i915_gem.c 142.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52 53 54
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

55
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
56

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59
	if (obj->cache_dirty)
60 61
		return false;

62
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
63 64
		return true;

65
	return obj->pin_global; /* currently in use by HW, keep flushed */
66 67
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 75 76
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static void __i915_gem_park(struct drm_i915_private *i915)
105
{
C
Chris Wilson 已提交
106 107
	intel_wakeref_t wakeref;

108 109
	GEM_TRACE("\n");

110 111
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
112
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
113 114

	if (!i915->gt.awake)
115
		return;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
131
	i915_timelines_park(i915);
132 133

	i915_pmu_gt_parked(i915);
134
	i915_vma_parked(i915);
135

C
Chris Wilson 已提交
136 137
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
138 139 140 141

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

142
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
143

144
	i915_globals_park();
145 146 147 148
}

void i915_gem_park(struct drm_i915_private *i915)
{
149 150
	GEM_TRACE("\n");

151 152 153 154 155 156 157 158 159 160 161 162
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
163 164
	GEM_TRACE("\n");

165 166
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
167
	assert_rpm_wakelock_held(i915);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
183 184
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
185

186 187
	i915_globals_unpark();

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

203 204
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
205
			    struct drm_file *file)
206
{
207
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
208
	struct drm_i915_gem_get_aperture *args = data;
209
	struct i915_vma *vma;
210
	u64 pinned;
211

212 213
	mutex_lock(&ggtt->vm.mutex);

214
	pinned = ggtt->vm.reserved;
215
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
216
		if (i915_vma_is_pinned(vma))
217
			pinned += vma->node.size;
218 219

	mutex_unlock(&ggtt->vm.mutex);
220

221
	args->aper_size = ggtt->vm.total;
222
	args->aper_available_size = args->aper_size - pinned;
223

224 225 226
	return 0;
}

227
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
228
{
229
	struct address_space *mapping = obj->base.filp->f_mapping;
230
	drm_dma_handle_t *phys;
231 232
	struct sg_table *st;
	struct scatterlist *sg;
233
	char *vaddr;
234
	int i;
235
	int err;
236

237
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
238
		return -EINVAL;
239

240 241 242 243 244
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
245
			     roundup_pow_of_two(obj->base.size),
246 247
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
248
		return -ENOMEM;
249 250

	vaddr = phys->vaddr;
251 252 253 254 255
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
256
		if (IS_ERR(page)) {
257
			err = PTR_ERR(page);
258 259
			goto err_phys;
		}
260 261 262 263 264 265

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

266
		put_page(page);
267 268 269
		vaddr += PAGE_SIZE;
	}

270
	i915_gem_chipset_flush(to_i915(obj->base.dev));
271 272

	st = kmalloc(sizeof(*st), GFP_KERNEL);
273
	if (!st) {
274
		err = -ENOMEM;
275 276
		goto err_phys;
	}
277 278 279

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
280
		err = -ENOMEM;
281
		goto err_phys;
282 283 284 285 286
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
287

288
	sg_dma_address(sg) = phys->busaddr;
289 290
	sg_dma_len(sg) = obj->base.size;

291
	obj->phys_handle = phys;
292

293
	__i915_gem_object_set_pages(obj, st, sg->length);
294 295

	return 0;
296 297 298

err_phys:
	drm_pci_free(obj->base.dev, phys);
299 300

	return err;
301 302
}

303 304
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
305 306
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
307 308 309 310
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

311
static void
312
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
313 314
				struct sg_table *pages,
				bool needs_clflush)
315
{
C
Chris Wilson 已提交
316
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
317

C
Chris Wilson 已提交
318 319
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
320

321
	if (needs_clflush &&
322
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
323
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
324
		drm_clflush_sg(pages);
325

326
	__start_cpu_write(obj);
327 328 329 330 331 332
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
333
	__i915_gem_object_release_shmem(obj, pages, false);
334

C
Chris Wilson 已提交
335
	if (obj->mm.dirty) {
336
		struct address_space *mapping = obj->base.filp->f_mapping;
337
		char *vaddr = obj->phys_handle->vaddr;
338 339 340
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
341 342 343 344 345 346 347 348 349 350 351 352 353
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
354
			if (obj->mm.madv == I915_MADV_WILLNEED)
355
				mark_page_accessed(page);
356
			put_page(page);
357 358
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
359
		obj->mm.dirty = false;
360 361
	}

362 363
	sg_free_table(pages);
	kfree(pages);
364 365

	drm_pci_free(obj->base.dev, obj->phys_handle);
366 367 368 369 370
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
371
	i915_gem_object_unpin_pages(obj);
372 373 374 375 376 377 378 379
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

380 381
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

382
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
383 384 385
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
386 387 388
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
389

390 391 392 393
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
394
	 */
395
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
396 397 398
	if (ret)
		return ret;

399 400 401 402
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
403
		list_move_tail(&vma->obj_link, &still_in_list);
404 405
		spin_unlock(&obj->vma.lock);

406
		ret = i915_vma_unbind(vma);
407 408

		spin_lock(&obj->vma.lock);
409
	}
410 411
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
412 413 414 415

	return ret;
}

416 417 418
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
419
			   long timeout)
420
{
421
	struct i915_request *rq;
422

423
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
424

425 426 427 428 429 430 431 432 433
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
434
	if (i915_request_completed(rq))
435 436
		goto out;

437
	timeout = i915_request_wait(rq, flags, timeout);
438 439

out:
440 441
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
442 443 444 445 446 447 448

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
449
				 long timeout)
450
{
451
	unsigned int seq = __read_seqcount_begin(&resv->seq);
452
	struct dma_fence *excl;
453
	bool prune_fences = false;
454 455 456 457

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
458 459
		int ret;

460 461
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
462 463 464
		if (ret)
			return ret;

465 466
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
467
							     flags, timeout);
468
			if (timeout < 0)
469
				break;
470

471 472 473 474 475 476
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
477

478 479 480 481 482 483 484 485 486
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
487
		prune_fences = count && timeout >= 0;
488 489
	} else {
		excl = reservation_object_get_excl_rcu(resv);
490 491
	}

492
	if (excl && timeout >= 0)
493
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
494 495 496

	dma_fence_put(excl);

497 498
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
499 500 501
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
502
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
503 504 505 506 507
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
508 509
	}

510
	return timeout;
511 512
}

513 514
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
515
{
516
	struct i915_request *rq;
517 518
	struct intel_engine_cs *engine;

519
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
520 521 522 523 524
		return;

	rq = to_request(fence);
	engine = rq->engine;

525 526
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
527
	if (engine->schedule)
528
		engine->schedule(rq, attr);
529
	rcu_read_unlock();
530
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
531 532
}

533 534
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
535 536 537 538 539 540 541
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
542
			__fence_set_priority(array->fences[i], attr);
543
	} else {
544
		__fence_set_priority(fence, attr);
545 546 547 548 549 550
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
551
			      const struct i915_sched_attr *attr)
552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
566
			fence_set_priority(shared[i], attr);
567 568 569 570 571 572 573 574 575
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
576
		fence_set_priority(excl, attr);
577 578 579 580 581
		dma_fence_put(excl);
	}
	return 0;
}

582 583 584 585 586
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
587
 */
588 589 590
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
591
		     long timeout)
592
{
593 594
	might_sleep();
	GEM_BUG_ON(timeout < 0);
595

596
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
597
	return timeout < 0 ? timeout : 0;
598 599
}

600 601 602
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
603
		     struct drm_file *file)
604 605
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
606
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
607 608 609 610

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
611
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
612 613
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
614

615
	drm_clflush_virt_range(vaddr, args->size);
616
	i915_gem_chipset_flush(to_i915(obj->base.dev));
617

618
	intel_fb_obj_flush(obj, ORIGIN_CPU);
619
	return 0;
620 621
}

622 623
static int
i915_gem_create(struct drm_file *file,
624
		struct drm_i915_private *dev_priv,
625 626
		u64 size,
		u32 *handle_p)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;
	u32 handle;
631

632
	size = roundup(size, PAGE_SIZE);
633 634
	if (size == 0)
		return -EINVAL;
635 636

	/* Allocate the new object */
637
	obj = i915_gem_object_create(dev_priv, size);
638 639
	if (IS_ERR(obj))
		return PTR_ERR(obj);
640

641
	ret = drm_gem_handle_create(file, &obj->base, &handle);
642
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
643
	i915_gem_object_put(obj);
644 645
	if (ret)
		return ret;
646

647
	*handle_p = handle;
648 649 650
	return 0;
}

651 652 653 654 655 656
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
657
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
658
	args->size = args->pitch * args->height;
659
	return i915_gem_create(file, to_i915(dev),
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

669 670
/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

695
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
696
{
697 698
	intel_wakeref_t wakeref;

699 700 701 702 703
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
704 705 706 707 708 709 710 711 712 713
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
714 715
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
716
	 */
717

718 719 720 721 722
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

723
	i915_gem_chipset_flush(dev_priv);
724

725 726
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
727

728
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
729

730 731
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
732 733 734 735 736 737 738 739
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

740
	if (!(obj->write_domain & flush_domains))
741 742
		return;

743
	switch (obj->write_domain) {
744
	case I915_GEM_DOMAIN_GTT:
745
		i915_gem_flush_ggtt_writes(dev_priv);
746 747 748

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
749

750
		for_each_ggtt_vma(vma, obj) {
751 752 753 754 755
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
756 757
		break;

758 759 760 761
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

762 763 764
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
765 766 767 768 769

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
770 771
	}

772
	obj->write_domain = 0;
773 774
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
794
				   MAX_SCHEDULE_TIMEOUT);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818
	if (!obj->cache_dirty &&
819
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
846
				   MAX_SCHEDULE_TIMEOUT);
847 848 849
	if (ret)
		return ret;

