hugetlb.c 77.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <linux/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
65
 *	down_write(&mm->mmap_sem);
66
 * or
67 68
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
149
		/* We overlap with this area, if it extends further than
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

431
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
432 433
{
	int nid = page_to_nid(page);
434 435 436
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
437 438
}

439 440 441 442 443 444 445 446
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
447
	set_page_refcounted(page);
448 449 450 451 452
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

453 454
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
455
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
456 457
{
	struct page *page = NULL;
458
	struct mempolicy *mpol;
459
	nodemask_t *nodemask;
460
	struct zonelist *zonelist;
461 462
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
463

464 465 466
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
467 468 469 470 471
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
472
	if (!vma_has_reserves(vma) &&
473
			h->free_huge_pages - h->resv_huge_pages == 0)
474
		goto err;
475

476
	/* If reserves cannot be used, ensure enough pages are in the pool */
477
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478
		goto err;
479

480 481
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
482 483 484 485 486 487 488
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
489
		}
L
Linus Torvalds 已提交
490
	}
491
err:
492
	mpol_cond_put(mpol);
493
	put_mems_allowed();
L
Linus Torvalds 已提交
494 495 496
	return page;
}

497
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
498 499
{
	int i;
500

501 502
	VM_BUG_ON(h->order >= MAX_ORDER);

503 504 505
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
506 507 508 509
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
510 511 512
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
513
	arch_release_hugepage(page);
514
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
515 516
}

517 518 519 520 521 522 523 524 525 526 527
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

528 529
static void free_huge_page(struct page *page)
{
530 531 532 533
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
534
	struct hstate *h = page_hstate(page);
535
	int nid = page_to_nid(page);
536
	struct address_space *mapping;
537

538
	mapping = (struct address_space *) page_private(page);
539
	set_page_private(page, 0);
540
	page->mapping = NULL;
541
	BUG_ON(page_count(page));
542
	BUG_ON(page_mapcount(page));
543 544 545
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
546
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547 548 549
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
550
	} else {
551
		enqueue_huge_page(h, page);
552
	}
553
	spin_unlock(&hugetlb_lock);
554
	if (mapping)
555
		hugetlb_put_quota(mapping, 1);
556 557
}

558
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 560 561
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
562 563
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
564 565 566 567
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

568 569 570 571 572 573 574 575 576 577 578
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
579
		set_page_count(p, 0);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
596 597
EXPORT_SYMBOL_GPL(PageHuge);

598
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
599 600
{
	struct page *page;
601

602 603 604
	if (h->order >= MAX_ORDER)
		return NULL;

605
	page = alloc_pages_exact_node(nid,
606 607
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
608
		huge_page_order(h));
L
Linus Torvalds 已提交
609
	if (page) {
610
		if (arch_prepare_hugepage(page)) {
611
			__free_pages(page, huge_page_order(h));
612
			return NULL;
613
		}
614
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
615
	}
616 617 618 619

	return page;
}

620
/*
621 622 623 624 625
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
626
 */
627
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628
{
629
	nid = next_node(nid, *nodes_allowed);
630
	if (nid == MAX_NUMNODES)
631
		nid = first_node(*nodes_allowed);
632 633 634 635 636
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

637 638 639 640 641 642 643
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

644
/*
645 646 647 648
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
649
 */
650 651
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
652
{
653 654 655 656 657 658
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659 660

	return nid;
661 662
}

663
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 665 666 667 668 669
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

670
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671
	next_nid = start_nid;
672 673

	do {
674
		page = alloc_fresh_huge_page_node(h, next_nid);
675
		if (page) {
676
			ret = 1;
677 678
			break;
		}
679
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680
	} while (next_nid != start_nid);
681

682 683 684 685 686
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

687
	return ret;
L
Linus Torvalds 已提交
688 689
}

690
/*
691 692 693 694
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
695
 */
696
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697
{
698 699 700 701 702 703
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704 705

	return nid;
706 707 708 709 710 711 712 713
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
714 715
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
716 717 718 719 720
{
	int start_nid;
	int next_nid;
	int ret = 0;

