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3964
		 */
3965
		if (unlikely(!pte_present(pte))) {
3966
			huge_pte_clear(mm, address, ptep, sz);
3967 3968
			spin_unlock(ptl);
			continue;
3969
		}
3970 3971

		page = pte_page(pte);
3972 3973 3974 3975 3976 3977
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3978 3979 3980 3981
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3982 3983 3984 3985 3986 3987 3988 3989
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3990
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3991
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3992
		if (huge_pte_dirty(pte))
3993
			set_page_dirty(page);
3994

3995
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3996
		page_remove_rmap(page, true);
3997

3998
		spin_unlock(ptl);
3999
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4000 4001 4002 4003 4004
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4005
	}
4006
	mmu_notifier_invalidate_range_end(&range);
4007
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4008
}
D
David Gibson 已提交
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4022
	 * is to clear it before releasing the i_mmap_rwsem. This works
4023
	 * because in the context this is called, the VMA is about to be
4024
	 * destroyed and the i_mmap_rwsem is held.
4025 4026 4027 4028
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4029
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4030
			  unsigned long end, struct page *ref_page)
4031
{
4032 4033
	struct mm_struct *mm;
	struct mmu_gather tlb;
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	unsigned long tlb_start = start;
	unsigned long tlb_end = end;

	/*
	 * If shared PMDs were possibly used within this vma range, adjust
	 * start/end for worst case tlb flushing.
	 * Note that we can not be sure if PMDs are shared until we try to
	 * unmap pages.  However, we want to make sure TLB flushing covers
	 * the largest possible range.
	 */
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4045 4046 4047

	mm = vma->vm_mm;

4048
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4049
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4050
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4051 4052
}

4053 4054 4055 4056 4057 4058
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4059 4060
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4061
{
4062
	struct hstate *h = hstate_vma(vma);
4063 4064 4065 4066 4067 4068 4069 4070
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4071
	address = address & huge_page_mask(h);
4072 4073
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4074
	mapping = vma->vm_file->f_mapping;
4075

4076 4077 4078 4079 4080
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4081
	i_mmap_lock_write(mapping);
4082
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4083 4084 4085 4086
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4087 4088 4089 4090 4091 4092 4093 4094
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4095 4096 4097 4098 4099 4100 4101 4102
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4103 4104
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
4105
	}
4106
	i_mmap_unlock_write(mapping);
4107 4108
}

4109 4110
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4111 4112 4113
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
4114
 */
4115
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4116
		       unsigned long address, pte_t *ptep,
4117
		       struct page *pagecache_page, spinlock_t *ptl)
4118
{
4119
	pte_t pte;
4120
	struct hstate *h = hstate_vma(vma);
4121
	struct page *old_page, *new_page;
4122 4123
	int outside_reserve = 0;
	vm_fault_t ret = 0;
4124
	unsigned long haddr = address & huge_page_mask(h);
4125
	struct mmu_notifier_range range;
4126

4127
	pte = huge_ptep_get(ptep);
4128 4129
	old_page = pte_page(pte);

4130
retry_avoidcopy:
4131 4132
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
4133
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4134
		page_move_anon_rmap(old_page, vma);
4135
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
4136
		return 0;
4137 4138
	}

4139 4140 4141 4142 4143 4144 4145 4146 4147
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
4148
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4149 4150 4151
			old_page != pagecache_page)
		outside_reserve = 1;

4152
	get_page(old_page);
4153

4154 4155 4156 4157
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
4158
	spin_unlock(ptl);
4159
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4160

4161
	if (IS_ERR(new_page)) {
4162 4163 4164 4165 4166 4167 4168 4169
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
4170
			put_page(old_page);
4171
			BUG_ON(huge_pte_none(pte));
4172
			unmap_ref_private(mm, vma, old_page, haddr);
4173 4174
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
4175
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4176 4177 4178 4179 4180 4181 4182 4183
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
4184 4185
		}