C
Chris Wilson 已提交
850
	ret = i915_gem_object_pin_pages(obj);
851 852 853
	if (ret)
		return ret;

854 855
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 857 858 859 860 861 862
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

863
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
864

865 866 867 868 869
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
870
	if (!obj->cache_dirty) {
871
		*needs_clflush |= CLFLUSH_AFTER;
872

873 874 875 876
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
877
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
878 879
			*needs_clflush |= CLFLUSH_BEFORE;
	}
880

881
out:
882
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
883
	obj->mm.dirty = true;
884
	/* return with the pages pinned */
885
	return 0;
886 887 888 889

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
890 891
}

892
static int
893 894
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
895 896 897 898 899 900
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

901 902
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
903

904
	ret = __copy_to_user(user_data, vaddr + offset, len);
905

906
	kunmap(page);
907

908
	return ret ? -EFAULT : 0;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
935
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
955
{
956
	void __iomem *vaddr;
957
	unsigned long unwritten;
958 959

	/* We can use the cpu mem copy function because this is X86. */
960 961 962 963
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
964 965
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
966 967 968 969
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
970 971
		io_mapping_unmap(vaddr);
	}
972 973 974 975
	return unwritten;
}

static int
976 977
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
978
{
979 980
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
981
	intel_wakeref_t wakeref;
982
	struct drm_mm_node node;
983 984 985
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
986 987
	int ret;

988 989 990 991
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

992
	wakeref = intel_runtime_pm_get(i915);
993
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
994 995 996
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
997 998 999
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1000
		ret = i915_vma_put_fence(vma);
1001 1002 1003 1004 1005
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1006
	if (IS_ERR(vma)) {
1007
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1008
		if (ret)
1009 1010
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1011 1012 1013 1014 1015 1016
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1017
	mutex_unlock(&i915->drm.struct_mutex);
1018

1019 1020 1021
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1036 1037 1038
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1039 1040 1041 1042
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1043

1044
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1045
				  user_data, page_length)) {
1046 1047 1048 1049 1050 1051 1052 1053 1054
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1055
	mutex_lock(&i915->drm.struct_mutex);
1056 1057 1058
out_unpin:
	if (node.allocated) {
		wmb();
1059
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1060 1061
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1062
		i915_vma_unpin(vma);
1063
	}
1064
out_unlock:
1065
	intel_runtime_pm_put(i915, wakeref);
1066
	mutex_unlock(&i915->drm.struct_mutex);
1067

1068 1069 1070
	return ret;
}

1071 1072
/**
 * Reads data from the object referenced by handle.
1073 1074 1075
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1076 1077 1078 1079 1080
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1081
		     struct drm_file *file)
1082 1083
{
	struct drm_i915_gem_pread *args = data;
1084
	struct drm_i915_gem_object *obj;
1085
	int ret;
1086

1087 1088 1089
	if (args->size == 0)
		return 0;

1090
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1091 1092 1093
		       args->size))
		return -EFAULT;

1094
	obj = i915_gem_object_lookup(file, args->handle);
1095 1096
	if (!obj)
		return -ENOENT;
1097

1098
	/* Bounds check source.  */
1099
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1100
		ret = -EINVAL;
1101
		goto out;
C
Chris Wilson 已提交
1102 1103
	}

C
Chris Wilson 已提交
1104 1105
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1106 1107
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1108
				   MAX_SCHEDULE_TIMEOUT);
1109
	if (ret)
1110
		goto out;
1111

1112
	ret = i915_gem_object_pin_pages(obj);
1113
	if (ret)
1114
		goto out;
1115

1116
	ret = i915_gem_shmem_pread(obj, args);
1117
	if (ret == -EFAULT || ret == -ENODEV)
1118
		ret = i915_gem_gtt_pread(obj, args);
1119

1120 1121
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1122
	i915_gem_object_put(obj);
1123
	return ret;
1124 1125
}

1126 1127
/* This is the fast write path which cannot handle
 * page faults in the source data
1128
 */
1129

1130 1131 1132 1133
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1134
{
1135
	void __iomem *vaddr;
1136
	unsigned long unwritten;
1137

1138
	/* We can use the cpu mem copy function because this is X86. */
1139 1140
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1141
						      user_data, length);
1142 1143
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1144 1145 1146
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1147 1148
		io_mapping_unmap(vaddr);
	}
1149 1150 1151 1152

	return unwritten;
}

1153 1154 1155
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1156
 * @obj: i915 GEM object
1157
 * @args: pwrite arguments structure
1158
 */
1159
static int
1160 1161
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1162
{
1163
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1164
	struct i915_ggtt *ggtt = &i915->ggtt;
1165
	intel_wakeref_t wakeref;
1166
	struct drm_mm_node node;
1167 1168 1169
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1170
	int ret;
1171

1172 1173 1174
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1184 1185
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1186 1187 1188 1189 1190
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1191
		wakeref = intel_runtime_pm_get(i915);
1192 1193
	}

C
Chris Wilson 已提交
1194
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1195 1196 1197
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1198 1199 1200
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1201
		ret = i915_vma_put_fence(vma);
1202 1203 1204 1205 1206
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1207
	if (IS_ERR(vma)) {
1208
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209
		if (ret)
1210
			goto out_rpm;
1211
		GEM_BUG_ON(!node.allocated);
1212
	}
D
Daniel Vetter 已提交
1213 1214 1215 1216 1217

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1218 1219
	mutex_unlock(&i915->drm.struct_mutex);

1220
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221

1222 1223 1224 1225
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1226 1227
		/* Operation in this page
		 *
1228 1229 1230
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1231
		 */
1232
		u32 page_base = node.start;
1233 1234
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1235 1236 1237
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1238 1239 1240
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1241 1242 1243 1244
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1245
		/* If we get a fault while copying data, then (presumably) our
1246 1247
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1248 1249
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1250
		 */
1251
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1252 1253 1254
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1255
		}
1256

1257 1258 1259
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1260
	}
1261
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1262 1263

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1264
out_unpin:
1265 1266
	if (node.allocated) {
		wmb();
1267
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_rpm:
1273
	intel_runtime_pm_put(i915, wakeref);
1274
out_unlock:
1275
	mutex_unlock(&i915->drm.struct_mutex);
1276
	return ret;
1277 1278
}

1279 1280 1281 1282 1283
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1284
static int
1285 1286 1287
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1288
{
1289
	char *vaddr;
1290 1291
	int ret;

1292
	vaddr = kmap(page);
1293

1294 1295
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1296

1297 1298 1299
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1300

1301 1302 1303
	kunmap(page);

	return ret ? -EFAULT : 0;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1314
	unsigned int needs_clflush;
1315 1316
	unsigned int offset, idx;
	int ret;
1317

1318
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1319 1320 1321
	if (ret)
		return ret;

1322 1323 1324 1325
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1326

1327 1328 1329 1330 1331 1332 1333
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1334

1335 1336 1337 1338 1339
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1340
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1341

1342 1343 1344
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1345
		if (ret)
1346
			break;
1347

1348 1349 1350
		remain -= length;
		user_data += length;
		offset = 0;
1351
	}
1352

1353
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354
	i915_gem_obj_finish_shmem_access(obj);
1355
	return ret;
1356 1357 1358 1359
}

/**
 * Writes data to the object referenced by handle.
1360 1361 1362
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1363 1364 1365 1366 1367
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1368
		      struct drm_file *file)
1369 1370
{
	struct drm_i915_gem_pwrite *args = data;
1371
	struct drm_i915_gem_object *obj;
1372 1373 1374 1375 1376
	int ret;

	if (args->size == 0)
		return 0;

1377
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1378 1379
		return -EFAULT;

1380
	obj = i915_gem_object_lookup(file, args->handle);
1381 1382
	if (!obj)
		return -ENOENT;
1383

1384
	/* Bounds check destination. */
1385
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1386
		ret = -EINVAL;
1387
		goto err;
C
Chris Wilson 已提交
1388 1389
	}

1390 1391 1392 1393 1394 1395
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1396 1397
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1398 1399 1400 1401 1402 1403
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1404 1405 1406
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1407
				   MAX_SCHEDULE_TIMEOUT);
1408 1409 1410
	if (ret)
		goto err;

1411
	ret = i915_gem_object_pin_pages(obj);
1412
	if (ret)
1413
		goto err;
1414

D
Daniel Vetter 已提交
1415
	ret = -EFAULT;
1416 1417 1418 1419 1420 1421
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1422
	if (!i915_gem_object_has_struct_page(obj) ||
1423
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1424 1425
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1426 1427
		 * textures). Fallback to the shmem path in that case.
		 */
1428
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1429

1430
	if (ret == -EFAULT || ret == -ENOSPC) {
1431 1432
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1433
		else
1434
			ret = i915_gem_shmem_pwrite(obj, args);
1435
	}
1436

1437
	i915_gem_object_unpin_pages(obj);
1438
err:
C
Chris Wilson 已提交
1439
	i915_gem_object_put(obj);
1440
	return ret;
1441 1442
}

1443 1444
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1445
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1446 1447 1448
	struct list_head *list;
	struct i915_vma *vma;

1449 1450
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1451
	mutex_lock(&i915->ggtt.vm.mutex);
1452
	for_each_ggtt_vma(vma, obj) {
1453 1454 1455
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1456
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1457
	}
1458
	mutex_unlock(&i915->ggtt.vm.mutex);
1459

1460
	spin_lock(&i915->mm.obj_lock);
1461
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1462 1463
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1464 1465
}

1466
/**
1467 1468
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1469 1470 1471
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1472 1473 1474
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1475
			  struct drm_file *file)
1476 1477
{
	struct drm_i915_gem_set_domain *args = data;
1478
	struct drm_i915_gem_object *obj;
1479 1480
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1481
	int err;
1482