721
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
722 723 724
	next_nid = start_nid;

	do {
725 726 727 728 729 730
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
731 732 733 734 735 736
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
737 738 739 740
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
741 742
			update_and_free_page(h, page);
			ret = 1;
743
			break;
744
		}
745
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
746
	} while (next_nid != start_nid);
747 748 749 750

	return ret;
}

751
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 753
{
	struct page *page;
754
	unsigned int r_nid;
755

756 757 758
	if (h->order >= MAX_ORDER)
		return NULL;

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
783
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784 785 786
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
787 788
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
789 790 791
	}
	spin_unlock(&hugetlb_lock);

792 793 794 795 796 797 798 799
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800

801 802
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
803
		page = NULL;
804 805
	}

806
	spin_lock(&hugetlb_lock);
807
	if (page) {
808
		r_nid = page_to_nid(page);
809
		set_compound_page_dtor(page, free_huge_page);
810 811 812
		/*
		 * We incremented the global counters already
		 */
813 814
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
815
		__count_vm_event(HTLB_BUDDY_PGALLOC);
816
	} else {
817 818
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
819
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820
	}
821
	spin_unlock(&hugetlb_lock);
822 823 824 825

	return page;
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

845
/*
L
Lucas De Marchi 已提交
846
 * Increase the hugetlb pool such that it can accommodate a reservation
847 848
 * of size 'delta'.
 */
849
static int gather_surplus_pages(struct hstate *h, int delta)
850 851 852 853 854
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
855
	bool alloc_ok = true;
856

857
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858
	if (needed <= 0) {
859
		h->resv_huge_pages += delta;
860
		return 0;
861
	}
862 863 864 865 866 867 868 869

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
870
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
871 872 873 874
		if (!page) {
			alloc_ok = false;
			break;
		}
875 876
		list_add(&page->lru, &surplus_list);
	}
877
	allocated += i;
878 879 880 881 882 883

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
884 885
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
886 887 888 889 890 891 892 893 894 895
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
896 897
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
898
	 * needed to accommodate the reservation.  Add the appropriate number
899
	 * of pages to the hugetlb pool and free the extras back to the buddy
900 901 902
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
903 904
	 */
	needed += allocated;
905
	h->resv_huge_pages += delta;
906
	ret = 0;
907

908
	/* Free the needed pages to the hugetlb pool */
909
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910 911
		if ((--needed) < 0)
			break;
912
		list_del(&page->lru);
913 914 915 916 917 918
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
919
		enqueue_huge_page(h, page);
920
	}
921
free:
922
	spin_unlock(&hugetlb_lock);
923 924 925 926 927

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
928
			put_page(page);
929
		}
930
	}
931
	spin_lock(&hugetlb_lock);
932 933 934 935 936 937 938 939

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
940
 * Called with hugetlb_lock held.
941
 */
942 943
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
944 945 946
{
	unsigned long nr_pages;

947
	/* Uncommit the reservation */
948
	h->resv_huge_pages -= unused_resv_pages;
949

950 951 952 953
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

954
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
955

956 957
	/*
	 * We want to release as many surplus pages as possible, spread
958 959 960 961 962
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
963 964
	 */
	while (nr_pages--) {
965
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966
			break;
967 968 969
	}
}

970 971 972 973 974 975 976 977 978
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
979
static long vma_needs_reservation(struct hstate *h,
980
			struct vm_area_struct *vma, unsigned long addr)
981 982 983 984
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

985
	if (vma->vm_flags & VM_MAYSHARE) {
986
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987 988 989
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

990 991
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
992

993
	} else  {
994
		long err;
995
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996 997 998 999 1000 1001 1002
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1003
}
1004 1005
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1006 1007 1008 1009
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1010
	if (vma->vm_flags & VM_MAYSHARE) {
1011
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1013 1014

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016 1017 1018 1019
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1020 1021 1022
	}
}

1023
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1025
{
1026
	struct hstate *h = hstate_vma(vma);
1027
	struct page *page;
1028 1029
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1030
	long chg;
1031 1032 1033 1034 1035

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1036 1037
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1038
	 */
1039
	chg = vma_needs_reservation(h, vma, addr);
1040
	if (chg < 0)
1041
		return ERR_PTR(-VM_FAULT_OOM);
1042
	if (chg)
1043
		if (hugetlb_get_quota(inode->i_mapping, chg))
1044
			return ERR_PTR(-VM_FAULT_SIGBUS);
L
Linus Torvalds 已提交
1045 1046

	spin_lock(&hugetlb_lock);
1047
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1048
	spin_unlock(&hugetlb_lock);
1049