4186
		ret = vmf_error(PTR_ERR(new_page));
4187
		goto out_release_old;
4188 4189
	}

4190 4191 4192 4193
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
4194
	if (unlikely(anon_vma_prepare(vma))) {
4195 4196
		ret = VM_FAULT_OOM;
		goto out_release_all;
4197
	}
4198

4199
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
4200
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
4201
	__SetPageUptodate(new_page);
4202

4203
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4204
				haddr + huge_page_size(h));
4205
	mmu_notifier_invalidate_range_start(&range);
4206

4207
	/*
4208
	 * Retake the page table lock to check for racing updates
4209 4210
	 * before the page tables are altered
	 */
4211
	spin_lock(ptl);
4212
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4213
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4214 4215
		ClearPagePrivate(new_page);

4216
		/* Break COW */
4217
		huge_ptep_clear_flush(vma, haddr, ptep);
4218
		mmu_notifier_invalidate_range(mm, range.start, range.end);
4219
		set_huge_pte_at(mm, haddr, ptep,
4220
				make_huge_pte(vma, new_page, 1));
4221
		page_remove_rmap(old_page, true);
4222
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4223
		set_page_huge_active(new_page);
4224 4225 4226
		/* Make the old page be freed below */
		new_page = old_page;
	}
4227
	spin_unlock(ptl);
4228
	mmu_notifier_invalidate_range_end(&range);
4229
out_release_all:
4230
	restore_reserve_on_error(h, vma, haddr, new_page);
4231
	put_page(new_page);
4232
out_release_old:
4233
	put_page(old_page);
4234

4235 4236
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
4237 4238
}

4239
/* Return the pagecache page at a given address within a VMA */
4240 4241
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
4242 4243
{
	struct address_space *mapping;
4244
	pgoff_t idx;
4245 4246

	mapping = vma->vm_file->f_mapping;
4247
	idx = vma_hugecache_offset(h, vma, address);
4248 4249 4250 4251

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
4252 4253 4254 4255 4256
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

4283 4284 4285 4286 4287 4288
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

4289 4290 4291 4292 4293 4294
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

4295 4296 4297 4298
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
4299
{
4300
	struct hstate *h = hstate_vma(vma);
4301
	vm_fault_t ret = VM_FAULT_SIGBUS;
4302
	int anon_rmap = 0;
A
Adam Litke 已提交
4303 4304
	unsigned long size;
	struct page *page;
4305
	pte_t new_pte;
4306
	spinlock_t *ptl;
4307
	unsigned long haddr = address & huge_page_mask(h);
4308
	bool new_page = false;
A
Adam Litke 已提交
4309

4310 4311 4312
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
4313
	 * COW. Warn that such a situation has occurred as it may not be obvious
4314 4315
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4316
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4317
			   current->pid);
4318 4319 4320
		return ret;
	}

A
Adam Litke 已提交
4321
	/*
4322 4323 4324
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
4325
	 */
4326 4327 4328 4329
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

4330 4331 4332
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
4333 4334 4335 4336 4337 4338 4339
		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
4340
				.address = haddr,
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
4352 4353 4354
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
			 * dropped before handling userfault.  Reacquire
			 * after handling fault to make calling code simpler.
4355
			 */
4356
			hash = hugetlb_fault_mutex_hash(mapping, idx);
4357
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4358
			i_mmap_unlock_read(mapping);
4359
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4360
			i_mmap_lock_read(mapping);
4361 4362 4363 4364
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

4365
		page = alloc_huge_page(vma, haddr, 0);
4366
		if (IS_ERR(page)) {
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
			if (!huge_pte_none(huge_ptep_get(ptep))) {
				ret = 0;
				spin_unlock(ptl);
				goto out;
			}
			spin_unlock(ptl);
4386
			ret = vmf_error(PTR_ERR(page));
4387 4388
			goto out;
		}
A
Andrea Arcangeli 已提交
4389
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
4390
		__SetPageUptodate(page);
4391
		new_page = true;
4392

