scrub.c 154.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
22
#include "zoned.h"
23
#include "fs.h"
24
#include "accessors.h"
25
#include "file-item.h"
26
#include "scrub.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_block;
42
struct scrub_ctx;
A
Arne Jansen 已提交
43

44
/*
45 46
 * The following three values only influence the performance.
 *
47
 * The last one configures the number of parallel and outstanding I/O
48
 * operations. The first one configures an upper limit for the number
49 50
 * of (dynamically allocated) pages that are added to a bio.
 */
51 52
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53
#define SCRUB_STRIPES_PER_SCTX	8	/* That would be 8 64K stripe per-device. */
54 55

/*
56
 * The following value times PAGE_SIZE needs to be large enough to match the
57 58
 * largest node/leaf/sector size that shall be supported.
 */
59
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
60

61 62
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

63 64 65 66 67 68 69 70 71 72 73
/*
 * Maximum number of mirrors that can be available for all profiles counting
 * the target device of dev-replace as one. During an active device replace
 * procedure, the target device of the copy operation is a mirror for the
 * filesystem data as well that can be used to read data in order to repair
 * read errors on other disks.
 *
 * Current value is derived from RAID1C4 with 4 copies.
 */
#define BTRFS_MAX_MIRRORS (4 + 1)

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/* Represent one sector and its needed info to verify the content. */
struct scrub_sector_verification {
	bool is_metadata;

	union {
		/*
		 * Csum pointer for data csum verification.  Should point to a
		 * sector csum inside scrub_stripe::csums.
		 *
		 * NULL if this data sector has no csum.
		 */
		u8 *csum;

		/*
		 * Extra info for metadata verification.  All sectors inside a
		 * tree block share the same generation.
		 */
		u64 generation;
	};
};

enum scrub_stripe_flags {
	/* Set when @mirror_num, @dev, @physical and @logical are set. */
	SCRUB_STRIPE_FLAG_INITIALIZED,

	/* Set when the read-repair is finished. */
	SCRUB_STRIPE_FLAG_REPAIR_DONE,
101 102 103 104 105 106 107

	/*
	 * Set for data stripes if it's triggered from P/Q stripe.
	 * During such scrub, we should not report errors in data stripes, nor
	 * update the accounting.
	 */
	SCRUB_STRIPE_FLAG_NO_REPORT,
108 109 110 111 112 113 114 115
};

#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)

/*
 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 */
struct scrub_stripe {
116
	struct scrub_ctx *sctx;
117 118 119 120 121 122 123 124 125 126 127 128 129 130
	struct btrfs_block_group *bg;

	struct page *pages[SCRUB_STRIPE_PAGES];
	struct scrub_sector_verification *sectors;

	struct btrfs_device *dev;
	u64 logical;
	u64 physical;

	u16 mirror_num;

	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
	u16 nr_sectors;

131 132 133 134 135 136 137
	/*
	 * How many data/meta extents are in this stripe.  Only for scrub status
	 * reporting purposes.
	 */
	u16 nr_data_extents;
	u16 nr_meta_extents;

138 139
	atomic_t pending_io;
	wait_queue_head_t io_wait;
140
	wait_queue_head_t repair_wait;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

	/*
	 * Indicate the states of the stripe.  Bits are defined in
	 * scrub_stripe_flags enum.
	 */
	unsigned long state;

	/* Indicate which sectors are covered by extent items. */
	unsigned long extent_sector_bitmap;

	/*
	 * The errors hit during the initial read of the stripe.
	 *
	 * Would be utilized for error reporting and repair.
	 */
	unsigned long init_error_bitmap;

	/*
	 * The following error bitmaps are all for the current status.
	 * Every time we submit a new read, these bitmaps may be updated.
	 *
	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
	 *
	 * IO and csum errors can happen for both metadata and data.
	 */
	unsigned long error_bitmap;
	unsigned long io_error_bitmap;
	unsigned long csum_error_bitmap;
	unsigned long meta_error_bitmap;

171 172 173 174 175 176
	/* For writeback (repair or replace) error reporting. */
	unsigned long write_error_bitmap;

	/* Writeback can be concurrent, thus we need to protect the bitmap. */
	spinlock_t write_error_lock;

177 178 179 180 181
	/*
	 * Checksum for the whole stripe if this stripe is inside a data block
	 * group.
	 */
	u8 *csums;
182 183

	struct work_struct work;
184 185
};

186
struct scrub_recover {
187
	refcount_t		refs;
188
	struct btrfs_io_context	*bioc;
189 190 191
	u64			map_length;
};