K
Ken Chen 已提交
1050
	if (!page) {
1051
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1052
		if (!page) {
1053
			hugetlb_put_quota(inode->i_mapping, chg);
1054
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1055 1056
		}
	}
1057

1058
	set_page_private(page, (unsigned long) mapping);
1059

1060
	vma_commit_reservation(h, vma, addr);
1061

1062
	return page;
1063 1064
}

1065
int __weak alloc_bootmem_huge_page(struct hstate *h)
1066 1067
{
	struct huge_bootmem_page *m;
1068
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1069 1070 1071 1072 1073

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1074
				NODE_DATA(hstate_next_node_to_alloc(h,
1075
						&node_states[N_HIGH_MEMORY])),
1076 1077 1078 1079 1080 1081 1082 1083 1084
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1085
			goto found;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1099 1100 1101 1102 1103 1104 1105 1106
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1107 1108 1109 1110 1111 1112 1113
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1114 1115 1116 1117 1118 1119 1120 1121 1122
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1123 1124
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1125
		prep_compound_huge_page(page, h->order);
1126
		prep_new_huge_page(h, page, page_to_nid(page));
1127 1128 1129 1130 1131 1132 1133 1134
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1135 1136 1137
	}
}

1138
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1139 1140
{
	unsigned long i;
1141

1142
	for (i = 0; i < h->max_huge_pages; ++i) {
1143 1144 1145
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1146 1147
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1148 1149
			break;
	}
1150
	h->max_huge_pages = i;
1151 1152 1153 1154 1155 1156 1157
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1158 1159 1160
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1161 1162 1163
	}
}

A
Andi Kleen 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1175 1176 1177 1178 1179
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1180 1181 1182 1183 1184
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1185 1186 1187
	}
}

L
Linus Torvalds 已提交
1188
#ifdef CONFIG_HIGHMEM
1189 1190
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1191
{
1192 1193
	int i;

1194 1195 1196
	if (h->order >= MAX_ORDER)
		return;

1197
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1198
		struct page *page, *next;
1199 1200 1201
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1202
				return;
L
Linus Torvalds 已提交
1203 1204 1205
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1206
			update_and_free_page(h, page);
1207 1208
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1209 1210 1211 1212
		}
	}
}
#else
1213 1214
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1215 1216 1217 1218
{
}
#endif

1219 1220 1221 1222 1223
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1224 1225
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1226
{
1227
	int start_nid, next_nid;
1228 1229 1230 1231
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1232
	if (delta < 0)
1233
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1234
	else
1235
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1236 1237 1238 1239 1240 1241 1242 1243
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1244
			if (!h->surplus_huge_pages_node[nid]) {
1245 1246
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1247
				continue;
1248
			}
1249 1250 1251 1252 1253 1254
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1255
						h->nr_huge_pages_node[nid]) {
1256 1257
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1258
				continue;
1259
			}
1260
		}
1261 1262 1263 1264 1265

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1266
	} while (next_nid != start_nid);
1267 1268 1269 1270

	return ret;
}

1271
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1272 1273
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1274
{
1275
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1276

1277 1278 1279
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1280 1281 1282 1283
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1284 1285 1286 1287 1288 1289
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1290
	 */
L
Linus Torvalds 已提交
1291
	spin_lock(&hugetlb_lock);
1292
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1293
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1294 1295 1296
			break;
	}

1297
	while (count > persistent_huge_pages(h)) {
1298 1299 1300 1301 1302 1303
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1304
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1305 1306 1307 1308
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1309 1310 1311
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1312 1313 1314 1315 1316 1317 1318 1319
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1320 1321 1322 1323 1324 1325 1326 1327
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1328
	 */
1329
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1330
	min_count = max(count, min_count);
1331
	try_to_free_low(h, min_count, nodes_allowed);
1332
	while (min_count < persistent_huge_pages(h)) {
1333
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1334 1335
			break;
	}
1336
	while (count < persistent_huge_pages(h)) {
1337
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1338 1339 1340
			break;
	}
out:
1341
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1342
	spin_unlock(&hugetlb_lock);
1343
	return ret;
L
Linus Torvalds 已提交
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1356 1357 1358
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1359 1360
{
	int i;
1361