1483
	/* Only handle setting domains to types used by the CPU. */
1484
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1485 1486 1487 1488 1489 1490 1491 1492
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1493
	obj = i915_gem_object_lookup(file, args->handle);
1494 1495
	if (!obj)
		return -ENOENT;
1496

1497 1498 1499 1500
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1501
	err = i915_gem_object_wait(obj,
1502
				   I915_WAIT_INTERRUPTIBLE |
1503
				   I915_WAIT_PRIORITY |
1504
				   (write_domain ? I915_WAIT_ALL : 0),
1505
				   MAX_SCHEDULE_TIMEOUT);
1506
	if (err)
C
Chris Wilson 已提交
1507
		goto out;
1508

T
Tina Zhang 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1522 1523 1524 1525 1526 1527 1528 1529 1530
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1531
		goto out;
1532 1533 1534

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1535
		goto out_unpin;
1536

1537 1538 1539 1540
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1541
	else
1542
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1543

1544 1545
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1546

1547
	mutex_unlock(&dev->struct_mutex);
1548

1549
	if (write_domain != 0)
1550 1551
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1552

C
Chris Wilson 已提交
1553
out_unpin:
1554
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1555 1556
out:
	i915_gem_object_put(obj);
1557
	return err;
1558 1559 1560 1561
}

/**
 * Called when user space has done writes to this buffer
1562 1563 1564
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1565 1566 1567
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1568
			 struct drm_file *file)
1569 1570
{
	struct drm_i915_gem_sw_finish *args = data;
1571
	struct drm_i915_gem_object *obj;
1572

1573
	obj = i915_gem_object_lookup(file, args->handle);
1574 1575
	if (!obj)
		return -ENOENT;
1576

T
Tina Zhang 已提交
1577 1578 1579 1580 1581
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1582
	/* Pinned buffers may be scanout, so flush the cache */
1583
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1584
	i915_gem_object_put(obj);
1585 1586

	return 0;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1596 1597
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1598 1599
}

1600
/**
1601 1602 1603 1604 1605
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1606 1607 1608
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1619 1620 1621
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1622
		    struct drm_file *file)
1623 1624
{
	struct drm_i915_gem_mmap *args = data;
1625
	struct drm_i915_gem_object *obj;
1626 1627
	unsigned long addr;

1628 1629 1630
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1631
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1632 1633
		return -ENODEV;

1634 1635
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1636
		return -ENOENT;
1637

1638 1639 1640
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1641
	if (!obj->base.filp) {
1642 1643 1644 1645 1646 1647 1648
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1649 1650
	}

1651
	addr = vm_mmap(obj->base.filp, 0, args->size,
1652 1653
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1654 1655 1656
	if (IS_ERR_VALUE(addr))
		goto err;

1657 1658 1659 1660
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1661
		if (down_write_killable(&mm->mmap_sem)) {
1662 1663
			addr = -EINTR;
			goto err;
1664
		}
1665
		vma = find_vma(mm, addr);
1666
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1667 1668 1669 1670 1671
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1672 1673
		if (IS_ERR_VALUE(addr))
			goto err;
1674 1675

		/* This may race, but that's ok, it only gets set */
1676
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1677
	}
C
Chris Wilson 已提交
1678
	i915_gem_object_put(obj);
1679

1680
	args->addr_ptr = (u64)addr;
1681
	return 0;
1682 1683 1684 1685

err:
	i915_gem_object_put(obj);
	return addr;
1686 1687
}

1688
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1689
{
1690
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1691 1692
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1713 1714 1715
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1743
	return 2;
1744 1745
}

1746
static inline struct i915_ggtt_view
1747
compute_partial_view(const struct drm_i915_gem_object *obj,
1748 1749 1750 1751 1752 1753 1754 1755 1756
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1757 1758
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1759
		min_t(unsigned int, chunk,
1760
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1761 1762 1763 1764 1765 1766 1767 1768

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1769 1770
/**
 * i915_gem_fault - fault a page into the GTT
1771
 * @vmf: fault info
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1783 1784 1785
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1786
 */
1787
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1788
{
1789
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1790
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1791
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1792
	struct drm_device *dev = obj->base.dev;
1793 1794
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1795
	bool write = area->vm_flags & VM_WRITE;
1796
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1797
	struct i915_vma *vma;
1798
	pgoff_t page_offset;
1799
	int srcu;
1800
	int ret;
1801

1802 1803 1804 1805
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1806
	/* We don't use vmf->pgoff since that has the fake offset */
1807
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1808

C
Chris Wilson 已提交
1809 1810
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1811
	/* Try to flush the object off the GPU first without holding the lock.
1812
	 * Upon acquiring the lock, we will perform our sanity checks and then
1813 1814 1815
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1816 1817
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1818
				   MAX_SCHEDULE_TIMEOUT);
1819
	if (ret)
1820 1821
		goto err;

1822 1823 1824 1825
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1826
	wakeref = intel_runtime_pm_get(dev_priv);
1827

1828 1829 1830 1831 1832 1833
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1834 1835
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1836
		goto err_reset;
1837

1838
	/* Access to snoopable pages through the GTT is incoherent. */
1839
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1840
		ret = -EFAULT;
1841
		goto err_unlock;
1842 1843
	}

1844
	/* Now pin it into the GTT as needed */
1845 1846 1847 1848
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1849 1850
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1851
		struct i915_ggtt_view view =
1852
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1853
		unsigned int flags;
1854

1855 1856 1857 1858 1859 1860
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1861 1862 1863 1864
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1865 1866 1867 1868 1869 1870
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1871
	}
C
Chris Wilson 已提交
1872 1873
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1874
		goto err_unlock;
C
Chris Wilson 已提交
1875
	}
1876

1877 1878
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1879
		goto err_unpin;
1880

1881 1882 1883 1884
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1885
	/* Finally, remap it using the new GTT offset */
1886
	ret = remap_io_mapping(area,
1887
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1888
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1889
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1890
			       &ggtt->iomap);
1891
	if (ret)
1892
		goto err_fence;
1893

1894 1895 1896 1897 1898 1899
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1900 1901
	i915_vma_set_ggtt_write(vma);

1902 1903
err_fence:
	i915_vma_unpin_fence(vma);
1904
err_unpin:
C
Chris Wilson 已提交
1905
	__i915_vma_unpin(vma);
1906
err_unlock:
1907
	mutex_unlock(&dev->struct_mutex);
1908 1909
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1910
err_rpm:
1911
	intel_runtime_pm_put(dev_priv, wakeref);
1912
	i915_gem_object_unpin_pages(obj);
1913
err:
1914
	switch (ret) {
1915
	case -EIO:
1916 1917 1918 1919 1920 1921
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1922
		if (!i915_terminally_wedged(dev_priv))
1923
			return VM_FAULT_SIGBUS;
1924
		/* else: fall through */
1925
	case -EAGAIN:
D
Daniel Vetter 已提交
1926 1927 1928 1929
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1930
		 */
1931 1932
	case 0:
	case -ERESTARTSYS:
1933
	case -EINTR:
1934 1935 1936 1937 1938
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1939
		return VM_FAULT_NOPAGE;
1940
	case -ENOMEM:
1941
		return VM_FAULT_OOM;
1942
	case -ENOSPC:
1943
	case -EFAULT:
1944
		return VM_FAULT_SIGBUS;
1945
	default:
1946
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1947
		return VM_FAULT_SIGBUS;
1948 1949 1950
	}
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1962
	for_each_ggtt_vma(vma, obj)
1963 1964 1965
		i915_vma_unset_userfault(vma);
}

1966 1967 1968 1969
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1970
 * Preserve the reservation of the mmapping with the DRM core code, but
1971 1972 1973 1974 1975 1976 1977 1978 1979
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1980
void
1981
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1982
{
1983
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1984
	intel_wakeref_t wakeref;
1985

1986 1987 1988
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1989 1990 1991 1992
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1993
	 */
1994
	lockdep_assert_held(&i915->drm.struct_mutex);
1995
	wakeref = intel_runtime_pm_get(i915);
1996

1997
	if (!obj->userfault_count)
1998
		goto out;
1999

2000
	__i915_gem_object_release_mmap(obj);
2001 2002 2003 2004 2005 2006 2007 2008 2009

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2010 2011

out:
2012
	intel_runtime_pm_put(i915, wakeref);
2013 2014
}

2015
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2016
{
2017
	struct drm_i915_gem_object *obj, *on;
2018
	int i;
2019

2020 2021 2022 2023 2024 2025
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2026

2027
	list_for_each_entry_safe(obj, on,
2028 2029
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2030 2031 2032 2033 2034 2035 2036 2037

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2048 2049 2050 2051

		if (!reg->vma)
			continue;

2052
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2053 2054
		reg->dirty = true;
	}
2055 2056
}

2057 2058
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2059
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2060
	int err;
2061

2062
	err = drm_gem_create_mmap_offset(&obj->base);
2063
	if (likely(!err))
2064
		return 0;
2065

2066 2067
	/* Attempt to reap some mmap space from dead objects */
	do {
2068 2069 2070
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2071 2072
		if (err)
			break;
2073

2074
		i915_gem_drain_freed_objects(dev_priv);
2075
		err = drm_gem_create_mmap_offset(&obj->base);
2076 2077 2078 2079
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2080

2081
	return err;
2082 2083 2084 2085 2086 2087 2088
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2089
int
2090 2091
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2092 2093
		  u32 handle,
		  u64 *offset)
2094
{
2095
	struct drm_i915_gem_object *obj;
2096 2097
	int ret;

2098
	obj = i915_gem_object_lookup(file, handle);
2099 2100
	if (!obj)
		return -ENOENT;
2101

2102
	ret = i915_gem_object_create_mmap_offset(obj);
2103 2104
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2105

C
Chris Wilson 已提交
2106
	i915_gem_object_put(obj);
2107
	return ret;
2108 2109
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2131
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 2133
}

D
Daniel Vetter 已提交
2134 2135 2136
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137
{
2138
	i915_gem_object_free_mmap_offset(obj);
2139

2140 2141
	if (obj->base.filp == NULL)
		return;
2142

D
Daniel Vetter 已提交
2143 2144 2145 2146 2147
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2148
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2149
	obj->mm.madv = __I915_MADV_PURGED;
2150
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2151
}
2152

2153
/* Try to discard unwanted pages */
2154
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2155
{
2156 2157
	struct address_space *mapping;

2158
	lockdep_assert_held(&obj->mm.lock);
2159
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2160

C
Chris Wilson 已提交
2161
	switch (obj->mm.madv) {
2162 2163 2164 2165 2166 2167 2168 2169 2170
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2171
	mapping = obj->base.filp->f_mapping,
2172
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2186
static void
2187 2188
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2189
{
2190
	struct sgt_iter sgt_iter;
2191
	struct pagevec pvec;
2192
	struct page *page;
2193

2194
	__i915_gem_object_release_shmem(obj, pages, true);
2195

2196
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2197

2198
	if (i915_gem_object_needs_bit17_swizzle(obj))
2199
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2200

2201 2202 2203
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2204
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2205
		if (obj->mm.dirty)
2206
			set_page_dirty(page);
2207

C
Chris Wilson 已提交
2208
		if (obj->mm.madv == I915_MADV_WILLNEED)
2209
			mark_page_accessed(page);
2210

2211 2212
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2213
	}
2214 2215
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2216
	obj->mm.dirty = false;
2217

2218 2219
	sg_free_table(pages);
	kfree(pages);
2220
}
C
Chris Wilson 已提交
2221

2222 2223 2224
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2225
	void __rcu **slot;
2226

2227
	rcu_read_lock();
C
Chris Wilson 已提交
2228 2229
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2230
	rcu_read_unlock();
2231 2232
}

2233 2234
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2235
{
2236
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2237
	struct sg_table *pages;
2238

2239
	pages = fetch_and_zero(&obj->mm.pages);
2240 2241
	if (IS_ERR_OR_NULL(pages))
		return pages;
2242

2243 2244 2245 2246
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2247
	if (obj->mm.mapping) {
2248 2249
		void *ptr;

2250
		ptr = page_mask_bits(obj->mm.mapping);
2251 2252
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2253
		else
2254 2255
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2256
		obj->mm.mapping = NULL;
2257 2258
	}

2259
	__i915_gem_object_reset_page_iter(obj);
2260 2261 2262 2263
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2264

2265 2266
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2267 2268
{
	struct sg_table *pages;
2269
	int ret;
2270 2271

	if (i915_gem_object_has_pinned_pages(obj))
2272
		return -EBUSY;
2273 2274 2275 2276 2277

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2278 2279
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2280
		goto unlock;
2281
	}
2282 2283 2284 2285 2286 2287 2288

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2299 2300 2301
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2302
	ret = 0;
2303 2304
unlock:
	mutex_unlock(&obj->mm.lock);
2305 2306

	return ret;
C
Chris Wilson 已提交
2307 2308
}

2309
bool i915_sg_trim(struct sg_table *orig_st)
2310 2311 2312 2313 2314 2315
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2316
		return false;
2317

2318
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2319
		return false;
2320 2321 2322 2323

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2324 2325 2326
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2327 2328
		new_sg = sg_next(new_sg);
	}
2329
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2330 2331 2332 2333

	sg_free_table(orig_st);

	*orig_st = new_st;
2334
	return true;
2335 2336
}

2337
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2338
{
2339
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2340 2341
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2342
	struct address_space *mapping;
2343 2344
	struct sg_table *st;
	struct scatterlist *sg;
2345
	struct sgt_iter sgt_iter;
2346
	struct page *page;
2347
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2348
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2349
	unsigned int sg_page_sizes;
2350
	struct pagevec pvec;
2351
	gfp_t noreclaim;
I
Imre Deak 已提交
2352
	int ret;
2353

2354 2355
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2356 2357 2358
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2359 2360
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2361

2362 2363 2364 2365
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2366
	if (page_count > totalram_pages())
2367 2368
		return -ENOMEM;

2369 2370
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2371
		return -ENOMEM;
2372

2373
rebuild_st:
2374 2375
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2376
		return -ENOMEM;
2377
	}
2378

2379 2380
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2381 2382 2383 2384
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2385
	mapping = obj->base.filp->f_mapping;
2386
	mapping_set_unevictable(mapping);
2387
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2388 2389
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2390 2391
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2392
	sg_page_sizes = 0;
2393
	for (i = 0; i < page_count; i++) {
2394 2395 2396 2397 2398 2399 2400
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2401
			cond_resched();
C
Chris Wilson 已提交
2402
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403
			if (!IS_ERR(page))
2404 2405 2406 2407 2408 2409 2410
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2411
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2412

2413 2414
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2415 2416
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2417 2418 2419 2420
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2421
			 */
2422 2423 2424
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2425

2426 2427
				/*
				 * Our bo are always dirty and so we require
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2438
				 * this we want __GFP_RETRY_MAYFAIL.
2439
				 */
M
Michal Hocko 已提交
2440
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2441
			}
2442 2443
		} while (1);

2444 2445 2446
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2447
			if (i) {
M
Matthew Auld 已提交
2448
				sg_page_sizes |= sg->length;
2449
				sg = sg_next(sg);
2450
			}
2451 2452 2453 2454 2455 2456
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2457 2458 2459

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2460
	}
2461
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2462
		sg_page_sizes |= sg->length;
2463
		sg_mark_end(sg);
2464
	}
2465

2466 2467 2468
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2469
	ret = i915_gem_gtt_prepare_pages(obj, st);
2470
	if (ret) {
2471 2472
		/*
		 * DMA remapping failed? One possible cause is that
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2490

2491
	if (i915_gem_object_needs_bit17_swizzle(obj))
2492
		i915_gem_object_do_bit_17_swizzle(obj, st);
2493

M
Matthew Auld 已提交
2494
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2495 2496

	return 0;
2497

2498
err_sg:
2499
	sg_mark_end(sg);
2500
err_pages:
2501 2502 2503 2504 2505 2506 2507 2508
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2509 2510
	sg_free_table(st);
	kfree(st);
2511

2512 2513
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2514 2515 2516 2517 2518 2519 2520
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2521 2522 2523
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2524
	return ret;
2525 2526 2527
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2528
				 struct sg_table *pages,
M
Matthew Auld 已提交
2529
				 unsigned int sg_page_sizes)
2530
{
2531 2532 2533 2534
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2535
	lockdep_assert_held(&obj->mm.lock);
2536 2537 2538 2539 2540

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2541 2542

	if (i915_gem_object_is_tiled(obj) &&
2543
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2544 2545 2546 2547
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2548

M
Matthew Auld 已提交
2549 2550
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2551 2552

	/*
M
Matthew Auld 已提交
2553 2554 2555 2556 2557 2558
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2559 2560 2561 2562 2563 2564 2565
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2566 2567 2568 2569

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2570 2571 2572 2573
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2574
	int err;
2575 2576 2577 2578 2579 2580

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2581
	err = obj->ops->get_pages(obj);
2582
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2583

2584
	return err;
2585 2586
}

2587
/* Ensure that the associated pages are gathered from the backing storage
2588
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2589
 * multiple times before they are released by a single call to
2590
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2591 2592 2593
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2594
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2595
{
2596
	int err;
2597

2598 2599 2600
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2601

2602
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2603 2604
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2605 2606 2607
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2608

2609 2610 2611
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2612

2613 2614
unlock:
	mutex_unlock(&obj->mm.lock);
2615
	return err;
2616 2617
}

2618
/* The 'mapping' part of i915_gem_object_pin_map() below */
2619 2620
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2621 2622
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2623
	struct sg_table *sgt = obj->mm.pages;
2624 2625
	struct sgt_iter sgt_iter;
	struct page *page;
2626 2627
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2628
	unsigned long i = 0;
2629
	pgprot_t pgprot;
2630 2631 2632
	void *addr;

	/* A single page can always be kmapped */
2633
	if (n_pages == 1 && type == I915_MAP_WB)
2634 2635
		return kmap(sg_page(sgt->sgl));

2636 2637
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2638
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2639 2640 2641
		if (!pages)
			return NULL;
	}
2642

2643 2644
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2645 2646 2647 2648

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2649
	switch (type) {
2650 2651 2652
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2653 2654 2655 2656 2657 2658 2659 2660
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2661

2662
	if (pages != stack_pages)
M
Michal Hocko 已提交
2663
		kvfree(pages);
2664 2665 2666 2667 2668

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2669 2670
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2671
{
2672 2673 2674
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2675 2676
	int ret;

T
Tina Zhang 已提交
2677 2678
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2679

2680
	ret = mutex_lock_interruptible(&obj->mm.lock);
2681 2682 2683
	if (ret)
		return ERR_PTR(ret);

2684 2685 2686
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2687
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2688
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2689 2690
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2691 2692 2693
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2694

2695 2696 2697
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2698 2699
		pinned = false;
	}
2700
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2701

2702
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2703 2704 2705
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2706
			goto err_unpin;
2707
		}
2708 2709 2710 2711 2712 2713

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2714
		ptr = obj->mm.mapping = NULL;
2715 2716
	}

2717 2718 2719 2720
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2721
			goto err_unpin;
2722 2723
		}

2724
		obj->mm.mapping = page_pack_bits(ptr, type);
2725 2726
	}

2727 2728
out_unlock:
	mutex_unlock(&obj->mm.lock);
2729 2730
	return ptr;

2731 2732 2733 2734 2735
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2736 2737
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2755
	if (i915_gem_object_has_pages(obj))
2756 2757
		return -ENODEV;