4393
		if (vma->vm_flags & VM_MAYSHARE) {
4394
			int err = huge_add_to_page_cache(page, mapping, idx);
4395 4396 4397 4398 4399 4400
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
4401
		} else {
4402
			lock_page(page);
4403 4404 4405 4406
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
4407
			anon_rmap = 1;
4408
		}
4409
	} else {
4410 4411 4412 4413 4414 4415
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
4416
			ret = VM_FAULT_HWPOISON |
4417
				VM_FAULT_SET_HINDEX(hstate_index(h));
4418 4419
			goto backout_unlocked;
		}
4420
	}
4421

4422 4423 4424 4425 4426 4427
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
4428
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4429
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4430 4431 4432
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
4433
		/* Just decrements count, does not deallocate */
4434
		vma_end_reservation(h, vma, haddr);
4435
	}
4436

4437
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
4438
	ret = 0;
4439
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
4440 4441
		goto backout;

4442 4443
	if (anon_rmap) {
		ClearPagePrivate(page);
4444
		hugepage_add_new_anon_rmap(page, vma, haddr);
4445
	} else
4446
		page_dup_rmap(page, true);
4447 4448
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
4449
	set_huge_pte_at(mm, haddr, ptep, new_pte);
4450

4451
	hugetlb_count_add(pages_per_huge_page(h), mm);
4452
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453
		/* Optimization, do the COW without a second fault */
4454
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4455 4456
	}

4457
	spin_unlock(ptl);
4458 4459 4460 4461 4462 4463 4464 4465 4466

	/*
	 * Only make newly allocated pages active.  Existing pages found
	 * in the pagecache could be !page_huge_active() if they have been
	 * isolated for migration.
	 */
	if (new_page)
		set_page_huge_active(page);

A
Adam Litke 已提交
4467 4468
	unlock_page(page);
out:
4469
	return ret;
A
Adam Litke 已提交
4470 4471

backout:
4472
	spin_unlock(ptl);
4473
backout_unlocked:
A
Adam Litke 已提交
4474
	unlock_page(page);
4475
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
4476 4477
	put_page(page);
	goto out;
4478 4479
}

4480
#ifdef CONFIG_SMP
4481
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4482 4483 4484 4485
{
	unsigned long key[2];
	u32 hash;

4486 4487
	key[0] = (unsigned long) mapping;
	key[1] = idx;
4488

4489
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4490 4491 4492 4493 4494 4495 4496 4497

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
4498
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4499 4500 4501 4502 4503
{
	return 0;
}
#endif

4504
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4505
			unsigned long address, unsigned int flags)
4506
{
4507
	pte_t *ptep, entry;
4508
	spinlock_t *ptl;
4509
	vm_fault_t ret;
4510 4511
	u32 hash;
	pgoff_t idx;
4512
	struct page *page = NULL;
4513
	struct page *pagecache_page = NULL;
4514
	struct hstate *h = hstate_vma(vma);
4515
	struct address_space *mapping;
4516
	int need_wait_lock = 0;
4517
	unsigned long haddr = address & huge_page_mask(h);
4518

4519
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4520
	if (ptep) {
4521 4522 4523 4524 4525
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
4526
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
4527
		if (unlikely(is_hugetlb_entry_migration(entry))) {
4528
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
4529 4530
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4531
			return VM_FAULT_HWPOISON_LARGE |
4532
				VM_FAULT_SET_HINDEX(hstate_index(h));
4533 4534
	}

4535 4536
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4537 4538 4539 4540
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
4541 4542 4543 4544 4545
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
4546
	mapping = vma->vm_file->f_mapping;
4547 4548 4549 4550 4551 4552
	i_mmap_lock_read(mapping);
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
4553

4554 4555 4556 4557 4558
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
4559
	idx = vma_hugecache_offset(h, vma, haddr);
4560
	hash = hugetlb_fault_mutex_hash(mapping, idx);
4561
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4562

4563 4564
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
4565
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4566
		goto out_mutex;
4567
	}
4568

