hugetlb.c 59.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238 239 240 241 242 243 244
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
245
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
246

247 248 249 250 251 252 253 254 255
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
256 257 258 259 260 261 262 263 264
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
265
 */
266 267 268 269 270 271 272 273 274 275 276
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

277 278 279 280 281
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

282
static struct resv_map *resv_map_alloc(void)
283 284 285 286 287 288 289 290 291 292 293
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

294
static void resv_map_release(struct kref *ref)
295 296 297 298 299 300 301 302 303
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
304 305 306
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
307 308
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
309
	return NULL;
310 311
}

312
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
313 314 315 316
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

317 318
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
319 320 321 322 323
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
324 325 326
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
327 328 329 330 331
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
332 333

	return (get_vma_private_data(vma) & flag) != 0;
334 335 336
}

/* Decrement the reserved pages in the hugepage pool by one */
337 338
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
339
{
340 341 342
	if (vma->vm_flags & VM_NORESERVE)
		return;

343 344
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
345
		h->resv_huge_pages--;
346
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
347 348 349 350
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
351
		h->resv_huge_pages--;
352 353 354
	}
}

355
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
356 357 358 359 360 361 362 363
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
364
static int vma_has_reserves(struct vm_area_struct *vma)
365 366
{
	if (vma->vm_flags & VM_SHARED)
367 368 369 370
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
371 372
}

373 374 375 376 377 378 379 380 381 382 383 384
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
385 386
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
387 388 389
{
	int i;

390 391 392
	if (unlikely(sz > MAX_ORDER_NR_PAGES))
		return clear_gigantic_page(page, addr, sz);

393
	might_sleep();
394
	for (i = 0; i < sz/PAGE_SIZE; i++) {
395
		cond_resched();
396
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
397 398 399
	}
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
417
static void copy_huge_page(struct page *dst, struct page *src,
418
			   unsigned long addr, struct vm_area_struct *vma)
419 420
{
	int i;
421
	struct hstate *h = hstate_vma(vma);
422

423 424 425
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
		return copy_gigantic_page(dst, src, addr, vma);

426
	might_sleep();
427
	for (i = 0; i < pages_per_huge_page(h); i++) {
428
		cond_resched();
429
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
430 431 432
	}
}

433
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
434 435
{
	int nid = page_to_nid(page);
436 437 438
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
439 440
}

441
static struct page *dequeue_huge_page(struct hstate *h)
442 443 444 445 446
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
447 448
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
449 450
					  struct page, lru);
			list_del(&page->lru);
451 452
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
453 454 455 456 457 458
			break;
		}
	}
	return page;
}

459 460
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
461
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
462
{
463
	int nid;
L
Linus Torvalds 已提交
464
	struct page *page = NULL;
465
	struct mempolicy *mpol;
466
	nodemask_t *nodemask;
467
	struct zonelist *zonelist = huge_zonelist(vma, address,
468
					htlb_alloc_mask, &mpol, &nodemask);
469 470
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
471

472 473 474 475 476
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
477
	if (!vma_has_reserves(vma) &&
478
			h->free_huge_pages - h->resv_huge_pages == 0)
479 480
		return NULL;

481
	/* If reserves cannot be used, ensure enough pages are in the pool */
482
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 484
		return NULL;

485 486
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
487 488
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 490
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
491 492
					  struct page, lru);
			list_del(&page->lru);
493 494
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
495 496

			if (!avoid_reserve)
497
				decrement_hugepage_resv_vma(h, vma);
498

K
Ken Chen 已提交
499
			break;
A
Andrew Morton 已提交
500
		}
L
Linus Torvalds 已提交
501
	}
502
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
503 504 505
	return page;
}

506
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
507 508
{
	int i;
509

510 511
	VM_BUG_ON(h->order >= MAX_ORDER);

512 513 514
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
515 516 517 518 519 520
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
521
	arch_release_hugepage(page);
522
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
523 524
}

525 526 527 528 529 530 531 532 533 534 535
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