2758 2759 2760
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2810
static void
2811 2812
i915_gem_retire_work_handler(struct work_struct *work)
{
2813
	struct drm_i915_private *dev_priv =
2814
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2815
	struct drm_device *dev = &dev_priv->drm;
2816

2817
	/* Come back later if the device is busy... */
2818
	if (mutex_trylock(&dev->struct_mutex)) {
2819
		i915_retire_requests(dev_priv);
2820
		mutex_unlock(&dev->struct_mutex);
2821
	}
2822

2823 2824
	/*
	 * Keep the retire handler running until we are finally idle.
2825 2826 2827
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2828
	if (READ_ONCE(dev_priv->gt.awake))
2829 2830
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2831
				   round_jiffies_up_relative(HZ));
2832
}
2833

2834 2835
static bool switch_to_kernel_context_sync(struct drm_i915_private *i915,
					  unsigned long mask)
2836 2837 2838 2839 2840 2841 2842 2843
{
	bool result = true;

	/*
	 * Even if we fail to switch, give whatever is running a small chance
	 * to save itself before we report the failure. Yes, this may be a
	 * false positive due to e.g. ENOMEM, caveat emptor!
	 */
2844
	if (i915_gem_switch_to_kernel_context(i915, mask))
2845 2846 2847 2848 2849 2850 2851 2852
		result = false;

	if (i915_gem_wait_for_idle(i915,
				   I915_WAIT_LOCKED |
				   I915_WAIT_FOR_IDLE_BOOST,
				   I915_GEM_IDLE_TIMEOUT))
		result = false;

2853
	if (!result) {
2854 2855 2856 2857 2858 2859
		if (i915_modparams.reset) { /* XXX hide warning from gem_eio */
			dev_err(i915->drm.dev,
				"Failed to idle engines, declaring wedged!\n");
			GEM_TRACE_DUMP();
		}

2860 2861 2862 2863 2864 2865 2866 2867
		/* Forcibly cancel outstanding work and leave the gpu quiet. */
		i915_gem_set_wedged(i915);
	}

	i915_retire_requests(i915); /* ensure we flush after wedging */
	return result;
}

2868 2869
static bool load_power_context(struct drm_i915_private *i915)
{
2870 2871
	/* Force loading the kernel context on all engines */
	if (!switch_to_kernel_context_sync(i915, ALL_ENGINES))
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		return false;

	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

	return true;
}

2885 2886 2887
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
2888 2889
	struct drm_i915_private *i915 =
		container_of(work, typeof(*i915), gt.idle_work.work);
2890 2891
	bool rearm_hangcheck;

2892
	if (!READ_ONCE(i915->gt.awake))
2893 2894
		return;

2895
	if (READ_ONCE(i915->gt.active_requests))
2896 2897
		return;

2898
	rearm_hangcheck =
2899
		cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
2900

2901
	if (!mutex_trylock(&i915->drm.struct_mutex)) {
2902
		/* Currently busy, come back later */
2903 2904
		mod_delayed_work(i915->wq,
				 &i915->gt.idle_work,
2905 2906 2907 2908
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2909
	/*
2910 2911 2912 2913
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. Should anything unfortunate happen
	 * while we are idle (such as the GPU being power cycled), no users
	 * will be harmed.
2914
	 */
2915 2916 2917
	if (!work_pending(&i915->gt.idle_work.work) &&
	    !i915->gt.active_requests) {
		++i915->gt.active_requests; /* don't requeue idle */
2918

2919
		switch_to_kernel_context_sync(i915, i915->gt.active_engines);
2920

2921 2922 2923 2924 2925
		if (!--i915->gt.active_requests) {
			__i915_gem_park(i915);
			rearm_hangcheck = false;
		}
	}
2926

2927
	mutex_unlock(&i915->drm.struct_mutex);
2928

2929 2930
out_rearm:
	if (rearm_hangcheck) {
2931 2932
		GEM_BUG_ON(!i915->gt.awake);
		i915_queue_hangcheck(i915);
2933
	}
2934 2935
}

2936 2937
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
2938
	struct drm_i915_private *i915 = to_i915(gem->dev);
2939 2940
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
2941
	struct i915_lut_handle *lut, *ln;
2942

2943 2944 2945 2946 2947 2948
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

2949
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
2950 2951 2952 2953
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
2954 2955 2956 2957 2958 2959 2960
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
2961
			i915_vma_close(vma);
2962

2963 2964
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
2965

2966
		i915_lut_handle_free(lut);
2967
		__i915_gem_object_release_unless_active(obj);
2968
	}
2969 2970

	mutex_unlock(&i915->drm.struct_mutex);
2971 2972
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2984 2985
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2986 2987 2988
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2989 2990 2991 2992 2993 2994 2995
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
2996
 *  -EAGAIN: incomplete, restart syscall
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3013 3014
	ktime_t start;
	long ret;
3015

3016 3017 3018
	if (args->flags != 0)
		return -EINVAL;

3019
	obj = i915_gem_object_lookup(file, args->bo_handle);
3020
	if (!obj)
3021 3022
		return -ENOENT;

3023 3024 3025
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3026 3027 3028
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3029
				   to_wait_timeout(args->timeout_ns));
3030 3031 3032 3033 3034

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3045 3046 3047 3048

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3049 3050
	}

C
Chris Wilson 已提交
3051
	i915_gem_object_put(obj);
3052
	return ret;
3053 3054
}

3055 3056
static int wait_for_engines(struct drm_i915_private *i915)
{
3057
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3058 3059
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3060
		GEM_TRACE_DUMP();
3061 3062
		i915_gem_set_wedged(i915);
		return -EIO;
3063 3064 3065 3066 3067
	}

	return 0;
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3079
	list_for_each_entry(tl, &gt->active_list, link) {
3080 3081
		struct i915_request *rq;

3082
		rq = i915_active_request_get_unlocked(&tl->last_request);
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3098
			gen6_rps_boost(rq);
3099 3100 3101 3102 3103 3104 3105 3106

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3107
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3108 3109 3110 3111 3112 3113
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3114 3115
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3116
{
3117 3118 3119
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3120

3121 3122 3123 3124
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3125 3126 3127 3128
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3129
	if (flags & I915_WAIT_LOCKED) {
3130
		int err;
3131 3132 3133

		lockdep_assert_held(&i915->drm.struct_mutex);

3134 3135 3136 3137
		err = wait_for_engines(i915);
		if (err)
			return err;

3138
		i915_retire_requests(i915);
3139
	}
3140 3141

	return 0;
3142 3143
}

3144 3145
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3146 3147 3148 3149 3150 3151 3152
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3153
	obj->write_domain = 0;
3154 3155 3156 3157
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3158
	if (!READ_ONCE(obj->pin_global))
3159 3160 3161 3162 3163 3164 3165
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3185
				   MAX_SCHEDULE_TIMEOUT);
3186 3187 3188
	if (ret)
		return ret;

3189
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3210
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3211 3212 3213 3214 3215
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3216 3217
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3218
	if (write) {
3219 3220
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3221 3222 3223 3224 3225 3226 3227
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3228 3229
/**
 * Moves a single object to the GTT read, and possibly write domain.
3230 3231
 * @obj: object to act on
 * @write: ask for write access or read only
3232 3233 3234 3235
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3236
int
3237
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3238
{
3239
	int ret;
3240

3241
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3242

3243 3244 3245 3246
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3247
				   MAX_SCHEDULE_TIMEOUT);
3248 3249 3250
	if (ret)
		return ret;

3251
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3252 3253
		return 0;

3254 3255 3256 3257 3258 3259 3260 3261
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3262
	ret = i915_gem_object_pin_pages(obj);
3263 3264 3265
	if (ret)
		return ret;

3266
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3267

3268 3269 3270 3271
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3272
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3273 3274
		mb();

3275 3276 3277
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3278 3279
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3280
	if (write) {
3281 3282
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3283
		obj->mm.dirty = true;
3284 3285
	}

C
Chris Wilson 已提交
3286
	i915_gem_object_unpin_pages(obj);
3287 3288 3289
	return 0;
}

3290 3291
/**
 * Changes the cache-level of an object across all VMA.
3292 3293
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3305 3306 3307
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3308
	struct i915_vma *vma;
3309
	int ret;
3310

3311 3312
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3313
	if (obj->cache_level == cache_level)
3314
		return 0;
3315

3316 3317 3318 3319 3320
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3321
restart:
3322
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3323 3324 3325
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3326
		if (i915_vma_is_pinned(vma)) {
3327 3328 3329 3330
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3331 3332
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3344 3345
	}

3346 3347 3348 3349 3350 3351 3352
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3353
	if (obj->bind_count) {
3354 3355 3356 3357
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3358 3359 3360 3361
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3362
					   MAX_SCHEDULE_TIMEOUT);
3363 3364 3365
		if (ret)
			return ret;

3366 3367
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3384
			for_each_ggtt_vma(vma, obj) {
3385 3386 3387 3388
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3389 3390 3391 3392 3393 3394 3395 3396
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3397 3398
		}

3399
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3400 3401 3402 3403 3404 3405 3406
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3407 3408
	}

3409
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3410
		vma->node.color = cache_level;
3411
	i915_gem_object_set_cache_coherency(obj, cache_level);
3412
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3413

3414 3415 3416
	return 0;
}

B
Ben Widawsky 已提交
3417 3418
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3419
{
B
Ben Widawsky 已提交
3420
	struct drm_i915_gem_caching *args = data;
3421
	struct drm_i915_gem_object *obj;
3422
	int err = 0;
3423

3424 3425 3426 3427 3428 3429
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3430

3431 3432 3433 3434 3435 3436
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3437 3438 3439 3440
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3441 3442 3443 3444
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3445 3446 3447
out:
	rcu_read_unlock();
	return err;
3448 3449
}