N
Nick Piggin 已提交
4569
	ret = 0;
4570

4571 4572 4573
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
4574 4575 4576
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
4577 4578 4579 4580
	 */
	if (!pte_present(entry))
		goto out_mutex;

4581 4582 4583 4584 4585 4586 4587 4588
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
4589
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4590
		if (vma_needs_reservation(h, vma, haddr) < 0) {
4591
			ret = VM_FAULT_OOM;
4592
			goto out_mutex;
4593
		}
4594
		/* Just decrements count, does not deallocate */
4595
		vma_end_reservation(h, vma, haddr);
4596

4597
		if (!(vma->vm_flags & VM_MAYSHARE))
4598
			pagecache_page = hugetlbfs_pagecache_page(h,
4599
								vma, haddr);
4600 4601
	}

4602 4603 4604 4605 4606 4607
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

4608 4609 4610 4611 4612 4613 4614
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
4615 4616 4617 4618
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
4619

4620
	get_page(page);
4621

4622
	if (flags & FAULT_FLAG_WRITE) {
4623
		if (!huge_pte_write(entry)) {
4624
			ret = hugetlb_cow(mm, vma, address, ptep,
4625
					  pagecache_page, ptl);
4626
			goto out_put_page;
4627
		}
4628
		entry = huge_pte_mkdirty(entry);
4629 4630
	}
	entry = pte_mkyoung(entry);
4631
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4632
						flags & FAULT_FLAG_WRITE))
4633
		update_mmu_cache(vma, haddr, ptep);
4634 4635 4636 4637
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
4638 4639
out_ptl:
	spin_unlock(ptl);
4640 4641 4642 4643 4644

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
4645
out_mutex:
4646
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4647
	i_mmap_unlock_read(mapping);
4648 4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4657
	return ret;
4658 4659
}

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4671 4672 4673
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4674
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4689
						pages_per_huge_page(h), false);
4690

4691
		/* fallback to copy_from_user outside mmap_lock */
4692
		if (unlikely(ret)) {
4693
			ret = -ENOENT;
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

4710 4711 4712
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4713 4714 4715 4716
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4717 4718 4719 4720
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4721

4722 4723 4724 4725 4726 4727
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4728 4729 4730 4731 4732
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4733 4734 4735
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4750 4751 4752 4753
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4754 4755 4756 4757 4758 4759
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4776
	set_page_huge_active(page);
4777 4778
	if (vm_shared)
		unlock_page(page);
4779 4780 4781 4782 4783
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4784 4785
	if (vm_shared)
		unlock_page(page);
4786
out_release_nounlock:
4787 4788 4789 4790
	put_page(page);
	goto out;
}

4791 4792 4793
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4794
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
4795
{
4796 4797
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4798
	unsigned long remainder = *nr_pages;
4799
	struct hstate *h = hstate_vma(vma);
4800
	int err = -EFAULT;
D
David Gibson 已提交
4801 4802

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4803
		pte_t *pte;
4804
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4805
		int absent;
A
Adam Litke 已提交
4806
		struct page *page;
D
David Gibson 已提交
4807

4808 4809 4810 4811
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
4812
		if (fatal_signal_pending(current)) {
4813 4814 4815 4816
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4817 4818
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4819
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4820
		 * first, for the page indexing below to work.
4821 4822
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4823
		 */
4824 4825
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4826 4827
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4828 4829 4830 4831
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4832 4833 4834 4835
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4836
		 */
H
Hugh Dickins 已提交
4837 4838
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4839 4840
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4841 4842 4843
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4856 4857
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
4858
			vm_fault_t ret;
4859
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4860

4861 4862
			if (pte)
				spin_unlock(ptl);
4863 4864
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
4865
			if (locked)
4866 4867
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
4868 4869 4870 4871
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
4872 4873 4874 4875
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
4876 4877 4878 4879
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4880
				err = vm_fault_to_errno(ret, flags);
4881 4882 4883 4884
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
4885
				if (locked &&
4886
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4887
					*locked = 0;
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4901 4902
		}