536 537
static void free_huge_page(struct page *page)
{
538 539 540 541
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
542
	struct hstate *h = page_hstate(page);
543
	int nid = page_to_nid(page);
544
	struct address_space *mapping;
545

546
	mapping = (struct address_space *) page_private(page);
547
	set_page_private(page, 0);
548
	BUG_ON(page_count(page));
549 550 551
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
552
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 554 555
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
556
	} else {
557
		enqueue_huge_page(h, page);
558
	}
559
	spin_unlock(&hugetlb_lock);
560
	if (mapping)
561
		hugetlb_put_quota(mapping, 1);
562 563
}

564 565 566 567 568
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
569
static int adjust_pool_surplus(struct hstate *h, int delta)
570 571 572 573 574 575 576 577 578 579 580 581
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
582
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
583 584
			continue;
		/* Surplus cannot exceed the total number of pages */
585 586
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
587 588
			continue;

589 590
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
591 592 593 594 595 596 597 598
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

599
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
600 601 602
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
603 604
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
605 606 607 608
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

609
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
610 611
{
	struct page *page;
612

613 614 615
	if (h->order >= MAX_ORDER)
		return NULL;

616
	page = alloc_pages_node(nid,
617 618
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
619
		huge_page_order(h));
L
Linus Torvalds 已提交
620
	if (page) {
621
		if (arch_prepare_hugepage(page)) {
622
			__free_pages(page, huge_page_order(h));
623
			return NULL;
624
		}
625
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
626
	}
627 628 629 630

	return page;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

652
static int alloc_fresh_huge_page(struct hstate *h)
653 654 655 656 657 658
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

659
	start_nid = h->hugetlb_next_nid;
660 661

	do {
662
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
663 664
		if (page)
			ret = 1;
665
		next_nid = hstate_next_node(h);
666
	} while (!page && h->hugetlb_next_nid != start_nid);
667

668 669 670 671 672
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

673
	return ret;
L
Linus Torvalds 已提交
674 675
}

676 677
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
678 679
{
	struct page *page;
680
	unsigned int nid;
681

682 683 684
	if (h->order >= MAX_ORDER)
		return NULL;

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
709
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
710 711 712
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
713 714
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
715 716 717
	}
	spin_unlock(&hugetlb_lock);

718 719
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
720
					huge_page_order(h));
721

722 723 724 725 726
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

727
	spin_lock(&hugetlb_lock);
728
	if (page) {
729 730 731 732 733 734
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
735
		nid = page_to_nid(page);
736
		set_compound_page_dtor(page, free_huge_page);
737 738 739
		/*
		 * We incremented the global counters already
		 */
740 741
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
742
		__count_vm_event(HTLB_BUDDY_PGALLOC);
743
	} else {
744 745
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
746
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
747
	}
748
	spin_unlock(&hugetlb_lock);
749 750 751 752

	return page;
}

753 754 755 756
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
757
static int gather_surplus_pages(struct hstate *h, int delta)
758 759 760 761 762 763
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

764
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
765
	if (needed <= 0) {
766
		h->resv_huge_pages += delta;
767
		return 0;
768
	}
769 770 771 772 773 774 775 776

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
777
		page = alloc_buddy_huge_page(h, NULL, 0);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
798 799
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
800 801 802 803 804 805 806
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
807 808 809
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
810 811
	 */
	needed += allocated;
812
	h->resv_huge_pages += delta;
813 814
	ret = 0;
free:
815
	/* Free the needed pages to the hugetlb pool */
816
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
817 818
		if ((--needed) < 0)
			break;
819
		list_del(&page->lru);
820
		enqueue_huge_page(h, page);
821 822 823 824 825 826 827
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
828
			/*
829 830 831
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
832 833 834
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
835
			free_huge_page(page);
836
		}
837
		spin_lock(&hugetlb_lock);
838 839 840 841 842 843 844 845 846 847
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
848 849
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
850 851 852 853 854
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

855 856 857 858 859 860 861 862
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