1362
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1363 1364 1365
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1366
			return &hstates[i];
1367 1368 1369
		}

	return kobj_to_node_hstate(kobj, nidp);
1370 1371
}

1372
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1373 1374
					struct kobj_attribute *attr, char *buf)
{
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1386
}
1387

1388 1389 1390
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1391 1392
{
	int err;
1393
	int nid;
1394
	unsigned long count;
1395
	struct hstate *h;
1396
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1397

1398
	err = strict_strtoul(buf, 10, &count);
1399
	if (err)
1400
		goto out;
1401

1402
	h = kobj_to_hstate(kobj, &nid);
1403 1404 1405 1406 1407
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1427
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1428

1429
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1430 1431 1432
		NODEMASK_FREE(nodes_allowed);

	return len;
1433 1434 1435
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1448 1449 1450
}
HSTATE_ATTR(nr_hugepages);

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1472 1473 1474
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1475
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1476 1477
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1478

1479 1480 1481 1482 1483
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1484
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1485

1486 1487 1488
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1489 1490
	err = strict_strtoul(buf, 10, &input);
	if (err)
1491
		return err;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1515 1516 1517 1518 1519 1520
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1521
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1522 1523 1524 1525 1526 1527 1528
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1540 1541 1542 1543 1544 1545 1546 1547 1548
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1549 1550 1551
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1552 1553 1554 1555 1556 1557 1558
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1559 1560 1561
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1562 1563
{
	int retval;
1564
	int hi = h - hstates;
1565

1566 1567
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1568 1569
		return -ENOMEM;

1570
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1571
	if (retval)
1572
		kobject_put(hstate_kobjs[hi]);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1587 1588
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1589 1590 1591 1592 1593 1594
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1595 1596 1597 1598
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1599 1600 1601
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1602 1603 1604 1605 1606 1607 1608 1609 1610
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1611
 * A subset of global hstate attributes for node devices
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1625
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1648
 * Unregister hstate attributes from a single node device.
1649 1650 1651 1652 1653
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1654
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1655 1656

	if (!nhs->hugepages_kobj)
1657
		return;		/* no hstate attributes */
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1670
 * hugetlb module exit:  unregister hstate attributes from node devices
1671 1672 1673 1674 1675 1676 1677
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1678
	 * disable node device registrations.
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1690
 * Register hstate attributes for a single node device.
1691 1692 1693 1694 1695
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1696
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1697 1698 1699 1700 1701 1702
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1703
							&node->dev.kobj);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1714
						h->name, node->dev.id);
1715 1716 1717 1718 1719 1720 1721
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1722
 * hugetlb init time:  register hstate attributes for all registered node
1723 1724
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1725 1726 1727 1728 1729
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1730
	for_each_node_state(nid, N_HIGH_MEMORY) {
1731
		struct node *node = &node_devices[nid];
1732
		if (node->dev.id == nid)
1733 1734 1735 1736
			hugetlb_register_node(node);
	}

	/*
1737
	 * Let the node device driver know we're here so it can
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1759 1760 1761 1762
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1763 1764
	hugetlb_unregister_all_nodes();

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1775 1776 1777 1778 1779 1780
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1781

1782 1783 1784 1785
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1786
	}
1787 1788 1789
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1790 1791 1792

	hugetlb_init_hstates();

1793 1794
	gather_bootmem_prealloc();

1795 1796 1797 1798
	report_hugepages();

	hugetlb_sysfs_init();

1799 1800
	hugetlb_register_all_nodes();

1801 1802 1803 1804 1805 1806 1807 1808
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1809 1810
	unsigned long i;

1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1820 1821 1822 1823
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1824 1825
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1826 1827
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1828

1829 1830 1831
	parsed_hstate = h;
}

1832
static int __init hugetlb_nrpages_setup(char *s)
1833 1834
{
	unsigned long *mhp;
1835
	static unsigned long *last_mhp;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1846 1847 1848 1849 1850 1851
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1852 1853 1854
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1865 1866
	return 1;
}
1867 1868 1869 1870 1871 1872 1873 1874
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1888 1889 1890
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1891
{
1892 1893
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1894
	int ret;
1895

1896
	tmp = h->max_huge_pages;
1897

1898 1899 1900
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1901 1902
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1903 1904 1905
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1906