B
Ben Widawsky 已提交
3450 3451
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3452
{
3453
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3454
	struct drm_i915_gem_caching *args = data;
3455 3456
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3457
	int ret = 0;
3458

B
Ben Widawsky 已提交
3459 3460
	switch (args->caching) {
	case I915_CACHING_NONE:
3461 3462
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3463
	case I915_CACHING_CACHED:
3464 3465 3466 3467 3468 3469
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3470
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3471 3472
			return -ENODEV;

3473 3474
		level = I915_CACHE_LLC;
		break;
3475
	case I915_CACHING_DISPLAY:
3476
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3477
		break;
3478 3479 3480 3481
	default:
		return -EINVAL;
	}

3482 3483 3484 3485
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3495 3496 3497 3498 3499
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3500
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3501
	if (ret)
3502
		goto out;
B
Ben Widawsky 已提交
3503

3504 3505 3506
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3507 3508 3509

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3510 3511 3512

out:
	i915_gem_object_put(obj);
3513 3514 3515
	return ret;
}

3516
/*
3517 3518 3519 3520
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3521
 */
C
Chris Wilson 已提交
3522
struct i915_vma *
3523 3524
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3525 3526
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3527
{
C
Chris Wilson 已提交
3528
	struct i915_vma *vma;
3529 3530
	int ret;

3531 3532
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3533
	/* Mark the global pin early so that we account for the
3534 3535
	 * display coherency whilst setting up the cache domains.
	 */
3536
	obj->pin_global++;
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3547
	ret = i915_gem_object_set_cache_level(obj,
3548 3549
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3550 3551
	if (ret) {
		vma = ERR_PTR(ret);
3552
		goto err_unpin_global;
C
Chris Wilson 已提交
3553
	}
3554

3555 3556
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3557 3558 3559 3560
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3561
	 */
3562
	vma = ERR_PTR(-ENOSPC);
3563 3564
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3565
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3566 3567 3568 3569
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3570
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3571
	if (IS_ERR(vma))
3572
		goto err_unpin_global;
3573

3574 3575
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3576
	__i915_gem_object_flush_for_display(obj);
3577

3578 3579 3580
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3581
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3582

C
Chris Wilson 已提交
3583
	return vma;
3584

3585 3586
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3587
	return vma;
3588 3589 3590
}

void
C
Chris Wilson 已提交
3591
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3592
{
3593
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3594

3595
	if (WARN_ON(vma->obj->pin_global == 0))
3596 3597
		return;

3598
	if (--vma->obj->pin_global == 0)
3599
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3600

3601
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3602
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3603

C
Chris Wilson 已提交
3604
	i915_vma_unpin(vma);
3605 3606
}

3607 3608
/**
 * Moves a single object to the CPU read, and possibly write domain.
3609 3610
 * @obj: object to act on
 * @write: requesting write or read-only access
3611 3612 3613 3614
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3615
int
3616
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3617 3618 3619
{
	int ret;

3620
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3621

3622 3623 3624 3625
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3626
				   MAX_SCHEDULE_TIMEOUT);
3627 3628 3629
	if (ret)
		return ret;

3630
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3631

3632
	/* Flush the CPU cache if it's still invalid. */
3633
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3634
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3635
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3636 3637 3638 3639 3640
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3641
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3642 3643 3644 3645

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3646 3647
	if (write)
		__start_cpu_write(obj);
3648 3649 3650 3651

	return 0;
}

3652 3653 3654
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3655 3656 3657 3658
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3659 3660 3661
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3662
static int
3663
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3664
{
3665
	struct drm_i915_private *dev_priv = to_i915(dev);
3666
	struct drm_i915_file_private *file_priv = file->driver_priv;
3667
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3668
	struct i915_request *request, *target = NULL;
3669
	long ret;
3670

3671
	/* ABI: return -EIO if already wedged */
3672 3673 3674
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3675

3676
	spin_lock(&file_priv->mm.lock);
3677
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3678 3679
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3680

3681 3682 3683 3684
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3685

3686
		target = request;
3687
	}
3688
	if (target)
3689
		i915_request_get(target);
3690
	spin_unlock(&file_priv->mm.lock);
3691

3692
	if (target == NULL)
3693
		return 0;
3694

3695
	ret = i915_request_wait(target,
3696 3697
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3698
	i915_request_put(target);
3699

3700
	return ret < 0 ? ret : 0;
3701 3702
}

C
Chris Wilson 已提交
3703
struct i915_vma *
3704 3705
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3706
			 u64 size,
3707 3708
			 u64 alignment,
			 u64 flags)
3709
{
3710
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3711
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3712 3713
	struct i915_vma *vma;
	int ret;
3714

3715 3716
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3717 3718
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3749
	vma = i915_vma_instance(obj, vm, view);
3750
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3751
		return vma;
3752 3753

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3754 3755 3756
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3757

3758
			if (flags & PIN_MAPPABLE &&
3759
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3760 3761 3762
				return ERR_PTR(-ENOSPC);
		}

3763 3764
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3765 3766 3767
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3768
		     !!(flags & PIN_MAPPABLE),
3769
		     i915_vma_is_map_and_fenceable(vma));
3770 3771
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3772
			return ERR_PTR(ret);
3773 3774
	}

C
Chris Wilson 已提交
3775 3776 3777
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3778

C
Chris Wilson 已提交
3779
	return vma;
3780 3781
}

3782
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3783
{
3784 3785 3786 3787
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffff0000;

	GEM_BUG_ON(id >= 16);
3788 3789 3790 3791 3792
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3793 3794
	/*
	 * The uABI guarantees an active writer is also amongst the read
3795 3796 3797 3798 3799 3800 3801
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3802 3803 3804 3805
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffffffff;

	return (id + 1) | __busy_read_flag(id);
3806 3807
}

3808
static __always_inline unsigned int
3809
__busy_set_if_active(const struct dma_fence *fence,
3810 3811
		     unsigned int (*flag)(unsigned int id))
{
3812
	const struct i915_request *rq;
3813

3814 3815
	/*
	 * We have to check the current hw status of the fence as the uABI
3816 3817 3818
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3819
	 *
3820
	 * Note we only report on the status of native fences.
3821
	 */
3822 3823 3824 3825
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3826
	rq = container_of(fence, const struct i915_request, fence);
3827
	if (i915_request_completed(rq))
3828 3829
		return 0;

3830
	return flag(rq->engine->uabi_class);
3831 3832
}

3833
static __always_inline unsigned int
3834
busy_check_reader(const struct dma_fence *fence)
3835
{
3836
	return __busy_set_if_active(fence, __busy_read_flag);
3837 3838
}

3839
static __always_inline unsigned int
3840
busy_check_writer(const struct dma_fence *fence)
3841
{
3842 3843 3844 3845
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3846 3847
}

3848 3849
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3850
		    struct drm_file *file)
3851 3852
{
	struct drm_i915_gem_busy *args = data;
3853
	struct drm_i915_gem_object *obj;
3854 3855
	struct reservation_object_list *list;
	unsigned int seq;
3856
	int err;
3857

3858
	err = -ENOENT;
3859 3860
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3861
	if (!obj)
3862
		goto out;
3863

3864 3865
	/*
	 * A discrepancy here is that we do not report the status of
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3883

3884 3885
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3886

3887 3888 3889 3890
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3891

3892 3893 3894 3895 3896 3897
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3898
	}
3899

3900 3901 3902 3903
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3904 3905 3906
out:
	rcu_read_unlock();
	return err;
3907 3908 3909 3910 3911 3912
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3913
	return i915_gem_ring_throttle(dev, file_priv);
3914 3915
}

3916 3917 3918 3919
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3920
	struct drm_i915_private *dev_priv = to_i915(dev);
3921
	struct drm_i915_gem_madvise *args = data;
3922
	struct drm_i915_gem_object *obj;
3923
	int err;
3924 3925 3926 3927 3928 3929 3930 3931 3932

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3933
	obj = i915_gem_object_lookup(file_priv, args->handle);
3934 3935 3936 3937 3938 3939
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3940

3941
	if (i915_gem_object_has_pages(obj) &&
3942
	    i915_gem_object_is_tiled(obj) &&
3943
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3944 3945
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3946
			__i915_gem_object_unpin_pages(obj);
3947 3948 3949
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3950
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3951
			__i915_gem_object_pin_pages(obj);
3952 3953
			obj->mm.quirked = true;
		}
3954 3955
	}

C
Chris Wilson 已提交
3956 3957
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3958

C
Chris Wilson 已提交
3959
	/* if the object is no longer attached, discard its backing storage */
3960 3961
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
3962 3963
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3964
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3965
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3966

3967
out:
3968
	i915_gem_object_put(obj);
3969
	return err;
3970 3971
}

3972
static void
3973 3974
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
3975 3976 3977 3978
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

3979
	intel_fb_obj_flush(obj, ORIGIN_CS);
3980 3981
}

3982 3983
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3984
{
3985 3986
	mutex_init(&obj->mm.lock);

3987 3988 3989
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

3990
	INIT_LIST_HEAD(&obj->lut_list);
3991
	INIT_LIST_HEAD(&obj->batch_pool_link);
3992

3993 3994
	init_rcu_head(&obj->rcu);

3995 3996
	obj->ops = ops;

3997 3998 3999
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4000
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4001 4002
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4003 4004 4005 4006

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4007

4008
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4009 4010
}

4011
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4012 4013
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4014

4015 4016
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4017 4018

	.pwrite = i915_gem_object_pwrite_gtt,
4019 4020
};

M
Matthew Auld 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4045
struct drm_i915_gem_object *
4046
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4047
{
4048
	struct drm_i915_gem_object *obj;
4049
	struct address_space *mapping;
4050
	unsigned int cache_level;
D
Daniel Vetter 已提交
4051
	gfp_t mask;
4052
	int ret;
4053