863
	/* Uncommit the reservation */
864
	h->resv_huge_pages -= unused_resv_pages;
865

866 867 868 869
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

870
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
871

872
	while (remaining_iterations-- && nr_pages) {
873 874 875 876
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

877
		if (!h->surplus_huge_pages_node[nid])
878 879
			continue;

880 881
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
882 883
					  struct page, lru);
			list_del(&page->lru);
884 885 886 887 888
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
889
			nr_pages--;
890
			remaining_iterations = num_online_nodes();
891 892 893 894
		}
	}
}

895 896 897 898 899 900 901 902 903
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
904 905
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
906 907 908 909 910
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
911
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
912 913 914
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

915 916
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
917

918 919
	} else  {
		int err;
920
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
921 922 923 924 925 926 927
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
928
}
929 930
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
931 932 933 934 935
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
936
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
937
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
938 939

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
940
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
941 942 943 944
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
945 946 947
	}
}

948
static struct page *alloc_huge_page(struct vm_area_struct *vma,
949
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
950
{
951
	struct hstate *h = hstate_vma(vma);
952
	struct page *page;
953 954
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
955
	unsigned int chg;
956 957 958 959 960

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
961 962
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
963
	 */
964
	chg = vma_needs_reservation(h, vma, addr);
965 966 967
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
968 969
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
970 971

	spin_lock(&hugetlb_lock);
972
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
973
	spin_unlock(&hugetlb_lock);
974

K
Ken Chen 已提交
975
	if (!page) {
976
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
977
		if (!page) {
978
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
979 980 981
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
982

983 984
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
985

986
	vma_commit_reservation(h, vma, addr);
987

988
	return page;
989 990
}

991
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1026 1027 1028 1029 1030 1031 1032 1033
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1044
		prep_compound_huge_page(page, h->order);
1045 1046 1047 1048
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1049
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1050 1051
{
	unsigned long i;
1052

1053
	for (i = 0; i < h->max_huge_pages; ++i) {
1054 1055 1056 1057
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1058 1059
			break;
	}
1060
	h->max_huge_pages = i;
1061 1062 1063 1064 1065 1066 1067
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1068 1069 1070
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1071 1072 1073
	}
}

A
Andi Kleen 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1085 1086 1087 1088 1089
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1090 1091 1092 1093 1094
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1095 1096 1097
	}
}

L
Linus Torvalds 已提交
1098
#ifdef CONFIG_HIGHMEM
1099
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1100
{
1101 1102
	int i;

1103 1104 1105
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1106 1107
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1108 1109 1110
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1111
				return;
L
Linus Torvalds 已提交
1112 1113 1114
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1115
			update_and_free_page(h, page);
1116 1117
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1118 1119 1120 1121
		}
	}
}
#else
1122
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1123 1124 1125 1126
{
}
#endif

1127
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1128
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1129
{
1130
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1131

1132 1133 1134
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1135 1136 1137 1138
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1139 1140 1141 1142 1143 1144
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1145
	 */
L
Linus Torvalds 已提交
1146
	spin_lock(&hugetlb_lock);
1147 1148
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1149 1150 1151
			break;
	}

1152
	while (count > persistent_huge_pages(h)) {
1153 1154 1155 1156 1157 1158
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1159
		ret = alloc_fresh_huge_page(h);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1172 1173 1174 1175 1176 1177 1178 1179
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1180
	 */
1181
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1182
	min_count = max(count, min_count);
1183 1184 1185
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1186 1187
		if (!page)
			break;
1188
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1189
	}
1190 1191
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1192 1193 1194
			break;
	}
out:
1195
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1196
	spin_unlock(&hugetlb_lock);
1197
	return ret;
L
Linus Torvalds 已提交
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1353 1354 1355 1356 1357 1358
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1359

1360 1361 1362 1363
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1364
	}
1365 1366 1367
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1368 1369 1370

	hugetlb_init_hstates();

1371 1372
	gather_bootmem_prealloc();

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1385 1386
	unsigned long i;

1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1396 1397 1398 1399 1400
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1401 1402
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1403

