hugetlb.c 49.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 26
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
27

28 29 30 31 32 33 34 35 36 37
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
38

39 40 41 42
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
43

44 45 46
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
47 48 49 50 51 52 53 54 55 56
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

203 204 205 206
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
207 208
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
209
{
210 211
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
212 213
}

214 215 216 217 218 219 220
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
221
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
222

223 224 225 226 227 228 229 230 231
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
232 233 234 235 236 237 238 239 240
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
241
 */
242 243 244 245 246 247 248 249 250 251 252
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
280 281 282
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
283 284
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
285 286 287
	return 0;
}

288
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
289 290 291 292
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

293 294
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
295 296 297 298 299
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
300 301 302
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
303 304 305 306 307
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
308 309

	return (get_vma_private_data(vma) & flag) != 0;
310 311 312
}

/* Decrement the reserved pages in the hugepage pool by one */
313 314
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
315
{
316 317 318
	if (vma->vm_flags & VM_NORESERVE)
		return;

319 320
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
321
		h->resv_huge_pages--;
322
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
323 324 325 326
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
327
		h->resv_huge_pages--;
328 329 330
	}
}

331
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
332 333 334 335 336 337 338 339 340 341 342 343
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
344
	if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
345 346 347 348
		return 0;
	return 1;
}

349 350
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
351 352 353 354
{
	int i;

	might_sleep();
355
	for (i = 0; i < sz/PAGE_SIZE; i++) {
356
		cond_resched();
357
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
358 359 360 361
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
362
			   unsigned long addr, struct vm_area_struct *vma)
363 364
{
	int i;
365
	struct hstate *h = hstate_vma(vma);
366 367

	might_sleep();
368
	for (i = 0; i < pages_per_huge_page(h); i++) {
369
		cond_resched();
370
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
371 372 373
	}
}

374
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
375 376
{
	int nid = page_to_nid(page);
377 378 379
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
380 381
}

382
static struct page *dequeue_huge_page(struct hstate *h)
383 384 385 386 387
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
388 389
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
390 391
					  struct page, lru);
			list_del(&page->lru);
392 393
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
394 395 396 397 398 399
			break;
		}
	}
	return page;
}

400 401
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
402
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
403
{
404
	int nid;
L
Linus Torvalds 已提交
405
	struct page *page = NULL;
406
	struct mempolicy *mpol;
407
	nodemask_t *nodemask;
408
	struct zonelist *zonelist = huge_zonelist(vma, address,
409
					htlb_alloc_mask, &mpol, &nodemask);
410 411
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
412

413 414 415 416 417 418
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
419
			h->free_huge_pages - h->resv_huge_pages == 0)
420 421
		return NULL;

422
	/* If reserves cannot be used, ensure enough pages are in the pool */
423
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
424 425
		return NULL;

426 427
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
428 429
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
430 431
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
432 433
					  struct page, lru);
			list_del(&page->lru);
434 435
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
436 437

			if (!avoid_reserve)
438
				decrement_hugepage_resv_vma(h, vma);
439

K
Ken Chen 已提交
440
			break;
A
Andrew Morton 已提交
441
		}
L
Linus Torvalds 已提交
442
	}
443
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
444 445 446
	return page;
}

447
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
448 449
{
	int i;
450 451 452 453

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
454 455 456 457 458 459
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
460
	arch_release_hugepage(page);
461
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
462 463
}

464 465 466 467 468 469 470 471 472 473 474
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

475 476
static void free_huge_page(struct page *page)
{
477 478 479 480
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
481
	struct hstate *h = page_hstate(page);
482
	int nid = page_to_nid(page);
483
	struct address_space *mapping;
484

485
	mapping = (struct address_space *) page_private(page);
486
	set_page_private(page, 0);
487
	BUG_ON(page_count(page));
488 489 490
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
491 492 493 494
	if (h->surplus_huge_pages_node[nid]) {
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
495
	} else {
496
		enqueue_huge_page(h, page);
497
	}
498
	spin_unlock(&hugetlb_lock);
499
	if (mapping)
500
		hugetlb_put_quota(mapping, 1);
501 502
}

503 504 505 506 507
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
508
static int adjust_pool_surplus(struct hstate *h, int delta)
509 510 511 512 513 514 515 516 517 518 519 520
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
521
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
522 523
			continue;
		/* Surplus cannot exceed the total number of pages */
524 525
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
526 527
			continue;

528 529
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
530 531 532 533 534 535 536 537
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