4903
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4904
		page = pte_page(huge_ptep_get(pte));
4905

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

4920
same_page:
4921
		if (pages) {
H
Hugh Dickins 已提交
4922
			pages[i] = mem_map_offset(page, pfn_offset);
J
John Hubbard 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
			/*
			 * try_grab_page() should always succeed here, because:
			 * a) we hold the ptl lock, and b) we've just checked
			 * that the huge page is present in the page tables. If
			 * the huge page is present, then the tail pages must
			 * also be present. The ptl prevents the head page and
			 * tail pages from being rearranged in any way. So this
			 * page must be available at this point, unless the page
			 * refcount overflowed:
			 */
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
4939
		}
D
David Gibson 已提交
4940 4941 4942 4943 4944

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4945
		++pfn_offset;
D
David Gibson 已提交
4946 4947
		--remainder;
		++i;
4948
		if (vaddr < vma->vm_end && remainder &&
4949
				pfn_offset < pages_per_huge_page(h)) {
4950 4951 4952 4953 4954 4955
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4956
		spin_unlock(ptl);
D
David Gibson 已提交
4957
	}
4958
	*nr_pages = remainder;
4959 4960 4961 4962 4963
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4964 4965
	*position = vaddr;

4966
	return i ? i : err;
D
David Gibson 已提交
4967
}
4968

4969 4970 4971 4972 4973 4974 4975 4976
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4977
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4978 4979 4980 4981 4982 4983
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4984
	struct hstate *h = hstate_vma(vma);
4985
	unsigned long pages = 0;
4986
	bool shared_pmd = false;
4987
	struct mmu_notifier_range range;
4988 4989 4990

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
4991
	 * start/end.  Set range.start/range.end to cover the maximum possible
4992 4993
	 * range if PMD sharing is possible.
	 */
4994 4995
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
4996
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4997 4998

	BUG_ON(address >= end);
4999
	flush_cache_range(vma, range.start, range.end);
5000

5001
	mmu_notifier_invalidate_range_start(&range);
5002
	i_mmap_lock_write(vma->vm_file->f_mapping);
5003
	for (; address < end; address += huge_page_size(h)) {
5004
		spinlock_t *ptl;
5005
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5006 5007
		if (!ptep)
			continue;
5008
		ptl = huge_pte_lock(h, mm, ptep);
5009
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5010
			pages++;
5011
			spin_unlock(ptl);
5012
			shared_pmd = true;
5013
			continue;
5014
		}
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
5028 5029
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
5030 5031 5032 5033 5034 5035
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
5036 5037 5038 5039
			pte_t old_pte;

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5040
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5041
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5042
			pages++;
5043
		}
5044
		spin_unlock(ptl);
5045
	}
5046
	/*
5047
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5048
	 * may have cleared our pud entry and done put_page on the page table:
5049
	 * once we release i_mmap_rwsem, another task can do the final put_page
5050 5051
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
5052
	 */
5053
	if (shared_pmd)
5054
		flush_hugetlb_tlb_range(vma, range.start, range.end);
5055 5056
	else
		flush_hugetlb_tlb_range(vma, start, end);
5057 5058 5059 5060
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
5061
	 * See Documentation/vm/mmu_notifier.rst
5062
	 */
5063
	i_mmap_unlock_write(vma->vm_file->f_mapping);
5064
	mmu_notifier_invalidate_range_end(&range);
5065 5066

	return pages << h->order;
5067 5068
}

5069 5070
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
5071
					struct vm_area_struct *vma,
5072
					vm_flags_t vm_flags)
5073
{
5074
	long ret, chg, add = -1;
5075
	struct hstate *h = hstate_inode(inode);
5076
	struct hugepage_subpool *spool = subpool_inode(inode);
5077
	struct resv_map *resv_map;
5078
	struct hugetlb_cgroup *h_cg = NULL;
5079
	long gbl_reserve, regions_needed = 0;
5080