192
struct scrub_sector {
193
	struct scrub_block	*sblock;
194
	struct list_head	list;
A
Arne Jansen 已提交
195 196
	u64			flags;  /* extent flags */
	u64			generation;
197 198
	/* Offset in bytes to @sblock. */
	u32			offset;
199
	atomic_t		refs;
200 201
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
202
	u8			csum[BTRFS_CSUM_SIZE];
203 204

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
205 206 207 208
};

struct scrub_bio {
	int			index;
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
211
	struct bio		*bio;
212
	blk_status_t		status;
A
Arne Jansen 已提交
213 214
	u64			logical;
	u64			physical;
215 216
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
217
	int			next_free;
218
	struct work_struct	work;
A
Arne Jansen 已提交
219 220
};

221
struct scrub_block {
222 223 224 225 226
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
227
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
228
	struct btrfs_device	*dev;
229 230
	/* Logical bytenr of the sblock */
	u64			logical;
231 232
	u64			physical;
	u64			physical_for_dev_replace;
233 234
	/* Length of sblock in bytes */
	u32			len;
235
	int			sector_count;
236
	int			mirror_num;
237

238
	atomic_t		outstanding_sectors;
239
	refcount_t		refs; /* free mem on transition to zero */
240
	struct scrub_ctx	*sctx;
241
	struct scrub_parity	*sparity;
242 243 244 245
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
246
		unsigned int	generation_error:1; /* also sets header_error */
247 248 249 250

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
251
	};
252
	struct work_struct	work;
253 254
};

255 256 257 258 259 260 261 262 263 264 265 266
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

267
	u32			stripe_len;
268

269
	refcount_t		refs;
270

271
	struct list_head	sectors_list;
272 273

	/* Work of parity check and repair */
274
	struct work_struct	work;
275 276

	/* Mark the parity blocks which have data */
277
	unsigned long		dbitmap;
278 279 280 281 282

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
283
	unsigned long		ebitmap;
284 285
};

286
struct scrub_ctx {
287
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
288
	struct scrub_stripe	stripes[SCRUB_STRIPES_PER_SCTX];
289
	struct scrub_stripe	*raid56_data_stripes;
290
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
291 292
	int			first_free;
	int			curr;
293
	int			cur_stripe;
294 295
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
296 297 298 299
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
300
	int			readonly;
301
	int			sectors_per_bio;
302

303 304 305 306
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

307
	int			is_dev_replace;
308
	u64			write_pointer;
309 310 311 312

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
313
	bool                    flush_all_writes;
314

A
Arne Jansen 已提交
315 316 317 318 319
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
320 321 322 323 324 325 326 327

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
328
	refcount_t              refs;
A
Arne Jansen 已提交
329 330
};

331 332 333 334
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
335
	u64			physical;
336 337 338 339
	u64			logical;
	struct btrfs_device	*dev;
};

340 341 342 343 344 345 346
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

347
#ifndef CONFIG_64BIT
348
/* This structure is for architectures whose (void *) is smaller than u64 */
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398
static void release_scrub_stripe(struct scrub_stripe *stripe)
{
	if (!stripe)
		return;

	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
		if (stripe->pages[i])
			__free_page(stripe->pages[i]);
		stripe->pages[i] = NULL;
	}
	kfree(stripe->sectors);
	kfree(stripe->csums);
	stripe->sectors = NULL;
	stripe->csums = NULL;
399
	stripe->sctx = NULL;
400 401 402
	stripe->state = 0;
}

403 404
static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
			     struct scrub_stripe *stripe)
405 406 407 408 409 410 411 412 413
{
	int ret;

	memset(stripe, 0, sizeof(*stripe));

	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
	stripe->state = 0;

	init_waitqueue_head(&stripe->io_wait);
414
	init_waitqueue_head(&stripe->repair_wait);
415
	atomic_set(&stripe->pending_io, 0);
416
	spin_lock_init(&stripe->write_error_lock);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
	if (ret < 0)
		goto error;

	stripe->sectors = kcalloc(stripe->nr_sectors,
				  sizeof(struct scrub_sector_verification),
				  GFP_KERNEL);
	if (!stripe->sectors)
		goto error;

	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
				fs_info->csum_size, GFP_KERNEL);
	if (!stripe->csums)
		goto error;
	return 0;
error:
	release_scrub_stripe(stripe);
	return -ENOMEM;
}

438
static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
439 440 441 442
{
	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}

443 444 445 446 447
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
448 449 450 451 452 453 454 455
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
456
	sblock->logical = logical;
457 458 459 460
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
461
	sblock->no_io_error_seen = 1;
462 463 464 465
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
466 467 468
	return sblock;
}