538
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
539 540 541
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
542 543
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
544 545 546 547
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

548
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
549 550
{
	struct page *page;
551

552
	page = alloc_pages_node(nid,
553 554
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
555
		huge_page_order(h));
L
Linus Torvalds 已提交
556
	if (page) {
557 558
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
559
			return NULL;
560
		}
561
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
562
	}
563 564 565 566

	return page;
}

567
static int alloc_fresh_huge_page(struct hstate *h)
568 569 570 571 572 573
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

574
	start_nid = h->hugetlb_next_nid;
575 576

	do {
577
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
578 579 580 581 582 583 584 585 586 587 588 589 590
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
591
		next_nid = next_node(h->hugetlb_next_nid, node_online_map);
592 593
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
594 595
		h->hugetlb_next_nid = next_nid;
	} while (!page && h->hugetlb_next_nid != start_nid);
596

597 598 599 600 601
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

602
	return ret;
L
Linus Torvalds 已提交
603 604
}

605 606
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
607 608
{
	struct page *page;
609
	unsigned int nid;
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
635
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
636 637 638
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
639 640
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
641 642 643
	}
	spin_unlock(&hugetlb_lock);

644 645
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
646
					huge_page_order(h));
647 648

	spin_lock(&hugetlb_lock);
649
	if (page) {
650 651 652 653 654 655
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
656
		nid = page_to_nid(page);
657
		set_compound_page_dtor(page, free_huge_page);
658 659 660
		/*
		 * We incremented the global counters already
		 */
661 662
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
663
		__count_vm_event(HTLB_BUDDY_PGALLOC);
664
	} else {
665 666
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
667
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
668
	}
669
	spin_unlock(&hugetlb_lock);
670 671 672 673

	return page;
}

674 675 676 677
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
678
static int gather_surplus_pages(struct hstate *h, int delta)
679 680 681 682 683 684
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

685
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
686
	if (needed <= 0) {
687
		h->resv_huge_pages += delta;
688
		return 0;
689
	}
690 691 692 693 694 695 696 697

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
698
		page = alloc_buddy_huge_page(h, NULL, 0);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
719 720
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
721 722 723 724 725 726 727
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
728 729 730
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
731 732
	 */
	needed += allocated;
733
	h->resv_huge_pages += delta;
734 735
	ret = 0;
free:
736
	/* Free the needed pages to the hugetlb pool */
737
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
738 739
		if ((--needed) < 0)
			break;
740
		list_del(&page->lru);
741
		enqueue_huge_page(h, page);
742 743 744 745 746 747 748
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
749
			/*
750 751 752
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
753 754 755
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
756
			free_huge_page(page);
757
		}
758
		spin_lock(&hugetlb_lock);
759 760 761 762 763 764 765 766 767 768
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
769 770
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
771 772 773 774 775
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

776 777 778 779 780 781 782 783
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

784
	/* Uncommit the reservation */
785
	h->resv_huge_pages -= unused_resv_pages;
786

787
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
788

789
	while (remaining_iterations-- && nr_pages) {
790 791 792 793
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

794
		if (!h->surplus_huge_pages_node[nid])
795 796
			continue;

797 798
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
799 800
					  struct page, lru);
			list_del(&page->lru);
801 802 803 804 805
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
806
			nr_pages--;
807
			remaining_iterations = num_online_nodes();
808 809 810 811
		}
	}
}

812 813 814 815 816 817 818 819 820
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
821 822
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
823 824 825 826 827
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
828
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
829 830 831
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

832 833
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
834

835 836
	} else  {
		int err;
837
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
838 839 840 841 842 843 844
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
845
}
846 847
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
848 849 850 851 852
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
853
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
854
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
855 856

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
857
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858 859 860 861
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
862 863 864
	}
}

865
static struct page *alloc_huge_page(struct vm_area_struct *vma,
866
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
867
{
868
	struct hstate *h = hstate_vma(vma);
869
	struct page *page;
870 871
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
872
	unsigned int chg;
873 874 875 876 877

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
878 879
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
880
	 */
881
	chg = vma_needs_reservation(h, vma, addr);
882 883 884
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
885 886
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
887 888

	spin_lock(&hugetlb_lock);
889
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
890
	spin_unlock(&hugetlb_lock);
891

K
Ken Chen 已提交
892
	if (!page) {
893
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
894
		if (!page) {
895
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
896 897 898
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
899

900 901
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
902

903
	vma_commit_reservation(h, vma, addr);
904

905
	return page;
906 907
}

908
static void __init hugetlb_init_one_hstate(struct hstate *h)
L
Linus Torvalds 已提交
909 910
{
	unsigned long i;
911

L
Linus Torvalds 已提交
912
	for (i = 0; i < MAX_NUMNODES; ++i)
913
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
L
Linus Torvalds 已提交
914

915
	h->hugetlb_next_nid = first_node(node_online_map);
916

917
	for (i = 0; i < h->max_huge_pages; ++i) {
918
		if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
919 920
			break;
	}
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		hugetlb_init_one_hstate(h);
	}
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		printk(KERN_INFO "Total HugeTLB memory allocated, "
				"%ld %dMB pages\n",
				h->free_huge_pages,
				1 << (h->order + PAGE_SHIFT - 20));
	}
}

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

	if (!size_to_hstate(HPAGE_SIZE)) {
		hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
		parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
	}
	default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;

	hugetlb_init_hstates();

	report_hugepages();

L
Linus Torvalds 已提交
959 960 961 962
	return 0;
}
module_init(hugetlb_init);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
	hugetlb_init_one_hstate(h);
	parsed_hstate = h;
}

L
Linus Torvalds 已提交
980 981
static int __init hugetlb_setup(char *s)
{
982 983 984 985 986 987 988 989 990 991 992 993 994 995
	unsigned long *mhp;

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

L
Linus Torvalds 已提交
996 997 998 999
	return 1;
}
__setup("hugepages=", hugetlb_setup);

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
1011 1012
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
1013
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1014
{
1015 1016
	int i;

L
Linus Torvalds 已提交
1017 1018
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1019 1020 1021
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1022
				return;
L
Linus Torvalds 已提交
1023 1024 1025
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1026
			update_and_free_page(h, page);
1027 1028
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1029 1030 1031 1032
		}
	}
}
#else
1033
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1034 1035 1036 1037
{
}
#endif

1038
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1039
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1040
{
1041
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1042

1043 1044 1045 1046
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1047 1048 1049 1050 1051 1052
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1053
	 */
L
Linus Torvalds 已提交
1054
	spin_lock(&hugetlb_lock);
1055 1056
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1057 1058 1059
			break;
	}

1060
	while (count > persistent_huge_pages(h)) {
1061 1062 1063 1064 1065 1066
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1067
		ret = alloc_fresh_huge_page(h);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1080 1081 1082 1083 1084 1085 1086 1087
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1088
	 */
1089
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1090
	min_count = max(count, min_count);
1091 1092 1093
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1094 1095
		if (!page)
			break;
1096
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1097
	}
1098 1099
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1100 1101 1102
			break;
	}
out:
1103
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1104
	spin_unlock(&hugetlb_lock);
1105
	return ret;
L
Linus Torvalds 已提交
1106 1107 1108 1109 1110 1111
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1112 1113 1114 1115 1116 1117 1118 1119
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1120
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1121 1122 1123 1124

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1125 1126
	return 0;
}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1140 1141 1142 1143
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1144
	struct hstate *h = &default_hstate;
1145 1146 1147 1148 1149 1150 1151
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1152
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1153 1154 1155 1156 1157 1158 1159

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1160 1161 1162
	return 0;
}

L
Linus Torvalds 已提交
1163 1164 1165 1166
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
1167
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1168 1169 1170
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
1171
			"HugePages_Rsvd:  %5lu\n"
1172
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
1173
			"Hugepagesize:    %5lu kB\n",
1174 1175 1176 1177 1178
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1179 1180 1181 1182
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1183
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1184 1185
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1186 1187
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1188 1189 1190
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1191 1192 1193 1194 1195
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1196 1197
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1198 1199
}

1200
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1223
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1224 1225
			goto out;

1226 1227
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1228 1229 1230 1231 1232 1233
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1234
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1235 1236 1237 1238 1239 1240

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1257 1258
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1259
	struct hstate *h = hstate_vma(vma);
1260 1261 1262 1263 1264 1265
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1266 1267
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1268 1269 1270 1271 1272 1273 1274

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

		if (reserve)
1275
			hugetlb_acct_memory(h, -reserve);
1276
	}
1277 1278
}

L
Linus Torvalds 已提交
1279 1280 1281 1282 1283 1284
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1285
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1286 1287
{
	BUG();
N
Nick Piggin 已提交
1288
	return 0;
L
Linus Torvalds 已提交
1289 1290 1291
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1292
	.fault = hugetlb_vm_op_fault,
1293
	.open = hugetlb_vm_op_open,
1294
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1295 1296
};

1297 1298
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1299 1300 1301
{
	pte_t entry;

1302
	if (writable) {
D
David Gibson 已提交
1303 1304 1305
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1306
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1307 1308 1309 1310 1311 1312 1313
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1314 1315 1316 1317 1318
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1319 1320
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1321 1322
		update_mmu_cache(vma, address, entry);
	}
1323 1324 1325
}


D
David Gibson 已提交
1326 1327 1328 1329 1330
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1331
	unsigned long addr;
1332
	int cow;
1333 1334
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1335 1336

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1337

1338
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1339 1340 1341
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1342
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1343 1344
		if (!dst_pte)
			goto nomem;
1345 1346 1347 1348 1349

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1350
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1351
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1352
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1353
			if (cow)
1354 1355
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1356 1357 1358 1359 1360
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1361
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1362 1363 1364 1365 1366 1367 1368
	}
	return 0;

nomem:
	return -ENOMEM;
}

1369
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1370
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1371 1372 1373
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1374
	pte_t *ptep;
D
David Gibson 已提交
1375 1376
	pte_t pte;
	struct page *page;
1377
	struct page *tmp;
1378 1379 1380
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1381 1382 1383 1384 1385
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1386
	LIST_HEAD(page_list);
D
David Gibson 已提交
1387 1388

	WARN_ON(!is_vm_hugetlb_page(vma));
1389 1390
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1391

1392
	spin_lock(&mm->page_table_lock);
1393
	for (address = start; address < end; address += sz) {
1394
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1395
		if (!ptep)
1396 1397
			continue;

1398 1399 1400
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1422
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1423
		if (huge_pte_none(pte))
D
David Gibson 已提交
1424
			continue;
1425

D
David Gibson 已提交
1426
		page = pte_page(pte);
1427 1428
		if (pte_dirty(pte))
			set_page_dirty(page);
1429
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1430
	}
L
Linus Torvalds 已提交
1431
	spin_unlock(&mm->page_table_lock);
1432
	flush_tlb_range(vma, start, end);
1433 1434 1435 1436
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1437
}
D
David Gibson 已提交
1438

1439
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1440
			  unsigned long end, struct page *ref_page)
1441
{
1442 1443 1444
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1493
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1494 1495
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1496
{
1497
	struct hstate *h = hstate_vma(vma);
1498
	struct page *old_page, *new_page;
1499
	int avoidcopy;
1500
	int outside_reserve = 0;
1501 1502 1503

	old_page = pte_page(pte);

1504
retry_avoidcopy:
1505 1506 1507 1508 1509
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1510
		return 0;
1511 1512
	}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1527
	page_cache_get(old_page);
1528
	new_page = alloc_huge_page(vma, address, outside_reserve);
1529

1530
	if (IS_ERR(new_page)) {
1531
		page_cache_release(old_page);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1550
		return -PTR_ERR(new_page);
1551 1552 1553
	}

	spin_unlock(&mm->page_table_lock);
1554
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1555
	__SetPageUptodate(new_page);
1556 1557
	spin_lock(&mm->page_table_lock);

1558
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1559
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1560
		/* Break COW */
1561
		huge_ptep_clear_flush(vma, address, ptep);
1562 1563 1564 1565 1566 1567 1568
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1569
	return 0;
1570 1571
}

1572
/* Return the pagecache page at a given address within a VMA */
1573 1574
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1575 1576
{
	struct address_space *mapping;
1577
	pgoff_t idx;
1578 1579

	mapping = vma->vm_file->f_mapping;
1580
	idx = vma_hugecache_offset(h, vma, address);
1581 1582 1583 1584

	return find_lock_page(mapping, idx);
}

1585
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1586
			unsigned long address, pte_t *ptep, int write_access)
1587
{
1588
	struct hstate *h = hstate_vma(vma);
1589
	int ret = VM_FAULT_SIGBUS;
1590
	pgoff_t idx;
A
Adam Litke 已提交
1591 1592 1593
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1594
	pte_t new_pte;
A
Adam Litke 已提交
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1608
	mapping = vma->vm_file->f_mapping;
1609
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1610 1611 1612 1613 1614

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1615 1616 1617
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1618
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1619 1620
		if (idx >= size)
			goto out;
1621
		page = alloc_huge_page(vma, address, 0);
1622 1623
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1624 1625
			goto out;
		}
1626
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1627
		__SetPageUptodate(page);
1628

1629 1630
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1631
			struct inode *inode = mapping->host;
1632 1633 1634 1635 1636 1637 1638 1639

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1640 1641

			spin_lock(&inode->i_lock);
1642
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1643
			spin_unlock(&inode->i_lock);
1644 1645 1646
		} else
			lock_page(page);
	}
1647

1648
	spin_lock(&mm->page_table_lock);
1649
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1650 1651 1652
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1653
	ret = 0;
1654
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1655 1656
		goto backout;

1657 1658 1659 1660 1661 1662
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1663
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1664 1665
	}

1666
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1667 1668
	unlock_page(page);
out:
1669
	return ret;
A
Adam Litke 已提交
1670 1671 1672 1673 1674 1675

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1676 1677
}

1678 1679 1680 1681 1682
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1683
	int ret;
1684
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1685
	struct hstate *h = hstate_vma(vma);
1686

1687
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1688 1689 1690
	if (!ptep)
		return VM_FAULT_OOM;

1691 1692 1693 1694 1695 1696
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1697 1698
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1699 1700 1701 1702
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1703

N
Nick Piggin 已提交
1704
	ret = 0;
1705 1706 1707

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1708
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1709 1710
		if (write_access && !pte_write(entry)) {
			struct page *page;
1711
			page = hugetlbfs_pagecache_page(h, vma, address);
1712 1713 1714 1715 1716 1717
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1718
	spin_unlock(&mm->page_table_lock);
1719
	mutex_unlock(&hugetlb_instantiation_mutex);
1720 1721

	return ret;
1722 1723
}

D
David Gibson 已提交
1724 1725
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1726 1727
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1728
{
1729 1730
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1731
	int remainder = *length;
1732
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
1733

1734
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1735
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1736 1737
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1738

A
Adam Litke 已提交
1739 1740 1741 1742 1743
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
1744
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
D
David Gibson 已提交
1745

1746 1747
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1748
			int ret;
D
David Gibson 已提交
1749

A
Adam Litke 已提交
1750
			spin_unlock(&mm->page_table_lock);
1751
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1752
			spin_lock(&mm->page_table_lock);
1753
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1754
				continue;
D
David Gibson 已提交
1755

A
Adam Litke 已提交
1756 1757 1758 1759 1760 1761
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1762
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1763
		page = pte_page(huge_ptep_get(pte));
1764
same_page:
1765 1766
		if (pages) {
			get_page(page);
1767
			pages[i] = page + pfn_offset;
1768
		}
D
David Gibson 已提交
1769 1770 1771 1772 1773

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1774
		++pfn_offset;
D
David Gibson 已提交
1775 1776
		--remainder;
		++i;
1777
		if (vaddr < vma->vm_end && remainder &&
1778
				pfn_offset < pages_per_huge_page(h)) {
1779 1780 1781 1782 1783 1784
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1785
	}
1786
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1787 1788 1789 1790 1791
	*length = remainder;
	*position = vaddr;

	return i;
}
1792 1793 1794 1795 1796 1797 1798 1799

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
1800
	struct hstate *h = hstate_vma(vma);
1801 1802 1803 1804

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1805
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1806
	spin_lock(&mm->page_table_lock);
1807
	for (; address < end; address += huge_page_size(h)) {
1808 1809 1810
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1811 1812
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1813
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1814 1815 1816 1817 1818 1819
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1820
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1821 1822 1823 1824

	flush_tlb_range(vma, start, end);
}

1825 1826 1827
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
1828 1829
{
	long ret, chg;
1830
	struct hstate *h = hstate_inode(inode);
1831

1832 1833 1834
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

1835 1836 1837 1838 1839 1840 1841 1842 1843
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
1844 1845 1846 1847
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

1848
		chg = to - from;
1849 1850

		set_vma_resv_map(vma, resv_map);
1851
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1852 1853
	}

1854 1855
	if (chg < 0)
		return chg;
1856

1857 1858
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1859
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
1860 1861
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1862
		return ret;
K
Ken Chen 已提交
1863
	}
1864 1865
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
1866 1867 1868 1869 1870
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
1871
	struct hstate *h = hstate_inode(inode);
1872
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1873 1874

	spin_lock(&inode->i_lock);
1875
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
1876 1877
	spin_unlock(&inode->i_lock);

1878
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1879
	hugetlb_acct_memory(h, -(chg - freed));
1880
}