5081 5082 5083 5084 5085 5086
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

5087 5088 5089
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
5090
	 * without using reserves
5091
	 */
5092
	if (vm_flags & VM_NORESERVE)
5093 5094
		return 0;

5095 5096 5097 5098 5099 5100
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
5101
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5102 5103 5104 5105 5106
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
5107
		resv_map = inode_resv_map(inode);
5108

5109
		chg = region_chg(resv_map, from, to, &regions_needed);
5110 5111

	} else {
5112
		/* Private mapping. */
5113
		resv_map = resv_map_alloc();
5114 5115 5116
		if (!resv_map)
			return -ENOMEM;

5117
		chg = to - from;
5118

5119 5120 5121 5122
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

5123 5124 5125 5126
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
5127

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);

	if (ret < 0) {
		ret = -ENOMEM;
		goto out_err;
	}

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

5143 5144 5145 5146 5147 5148 5149
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
5150
		ret = -ENOSPC;
5151
		goto out_uncharge_cgroup;
5152
	}
5153 5154

	/*
5155
	 * Check enough hugepages are available for the reservation.
5156
	 * Hand the pages back to the subpool if there are not
5157
	 */
5158
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
5159
	if (ret < 0) {
5160
		goto out_put_pages;
K
Ken Chen 已提交
5161
	}
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
5174
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5176 5177 5178

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
5179
			goto out_put_pages;
5180
		} else if (unlikely(chg > add)) {
5181 5182 5183 5184 5185 5186 5187 5188 5189
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

5190 5191 5192 5193
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

5194 5195 5196 5197 5198
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
5199
	return 0;
5200 5201 5202 5203 5204 5205
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
5206
out_err:
5207
	if (!vma || vma->vm_flags & VM_MAYSHARE)
5208 5209 5210 5211 5212
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
5213 5214
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
5215
	return ret;
5216 5217
}

5218 5219
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
5220
{
5221
	struct hstate *h = hstate_inode(inode);
5222
	struct resv_map *resv_map = inode_resv_map(inode);
5223
	long chg = 0;
5224
	struct hugepage_subpool *spool = subpool_inode(inode);
5225
	long gbl_reserve;
K
Ken Chen 已提交
5226

5227 5228 5229 5230
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
5242
	spin_lock(&inode->i_lock);
5243
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
5244 5245
	spin_unlock(&inode->i_lock);

5246 5247 5248 5249 5250 5251
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
5252 5253

	return 0;
5254
}
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
5267 5268
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

5282
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5283 5284 5285 5286 5287 5288 5289
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
5290
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5291 5292
		return true;
	return false;
5293 5294
}

5295 5296 5297 5298 5299 5300 5301 5302
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
5303
	unsigned long a_start, a_end;
5304 5305 5306 5307

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

5308 5309 5310
	/* Extend the range to be PUD aligned for a worst case scenario */
	a_start = ALIGN_DOWN(*start, PUD_SIZE);
	a_end = ALIGN(*end, PUD_SIZE);
5311

5312 5313 5314 5315 5316 5317
	/*
	 * Intersect the range with the vma range, since pmd sharing won't be
	 * across vma after all
	 */
	*start = max(vma->vm_start, a_start);
	*end = min(vma->vm_end, a_end);
5318 5319
}

5320 5321 5322 5323
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
5324 5325 5326 5327 5328 5329
 * code much cleaner.
 *
 * This routine must be called with i_mmap_rwsem held in at least read mode.
 * For hugetlbfs, this prevents removal of any page table entries associated
 * with the address space.  This is important as we are setting up sharing
 * based on existing page table entries (mappings).
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
5341
	spinlock_t *ptl;
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
5352 5353
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