469 470 471 472 473 474
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
475
					       u64 logical)
476
{
477
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
478 479
	struct scrub_sector *ssector;

480 481 482
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

483
	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
484 485
	if (!ssector)
		return NULL;
486 487 488 489 490

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

491
		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
492 493 494 495 496 497 498 499 500 501 502 503
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
504
	}
505

506 507 508 509
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
510
	ssector->offset = logical - sblock->logical;
511

512 513 514 515 516
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
517
	sblock->len += sblock->sctx->fs_info->sectorsize;
518 519 520 521

	return ssector;
}

522 523 524
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
525
	pgoff_t index;
526 527 528 529 530 531 532
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
533
	ASSERT(ssector->offset < sblock->len);
534

535
	index = ssector->offset >> PAGE_SHIFT;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
553
	ASSERT(ssector->offset < sblock->len);
554

555
	return offset_in_page(ssector->offset);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

571
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
572
				     struct scrub_block *sblocks_for_recheck[]);
573
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
574 575
				struct scrub_block *sblock,
				int retry_failed_mirror);
576
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
577
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
578
					     struct scrub_block *sblock_good);
579
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
580
					    struct scrub_block *sblock_good,
581
					    int sector_num, int force_write);
582
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
583 584
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
585 586 587 588
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
589 590
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
591 592
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
593
static void scrub_bio_end_io(struct bio *bio);
594
static void scrub_bio_end_io_worker(struct work_struct *work);
595
static void scrub_block_complete(struct scrub_block *sblock);
596 597
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
598
static void scrub_wr_submit(struct scrub_ctx *sctx);
599
static void scrub_wr_bio_end_io(struct bio *bio);
600
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
601
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
602

603
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
604
{
605 606
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
607
}
S
Stefan Behrens 已提交
608

609 610
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
611
	refcount_inc(&sctx->refs);
612 613 614 615 616 617 618
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
619
	scrub_put_ctx(sctx);
620 621
}

622
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
623 624 625 626 627 628 629 630 631
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

632
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
633 634 635
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
636
}
637

638 639
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
640 641 642 643 644 645 646 647
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

648 649 650 651 652 653
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

673
	lockdep_assert_held(&locks_root->lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

689 690 691
	/*
	 * Insert new lock.
	 */
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

717
	lockdep_assert_held(&locks_root->lock);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
737
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
738 739 740 741 742 743 744 745 746 747 748 749 750
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
751 752
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
770
	struct btrfs_block_group *bg_cache;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
817
	struct btrfs_block_group *bg_cache;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

871
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
872
{
873
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
874
		struct btrfs_ordered_sum *sum;
875
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
876 877 878 879 880 881
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

882
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
883 884 885
{
	int i;

886
	if (!sctx)
A
Arne Jansen 已提交
887 888
		return;

889
	/* this can happen when scrub is cancelled */
890 891
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
892

893
		for (i = 0; i < sbio->sector_count; i++)
894
			scrub_block_put(sbio->sectors[i]->sblock);
895 896 897
		bio_put(sbio->bio);
	}

898
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
899
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
900 901 902 903 904 905

		if (!sbio)
			break;
		kfree(sbio);
	}

906 907 908
	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
		release_scrub_stripe(&sctx->stripes[i]);

909
	kfree(sctx->wr_curr_bio);
910 911
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
912 913
}

914 915
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
916
	if (refcount_dec_and_test(&sctx->refs))
917 918 919
		scrub_free_ctx(sctx);
}

920 921
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
922
{
923
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
924 925
	int		i;

926
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
927
	if (!sctx)
A
Arne Jansen 已提交
928
		goto nomem;
929
	refcount_set(&sctx->refs, 1);
930
	sctx->is_dev_replace = is_dev_replace;
931
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
932
	sctx->curr = -1;
933
	sctx->fs_info = fs_info;
934
	INIT_LIST_HEAD(&sctx->csum_list);
935
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
936 937
		struct scrub_bio *sbio;

938
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
939 940
		if (!sbio)
			goto nomem;
941
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
942 943

		sbio->index = i;
944
		sbio->sctx = sctx;
945
		sbio->sector_count = 0;
946
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
947

948
		if (i != SCRUB_BIOS_PER_SCTX - 1)
949
			sctx->bios[i]->next_free = i + 1;
950
		else
951 952
			sctx->bios[i]->next_free = -1;
	}
953 954 955 956 957 958 959 960
	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
		int ret;