1404 1405 1406
	parsed_hstate = h;
}

1407
static int __init hugetlb_nrpages_setup(char *s)
1408 1409
{
	unsigned long *mhp;
1410
	static unsigned long *last_mhp;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1421 1422 1423 1424 1425 1426
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1427 1428 1429
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1440 1441
	return 1;
}
1442 1443 1444 1445 1446 1447 1448 1449
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1463 1464 1465 1466
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1467 1468 1469 1470 1471 1472 1473 1474
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1475
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1476 1477 1478 1479

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1480 1481
	return 0;
}
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1495 1496 1497 1498
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1499
	struct hstate *h = &default_hstate;
1500 1501 1502 1503 1504 1505 1506
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1507
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1508 1509 1510 1511 1512 1513 1514

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1515 1516 1517
	return 0;
}

L
Linus Torvalds 已提交
1518 1519
#endif /* CONFIG_SYSCTL */

1520
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1521
{
1522
	struct hstate *h = &default_hstate;
1523
	seq_printf(m,
1524 1525 1526 1527 1528
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1529 1530 1531 1532 1533
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1534 1535 1536 1537
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1538
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1539 1540
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1541 1542
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1543 1544 1545
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1551 1552
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1553 1554
}

1555
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1578
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1579 1580
			goto out;

1581 1582
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1583 1584 1585 1586 1587 1588
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1589
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1590 1591 1592 1593 1594 1595

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1612 1613
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1614
	struct hstate *h = hstate_vma(vma);
1615 1616 1617 1618 1619 1620
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1621 1622
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1623 1624 1625 1626 1627 1628

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1629
		if (reserve) {
1630
			hugetlb_acct_memory(h, -reserve);
1631 1632
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1633
	}
1634 1635
}

L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1642
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1643 1644
{
	BUG();
N
Nick Piggin 已提交
1645
	return 0;
L
Linus Torvalds 已提交
1646 1647 1648
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1649
	.fault = hugetlb_vm_op_fault,
1650
	.open = hugetlb_vm_op_open,
1651
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1652 1653
};

1654 1655
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1656 1657 1658
{
	pte_t entry;

1659
	if (writable) {
D
David Gibson 已提交
1660 1661 1662
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1663
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1664 1665 1666 1667 1668 1669 1670
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1671 1672 1673 1674 1675
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1676 1677
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1678 1679
		update_mmu_cache(vma, address, entry);
	}
1680 1681 1682
}


D
David Gibson 已提交
1683 1684 1685 1686 1687
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1688
	unsigned long addr;
1689
	int cow;
1690 1691
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1692 1693

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1694

1695
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1696 1697 1698
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1699
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1700 1701
		if (!dst_pte)
			goto nomem;
1702 1703 1704 1705 1706

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1707
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1708
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1709
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1710
			if (cow)
1711 1712
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1713 1714 1715 1716 1717
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1718
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1719 1720 1721 1722 1723 1724 1725
	}
	return 0;

nomem:
	return -ENOMEM;
}

1726
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1727
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1728 1729 1730
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1731
	pte_t *ptep;
D
David Gibson 已提交
1732 1733
	pte_t pte;
	struct page *page;
1734
	struct page *tmp;
1735 1736 1737
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1738 1739 1740 1741 1742
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1743
	LIST_HEAD(page_list);
D
David Gibson 已提交
1744 1745

	WARN_ON(!is_vm_hugetlb_page(vma));
1746 1747
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1748

A
Andrea Arcangeli 已提交
1749
	mmu_notifier_invalidate_range_start(mm, start, end);
1750
	spin_lock(&mm->page_table_lock);
1751
	for (address = start; address < end; address += sz) {
1752
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1753
		if (!ptep)
1754 1755
			continue;

1756 1757 1758
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1780
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1781
		if (huge_pte_none(pte))
D
David Gibson 已提交
1782
			continue;
1783

D
David Gibson 已提交
1784
		page = pte_page(pte);
1785 1786
		if (pte_dirty(pte))
			set_page_dirty(page);
1787
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1788
	}
L
Linus Torvalds 已提交
1789
	spin_unlock(&mm->page_table_lock);
1790
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1791
	mmu_notifier_invalidate_range_end(mm, start, end);
1792 1793 1794 1795
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1796
}
D
David Gibson 已提交
1797

1798
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1799
			  unsigned long end, struct page *ref_page)
1800
{
1801 1802 1803
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1804 1805
}

1806 1807 1808 1809 1810 1811
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1812 1813
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1814
{
1815
	struct hstate *h = hstate_vma(vma);
1816 1817 1818 1819 1820 1821 1822 1823 1824
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1825
	address = address & huge_page_mask(h);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1844
				address, address + huge_page_size(h),
1845 1846 1847 1848 1849 1850
				page);
	}

	return 1;
}

1851
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1852 1853
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1854
{
1855
	struct hstate *h = hstate_vma(vma);
1856
	struct page *old_page, *new_page;
1857
	int avoidcopy;
1858
	int outside_reserve = 0;
1859 1860 1861

	old_page = pte_page(pte);

1862
retry_avoidcopy:
1863 1864 1865 1866 1867
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1868
		return 0;
1869 1870
	}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1885
	page_cache_get(old_page);
1886
	new_page = alloc_huge_page(vma, address, outside_reserve);
1887

1888
	if (IS_ERR(new_page)) {
1889
		page_cache_release(old_page);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1908
		return -PTR_ERR(new_page);
1909 1910 1911
	}

	spin_unlock(&mm->page_table_lock);
1912
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1913
	__SetPageUptodate(new_page);
1914 1915
	spin_lock(&mm->page_table_lock);

1916
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1917
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1918
		/* Break COW */
1919
		huge_ptep_clear_flush(vma, address, ptep);
1920 1921 1922 1923 1924 1925 1926
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1927
	return 0;
1928 1929
}

1930
/* Return the pagecache page at a given address within a VMA */
1931 1932
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1933 1934
{
	struct address_space *mapping;
1935
	pgoff_t idx;
1936 1937

	mapping = vma->vm_file->f_mapping;
1938
	idx = vma_hugecache_offset(h, vma, address);
1939 1940 1941 1942

	return find_lock_page(mapping, idx);
}

1943
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1944
			unsigned long address, pte_t *ptep, int write_access)
1945
{
1946
	struct hstate *h = hstate_vma(vma);
1947
	int ret = VM_FAULT_SIGBUS;
1948
	pgoff_t idx;
A
Adam Litke 已提交
1949 1950 1951
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1952
	pte_t new_pte;
A
Adam Litke 已提交
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1966
	mapping = vma->vm_file->f_mapping;
1967
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1968 1969 1970 1971 1972

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1973 1974 1975
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1976
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1977 1978
		if (idx >= size)
			goto out;
1979
		page = alloc_huge_page(vma, address, 0);
1980 1981
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1982 1983
			goto out;
		}
1984
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1985
		__SetPageUptodate(page);
1986

1987 1988
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1989
			struct inode *inode = mapping->host;
1990 1991 1992 1993 1994 1995 1996 1997

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1998 1999

			spin_lock(&inode->i_lock);
2000
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2001
			spin_unlock(&inode->i_lock);
2002 2003 2004
		} else
			lock_page(page);
	}
2005

2006 2007 2008 2009 2010 2011 2012
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
2013 2014 2015 2016
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2017

2018
	spin_lock(&mm->page_table_lock);
2019
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2020 2021 2022
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2023
	ret = 0;
2024
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2025 2026
		goto backout;

2027 2028 2029 2030 2031 2032
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
2033
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2034 2035
	}

2036
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2037 2038
	unlock_page(page);
out:
2039
	return ret;
A
Adam Litke 已提交
2040 2041 2042

backout:
	spin_unlock(&mm->page_table_lock);
2043
backout_unlocked:
A
Adam Litke 已提交
2044 2045 2046
	unlock_page(page);
	put_page(page);
	goto out;
2047 2048
}