5364
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5365
	if (pud_none(*pud)) {
5366 5367
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5368
		mm_inc_nr_pmds(mm);
5369
	} else {
5370
		put_page(virt_to_page(spte));
5371
	}
5372
	spin_unlock(ptl);
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
5385
 * Called with page table lock held and i_mmap_rwsem held in write mode.
5386 5387 5388 5389
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
5390 5391
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
5392 5393
{
	pgd_t *pgd = pgd_offset(mm, *addr);
5394 5395
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
5396

5397
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5398 5399 5400 5401 5402 5403
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
5404
	mm_dec_nr_pmds(mm);
5405 5406 5407
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
5408 5409 5410 5411 5412 5413
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
5414

5415 5416
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
5417 5418 5419
{
	return 0;
}
5420 5421 5422 5423 5424

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
5425
#define want_pmd_share()	(0)
5426 5427
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

5428 5429 5430 5431 5432
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
5433
	p4d_t *p4d;
5434 5435 5436 5437
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
5438 5439 5440
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
5441
	pud = pud_alloc(mm, p4d, addr);
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
5453
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5454 5455 5456 5457

	return pte;
}

5458 5459 5460 5461
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
5462 5463
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5464 5465 5466
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
5467 5468
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
5469 5470
{
	pgd_t *pgd;
5471
	p4d_t *p4d;
5472 5473
	pud_t *pud;
	pmd_t *pmd;
5474 5475

	pgd = pgd_offset(mm, addr);
5476 5477 5478 5479 5480
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
5481

5482
	pud = pud_offset(p4d, addr);
5483 5484
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
5485
		return (pte_t *)pud;
5486
	if (!pud_present(*pud))
5487
		return NULL;
5488
	/* must have a valid entry and size to go further */
5489

5490 5491 5492
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
5493 5494
}

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

5508 5509 5510 5511 5512 5513 5514 5515
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

5516
struct page * __weak
5517
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5518
		pmd_t *pmd, int flags)
5519
{
5520 5521
	struct page *page = NULL;
	spinlock_t *ptl;
5522
	pte_t pte;
J
John Hubbard 已提交
5523 5524 5525 5526 5527 5528

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

5529 5530 5531 5532 5533 5534 5535 5536 5537
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
5538 5539
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
5540
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
5553
	} else {
5554
		if (is_hugetlb_entry_migration(pte)) {
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
5566 5567 5568
	return page;
}

5569
struct page * __weak
5570
follow_huge_pud(struct mm_struct *mm, unsigned long address,
5571
		pud_t *pud, int flags)
5572
{
J
John Hubbard 已提交
5573
	if (flags & (FOLL_GET | FOLL_PIN))
5574
		return NULL;
5575

5576
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5577 5578
}

5579 5580 5581
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
5582
	if (flags & (FOLL_GET | FOLL_PIN))
5583 5584 5585 5586 5587
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

5588 5589
bool isolate_huge_page(struct page *page, struct list_head *list)
{
5590 5591
	bool ret = true;

5592
	VM_BUG_ON_PAGE(!PageHead(page), page);
5593
	spin_lock(&hugetlb_lock);
5594 5595 5596 5597 5598
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
5599
	list_move_tail(&page->lru, list);
5600
unlock:
5601
	spin_unlock(&hugetlb_lock);
5602
	return ret;
5603 5604 5605 5606
}

void putback_active_hugepage(struct page *page)
{
5607
	VM_BUG_ON_PAGE(!PageHead(page), page);
5608
	spin_lock(&hugetlb_lock);
5609
	set_page_huge_active(page);
5610 5611 5612 5613
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
	hugetlb_cma_size = memparse(p, &p);
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
	int nid;

	cma_reserve_called = true;

	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
		return;
	}

	/*
	 * If 3 GB area is requested on a machine with 4 numa nodes,
	 * let's allocate 1 GB on first three nodes and ignore the last one.
	 */
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
5686
		char name[20];
5687 5688 5689 5690

		size = min(per_node, hugetlb_cma_size - reserved);
		size = round_up(size, PAGE_SIZE << order);

5691
		snprintf(name, 20, "hugetlb%d", nid);
5692
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5693
						 0, false, name,
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */