hugetlb.c 94.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37 38

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39
unsigned long hugepages_treat_as_movable;
40

41
int hugetlb_max_hstate __read_mostly;
42 43 44
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

45 46
__initdata LIST_HEAD(huge_boot_pages);

47 48 49
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
50
static unsigned long __initdata default_hstate_size;
51

52
/*
53 54
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
55
 */
56
DEFINE_SPINLOCK(hugetlb_lock);
57

58 59 60 61 62 63 64
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
140
	return subpool_inode(file_inode(vma->vm_file));
141 142
}

143 144 145
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
146
 *
147 148
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
149 150 151 152 153 154 155
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

156
static long region_add(struct resv_map *resv, long f, long t)
157
{
158
	struct list_head *head = &resv->regions;
159 160
	struct file_region *rg, *nrg, *trg;

161
	spin_lock(&resv->lock);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
191
	spin_unlock(&resv->lock);
192 193 194
	return 0;
}

195
static long region_chg(struct resv_map *resv, long f, long t)
196
{
197
	struct list_head *head = &resv->regions;
198
	struct file_region *rg, *nrg = NULL;
199 200
	long chg = 0;

201 202
retry:
	spin_lock(&resv->lock);
203 204 205 206 207 208 209 210 211
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
212 213 214 215 216 217 218 219 220 221 222
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
223

224 225 226
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
227 228 229 230 231 232 233 234 235 236 237 238
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
239
			goto out;
240

L
Lucas De Marchi 已提交
241
		/* We overlap with this area, if it extends further than
242 243 244 245 246 247 248 249
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
250 251 252 253 254 255 256 257

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
258 259 260
	return chg;
}

261
static long region_truncate(struct resv_map *resv, long end)
262
{
263
	struct list_head *head = &resv->regions;
264 265 266
	struct file_region *rg, *trg;
	long chg = 0;

267
	spin_lock(&resv->lock);
268 269 270 271 272
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
273
		goto out;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
290 291 292

out:
	spin_unlock(&resv->lock);
293 294 295
	return chg;
}

296
static long region_count(struct resv_map *resv, long f, long t)
297
{
298
	struct list_head *head = &resv->regions;
299 300 301
	struct file_region *rg;
	long chg = 0;

302
	spin_lock(&resv->lock);
303 304
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
305 306
		long seg_from;
		long seg_to;
307 308 309 310 311 312 313 314 315 316 317

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
318
	spin_unlock(&resv->lock);
319 320 321 322

	return chg;
}

323 324 325 326
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
327 328
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
329
{
330 331
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
332 333
}

334 335 336 337 338 339
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

353
	return 1UL << huge_page_shift(hstate);
354
}
355
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356

357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

370 371 372 373 374 375 376
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
377
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378

379 380 381 382 383 384 385 386 387
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
388 389 390 391 392 393 394 395 396
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
397
 */
398 399 400 401 402 403 404 405 406 407 408
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

409
struct resv_map *resv_map_alloc(void)
410 411 412 413 414 415
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
416
	spin_lock_init(&resv_map->lock);
417 418 419 420 421
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

422
void resv_map_release(struct kref *ref)
423 424 425 426
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
427
	region_truncate(resv_map, 0);
428 429 430
	kfree(resv_map);
}

431 432 433 434 435
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

436
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 438
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 440 441 442 443 444 445
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
446 447
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
448
	}
449 450
}

451
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 453
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
454
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455

456 457
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
458 459 460 461 462
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
463
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464 465

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 467 468 469 470
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
471 472

	return (get_vma_private_data(vma) & flag) != 0;
473 474
}

475
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 477 478
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
479
	if (!(vma->vm_flags & VM_MAYSHARE))
480 481 482 483
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
484
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485
{
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
501 502

	/* Shared mappings always use reserves */
503
	if (vma->vm_flags & VM_MAYSHARE)
504
		return 1;
505 506 507 508 509

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
510 511
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
512

513
	return 0;
514 515
}

516
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
517 518
{
	int nid = page_to_nid(page);
519
	list_move(&page->lru, &h->hugepage_freelists[nid]);
520 521
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
522 523
}

524 525 526 527
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

528 529 530 531 532 533 534 535
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
536
		return NULL;
537
	list_move(&page->lru, &h->hugepage_activelist);
538
	set_page_refcounted(page);
539 540 541 542 543
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

544 545 546 547 548 549 550 551 552
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

553 554
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
555 556
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
557
{
558
	struct page *page = NULL;
559
	struct mempolicy *mpol;
560
	nodemask_t *nodemask;
561
	struct zonelist *zonelist;
562 563
	struct zone *zone;
	struct zoneref *z;
564
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
565

566 567 568 569 570
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
571
	if (!vma_has_reserves(vma, chg) &&
572
			h->free_huge_pages - h->resv_huge_pages == 0)
573
		goto err;
574

575
	/* If reserves cannot be used, ensure enough pages are in the pool */
576
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577
		goto err;
578

579
retry_cpuset:
580
	cpuset_mems_cookie = read_mems_allowed_begin();
581
	zonelist = huge_zonelist(vma, address,
582
					htlb_alloc_mask(h), &mpol, &nodemask);
583

584 585
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
586
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 588
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
589 590 591 592 593
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

594
				SetPagePrivate(page);
595
				h->resv_huge_pages--;
596 597
				break;
			}
A
Andrew Morton 已提交
598
		}
L
Linus Torvalds 已提交
599
	}
600

601
	mpol_cond_put(mpol);
602
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603
		goto retry_cpuset;
L
Linus Torvalds 已提交
604
	return page;
605 606 607

err:
	return NULL;
L
Linus Torvalds 已提交
608 609
}

610
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
611 612
{
	int i;
613

614 615
	VM_BUG_ON(h->order >= MAX_ORDER);

616 617 618
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
619 620 621 622
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
623
	}
624
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
625 626
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
627
	arch_release_hugepage(page);
628
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
629 630
}

631 632 633 634 635 636 637 638 639 640 641
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

642 643
static void free_huge_page(struct page *page)
{
644 645 646 647
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
648
	struct hstate *h = page_hstate(page);
649
	int nid = page_to_nid(page);
650 651
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
652
	bool restore_reserve;
653

654
	set_page_private(page, 0);
655
	page->mapping = NULL;
656
	BUG_ON(page_count(page));
657
	BUG_ON(page_mapcount(page));
658
	restore_reserve = PagePrivate(page);
659
	ClearPagePrivate(page);
660 661

	spin_lock(&hugetlb_lock);
662 663
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
664 665 666
	if (restore_reserve)
		h->resv_huge_pages++;

667
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668 669
		/* remove the page from active list */
		list_del(&page->lru);
670 671 672
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
673
	} else {
674
		arch_clear_hugepage_flags(page);
675
		enqueue_huge_page(h, page);
676
	}
677
	spin_unlock(&hugetlb_lock);
678
	hugepage_subpool_put_pages(spool, 1);
679 680
}

681
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682
{
683
	INIT_LIST_HEAD(&page->lru);
684 685
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
686
	set_hugetlb_cgroup(page, NULL);
687 688
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
689 690 691 692
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

693 694
static void __init prep_compound_gigantic_page(struct page *page,
					       unsigned long order)
695 696 697 698 699 700 701 702
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
703
	__ClearPageReserved(page);
704 705
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
706 707 708 709 710 711 712 713 714 715 716 717 718
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
719
		set_page_count(p, 0);
720 721 722 723
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
724 725 726 727 728
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
729 730 731 732 733 734
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
735
	return get_compound_page_dtor(page) == free_huge_page;
736
}
737 738
EXPORT_SYMBOL_GPL(PageHuge);

739 740 741 742 743 744 745 746 747
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

748
	return get_compound_page_dtor(page_head) == free_huge_page;
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

768
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
769 770
{
	struct page *page;
771

772 773 774
	if (h->order >= MAX_ORDER)
		return NULL;

775
	page = alloc_pages_exact_node(nid,
776
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777
						__GFP_REPEAT|__GFP_NOWARN,
778
		huge_page_order(h));
L
Linus Torvalds 已提交
779
	if (page) {
780
		if (arch_prepare_hugepage(page)) {
781
			__free_pages(page, huge_page_order(h));
782
			return NULL;
783
		}
784
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
785
	}
786 787 788 789

	return page;
}

790
/*
791 792 793 794 795
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
796
 */
797
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798
{
799
	nid = next_node(nid, *nodes_allowed);
800
	if (nid == MAX_NUMNODES)
801
		nid = first_node(*nodes_allowed);
802 803 804 805 806
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

807 808 809 810 811 812 813
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

814
/*
815 816 817 818
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
819
 */
820 821
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
822
{
823 824 825 826 827 828
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829 830

	return nid;
831 832
}

833
/*
834 835 836 837
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
838
 */
839
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840
{
841 842 843 844 845 846
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847 848

	return nid;
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

885 886 887 888 889 890
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
891 892
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
893
{
894
	int nr_nodes, node;
895 896
	int ret = 0;

897
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898 899 900 901
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
902 903
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
904
			struct page *page =
905
				list_entry(h->hugepage_freelists[node].next,
906 907 908
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
909
			h->free_huge_pages_node[node]--;
910 911
			if (acct_surplus) {
				h->surplus_huge_pages--;
912
				h->surplus_huge_pages_node[node]--;
913
			}
914 915
			update_and_free_page(h, page);
			ret = 1;
916
			break;
917
		}
918
	}
919 920 921 922

	return ret;
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

961
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962 963
{
	struct page *page;
964
	unsigned int r_nid;
965

966 967 968
	if (h->order >= MAX_ORDER)
		return NULL;

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
993
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994 995 996
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
997 998
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
999 1000 1001
	}
	spin_unlock(&hugetlb_lock);

1002
	if (nid == NUMA_NO_NODE)
1003
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004 1005 1006 1007
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1008
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010

1011 1012
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1013
		page = NULL;
1014 1015
	}

1016
	spin_lock(&hugetlb_lock);
1017
	if (page) {
1018
		INIT_LIST_HEAD(&page->lru);
1019
		r_nid = page_to_nid(page);
1020
		set_compound_page_dtor(page, free_huge_page);
1021
		set_hugetlb_cgroup(page, NULL);
1022 1023 1024
		/*
		 * We incremented the global counters already
		 */
1025 1026
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1027
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1028
	} else {
1029 1030
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1031
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032
	}
1033
	spin_unlock(&hugetlb_lock);
1034 1035 1036 1037

	return page;
}

1038 1039 1040 1041 1042 1043 1044
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1045
	struct page *page = NULL;
1046 1047

	spin_lock(&hugetlb_lock);
1048 1049
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1050 1051
	spin_unlock(&hugetlb_lock);

1052
	if (!page)
1053 1054 1055 1056 1057
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1058
/*
L
Lucas De Marchi 已提交
1059
 * Increase the hugetlb pool such that it can accommodate a reservation
1060 1061
 * of size 'delta'.
 */
1062
static int gather_surplus_pages(struct hstate *h, int delta)
1063 1064 1065 1066 1067
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1068
	bool alloc_ok = true;
1069

1070
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071
	if (needed <= 0) {
1072
		h->resv_huge_pages += delta;
1073
		return 0;
1074
	}
1075 1076 1077 1078 1079 1080 1081 1082

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1083
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084 1085 1086 1087
		if (!page) {
			alloc_ok = false;
			break;
		}
1088 1089
		list_add(&page->lru, &surplus_list);
	}
1090
	allocated += i;
1091 1092 1093 1094 1095 1096

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1097 1098
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1109 1110
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1111
	 * needed to accommodate the reservation.  Add the appropriate number
1112
	 * of pages to the hugetlb pool and free the extras back to the buddy
1113 1114 1115
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1116 1117
	 */
	needed += allocated;
1118
	h->resv_huge_pages += delta;
1119
	ret = 0;
1120

1121
	/* Free the needed pages to the hugetlb pool */
1122
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123 1124
		if ((--needed) < 0)
			break;
1125 1126 1127 1128 1129
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1130
		VM_BUG_ON_PAGE(page_count(page), page);
1131
		enqueue_huge_page(h, page);
1132
	}
1133
free:
1134
	spin_unlock(&hugetlb_lock);
1135 1136

	/* Free unnecessary surplus pages to the buddy allocator */
1137 1138
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1139
	spin_lock(&hugetlb_lock);
1140 1141 1142 1143 1144 1145 1146 1147

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1148
 * Called with hugetlb_lock held.
1149
 */
1150 1151
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1152 1153 1154
{
	unsigned long nr_pages;

1155
	/* Uncommit the reservation */
1156
	h->resv_huge_pages -= unused_resv_pages;
1157

1158 1159 1160 1161
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1162
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163

1164 1165
	/*
	 * We want to release as many surplus pages as possible, spread
1166 1167 1168 1169 1170
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1171 1172
	 */
	while (nr_pages--) {
1173
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174
			break;
1175 1176 1177
	}
}

1178 1179 1180
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1181 1182 1183 1184 1185 1186
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1187
 */
1188
static long vma_needs_reservation(struct hstate *h,
1189
			struct vm_area_struct *vma, unsigned long addr)
1190
{
1191 1192 1193
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1194

1195 1196
	resv = vma_resv_map(vma);
	if (!resv)
1197
		return 1;
1198

1199 1200
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1201

1202 1203 1204 1205
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1206
}
1207 1208
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1209
{
1210 1211
	struct resv_map *resv;
	pgoff_t idx;
1212

1213 1214 1215
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1216

1217 1218
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1219 1220
}

1221
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1223
{
1224
	struct hugepage_subpool *spool = subpool_vma(vma);
1225
	struct hstate *h = hstate_vma(vma);
1226
	struct page *page;
1227
	long chg;
1228 1229
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1230

1231
	idx = hstate_index(h);
1232
	/*
1233 1234 1235 1236 1237 1238
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1239
	 */
1240
	chg = vma_needs_reservation(h, vma, addr);
1241
	if (chg < 0)
1242
		return ERR_PTR(-ENOMEM);
1243 1244
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1245
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1246

1247 1248
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1249 1250
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1251 1252
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1253
	spin_lock(&hugetlb_lock);
1254
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255
	if (!page) {
1256
		spin_unlock(&hugetlb_lock);
1257
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1258
		if (!page) {
1259 1260 1261
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1262 1263
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1264
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1265
		}
1266 1267
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1268
		/* Fall through */
K
Ken Chen 已提交
1269
	}
1270 1271
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1272

1273
	set_page_private(page, (unsigned long)spool);
1274

1275
	vma_commit_reservation(h, vma, addr);
1276
	return page;
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1293
int __weak alloc_bootmem_huge_page(struct hstate *h)
1294 1295
{
	struct huge_bootmem_page *m;
1296
	int nr_nodes, node;
1297

1298
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299 1300
		void *addr;

1301 1302 1303
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304 1305 1306 1307 1308 1309 1310
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1311
			goto found;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1324
static void __init prep_compound_huge_page(struct page *page, int order)
1325 1326 1327 1328 1329 1330 1331
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1332 1333 1334 1335 1336 1337 1338
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1339 1340 1341 1342
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343 1344
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1345 1346 1347
#else
		page = virt_to_page(m);
#endif
1348
		WARN_ON(page_count(page) != 1);
1349
		prep_compound_huge_page(page, h->order);
1350
		WARN_ON(PageReserved(page));
1351
		prep_new_huge_page(h, page, page_to_nid(page));
1352 1353 1354 1355 1356 1357 1358
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1359
			adjust_managed_page_count(page, 1 << h->order);
1360 1361 1362
	}
}

1363
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1364 1365
{
	unsigned long i;
1366

1367
	for (i = 0; i < h->max_huge_pages; ++i) {
1368 1369 1370
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1371
		} else if (!alloc_fresh_huge_page(h,
1372
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1373 1374
			break;
	}
1375
	h->max_huge_pages = i;
1376 1377 1378 1379 1380 1381 1382
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1383 1384 1385
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1386 1387 1388
	}
}

A
Andi Kleen 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1400 1401 1402 1403 1404
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1405
		char buf[32];
1406
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1407 1408
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1409 1410 1411
	}
}

L
Linus Torvalds 已提交
1412
#ifdef CONFIG_HIGHMEM
1413 1414
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1415
{
1416 1417
	int i;

1418 1419 1420
	if (h->order >= MAX_ORDER)
		return;

1421
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1422
		struct page *page, *next;
1423 1424 1425
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1426
				return;
L
Linus Torvalds 已提交
1427 1428 1429
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1430
			update_and_free_page(h, page);
1431 1432
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1433 1434 1435 1436
		}
	}
}
#else
1437 1438
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1439 1440 1441 1442
{
}
#endif

1443 1444 1445 1446 1447
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1448 1449
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1450
{
1451
	int nr_nodes, node;
1452 1453 1454

	VM_BUG_ON(delta != -1 && delta != 1);

1455 1456 1457 1458
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1459
		}
1460 1461 1462 1463 1464
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1465
		}
1466 1467
	}
	return 0;
1468

1469 1470 1471 1472
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1473 1474
}

1475
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476 1477
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1478
{
1479
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1480

1481 1482 1483
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1484 1485 1486 1487
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1488 1489 1490 1491 1492 1493
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1494
	 */
L
Linus Torvalds 已提交
1495
	spin_lock(&hugetlb_lock);
1496
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498 1499 1500
			break;
	}

1501
	while (count > persistent_huge_pages(h)) {
1502 1503 1504 1505 1506 1507
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1508
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1509 1510 1511 1512
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1513 1514 1515
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1516 1517 1518 1519 1520 1521 1522 1523
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1524 1525 1526 1527 1528 1529 1530 1531
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1532
	 */
1533
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534
	min_count = max(count, min_count);
1535
	try_to_free_low(h, min_count, nodes_allowed);
1536
	while (min_count < persistent_huge_pages(h)) {
1537
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1538 1539
			break;
	}
1540
	while (count < persistent_huge_pages(h)) {
1541
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1542 1543 1544
			break;
	}
out:
1545
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1546
	spin_unlock(&hugetlb_lock);
1547
	return ret;
L
Linus Torvalds 已提交
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1560 1561 1562
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1563 1564
{
	int i;
1565

1566
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1567 1568 1569
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1570
			return &hstates[i];
1571 1572 1573
		}

	return kobj_to_node_hstate(kobj, nidp);
1574 1575
}

1576
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1577 1578
					struct kobj_attribute *attr, char *buf)
{
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1590
}
1591

1592 1593 1594
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1595 1596
{
	int err;
1597
	int nid;
1598
	unsigned long count;
1599
	struct hstate *h;
1600
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1601

1602
	err = kstrtoul(buf, 10, &count);
1603
	if (err)
1604
		goto out;
1605

1606
	h = kobj_to_hstate(kobj, &nid);
1607 1608 1609 1610 1611
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1612 1613 1614 1615 1616 1617 1618
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1619
			nodes_allowed = &node_states[N_MEMORY];
1620 1621 1622 1623 1624 1625 1626 1627 1628
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1629
		nodes_allowed = &node_states[N_MEMORY];
1630

1631
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1632

1633
	if (nodes_allowed != &node_states[N_MEMORY])
1634 1635 1636
		NODEMASK_FREE(nodes_allowed);

	return len;
1637 1638 1639
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1652 1653 1654
}
HSTATE_ATTR(nr_hugepages);

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1676 1677 1678
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1679
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1680 1681
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1682

1683 1684 1685 1686 1687
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1688
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1689

1690 1691 1692
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1693
	err = kstrtoul(buf, 10, &input);
1694
	if (err)
1695
		return err;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1719 1720 1721 1722 1723 1724
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1725
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1726 1727 1728 1729 1730 1731 1732
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1744 1745 1746 1747 1748 1749 1750 1751 1752
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1753 1754 1755
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1756 1757 1758 1759 1760 1761 1762
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1763 1764 1765
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1766 1767
{
	int retval;
1768
	int hi = hstate_index(h);
1769

1770 1771
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1772 1773
		return -ENOMEM;

1774
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1775
	if (retval)
1776
		kobject_put(hstate_kobjs[hi]);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1791 1792
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1793
		if (err)
1794
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1795 1796 1797
	}
}

1798 1799 1800 1801
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1802 1803 1804
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1805 1806 1807 1808 1809 1810 1811 1812 1813
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1814
 * A subset of global hstate attributes for node devices
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1828
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1851
 * Unregister hstate attributes from a single node device.
1852 1853
 * No-op if no hstate attributes attached.
 */
1854
static void hugetlb_unregister_node(struct node *node)
1855 1856
{
	struct hstate *h;
1857
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1858 1859

	if (!nhs->hugepages_kobj)
1860
		return;		/* no hstate attributes */
1861

1862 1863 1864 1865 1866
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1867
		}
1868
	}
1869 1870 1871 1872 1873 1874

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1875
 * hugetlb module exit:  unregister hstate attributes from node devices
1876 1877 1878 1879 1880 1881 1882
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1883
	 * disable node device registrations.
1884 1885 1886 1887 1888 1889 1890
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1891
		hugetlb_unregister_node(node_devices[nid]);
1892 1893 1894
}

/*
1895
 * Register hstate attributes for a single node device.
1896 1897
 * No-op if attributes already registered.
 */
1898
static void hugetlb_register_node(struct node *node)
1899 1900
{
	struct hstate *h;
1901
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1902 1903 1904 1905 1906 1907
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1908
							&node->dev.kobj);
1909 1910 1911 1912 1913 1914 1915 1916
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1917 1918
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1919 1920 1921 1922 1923 1924 1925
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1926
 * hugetlb init time:  register hstate attributes for all registered node
1927 1928
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1929 1930 1931 1932 1933
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1934
	for_each_node_state(nid, N_MEMORY) {
1935
		struct node *node = node_devices[nid];
1936
		if (node->dev.id == nid)
1937 1938 1939 1940
			hugetlb_register_node(node);
	}

	/*
1941
	 * Let the node device driver know we're here so it can
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1963 1964 1965 1966
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1967 1968
	hugetlb_unregister_all_nodes();

1969
	for_each_hstate(h) {
1970
		kobject_put(hstate_kobjs[hstate_index(h)]);
1971 1972 1973
	}

	kobject_put(hugepages_kobj);
1974
	kfree(htlb_fault_mutex_table);
1975 1976 1977 1978 1979
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1980 1981
	int i;

1982 1983 1984 1985 1986 1987
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1988

1989 1990 1991 1992
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1993
	}
1994
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1995 1996
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1997 1998

	hugetlb_init_hstates();
1999
	gather_bootmem_prealloc();
2000 2001 2002
	report_hugepages();

	hugetlb_sysfs_init();
2003
	hugetlb_register_all_nodes();
2004
	hugetlb_cgroup_file_init();
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2017 2018 2019 2020 2021 2022 2023 2024
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2025 2026
	unsigned long i;

2027
	if (size_to_hstate(PAGE_SIZE << order)) {
2028
		pr_warning("hugepagesz= specified twice, ignoring\n");
2029 2030
		return;
	}
2031
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2032
	BUG_ON(order == 0);
2033
	h = &hstates[hugetlb_max_hstate++];
2034 2035
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2036 2037 2038 2039
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2040
	INIT_LIST_HEAD(&h->hugepage_activelist);
2041 2042
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2043 2044
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2045

2046 2047 2048
	parsed_hstate = h;
}

2049
static int __init hugetlb_nrpages_setup(char *s)
2050 2051
{
	unsigned long *mhp;
2052
	static unsigned long *last_mhp;
2053 2054

	/*
2055
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2056 2057
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2058
	if (!hugetlb_max_hstate)
2059 2060 2061 2062
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2063
	if (mhp == last_mhp) {
2064 2065
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2066 2067 2068
		return 1;
	}

2069 2070 2071
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2072 2073 2074 2075 2076
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2077
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2078 2079 2080 2081
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2082 2083
	return 1;
}
2084 2085 2086 2087 2088 2089 2090 2091
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2105 2106 2107
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2108
{
2109 2110
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2111
	int ret;
2112

2113
	tmp = h->max_huge_pages;
2114

2115 2116 2117
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2118 2119
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2120 2121 2122
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2123

2124
	if (write) {
2125 2126
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2127 2128 2129
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2130
			nodes_allowed = &node_states[N_MEMORY];
2131 2132 2133
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2134
		if (nodes_allowed != &node_states[N_MEMORY])
2135 2136
			NODEMASK_FREE(nodes_allowed);
	}
2137 2138
out:
	return ret;
L
Linus Torvalds 已提交
2139
}
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2158
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2159
			void __user *buffer,
2160 2161
			size_t *length, loff_t *ppos)
{
2162
	struct hstate *h = &default_hstate;
2163
	unsigned long tmp;
2164
	int ret;
2165

2166
	tmp = h->nr_overcommit_huge_pages;
2167

2168 2169 2170
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2171 2172
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2173 2174 2175
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2176 2177 2178 2179 2180 2181

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2182 2183
out:
	return ret;
2184 2185
}

L
Linus Torvalds 已提交
2186 2187
#endif /* CONFIG_SYSCTL */

2188
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2189
{
2190
	struct hstate *h = &default_hstate;
2191
	seq_printf(m,
2192 2193 2194 2195 2196
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2197 2198 2199 2200 2201
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2202 2203 2204 2205
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2206
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2207 2208
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2209 2210
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2211 2212 2213
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2231 2232 2233
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2234 2235 2236 2237 2238 2239
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2240 2241
}

2242
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2265
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2266 2267
			goto out;

2268 2269
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2270 2271 2272 2273 2274 2275
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2276
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2277 2278 2279 2280 2281 2282

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2283 2284
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2285
	struct resv_map *resv = vma_resv_map(vma);
2286 2287 2288 2289 2290

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2291
	 * has a reference to the reservation map it cannot disappear until
2292 2293 2294
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2295
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2296
		kref_get(&resv->refs);
2297 2298
}

2299 2300
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2301
	struct hstate *h = hstate_vma(vma);
2302
	struct resv_map *resv = vma_resv_map(vma);
2303
	struct hugepage_subpool *spool = subpool_vma(vma);
2304
	unsigned long reserve, start, end;
2305

2306 2307
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2308

2309 2310
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2311

2312
	reserve = (end - start) - region_count(resv, start, end);
2313

2314 2315 2316 2317 2318
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		hugetlb_acct_memory(h, -reserve);
		hugepage_subpool_put_pages(spool, reserve);
2319
	}
2320 2321
}

L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2328
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2329 2330
{
	BUG();
N
Nick Piggin 已提交
2331
	return 0;
L
Linus Torvalds 已提交
2332 2333
}

2334
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2335
	.fault = hugetlb_vm_op_fault,
2336
	.open = hugetlb_vm_op_open,
2337
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2338 2339
};

2340 2341
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2342 2343 2344
{
	pte_t entry;

2345
	if (writable) {
2346 2347
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2348
	} else {
2349 2350
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2351 2352 2353
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2354
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2355 2356 2357 2358

	return entry;
}

2359 2360 2361 2362 2363
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2364
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2365
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2366
		update_mmu_cache(vma, address, ptep);
2367 2368 2369
}


D
David Gibson 已提交
2370 2371 2372 2373 2374
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2375
	unsigned long addr;
2376
	int cow;
2377 2378
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2379 2380 2381
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2382 2383

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2384

2385 2386 2387 2388 2389
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2390
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2391
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2392 2393 2394
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2395
		dst_pte = huge_pte_alloc(dst, addr, sz);
2396 2397 2398 2399
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2400 2401 2402 2403 2404

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2405 2406 2407
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2408
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2409
			if (cow)
2410 2411
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2412 2413
			ptepage = pte_page(entry);
			get_page(ptepage);
2414
			page_dup_rmap(ptepage);
2415 2416
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2417 2418
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2419 2420
	}

2421 2422 2423 2424
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2425 2426
}

N
Naoya Horiguchi 已提交
2427 2428 2429 2430 2431 2432 2433
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2434
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2435
		return 1;
2436
	else
N
Naoya Horiguchi 已提交
2437 2438 2439
		return 0;
}

2440 2441 2442 2443 2444 2445 2446
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2447
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2448
		return 1;
2449
	else
2450 2451 2452
		return 0;
}

2453 2454 2455
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2456
{
2457
	int force_flush = 0;
D
David Gibson 已提交
2458 2459
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2460
	pte_t *ptep;
D
David Gibson 已提交
2461
	pte_t pte;
2462
	spinlock_t *ptl;
D
David Gibson 已提交
2463
	struct page *page;
2464 2465
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2466 2467
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2468

D
David Gibson 已提交
2469
	WARN_ON(!is_vm_hugetlb_page(vma));
2470 2471
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2472

2473
	tlb_start_vma(tlb, vma);
2474
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2475
again:
2476
	for (address = start; address < end; address += sz) {
2477
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2478
		if (!ptep)
2479 2480
			continue;

2481
		ptl = huge_pte_lock(h, mm, ptep);
2482
		if (huge_pmd_unshare(mm, &address, ptep))
2483
			goto unlock;
2484

2485 2486
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2487
			goto unlock;
2488 2489 2490 2491

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2492
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2493
			huge_pte_clear(mm, address, ptep);
2494
			goto unlock;
2495
		}
2496 2497

		page = pte_page(pte);
2498 2499 2500 2501 2502 2503 2504
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2505
				goto unlock;
2506 2507 2508 2509 2510 2511 2512 2513 2514

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2515
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2516
		tlb_remove_tlb_entry(tlb, ptep, address);
2517
		if (huge_pte_dirty(pte))
2518
			set_page_dirty(page);
2519

2520 2521
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2522 2523
		if (force_flush) {
			spin_unlock(ptl);
2524
			break;
2525
		}
2526
		/* Bail out after unmapping reference page if supplied */
2527 2528
		if (ref_page) {
			spin_unlock(ptl);
2529
			break;
2530 2531 2532
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2533
	}
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2544
	}
2545
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2546
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2547
}
D
David Gibson 已提交
2548

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2568
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2569
			  unsigned long end, struct page *ref_page)
2570
{
2571 2572 2573 2574 2575
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2576
	tlb_gather_mmu(&tlb, mm, start, end);
2577 2578
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2579 2580
}

2581 2582 2583 2584 2585 2586
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2587 2588
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2589
{
2590
	struct hstate *h = hstate_vma(vma);
2591 2592 2593 2594 2595 2596 2597 2598
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2599
	address = address & huge_page_mask(h);
2600 2601
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2602
	mapping = file_inode(vma->vm_file)->i_mapping;
2603

2604 2605 2606 2607 2608
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2609
	mutex_lock(&mapping->i_mmap_mutex);
2610
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2623 2624
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2625
	}
2626
	mutex_unlock(&mapping->i_mmap_mutex);
2627 2628 2629 2630

	return 1;
}

2631 2632
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2633 2634 2635
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2636
 */
2637
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2638
			unsigned long address, pte_t *ptep, pte_t pte,
2639
			struct page *pagecache_page, spinlock_t *ptl)
2640
{
2641
	struct hstate *h = hstate_vma(vma);
2642
	struct page *old_page, *new_page;
2643
	int outside_reserve = 0;
2644 2645
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2646 2647 2648

	old_page = pte_page(pte);

2649
retry_avoidcopy:
2650 2651
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2652 2653
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2654
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2655
		return 0;
2656 2657
	}

2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2667
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2668 2669 2670
			old_page != pagecache_page)
		outside_reserve = 1;

2671
	page_cache_get(old_page);
2672

2673 2674
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2675
	new_page = alloc_huge_page(vma, address, outside_reserve);
2676

2677
	if (IS_ERR(new_page)) {
2678
		long err = PTR_ERR(new_page);
2679
		page_cache_release(old_page);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2692
				spin_lock(ptl);
2693
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2694 2695
				if (likely(ptep &&
					   pte_same(huge_ptep_get(ptep), pte)))
2696 2697
					goto retry_avoidcopy;
				/*
2698 2699
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2700 2701
				 */
				return 0;
2702 2703 2704 2705
			}
			WARN_ON_ONCE(1);
		}

2706
		/* Caller expects lock to be held */
2707
		spin_lock(ptl);
2708 2709 2710 2711
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2712 2713
	}

2714 2715 2716 2717
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2718
	if (unlikely(anon_vma_prepare(vma))) {
2719 2720
		page_cache_release(new_page);
		page_cache_release(old_page);
2721
		/* Caller expects lock to be held */
2722
		spin_lock(ptl);
2723
		return VM_FAULT_OOM;
2724
	}
2725

A
Andrea Arcangeli 已提交
2726 2727
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2728
	__SetPageUptodate(new_page);
2729

2730 2731 2732
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2733
	/*
2734
	 * Retake the page table lock to check for racing updates
2735 2736
	 * before the page tables are altered
	 */
2737
	spin_lock(ptl);
2738
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2739
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2740 2741
		ClearPagePrivate(new_page);

2742
		/* Break COW */
2743
		huge_ptep_clear_flush(vma, address, ptep);
2744 2745
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2746
		page_remove_rmap(old_page);
2747
		hugepage_add_new_anon_rmap(new_page, vma, address);
2748 2749 2750
		/* Make the old page be freed below */
		new_page = old_page;
	}
2751
	spin_unlock(ptl);
2752
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2753 2754
	page_cache_release(new_page);
	page_cache_release(old_page);
2755 2756

	/* Caller expects lock to be held */
2757
	spin_lock(ptl);
N
Nick Piggin 已提交
2758
	return 0;
2759 2760
}

2761
/* Return the pagecache page at a given address within a VMA */
2762 2763
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2764 2765
{
	struct address_space *mapping;
2766
	pgoff_t idx;
2767 2768

	mapping = vma->vm_file->f_mapping;
2769
	idx = vma_hugecache_offset(h, vma, address);
2770 2771 2772 2773

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2774 2775 2776 2777 2778
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2794
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2795 2796
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
2797
{
2798
	struct hstate *h = hstate_vma(vma);
2799
	int ret = VM_FAULT_SIGBUS;
2800
	int anon_rmap = 0;
A
Adam Litke 已提交
2801 2802
	unsigned long size;
	struct page *page;
2803
	pte_t new_pte;
2804
	spinlock_t *ptl;
A
Adam Litke 已提交
2805

2806 2807 2808
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2809
	 * COW. Warn that such a situation has occurred as it may not be obvious
2810 2811
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2812 2813
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2814 2815 2816
		return ret;
	}

A
Adam Litke 已提交
2817 2818 2819 2820
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2821 2822 2823
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2824
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2825 2826
		if (idx >= size)
			goto out;
2827
		page = alloc_huge_page(vma, address, 0);
2828
		if (IS_ERR(page)) {
2829 2830 2831 2832 2833
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2834 2835
			goto out;
		}
A
Andrea Arcangeli 已提交
2836
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2837
		__SetPageUptodate(page);
2838

2839
		if (vma->vm_flags & VM_MAYSHARE) {
2840
			int err;
K
Ken Chen 已提交
2841
			struct inode *inode = mapping->host;
2842 2843 2844 2845 2846 2847 2848 2849

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2850
			ClearPagePrivate(page);
K
Ken Chen 已提交
2851 2852

			spin_lock(&inode->i_lock);
2853
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2854
			spin_unlock(&inode->i_lock);
2855
		} else {
2856
			lock_page(page);
2857 2858 2859 2860
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2861
			anon_rmap = 1;
2862
		}
2863
	} else {
2864 2865 2866 2867 2868 2869
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2870
			ret = VM_FAULT_HWPOISON |
2871
				VM_FAULT_SET_HINDEX(hstate_index(h));
2872 2873
			goto backout_unlocked;
		}
2874
	}
2875

2876 2877 2878 2879 2880 2881
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2882
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2883 2884 2885 2886
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2887

2888 2889
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2890
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2891 2892 2893
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2894
	ret = 0;
2895
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2896 2897
		goto backout;

2898 2899
	if (anon_rmap) {
		ClearPagePrivate(page);
2900
		hugepage_add_new_anon_rmap(page, vma, address);
2901
	}
2902 2903
	else
		page_dup_rmap(page);
2904 2905 2906 2907
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2908
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2909
		/* Optimization, do the COW without a second fault */
2910
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2911 2912
	}

2913
	spin_unlock(ptl);
A
Adam Litke 已提交
2914 2915
	unlock_page(page);
out:
2916
	return ret;
A
Adam Litke 已提交
2917 2918

backout:
2919
	spin_unlock(ptl);
2920
backout_unlocked:
A
Adam Litke 已提交
2921 2922 2923
	unlock_page(page);
	put_page(page);
	goto out;
2924 2925
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

2961
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962
			unsigned long address, unsigned int flags)
2963
{
2964
	pte_t *ptep, entry;
2965
	spinlock_t *ptl;
2966
	int ret;
2967 2968
	u32 hash;
	pgoff_t idx;
2969
	struct page *page = NULL;
2970
	struct page *pagecache_page = NULL;
2971
	struct hstate *h = hstate_vma(vma);
2972
	struct address_space *mapping;
2973

2974 2975
	address &= huge_page_mask(h);

2976 2977 2978
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2979
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2980
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2981 2982
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2983
			return VM_FAULT_HWPOISON_LARGE |
2984
				VM_FAULT_SET_HINDEX(hstate_index(h));
2985 2986
	}

2987
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2988 2989 2990
	if (!ptep)
		return VM_FAULT_OOM;

2991 2992 2993
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

2994 2995 2996 2997 2998
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
2999 3000 3001
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3002 3003
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3004
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3005
		goto out_mutex;
3006
	}
3007

N
Nick Piggin 已提交
3008
	ret = 0;
3009

3010 3011 3012 3013 3014 3015 3016 3017
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3018
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3019 3020
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3021
			goto out_mutex;
3022
		}
3023

3024
		if (!(vma->vm_flags & VM_MAYSHARE))
3025 3026 3027 3028
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3029 3030 3031 3032 3033 3034 3035 3036
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
3037
	get_page(page);
3038
	if (page != pagecache_page)
3039 3040
		lock_page(page);

3041 3042
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3043
	/* Check for a racing update before calling hugetlb_cow */
3044
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3045
		goto out_ptl;
3046 3047


3048
	if (flags & FAULT_FLAG_WRITE) {
3049
		if (!huge_pte_write(entry)) {
3050
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3051 3052
					pagecache_page, ptl);
			goto out_ptl;
3053
		}
3054
		entry = huge_pte_mkdirty(entry);
3055 3056
	}
	entry = pte_mkyoung(entry);
3057 3058
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3059
		update_mmu_cache(vma, address, ptep);
3060

3061 3062
out_ptl:
	spin_unlock(ptl);
3063 3064 3065 3066 3067

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3068 3069
	if (page != pagecache_page)
		unlock_page(page);
3070
	put_page(page);
3071

3072
out_mutex:
3073
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3074
	return ret;
3075 3076
}

3077 3078 3079 3080
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3081
{
3082 3083
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3084
	unsigned long remainder = *nr_pages;
3085
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3086 3087

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3088
		pte_t *pte;
3089
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3090
		int absent;
A
Adam Litke 已提交
3091
		struct page *page;
D
David Gibson 已提交
3092

A
Adam Litke 已提交
3093 3094
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3095
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3096
		 * first, for the page indexing below to work.
3097 3098
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3099
		 */
3100
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3101 3102
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3103 3104 3105 3106
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3107 3108 3109 3110
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3111
		 */
H
Hugh Dickins 已提交
3112 3113
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3114 3115
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3116 3117 3118
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3131 3132
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3133
			int ret;
D
David Gibson 已提交
3134

3135 3136
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3137 3138
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3139
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3140
				continue;
D
David Gibson 已提交
3141

A
Adam Litke 已提交
3142 3143 3144 3145
			remainder = 0;
			break;
		}

3146
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3147
		page = pte_page(huge_ptep_get(pte));
3148
same_page:
3149
		if (pages) {
H
Hugh Dickins 已提交
3150
			pages[i] = mem_map_offset(page, pfn_offset);
3151
			get_page_foll(pages[i]);
3152
		}
D
David Gibson 已提交
3153 3154 3155 3156 3157

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3158
		++pfn_offset;
D
David Gibson 已提交
3159 3160
		--remainder;
		++i;
3161
		if (vaddr < vma->vm_end && remainder &&
3162
				pfn_offset < pages_per_huge_page(h)) {
3163 3164 3165 3166 3167 3168
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3169
		spin_unlock(ptl);
D
David Gibson 已提交
3170
	}
3171
	*nr_pages = remainder;
D
David Gibson 已提交
3172 3173
	*position = vaddr;

H
Hugh Dickins 已提交
3174
	return i ? i : -EFAULT;
D
David Gibson 已提交
3175
}
3176

3177
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3178 3179 3180 3181 3182 3183
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3184
	struct hstate *h = hstate_vma(vma);
3185
	unsigned long pages = 0;
3186 3187 3188 3189

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3190
	mmu_notifier_invalidate_range_start(mm, start, end);
3191
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3192
	for (; address < end; address += huge_page_size(h)) {
3193
		spinlock_t *ptl;
3194 3195 3196
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3197
		ptl = huge_pte_lock(h, mm, ptep);
3198 3199
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3200
			spin_unlock(ptl);
3201
			continue;
3202
		}
3203
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3204
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3205
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3206
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3207
			set_huge_pte_at(mm, address, ptep, pte);
3208
			pages++;
3209
		}
3210
		spin_unlock(ptl);
3211
	}
3212 3213 3214 3215 3216 3217
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3218
	flush_tlb_range(vma, start, end);
3219
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3220
	mmu_notifier_invalidate_range_end(mm, start, end);
3221 3222

	return pages << h->order;
3223 3224
}

3225 3226
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3227
					struct vm_area_struct *vma,
3228
					vm_flags_t vm_flags)
3229
{
3230
	long ret, chg;
3231
	struct hstate *h = hstate_inode(inode);
3232
	struct hugepage_subpool *spool = subpool_inode(inode);
3233
	struct resv_map *resv_map;
3234

3235 3236 3237
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3238
	 * without using reserves
3239
	 */
3240
	if (vm_flags & VM_NORESERVE)
3241 3242
		return 0;

3243 3244 3245 3246 3247 3248
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3249
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3250
		resv_map = inode_resv_map(inode);
3251

3252
		chg = region_chg(resv_map, from, to);
3253 3254 3255

	} else {
		resv_map = resv_map_alloc();
3256 3257 3258
		if (!resv_map)
			return -ENOMEM;

3259
		chg = to - from;
3260

3261 3262 3263 3264
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3265 3266 3267 3268
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3269

3270
	/* There must be enough pages in the subpool for the mapping */
3271 3272 3273 3274
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3275 3276

	/*
3277
	 * Check enough hugepages are available for the reservation.
3278
	 * Hand the pages back to the subpool if there are not
3279
	 */
3280
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3281
	if (ret < 0) {
3282
		hugepage_subpool_put_pages(spool, chg);
3283
		goto out_err;
K
Ken Chen 已提交
3284
	}
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3297
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3298
		region_add(resv_map, from, to);
3299
	return 0;
3300
out_err:
J
Joonsoo Kim 已提交
3301 3302
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3303
	return ret;
3304 3305 3306 3307
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3308
	struct hstate *h = hstate_inode(inode);
3309
	struct resv_map *resv_map = inode_resv_map(inode);
3310
	long chg = 0;
3311
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3312

3313
	if (resv_map)
3314
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3315
	spin_lock(&inode->i_lock);
3316
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3317 3318
	spin_unlock(&inode->i_lock);

3319
	hugepage_subpool_put_pages(spool, (chg - freed));
3320
	hugetlb_acct_memory(h, -(chg - freed));
3321
}
3322

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3382
	spinlock_t *ptl;
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3405 3406
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3407 3408 3409 3410 3411
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3412
	spin_unlock(ptl);
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3426
 * called with page table lock held.
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3445 3446 3447 3448 3449 3450 3451
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3452 3453
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
3525
struct page * __weak
3526 3527 3528 3529 3530 3531 3532 3533 3534
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3535 3536
#ifdef CONFIG_MEMORY_FAILURE

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3551 3552 3553 3554
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3555
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3556 3557 3558
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3559
	int ret = -EBUSY;
3560 3561

	spin_lock(&hugetlb_lock);
3562
	if (is_hugepage_on_freelist(hpage)) {
3563 3564 3565 3566 3567 3568 3569
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3570
		set_page_refcounted(hpage);
3571 3572 3573 3574
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3575
	spin_unlock(&hugetlb_lock);
3576
	return ret;
3577
}
3578
#endif
3579 3580 3581

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3582
	VM_BUG_ON_PAGE(!PageHead(page), page);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3593
	VM_BUG_ON_PAGE(!PageHead(page), page);
3594 3595 3596 3597 3598
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3599 3600 3601

bool is_hugepage_active(struct page *page)
{
3602
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}