1907
	if (write) {
1908 1909
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1920 1921
out:
	return ret;
L
Linus Torvalds 已提交
1922
}
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1941
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1942
			void __user *buffer,
1943 1944
			size_t *length, loff_t *ppos)
{
1945
	proc_dointvec(table, write, buffer, length, ppos);
1946 1947 1948 1949 1950 1951 1952
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1953
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1954
			void __user *buffer,
1955 1956
			size_t *length, loff_t *ppos)
{
1957
	struct hstate *h = &default_hstate;
1958
	unsigned long tmp;
1959
	int ret;
1960

1961
	tmp = h->nr_overcommit_huge_pages;
1962

1963 1964 1965
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1966 1967
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1968 1969 1970
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1971 1972 1973 1974 1975 1976

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
1977 1978
out:
	return ret;
1979 1980
}

L
Linus Torvalds 已提交
1981 1982
#endif /* CONFIG_SYSCTL */

1983
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1984
{
1985
	struct hstate *h = &default_hstate;
1986
	seq_printf(m,
1987 1988 1989 1990 1991
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1992 1993 1994 1995 1996
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1997 1998 1999 2000
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2001
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2002 2003
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2004 2005
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2006 2007 2008
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2014 2015
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2016 2017
}

2018
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2041
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2042 2043
			goto out;

2044 2045
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2046 2047 2048 2049 2050 2051
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2052
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2053 2054 2055 2056 2057 2058

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2059 2060 2061 2062 2063 2064 2065 2066
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2067
	 * has a reference to the reservation map it cannot disappear until
2068 2069 2070 2071 2072 2073 2074
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2075 2076
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2077
	struct hstate *h = hstate_vma(vma);
2078 2079 2080 2081 2082 2083
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2084 2085
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2086 2087 2088 2089 2090 2091

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2092
		if (reserve) {
2093
			hugetlb_acct_memory(h, -reserve);
2094 2095
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2096
	}
2097 2098
}

L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2105
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2106 2107
{
	BUG();
N
Nick Piggin 已提交
2108
	return 0;
L
Linus Torvalds 已提交
2109 2110
}

2111
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2112
	.fault = hugetlb_vm_op_fault,
2113
	.open = hugetlb_vm_op_open,
2114
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2115 2116
};

2117 2118
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2119 2120 2121
{
	pte_t entry;

2122
	if (writable) {
D
David Gibson 已提交
2123 2124 2125
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2126
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2127 2128 2129 2130 2131 2132 2133
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2134 2135 2136 2137 2138
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2139
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2140
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2141
		update_mmu_cache(vma, address, ptep);
2142 2143 2144
}


D
David Gibson 已提交
2145 2146 2147 2148 2149
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2150
	unsigned long addr;
2151
	int cow;
2152 2153
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2154 2155

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2156

2157
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2158 2159 2160
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2161
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2162 2163
		if (!dst_pte)
			goto nomem;
2164 2165 2166 2167 2168

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2169
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2170
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2171
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2172
			if (cow)
2173 2174
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2175 2176
			ptepage = pte_page(entry);
			get_page(ptepage);
2177
			page_dup_rmap(ptepage);
2178 2179 2180
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2181
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2182 2183 2184 2185 2186 2187 2188
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2189 2190 2191 2192 2193 2194 2195
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2196
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2197
		return 1;
2198
	else
N
Naoya Horiguchi 已提交
2199 2200 2201
		return 0;
}

2202 2203 2204 2205 2206 2207 2208
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2209
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2210
		return 1;
2211
	else
2212 2213 2214
		return 0;
}

2215
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2217 2218 2219
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2220
	pte_t *ptep;
D
David Gibson 已提交
2221 2222
	pte_t pte;
	struct page *page;
2223
	struct page *tmp;
2224 2225 2226
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2227
	/*
2228
	 * A page gathering list, protected by per file i_mmap_mutex. The
2229 2230 2231
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2232
	LIST_HEAD(page_list);
D
David Gibson 已提交
2233 2234

	WARN_ON(!is_vm_hugetlb_page(vma));
2235 2236
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2237

A
Andrea Arcangeli 已提交
2238
	mmu_notifier_invalidate_range_start(mm, start, end);
2239
	spin_lock(&mm->page_table_lock);
2240
	for (address = start; address < end; address += sz) {
2241
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2242
		if (!ptep)
2243 2244
			continue;