		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
		if (ret < 0)
			goto nomem;
		sctx->stripes[i].sctx = sctx;
	}
961
	sctx->first_free = 0;
962 963
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
964 965 966 967 968
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
969
	sctx->throttle_deadline = 0;
970

971 972 973
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
974
	if (is_dev_replace) {
975 976
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
977
		sctx->flush_all_writes = false;
978
	}
979

980
	return sctx;
A
Arne Jansen 已提交
981 982

nomem:
983
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
984 985 986
	return ERR_PTR(-ENOMEM);
}

987 988
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
989 990 991 992
{
	u32 nlink;
	int ret;
	int i;
993
	unsigned nofs_flag;
994 995
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
996
	struct scrub_warning *swarn = warn_ctx;
997
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
998 999
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
1000
	struct btrfs_key key;
1001

D
David Sterba 已提交
1002
	local_root = btrfs_get_fs_root(fs_info, root, true);
1003 1004 1005 1006 1007
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

1008 1009 1010
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
1011 1012 1013 1014 1015
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
1016
	if (ret) {
1017
		btrfs_put_root(local_root);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

1028 1029 1030 1031 1032 1033
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
1034
	ipath = init_ipath(4096, local_root, swarn->path);
1035
	memalloc_nofs_restore(nofs_flag);
1036
	if (IS_ERR(ipath)) {
1037
		btrfs_put_root(local_root);
1038 1039 1040 1041
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
1052
		btrfs_warn_in_rcu(fs_info,
1053
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
1054
				  swarn->errstr, swarn->logical,
1055
				  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
1056
				  swarn->physical,
J
Jeff Mahoney 已提交
1057
				  root, inum, offset,
1058
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
1059
				  (char *)(unsigned long)ipath->fspath->val[i]);
1060

1061
	btrfs_put_root(local_root);
1062 1063 1064 1065
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
1066
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
1067
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
1068
			  swarn->errstr, swarn->logical,
1069
			  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
1070
			  swarn->physical,
J
Jeff Mahoney 已提交
1071
			  root, inum, offset, ret);
1072 1073 1074 1075 1076

	free_ipath(ipath);
	return 0;
}

1077 1078
static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
				       bool is_super, u64 logical, u64 physical)
1079
{
1080
	struct btrfs_fs_info *fs_info = dev->fs_info;
1081 1082 1083 1084 1085
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
1086 1087
	unsigned long ptr = 0;
	u64 flags = 0;
1088
	u64 ref_root;
1089
	u32 item_size;
1090
	u8 ref_level = 0;
1091
	int ret;
1092

1093
	/* Super block error, no need to search extent tree. */
1094
	if (is_super) {
1095
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
1096
				  errstr, btrfs_dev_name(dev), physical);
1097 1098
		return;
	}
1099
	path = btrfs_alloc_path();
1100 1101
	if (!path)
		return;
1102

1103 1104
	swarn.physical = physical;
	swarn.logical = logical;
1105
	swarn.errstr = errstr;
1106
	swarn.dev = NULL;
1107

1108 1109
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
1110 1111 1112 1113 1114 1115 1116
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1117
	item_size = btrfs_item_size(eb, path->slots[0]);
1118

1119
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1120
		do {
1121 1122 1123
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
1124
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
1125
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
1126
				errstr, swarn.logical,
1127
				btrfs_dev_name(dev),
D
David Sterba 已提交
1128
				swarn.physical,
1129 1130 1131 1132
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
1133
		btrfs_release_path(path);
1134
	} else {
1135 1136
		struct btrfs_backref_walk_ctx ctx = { 0 };

1137
		btrfs_release_path(path);
1138 1139 1140 1141 1142

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

1143
		swarn.path = path;
1144
		swarn.dev = dev;
1145 1146

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
1147 1148 1149 1150 1151 1152
	}

out:
	btrfs_free_path(path);
}

1153 1154 1155 1156 1157 1158 1159
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
{
	scrub_print_common_warning(errstr, sblock->dev,
			sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER,
			sblock->logical, sblock->physical);
}

1160 1161
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1162
	refcount_inc(&recover->refs);
1163 1164
}

1165 1166
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1167
{
1168
	if (refcount_dec_and_test(&recover->refs)) {
1169
		btrfs_bio_counter_dec(fs_info);
1170
		btrfs_put_bioc(recover->bioc);
1171 1172 1173 1174
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1175
/*
1176
 * scrub_handle_errored_block gets called when either verification of the
1177 1178
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
1179 1180 1181
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1182
 */
1183
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1184
{
1185
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1186
	struct btrfs_device *dev = sblock_to_check->dev;
1187 1188 1189 1190 1191
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
1192 1193
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1194 1195 1196
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1197
	int sector_num;
1198
	int success;
1199
	bool full_stripe_locked;
1200
	unsigned int nofs_flag;
1201
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1202 1203
				      DEFAULT_RATELIMIT_BURST);