4054 4055 4056 4057 4058
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4059
	if (size >> PAGE_SHIFT > INT_MAX)
4060 4061 4062 4063 4064
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4065
	obj = i915_gem_object_alloc();
4066
	if (obj == NULL)
4067
		return ERR_PTR(-ENOMEM);
4068

M
Matthew Auld 已提交
4069
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4070 4071
	if (ret)
		goto fail;
4072

4073
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4074
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4075 4076 4077 4078 4079
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4080
	mapping = obj->base.filp->f_mapping;
4081
	mapping_set_gfp_mask(mapping, mask);
4082
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4083

4084
	i915_gem_object_init(obj, &i915_gem_object_ops);
4085

4086 4087
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4088

4089
	if (HAS_LLC(dev_priv))
4090
		/* On some devices, we can have the GPU use the LLC (the CPU
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4102 4103 4104
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4105

4106
	i915_gem_object_set_cache_coherency(obj, cache_level);
4107

4108 4109
	trace_i915_gem_object_create(obj);

4110
	return obj;
4111 4112 4113 4114

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4115 4116
}

4117 4118 4119 4120 4121 4122 4123 4124
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4125
	if (obj->mm.madv != I915_MADV_WILLNEED)
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4141 4142
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4143
{
4144
	struct drm_i915_gem_object *obj, *on;
4145
	intel_wakeref_t wakeref;
4146

4147
	wakeref = intel_runtime_pm_get(i915);
4148
	llist_for_each_entry_safe(obj, on, freed, freed) {
4149 4150 4151 4152
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4153 4154
		mutex_lock(&i915->drm.struct_mutex);

4155
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4156
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4157 4158
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4159
			i915_vma_destroy(vma);
4160
		}
4161 4162
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4163

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4176
		mutex_unlock(&i915->drm.struct_mutex);
4177 4178

		GEM_BUG_ON(obj->bind_count);
4179
		GEM_BUG_ON(obj->userfault_count);
4180
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4181
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4182 4183 4184

		if (obj->ops->release)
			obj->ops->release(obj);
4185

4186 4187
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4188
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4189
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4190 4191 4192 4193

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4194
		reservation_object_fini(&obj->__builtin_resv);
4195 4196 4197
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

4198
		bitmap_free(obj->bit_17);
4199
		i915_gem_object_free(obj);
4200

4201 4202 4203
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4204 4205
		if (on)
			cond_resched();
4206
	}
4207
	intel_runtime_pm_put(i915, wakeref);
4208 4209 4210 4211 4212 4213
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4224
		__i915_gem_free_objects(i915, freed);
4225
	}
4226 4227 4228 4229 4230 4231 4232
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4233

4234 4235
	/*
	 * All file-owned VMA should have been released by this point through
4236 4237 4238 4239 4240 4241
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4242

4243
	spin_lock(&i915->mm.free_lock);
4244
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4245 4246
		spin_unlock(&i915->mm.free_lock);

4247
		__i915_gem_free_objects(i915, freed);
4248
		if (need_resched())
4249 4250 4251
			return;

		spin_lock(&i915->mm.free_lock);
4252
	}
4253
	spin_unlock(&i915->mm.free_lock);
4254
}
4255

4256 4257 4258 4259 4260
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4261 4262 4263 4264 4265 4266 4267

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4278 4279
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4280
		queue_work(i915->wq, &i915->mm.free_work);
4281
}
4282

4283 4284 4285
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4286

4287 4288 4289
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4290
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4291
		obj->mm.madv = I915_MADV_DONTNEED;
4292

4293 4294
	/*
	 * Before we free the object, make sure any pure RCU-only
4295 4296 4297 4298
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4299
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4300
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4301 4302
}

4303 4304 4305 4306
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4307 4308
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4309 4310 4311 4312 4313
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4314 4315
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4316 4317
	intel_wakeref_t wakeref;

4318 4319
	GEM_TRACE("\n");

4320
	wakeref = intel_runtime_pm_get(i915);
4321
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4322 4323 4324 4325 4326 4327 4328

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4329
	if (i915_terminally_wedged(i915))
4330 4331
		i915_gem_unset_wedged(i915);

4332 4333 4334 4335 4336 4337
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4338
	 * of the reset, so this could be applied to even earlier gen.
4339
	 */
4340
	intel_engines_sanitize(i915, false);
4341

4342
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4343
	intel_runtime_pm_put(i915, wakeref);
4344

4345
	mutex_lock(&i915->drm.struct_mutex);
4346 4347
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4348 4349
}

4350
void i915_gem_suspend(struct drm_i915_private *i915)
4351
{
4352
	intel_wakeref_t wakeref;
4353

4354 4355
	GEM_TRACE("\n");

4356
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4357
	intel_suspend_gt_powersave(i915);
4358

4359 4360
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4361
	mutex_lock(&i915->drm.struct_mutex);
4362

C
Chris Wilson 已提交
4363 4364
	/*
	 * We have to flush all the executing contexts to main memory so
4365 4366
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4367
	 * leaves the i915->kernel_context still active when
4368 4369 4370 4371
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4372
	switch_to_kernel_context_sync(i915, i915->gt.active_engines);
4373

C
Chris Wilson 已提交
4374
	mutex_unlock(&i915->drm.struct_mutex);
4375
	i915_reset_flush(i915);
4376

4377
	drain_delayed_work(&i915->gt.retire_work);
4378

C
Chris Wilson 已提交
4379 4380
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4381 4382
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4383
	drain_delayed_work(&i915->gt.idle_work);
4384

C
Chris Wilson 已提交
4385 4386
	/*
	 * Assert that we successfully flushed all the work and
4387 4388
	 * reset the GPU back to its idle, low power state.
	 */
4389
	GEM_BUG_ON(i915->gt.awake);
4390

4391
	intel_runtime_pm_put(i915, wakeref);
4392 4393 4394 4395
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4396 4397 4398 4399 4400 4401 4402
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4423 4424 4425 4426 4427 4428 4429
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4430 4431
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4432 4433
}

4434
void i915_gem_resume(struct drm_i915_private *i915)
4435
{
4436 4437
	GEM_TRACE("\n");

4438
	WARN_ON(i915->gt.awake);
4439

4440
	mutex_lock(&i915->drm.struct_mutex);
4441
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4442

4443 4444
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4445

4446 4447
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4448 4449 4450
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4451
	i915->gt.resume(i915);
4452

4453 4454 4455
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4456
	intel_uc_resume(i915);
4457

4458
	/* Always reload a context for powersaving. */
4459
	if (!load_power_context(i915))
4460 4461 4462
		goto err_wedged;

out_unlock:
4463
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4464 4465 4466 4467
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4468 4469 4470
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4471 4472
		i915_gem_set_wedged(i915);
	}
4473
	goto out_unlock;
4474 4475
}

4476
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4477
{
4478
	if (INTEL_GEN(dev_priv) < 5 ||
4479 4480 4481 4482 4483 4484
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4485
	if (IS_GEN(dev_priv, 5))
4486 4487
		return;

4488
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4489
	if (IS_GEN(dev_priv, 6))
4490
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4491
	else if (IS_GEN(dev_priv, 7))
4492
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4493
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4494
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4495 4496
	else
		BUG();
4497
}
D
Daniel Vetter 已提交
4498

4499
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4500 4501 4502 4503 4504 4505 4506
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4507
static void init_unused_rings(struct drm_i915_private *dev_priv)
4508
{
4509 4510 4511 4512 4513 4514
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4515
	} else if (IS_GEN(dev_priv, 2)) {
4516 4517
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4518
	} else if (IS_GEN(dev_priv, 3)) {
4519 4520
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4521 4522 4523
	}
}

4524
static int __i915_gem_restart_engines(void *data)
4525
{
4526
	struct drm_i915_private *i915 = data;
4527
	struct intel_engine_cs *engine;
4528
	enum intel_engine_id id;
4529 4530 4531 4532
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4533 4534 4535
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4536
			return err;
4537
		}
4538 4539
	}

4540 4541
	intel_engines_set_scheduler_caps(i915);

4542 4543 4544 4545 4546
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4547
	int ret;
4548

4549 4550
	dev_priv->gt.last_init_time = ktime_get();

4551
	/* Double layer security blanket, see i915_gem_init() */
4552
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4553

4554
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4555
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4556

4557
	if (IS_HASWELL(dev_priv))
4558
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4559
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4560

4561
	/* Apply the GT workarounds... */
4562
	intel_gt_apply_workarounds(dev_priv);
4563 4564
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4565

4566
	i915_gem_init_swizzling(dev_priv);
4567

4568 4569 4570 4571 4572 4573
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4574
	init_unused_rings(dev_priv);
4575

4576
	BUG_ON(!dev_priv->kernel_context);
4577 4578
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4579
		goto out;
4580

4581
	ret = i915_ppgtt_init_hw(dev_priv);
4582
	if (ret) {
4583
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4584 4585 4586
		goto out;
	}

4587 4588 4589 4590 4591 4592
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4593 4594
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4595 4596
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4597
		goto out;
4598
	}
4599

4600
	intel_mocs_init_l3cc_table(dev_priv);
4601

4602 4603
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4604 4605
	if (ret)
		goto cleanup_uc;
4606

4607
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4608 4609

	return 0;
4610 4611 4612

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4613
out:
4614
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4615 4616

	return ret;
4617 4618
}

4619 4620 4621 4622 4623
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
4624
	int err = 0;
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4640
		struct i915_request *rq;
4641

4642
		rq = i915_request_alloc(engine, ctx);
4643 4644 4645 4646 4647
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4648
		err = 0;
4649 4650 4651
		if (engine->init_context)
			err = engine->init_context(rq);

4652
		i915_request_add(rq);
4653 4654 4655 4656
		if (err)
			goto err_active;
	}