2245 2246 2247
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2269
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2270
		if (huge_pte_none(pte))
D
David Gibson 已提交
2271
			continue;
2272

2273 2274 2275 2276 2277 2278
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2279
		page = pte_page(pte);
2280 2281
		if (pte_dirty(pte))
			set_page_dirty(page);
2282
		list_add(&page->lru, &page_list);
2283 2284 2285 2286

		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2287
	}
2288
	flush_tlb_range(vma, start, end);
2289
	spin_unlock(&mm->page_table_lock);
A
Andrea Arcangeli 已提交
2290
	mmu_notifier_invalidate_range_end(mm, start, end);
2291
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2292
		page_remove_rmap(page);
2293 2294 2295
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2296
}
D
David Gibson 已提交
2297

2298
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2299
			  unsigned long end, struct page *ref_page)
2300
{
2301
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2302
	__unmap_hugepage_range(vma, start, end, ref_page);
2303
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2304 2305
}

2306 2307 2308 2309 2310 2311
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2312 2313
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2314
{
2315
	struct hstate *h = hstate_vma(vma);
2316 2317 2318 2319 2320 2321 2322 2323 2324
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2325
	address = address & huge_page_mask(h);
2326
	pgoff = vma_hugecache_offset(h, vma, address);
2327 2328
	mapping = (struct address_space *)page_private(page);

2329 2330 2331 2332 2333
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2334
	mutex_lock(&mapping->i_mmap_mutex);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2348
			__unmap_hugepage_range(iter_vma,
2349
				address, address + huge_page_size(h),
2350 2351
				page);
	}
2352
	mutex_unlock(&mapping->i_mmap_mutex);
2353 2354 2355 2356

	return 1;
}

2357 2358
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2359 2360 2361
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2362
 */
2363
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2364 2365
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2366
{
2367
	struct hstate *h = hstate_vma(vma);
2368
	struct page *old_page, *new_page;
2369
	int avoidcopy;
2370
	int outside_reserve = 0;
2371 2372 2373

	old_page = pte_page(pte);

2374
retry_avoidcopy:
2375 2376
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2377
	avoidcopy = (page_mapcount(old_page) == 1);
2378
	if (avoidcopy) {
2379 2380
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2381
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2382
		return 0;
2383 2384
	}

2385 2386 2387 2388 2389 2390 2391 2392 2393
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2394
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2395 2396 2397 2398
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2399
	page_cache_get(old_page);
2400 2401 2402

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2403
	new_page = alloc_huge_page(vma, address, outside_reserve);
2404

2405
	if (IS_ERR(new_page)) {
2406
		page_cache_release(old_page);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2420
				spin_lock(&mm->page_table_lock);
2421 2422 2423 2424 2425 2426 2427 2428
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2429 2430 2431 2432
			}
			WARN_ON_ONCE(1);
		}

2433 2434
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2435
		return -PTR_ERR(new_page);
2436 2437
	}

2438 2439 2440 2441
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2442
	if (unlikely(anon_vma_prepare(vma))) {
2443 2444
		page_cache_release(new_page);
		page_cache_release(old_page);
2445 2446
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2447
		return VM_FAULT_OOM;
2448
	}
2449

A
Andrea Arcangeli 已提交
2450 2451
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2452
	__SetPageUptodate(new_page);
2453

2454 2455 2456 2457 2458
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2459
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2460
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2461
		/* Break COW */
2462 2463 2464
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2465
		huge_ptep_clear_flush(vma, address, ptep);
2466 2467
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2468
		page_remove_rmap(old_page);
2469
		hugepage_add_new_anon_rmap(new_page, vma, address);
2470 2471
		/* Make the old page be freed below */
		new_page = old_page;
2472 2473 2474
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2475 2476 2477
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2478
	return 0;
2479 2480
}

2481
/* Return the pagecache page at a given address within a VMA */
2482 2483
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2484 2485
{
	struct address_space *mapping;
2486
	pgoff_t idx;
2487 2488

	mapping = vma->vm_file->f_mapping;
2489
	idx = vma_hugecache_offset(h, vma, address);
2490 2491 2492 2493

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2494 2495 2496 2497 2498
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2514
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515
			unsigned long address, pte_t *ptep, unsigned int flags)
2516
{
2517
	struct hstate *h = hstate_vma(vma);
2518
	int ret = VM_FAULT_SIGBUS;
2519
	int anon_rmap = 0;
2520
	pgoff_t idx;
A
Adam Litke 已提交
2521 2522 2523
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2524
	pte_t new_pte;
A
Adam Litke 已提交
2525

2526 2527 2528
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2529
	 * COW. Warn that such a situation has occurred as it may not be obvious
2530 2531 2532 2533 2534 2535 2536 2537
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2538
	mapping = vma->vm_file->f_mapping;
2539
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2540 2541 2542 2543 2544

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2545 2546 2547
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2548
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2549 2550
		if (idx >= size)
			goto out;
2551
		page = alloc_huge_page(vma, address, 0);
2552 2553
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2554 2555
			goto out;
		}
A
Andrea Arcangeli 已提交
2556
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2557
		__SetPageUptodate(page);
2558

2559
		if (vma->vm_flags & VM_MAYSHARE) {
2560
			int err;
K
Ken Chen 已提交
2561
			struct inode *inode = mapping->host;
2562 2563 2564 2565 2566 2567 2568 2569

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2570 2571

			spin_lock(&inode->i_lock);
2572
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2573
			spin_unlock(&inode->i_lock);
2574
		} else {
2575
			lock_page(page);
2576 2577 2578 2579
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2580
			anon_rmap = 1;
2581
		}
2582
	} else {
2583 2584 2585 2586 2587 2588
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2589
			ret = VM_FAULT_HWPOISON |
2590
			      VM_FAULT_SET_HINDEX(h - hstates);
2591 2592
			goto backout_unlocked;
		}
2593
	}
2594

2595 2596 2597 2598 2599 2600
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2601
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2602 2603 2604 2605
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2606

2607
	spin_lock(&mm->page_table_lock);
2608
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2609 2610 2611
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2612
	ret = 0;
2613
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2614 2615
		goto backout;

2616 2617 2618 2619
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2620 2621 2622 2623
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2624
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2625
		/* Optimization, do the COW without a second fault */
2626
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2627 2628
	}

2629
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2630 2631
	unlock_page(page);
out:
2632
	return ret;
A
Adam Litke 已提交
2633 2634 2635

backout:
	spin_unlock(&mm->page_table_lock);
2636
backout_unlocked:
A
Adam Litke 已提交
2637 2638 2639
	unlock_page(page);
	put_page(page);
	goto out;
2640 2641
}

2642
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2643
			unsigned long address, unsigned int flags)
2644 2645 2646
{
	pte_t *ptep;
	pte_t entry;
2647
	int ret;
2648
	struct page *page = NULL;
2649
	struct page *pagecache_page = NULL;
2650
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2651
	struct hstate *h = hstate_vma(vma);
2652

2653 2654
	address &= huge_page_mask(h);

2655 2656 2657
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2658 2659 2660 2661
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2662
			return VM_FAULT_HWPOISON_LARGE |
2663
			       VM_FAULT_SET_HINDEX(h - hstates);
2664 2665
	}

2666
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2667 2668 2669
	if (!ptep)
		return VM_FAULT_OOM;

2670 2671 2672 2673 2674 2675
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2676 2677
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2678
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2679
		goto out_mutex;
2680
	}
2681

N
Nick Piggin 已提交
2682
	ret = 0;
2683

2684 2685 2686 2687 2688 2689 2690 2691
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2692
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2693 2694
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2695
			goto out_mutex;
2696
		}
2697

2698
		if (!(vma->vm_flags & VM_MAYSHARE))
2699 2700 2701 2702
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2703 2704 2705 2706 2707 2708 2709 2710 2711
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2712 2713
		lock_page(page);

2714 2715
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2716 2717 2718 2719
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2720
	if (flags & FAULT_FLAG_WRITE) {
2721
		if (!pte_write(entry)) {
2722 2723
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2724 2725 2726 2727 2728
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2729 2730
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2731
		update_mmu_cache(vma, address, ptep);
2732 2733

out_page_table_lock:
2734
	spin_unlock(&mm->page_table_lock);
2735 2736 2737 2738 2739