1204
	BUG_ON(sblock_to_check->sector_count < 1);
1205
	fs_info = sctx->fs_info;
1206
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1207
		/*
1208
		 * If we find an error in a super block, we just report it.
1209 1210 1211
		 * They will get written with the next transaction commit
		 * anyway
		 */
1212
		scrub_print_warning("super block error", sblock_to_check);
1213 1214 1215
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1216
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1217 1218
		return 0;
	}
1219 1220 1221
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1222
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1223
			BTRFS_EXTENT_FLAG_DATA);
1224
	have_csum = sblock_to_check->sectors[0]->have_csum;
1225

1226 1227
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1228

1229 1230 1231 1232 1233 1234
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1235
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1236 1237 1238
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1248
		memalloc_nofs_restore(nofs_flag);
1249 1250 1251 1252 1253 1254 1255 1256 1257
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1258 1259 1260 1261
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1262
	 * sector by sector this time in order to know which sectors
1263 1264 1265 1266
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1277 1278 1279
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1280
	 * Only if this is not possible, the sectors are picked from
1281 1282 1283 1284 1285
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1286
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1287 1288 1289 1290 1291 1292
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1293 1294 1295
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1296
		 */
1297 1298
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1308 1309
	}

1310
	/* Setup the context, map the logical blocks and alloc the sectors */
1311
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1312
	if (ret) {
1313 1314 1315 1316
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1317
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1318 1319 1320
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1321
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1322

1323
	/* build and submit the bios for the failed mirror, check checksums */
1324
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1325

1326 1327 1328
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1329
		 * The error disappeared after reading sector by sector, or
1330 1331 1332 1333 1334 1335
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1336 1337
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1338
		sblock_to_check->data_corrected = 1;
1339
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1340

1341 1342
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1343
		goto out;
A
Arne Jansen 已提交
1344 1345
	}

1346
	if (!sblock_bad->no_io_error_seen) {
1347 1348 1349
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1350
		if (__ratelimit(&rs))
1351
			scrub_print_warning("i/o error", sblock_to_check);
1352
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1353
	} else if (sblock_bad->checksum_error) {
1354 1355 1356
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1357
		if (__ratelimit(&rs))
1358
			scrub_print_warning("checksum error", sblock_to_check);
1359
		btrfs_dev_stat_inc_and_print(dev,
1360
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1361
	} else if (sblock_bad->header_error) {
1362 1363 1364
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1365
		if (__ratelimit(&rs))
1366 1367
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1368
		if (sblock_bad->generation_error)
1369
			btrfs_dev_stat_inc_and_print(dev,
1370 1371
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1372
			btrfs_dev_stat_inc_and_print(dev,
1373
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1374
	}
A
Arne Jansen 已提交
1375

1376 1377 1378 1379
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1380

1381 1382
	/*
	 * now build and submit the bios for the other mirrors, check
1383 1384
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1385 1386 1387 1388 1389
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1390
	 * checksum is present, only those sectors are rewritten that had
1391
	 * an I/O error in the block to be repaired, since it cannot be
1392 1393
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1394 1395
	 * overwritten by a bad one).
	 */
1396
	for (mirror_index = 0; ;mirror_index++) {
1397
		struct scrub_block *sblock_other;
1398

1399 1400
		if (mirror_index == failed_mirror_index)
			continue;
1401 1402

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1403
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1404 1405
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1406
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1407 1408
				break;

1409
			sblock_other = sblocks_for_recheck[mirror_index];
1410
		} else {
1411
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1412
			int max_allowed = r->bioc->num_stripes - r->bioc->replace_nr_stripes;
1413 1414 1415

			if (mirror_index >= max_allowed)
				break;
1416
			if (!sblocks_for_recheck[1]->sector_count)
1417 1418 1419
				break;

			ASSERT(failed_mirror_index == 0);
1420
			sblock_other = sblocks_for_recheck[1];
1421
			sblock_other->mirror_num = 1 + mirror_index;
1422
		}
1423 1424

		/* build and submit the bios, check checksums */
1425
		scrub_recheck_block(fs_info, sblock_other, 0);
1426 1427

		if (!sblock_other->header_error &&
1428 1429
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1430 1431
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1432
				goto corrected_error;
1433 1434
			} else {
				ret = scrub_repair_block_from_good_copy(
1435 1436 1437
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1438
			}
1439 1440
		}
	}
A
Arne Jansen 已提交
1441