4657 4658 4659
	/* Flush the default context image to memory, and enable powersaving. */
	if (!load_power_context(i915)) {
		err = -EIO;
4660
		goto err_active;
4661
	}
4662 4663

	for_each_engine(engine, i915, id) {
4664
		struct intel_context *ce;
4665
		struct i915_vma *state;
4666
		void *vaddr;
4667

4668 4669 4670
		ce = intel_context_lookup(ctx, engine);
		if (!ce)
			continue;
4671

4672
		state = ce->state;
4673 4674 4675
		if (!state)
			continue;

4676
		GEM_BUG_ON(intel_context_is_pinned(ce));
4677

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4695 4696 4697

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4698
						I915_MAP_FORCE_WB);
4699 4700 4701 4702 4703 4704
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
4733 4734
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
4735
	 */
4736
	i915_gem_set_wedged(i915);
4737 4738 4739
	goto out_ctx;
}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4778
int i915_gem_init(struct drm_i915_private *dev_priv)
4779 4780 4781
{
	int ret;

4782 4783
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4784 4785 4786
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4787
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4788

4789
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
4790
		dev_priv->gt.resume = intel_lr_context_resume;
4791
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4792 4793 4794
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4795 4796
	}

4797 4798
	i915_timelines_init(dev_priv);

4799 4800 4801 4802
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4803
	ret = intel_uc_init_misc(dev_priv);
4804 4805 4806
	if (ret)
		return ret;

4807
	ret = intel_wopcm_init(&dev_priv->wopcm);
4808
	if (ret)
4809
		goto err_uc_misc;
4810

4811 4812 4813 4814 4815 4816
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4817
	mutex_lock(&dev_priv->drm.struct_mutex);
4818
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4819

4820
	ret = i915_gem_init_ggtt(dev_priv);
4821 4822 4823 4824
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4825

4826
	ret = i915_gem_init_scratch(dev_priv,
4827
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4828 4829 4830 4831
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4832

4833 4834 4835 4836 4837 4838
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4839
	ret = intel_engines_init(dev_priv);
4840 4841 4842 4843
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4844

4845 4846
	intel_init_gt_powersave(dev_priv);

4847
	ret = intel_uc_init(dev_priv);
4848
	if (ret)
4849
		goto err_pm;
4850

4851 4852 4853 4854
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4866
	ret = __intel_engines_record_defaults(dev_priv);
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

4880
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4892 4893
	mutex_unlock(&dev_priv->drm.struct_mutex);

4894
	i915_gem_suspend(dev_priv);
4895 4896
	i915_gem_suspend_late(dev_priv);

4897 4898
	i915_gem_drain_workqueue(dev_priv);

4899
	mutex_lock(&dev_priv->drm.struct_mutex);
4900
	intel_uc_fini_hw(dev_priv);
4901 4902
err_uc_init:
	intel_uc_fini(dev_priv);
4903 4904 4905 4906 4907 4908 4909 4910
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4911 4912
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4913 4914
err_ggtt:
err_unlock:
4915
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4916 4917
	mutex_unlock(&dev_priv->drm.struct_mutex);

4918
err_uc_misc:
4919
	intel_uc_fini_misc(dev_priv);
4920

4921
	if (ret != -EIO) {
4922
		i915_gem_cleanup_userptr(dev_priv);
4923 4924
		i915_timelines_fini(dev_priv);
	}
4925

4926
	if (ret == -EIO) {
4927 4928
		mutex_lock(&dev_priv->drm.struct_mutex);

4929 4930
		/*
		 * Allow engine initialisation to fail by marking the GPU as
4931 4932 4933
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
4934
		if (!i915_reset_failed(dev_priv)) {
4935 4936
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
4937 4938
			i915_gem_set_wedged(dev_priv);
		}
4939 4940 4941 4942 4943 4944 4945 4946

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
4947 4948
	}

4949
	i915_gem_drain_freed_objects(dev_priv);
4950
	return ret;
4951 4952
}

4953 4954 4955
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
4956
	intel_disable_gt_powersave(dev_priv);
4957 4958 4959 4960 4961 4962 4963 4964 4965

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
4966
	i915_gem_fini_scratch(dev_priv);
4967 4968
	mutex_unlock(&dev_priv->drm.struct_mutex);

4969 4970
	intel_wa_list_free(&dev_priv->gt_wa_list);

4971 4972
	intel_cleanup_gt_powersave(dev_priv);

4973 4974
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
4975
	i915_timelines_fini(dev_priv);
4976 4977 4978 4979 4980 4981

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

4982 4983 4984 4985 4986
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4987
void
4988
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4989
{
4990
	struct intel_engine_cs *engine;
4991
	enum intel_engine_id id;
4992

4993
	for_each_engine(engine, dev_priv, id)
4994
		dev_priv->gt.cleanup_engine(engine);
4995 4996
}

4997 4998 4999
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5000
	int i;
5001

5002
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5003 5004
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5005
	else if (INTEL_GEN(dev_priv) >= 4 ||
5006 5007
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5008 5009 5010 5011
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5012
	if (intel_vgpu_active(dev_priv))
5013 5014 5015 5016
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5017 5018 5019 5020 5021 5022 5023
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5024
	i915_gem_restore_fences(dev_priv);
5025

5026
	i915_gem_detect_bit_6_swizzle(dev_priv);
5027 5028
}

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5045
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5046
{
5047
	int err;
5048

5049
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5050
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5051

5052
	i915_gem_init__mm(dev_priv);
5053

5054
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5055
			  i915_gem_retire_work_handler);
5056
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5057
			  i915_gem_idle_work_handler);
5058
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5059
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5060
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5061
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5062

5063 5064
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5065
	spin_lock_init(&dev_priv->fb_tracking.lock);
5066

M
Matthew Auld 已提交
5067 5068 5069 5070
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5071
	return 0;
5072
}
5073

5074
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5075
{
5076
	i915_gem_drain_freed_objects(dev_priv);
5077 5078
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5079
	WARN_ON(dev_priv->mm.object_count);
5080

5081 5082
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5083
	i915_gemfs_fini(dev_priv);
5084 5085
}

5086 5087
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5088 5089 5090
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5091 5092 5093 5094 5095
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5096
int i915_gem_freeze_late(struct drm_i915_private *i915)
5097 5098
{
	struct drm_i915_gem_object *obj;
5099
	struct list_head *phases[] = {
5100 5101
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5102
		NULL
5103
	}, **phase;
5104

5105 5106
	/*
	 * Called just before we write the hibernation image.
5107 5108 5109 5110 5111 5112 5113 5114
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5115 5116
	 *
	 * To try and reduce the hibernation image, we manually shrink
5117
	 * the objects as well, see i915_gem_freeze()
5118 5119
	 */

5120 5121
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5122

5123 5124 5125 5126
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5127
	}
5128
	mutex_unlock(&i915->drm.struct_mutex);
5129 5130 5131 5132

	return 0;
}

5133
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5134
{
5135
	struct drm_i915_file_private *file_priv = file->driver_priv;
5136
	struct i915_request *request;
5137 5138 5139 5140 5141

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5142
	spin_lock(&file_priv->mm.lock);
5143
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5144
		request->file_priv = NULL;
5145
	spin_unlock(&file_priv->mm.lock);
5146 5147
}

5148
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5149 5150
{
	struct drm_i915_file_private *file_priv;
5151
	int ret;
5152

5153
	DRM_DEBUG("\n");
5154 5155 5156 5157 5158 5159

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5160
	file_priv->dev_priv = i915;
5161
	file_priv->file = file;
5162 5163 5164 5165

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5166
	file_priv->bsd_engine = -1;
5167
	file_priv->hang_timestamp = jiffies;
5168

5169
	ret = i915_gem_context_open(i915, file);
5170 5171
	if (ret)
		kfree(file_priv);
5172

5173
	return ret;
5174 5175
}

5176 5177
/**
 * i915_gem_track_fb - update frontbuffer tracking
5178 5179 5180
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5181 5182 5183 5184
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5185 5186 5187 5188
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5189 5190 5191 5192 5193 5194 5195
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5196
		     BITS_PER_TYPE(atomic_t));
5197

5198
	if (old) {
5199 5200
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5201 5202 5203
	}

	if (new) {
5204 5205
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5206 5207 5208
	}
}

5209 5210
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5211
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5212 5213 5214
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5215 5216 5217
	struct file *file;
	size_t offset;
	int err;
5218

5219
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5220
	if (IS_ERR(obj))
5221 5222
		return obj;

5223
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5224

5225 5226 5227 5228 5229 5230
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5231

5232 5233 5234 5235 5236
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5237

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5252 5253 5254 5255

	return obj;

fail:
5256
	i915_gem_object_put(obj);
5257
	return ERR_PTR(err);
5258
}
5259 5260 5261 5262 5263 5264

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5265
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5266 5267 5268 5269 5270
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5271
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5297 5298
		void *entry;
		unsigned long i;
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5313
		entry = xa_mk_value(idx);
5314
		for (i = 1; i < count; i++) {
5315
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5353
	 * the radix tree will contain a value entry that points
5354 5355 5356 5357 5358
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5359 5360
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5393
	if (!obj->mm.dirty)
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5409

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5445
	pages = __i915_gem_object_unset_pages(obj);
5446

5447 5448
	obj->ops = &i915_gem_phys_ops;

5449
	err = ____i915_gem_object_get_pages(obj);
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5463 5464 5465 5466 5467
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5468 5469 5470 5471 5472
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5473 5474
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5475
#include "selftests/mock_gem_device.c"
5476
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5477
#include "selftests/huge_pages.c"
5478
#include "selftests/i915_gem_object.c"
5479
#include "selftests/i915_gem_coherency.c"
5480
#include "selftests/i915_gem.c"
5481
#endif