2049 2050 2051 2052 2053
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
2054
	int ret;
2055
	struct page *pagecache_page = NULL;
2056
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2057
	struct hstate *h = hstate_vma(vma);
2058

2059
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2060 2061 2062
	if (!ptep)
		return VM_FAULT_OOM;

2063 2064 2065 2066 2067 2068
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2069 2070
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2071
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2072
		goto out_mutex;
2073
	}
2074

N
Nick Piggin 已提交
2075
	ret = 0;
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2086 2087
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2088
			goto out_mutex;
2089
		}
2090 2091 2092 2093 2094 2095

		if (!(vma->vm_flags & VM_SHARED))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2096 2097
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2098 2099 2100 2101 2102 2103
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2104 2105
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2106 2107 2108 2109 2110 2111 2112 2113 2114
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2115
	spin_unlock(&mm->page_table_lock);
2116 2117 2118 2119 2120 2121

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2122
out_mutex:
2123
	mutex_unlock(&hugetlb_instantiation_mutex);
2124 2125

	return ret;
2126 2127
}

A
Andi Kleen 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2137 2138 2139 2140 2141 2142 2143 2144
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2145 2146
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2147 2148
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2149
{
2150 2151
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2152
	int remainder = *length;
2153
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2154 2155
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2156

2157
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2158
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2159 2160
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2161

A
Adam Litke 已提交
2162 2163 2164 2165 2166
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2167
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2168 2169
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2170

K
KOSAKI Motohiro 已提交
2171 2172
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2173
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2174
			int ret;
D
David Gibson 已提交
2175

A
Adam Litke 已提交
2176
			spin_unlock(&mm->page_table_lock);
2177
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2178
			spin_lock(&mm->page_table_lock);
2179
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2180
				continue;
D
David Gibson 已提交
2181

A
Adam Litke 已提交
2182 2183 2184 2185 2186 2187
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2188
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2189
		page = pte_page(huge_ptep_get(pte));
2190
same_page:
2191
		if (pages) {
K
KOSAKI Motohiro 已提交
2192 2193 2194
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2195
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2196
			get_page(pages[i]);
2197
		}
D
David Gibson 已提交
2198 2199 2200 2201 2202

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2203
		++pfn_offset;
D
David Gibson 已提交
2204 2205
		--remainder;
		++i;
2206
		if (vaddr < vma->vm_end && remainder &&
2207
				pfn_offset < pages_per_huge_page(h)) {
2208 2209 2210 2211 2212 2213
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2214
	}
2215
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2216 2217 2218 2219 2220
	*length = remainder;
	*position = vaddr;

	return i;
}
2221 2222 2223 2224 2225 2226 2227 2228

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2229
	struct hstate *h = hstate_vma(vma);
2230 2231 2232 2233

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2234
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2235
	spin_lock(&mm->page_table_lock);
2236
	for (; address < end; address += huge_page_size(h)) {
2237 2238 2239
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2240 2241
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2242
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2243 2244 2245 2246 2247 2248
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2249
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2250 2251 2252 2253

	flush_tlb_range(vma, start, end);
}

2254 2255 2256
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2257 2258
{
	long ret, chg;
2259
	struct hstate *h = hstate_inode(inode);
2260

2261 2262 2263
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2264 2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2273 2274 2275 2276
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2277
		chg = to - from;
2278 2279

		set_vma_resv_map(vma, resv_map);
2280
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2281 2282
	}

2283 2284
	if (chg < 0)
		return chg;
2285

2286 2287
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2288
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2289 2290
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2291
		return ret;
K
Ken Chen 已提交
2292
	}
2293 2294
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2295 2296 2297 2298 2299
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2300
	struct hstate *h = hstate_inode(inode);
2301
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2302 2303

	spin_lock(&inode->i_lock);
2304
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2305 2306
	spin_unlock(&inode->i_lock);

2307
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2308
	hugetlb_acct_memory(h, -(chg - freed));
2309
}