1442 1443
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1444 1445 1446

	/*
	 * In case of I/O errors in the area that is supposed to be
1447 1448
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1449 1450 1451 1452 1453
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1454
	 * all possible combinations of sectors from the different mirrors
1455
	 * until the checksum verification succeeds. For example, when
1456
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1457
	 * of mirror #2 is readable but the final checksum test fails,
1458
	 * then the 2nd sector of mirror #3 could be tried, whether now
1459
	 * the final checksum succeeds. But this would be a rare
1460 1461 1462 1463
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1464
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1465
	 * mirror could be repaired by taking 512 byte of a different
1466
	 * mirror, even if other 512 byte sectors in the same sectorsize
1467
	 * area are unreadable.
A
Arne Jansen 已提交
1468
	 */
1469
	success = 1;
1470 1471
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1472
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1473
		struct scrub_block *sblock_other = NULL;
1474

1475 1476
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1477
			continue;
1478

1479
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1480 1481 1482 1483 1484 1485 1486 1487
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1488 1489
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1490 1491
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1492
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1493
			     mirror_index++) {
1494
				if (!sblocks_for_recheck[mirror_index]->
1495
				    sectors[sector_num]->io_error) {
1496
					sblock_other = sblocks_for_recheck[mirror_index];
1497
					break;
1498 1499
				}
			}
1500 1501
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1502
		}
A
Arne Jansen 已提交
1503

1504 1505
		if (sctx->is_dev_replace) {
			/*
1506 1507 1508 1509
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1510 1511 1512 1513
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1514 1515
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1516
				atomic64_inc(
1517
					&fs_info->dev_replace.num_write_errors);
1518 1519 1520
				success = 0;
			}
		} else if (sblock_other) {
1521 1522 1523
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1524
			if (0 == ret)
1525
				sector_bad->io_error = 0;
1526 1527
			else
				success = 0;
1528
		}
A
Arne Jansen 已提交
1529 1530
	}

1531
	if (success && !sctx->is_dev_replace) {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1542
			scrub_recheck_block(fs_info, sblock_bad, 1);
1543
			if (!sblock_bad->header_error &&
1544 1545 1546 1547 1548 1549 1550
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1551 1552
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1553
			sblock_to_check->data_corrected = 1;
1554
			spin_unlock(&sctx->stat_lock);
1555 1556
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1557
				logical, btrfs_dev_name(dev));
A
Arne Jansen 已提交
1558
		}
1559 1560
	} else {
did_not_correct_error:
1561 1562 1563
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1564 1565
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1566
			logical, btrfs_dev_name(dev));
I
Ilya Dryomov 已提交
1567
	}
A
Arne Jansen 已提交
1568

1569
out:
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1589
			}
1590
		}
1591
		scrub_block_put(sblock);
1592
	}
A
Arne Jansen 已提交
1593

1594
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1595
	memalloc_nofs_restore(nofs_flag);
1596 1597
	if (ret < 0)
		return ret;
1598 1599
	return 0;
}
A
Arne Jansen 已提交
1600

1601
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1602
{
1603
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1604
		return 2;
1605
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1606 1607
		return 3;
	else
1608
		return (int)bioc->num_stripes;
1609 1610
}

Z
Zhao Lei 已提交
1611
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1612
						 u64 full_stripe_logical,
1613 1614 1615 1616 1617 1618
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1619
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1620 1621 1622
		const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ?
					    nstripes - 1 : nstripes - 2;

1623
		/* RAID5/6 */
1624 1625 1626
		for (i = 0; i < nr_data_stripes; i++) {
			const u64 data_stripe_start = full_stripe_logical +
						(i * BTRFS_STRIPE_LEN);
1627

1628 1629
			if (logical >= data_stripe_start &&
			    logical < data_stripe_start + BTRFS_STRIPE_LEN)
1630 1631 1632 1633
				break;
		}

		*stripe_index = i;
1634 1635
		*stripe_offset = (logical - full_stripe_logical) &
				 BTRFS_STRIPE_LEN_MASK;
1636 1637 1638 1639 1640 1641 1642
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1643
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1644
				     struct scrub_block *sblocks_for_recheck[])
1645
{
1646
	struct scrub_ctx *sctx = original_sblock->sctx;
1647
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1648
	u64 logical = original_sblock->logical;
1649 1650 1651 1652
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1653
	struct scrub_recover *recover;
1654
	struct btrfs_io_context *bioc;
1655 1656 1657 1658
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1659
	int sector_index = 0;
1660
	int mirror_index;
1661
	int nmirrors;
1662 1663 1664
	int ret;

	while (length > 0) {
1665
		sublen = min_t(u64, length, fs_info->sectorsize);
1666
		mapped_length = sublen;
1667
		bioc = NULL;
A
Arne Jansen 已提交
1668