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2740 2741
	if (page != pagecache_page)
		unlock_page(page);
2742

2743
out_mutex:
2744
	mutex_unlock(&hugetlb_instantiation_mutex);
2745 2746

	return ret;
2747 2748
}

A
Andi Kleen 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2758 2759
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2760
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2761
			unsigned int flags)
D
David Gibson 已提交
2762
{
2763 2764
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2765
	int remainder = *length;
2766
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2767

2768
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2769
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2770
		pte_t *pte;
H
Hugh Dickins 已提交
2771
		int absent;
A
Adam Litke 已提交
2772
		struct page *page;
D
David Gibson 已提交
2773

A
Adam Litke 已提交
2774 2775
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2776
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2777 2778
		 * first, for the page indexing below to work.
		 */
2779
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2780 2781 2782 2783
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2784 2785 2786 2787
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2788
		 */
H
Hugh Dickins 已提交
2789 2790
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2791 2792 2793
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2794

H
Hugh Dickins 已提交
2795 2796
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2797
			int ret;
D
David Gibson 已提交
2798

A
Adam Litke 已提交
2799
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2800 2801
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2802
			spin_lock(&mm->page_table_lock);
2803
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2804
				continue;
D
David Gibson 已提交
2805

A
Adam Litke 已提交
2806 2807 2808 2809
			remainder = 0;
			break;
		}

2810
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2811
		page = pte_page(huge_ptep_get(pte));
2812
same_page:
2813
		if (pages) {
H
Hugh Dickins 已提交
2814
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2815
			get_page(pages[i]);
2816
		}
D
David Gibson 已提交
2817 2818 2819 2820 2821

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2822
		++pfn_offset;
D
David Gibson 已提交
2823 2824
		--remainder;
		++i;
2825
		if (vaddr < vma->vm_end && remainder &&
2826
				pfn_offset < pages_per_huge_page(h)) {
2827 2828 2829 2830 2831 2832
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2833
	}
2834
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2835 2836 2837
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2838
	return i ? i : -EFAULT;
D
David Gibson 已提交
2839
}
2840 2841 2842 2843 2844 2845 2846 2847

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2848
	struct hstate *h = hstate_vma(vma);
2849 2850 2851 2852

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2853
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2854
	spin_lock(&mm->page_table_lock);
2855
	for (; address < end; address += huge_page_size(h)) {
2856 2857 2858
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2859 2860
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2861
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2862 2863 2864 2865 2866 2867
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2868
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2869 2870 2871 2872

	flush_tlb_range(vma, start, end);
}

2873 2874
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2875
					struct vm_area_struct *vma,
2876
					vm_flags_t vm_flags)
2877
{
2878
	long ret, chg;
2879
	struct hstate *h = hstate_inode(inode);
2880

2881 2882 2883 2884 2885
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
2886
	if (vm_flags & VM_NORESERVE)
2887 2888
		return 0;

2889 2890 2891 2892 2893 2894
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2895
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2896
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2897 2898 2899 2900 2901
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2902
		chg = to - from;
2903

2904 2905 2906 2907
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2908 2909
	if (chg < 0)
		return chg;
2910

2911
	/* There must be enough filesystem quota for the mapping */
2912 2913
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2914 2915

	/*
2916 2917
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2918
	 */
2919
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2920 2921
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2922
		return ret;
K
Ken Chen 已提交
2923
	}
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2936
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2937
		region_add(&inode->i_mapping->private_list, from, to);
2938 2939 2940 2941 2942
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2943
	struct hstate *h = hstate_inode(inode);
2944
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2945 2946

	spin_lock(&inode->i_lock);
2947
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2948 2949
	spin_unlock(&inode->i_lock);

2950
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2951
	hugetlb_acct_memory(h, -(chg - freed));
2952
}
2953

2954 2955
#ifdef CONFIG_MEMORY_FAILURE

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

2970 2971 2972 2973
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
2974
int dequeue_hwpoisoned_huge_page(struct page *hpage)
2975 2976 2977
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
2978
	int ret = -EBUSY;
2979 2980

	spin_lock(&hugetlb_lock);
2981 2982
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
2983
		set_page_refcounted(hpage);
2984 2985 2986 2987
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
2988
	spin_unlock(&hugetlb_lock);
2989
	return ret;
2990
}
2991
#endif