1669
		/*
1670 1671
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1672
		 */
1673
		btrfs_bio_counter_inc_blocked(fs_info);
1674
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1675 1676 1677
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1678
			btrfs_bio_counter_dec(fs_info);
1679 1680
			return -EIO;
		}
A
Arne Jansen 已提交
1681

1682
		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1683
		if (!recover) {
1684
			btrfs_put_bioc(bioc);
1685
			btrfs_bio_counter_dec(fs_info);
1686 1687 1688
			return -ENOMEM;
		}

1689
		refcount_set(&recover->refs, 1);
1690
		recover->bioc = bioc;
1691 1692
		recover->map_length = mapped_length;

1693
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1694

1695
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1696

1697
		for (mirror_index = 0; mirror_index < nmirrors;
1698 1699
		     mirror_index++) {
			struct scrub_block *sblock;
1700
			struct scrub_sector *sector;
1701

1702
			sblock = sblocks_for_recheck[mirror_index];
1703
			sblock->sctx = sctx;
1704

1705
			sector = alloc_scrub_sector(sblock, logical);
1706
			if (!sector) {
1707 1708 1709
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1710
				scrub_put_recover(fs_info, recover);
1711 1712
				return -ENOMEM;
			}
1713 1714 1715
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1716
			if (have_csum)
1717
				memcpy(sector->csum,
1718
				       original_sblock->sectors[0]->csum,
1719
				       sctx->fs_info->csum_size);
1720

Z
Zhao Lei 已提交
1721
			scrub_stripe_index_and_offset(logical,
1722
						      bioc->map_type,
1723
						      bioc->full_stripe_logical,
1724
						      bioc->num_stripes -
1725
						      bioc->replace_nr_stripes,
1726 1727 1728
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1741

1742
			BUG_ON(sector_index >= original_sblock->sector_count);
1743
			scrub_get_recover(recover);
1744
			sector->recover = recover;
1745
		}
1746
		scrub_put_recover(fs_info, recover);
1747 1748
		length -= sublen;
		logical += sublen;
1749
		sector_index++;
1750 1751 1752
	}

	return 0;
I
Ilya Dryomov 已提交
1753 1754
}

1755
static void scrub_bio_wait_endio(struct bio *bio)
1756
{
1757
	complete(bio->bi_private);
1758 1759 1760 1761
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1762
					struct scrub_sector *sector)
1763
{
1764
	DECLARE_COMPLETION_ONSTACK(done);
1765

1766 1767
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1768 1769
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1770
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1771

1772 1773
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1774 1775
}

L
Liu Bo 已提交
1776 1777 1778
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1779
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1780
	struct bio *bio;
1781
	int i;
L
Liu Bo 已提交
1782

1783
	/* All sectors in sblock belong to the same stripe on the same device. */
1784 1785
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1786 1787
		goto out;

1788
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1789

1790
	for (i = 0; i < sblock->sector_count; i++) {
1791
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1792

1793
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1794 1795
	}

1796
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1807 1808
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1809 1810 1811 1812

	sblock->no_io_error_seen = 0;
}

1813
/*
1814 1815 1816 1817 1818
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1819
 */
1820
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1821 1822
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1823
{
1824
	int i;
I
Ilya Dryomov 已提交
1825

1826
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1827

L
Liu Bo 已提交
1828
	/* short cut for raid56 */
1829
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1830 1831
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1832
	for (i = 0; i < sblock->sector_count; i++) {
1833
		struct scrub_sector *sector = sblock->sectors[i];
1834 1835
		struct bio bio;
		struct bio_vec bvec;
1836

1837
		if (sblock->dev->bdev == NULL) {
1838
			sector->io_error = 1;
1839 1840 1841 1842
			sblock->no_io_error_seen = 0;
			continue;
		}

1843
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1844
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1845 1846
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1847

1848 1849
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1850
			sector->io_error = 1;
L
Liu Bo 已提交
1851
			sblock->no_io_error_seen = 0;
1852
		}
1853

1854
		bio_uninit(&bio);
1855
	}
I
Ilya Dryomov 已提交
1856

1857
	if (sblock->no_io_error_seen)
1858
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1859 1860
}

1861
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1862
{
1863
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1864 1865
	int ret;

1866
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1867 1868 1869
	return !ret;
}

1870
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1871
{
1872 1873 1874
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1875

1876
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1877 1878 1879
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1880 1881
}

1882
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1883
					     struct scrub_block *sblock_good)
1884
{
1885
	int i;
1886
	int ret = 0;
I
Ilya Dryomov 已提交
1887

1888
	for (i = 0; i < sblock_bad->sector_count; i++) {
1889
		int ret_sub;
I
Ilya Dryomov 已提交
1890

1891 1892
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1893 1894
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1895
	}
1896 1897 1898 1899

	return ret;
}

1900 1901 1902
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1903
{
1904 1905
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1906
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1907
	const u32 sectorsize = fs_info->sectorsize;
1908 1909

	if (force_write || sblock_bad->header_error ||
1910
	    sblock_bad->checksum_error || sector_bad->io_error) {
1911 1912
		struct bio bio;
		struct bio_vec bvec;
1913 1914
		int ret;

1915
		if (!sblock_bad->dev->bdev) {
1916
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1917
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1918 1919 1920
			return -EIO;
		}

1921 1922 1923
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1924
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1925

1926 1927 1928
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1929

1930
		if (ret) {
1931
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1932
				BTRFS_DEV_STAT_WRITE_ERRS);
1933
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1934 1935
			return -EIO;
		}
A
Arne Jansen 已提交
1936 1937
	}

1938 1939 1940
	return 0;
}

1941 1942
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1943
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1944
	int i;
1945

1946 1947 1948 1949 1950 1951 1952
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1953
	for (i = 0; i < sblock->sector_count; i++) {
1954 1955
		int ret;

1956
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1957
		if (ret)
1958
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1959 1960 1961
	}
}

1962
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1963
{
1964
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1965
	struct scrub_sector *sector = sblock->sectors[sector_num];
1966

1967
	if (sector->io_error)
1968
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1969

1970
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1981 1982 1983
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1995 1996 1997 1998 1999
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

2000 2001
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
2002
{
2003
	struct scrub_block *sblock = sector->sblock;
2004 2005
	struct scrub_bio *sbio;
	int ret;
2006
	const u32 sectorsize = sctx->fs_info->sectorsize;
2007

2008
	mutex_lock(&sctx->wr_lock);
2009
again:
2010 2011
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
2012
					      GFP_KERNEL);
2013 2014
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
2015 2016
			return -ENOMEM;
		}
2017
		sctx->wr_curr_bio->sctx = sctx;
2018
		sctx->wr_curr_bio->sector_count = 0;
2019
	}
2020
	sbio = sctx->wr_curr_bio;
2021
	if (sbio->sector_count == 0) {
2022 2023
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
2024 2025 2026 2027 2028
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

2029 2030
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
2031
		sbio->dev = sctx->wr_tgtdev;
2032 2033 2034
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
2035
		}
2036 2037 2038
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2039
		sbio->status = 0;
2040
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2041
		   sblock->physical_for_dev_replace + sector->offset ||
2042
		   sbio->logical + sbio->sector_count * sectorsize !=
2043
		   sblock->logical + sector->offset) {
2044 2045 2046 2047
		scrub_wr_submit(sctx);
		goto again;
	}

2048
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2049
	if (ret != sectorsize) {
2050
		if (sbio->sector_count < 1) {
2051 2052
			bio_put(sbio->bio);
			sbio->bio = NULL;
2053
			mutex_unlock(&sctx->wr_lock);
2054 2055 2056 2057 2058 2059
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

2060
	sbio->sectors[sbio->sector_count] = sector;
2061
	scrub_sector_get(sector);
2062 2063 2064 2065 2066 2067 2068
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

2069 2070
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2071
		scrub_wr_submit(sctx);
2072
	mutex_unlock(&sctx->wr_lock);
2073 2074 2075 2076 2077 2078 2079 2080

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

2081
	if (!sctx->wr_curr_bio)
2082 2083
		return;

2084 2085
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
2086 2087 2088 2089 2090
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
2091 2092
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
2093 2094

	if (btrfs_is_zoned(sctx->fs_info))
2095
		sctx->write_pointer = sbio->physical + sbio->sector_count *
2096
			sctx->fs_info->sectorsize;
2097 2098
}

2099
static void scrub_wr_bio_end_io(struct bio *bio)
2100 2101
{
	struct scrub_bio *sbio = bio->bi_private;
2102
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2103

2104
	sbio->status = bio->bi_status;
2105 2106
	sbio->bio = bio;

2107 2108
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2109 2110
}

2111
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
2112 2113 2114 2115 2116
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

2117
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2118
	if (sbio->status) {
2119
		struct btrfs_dev_replace *dev_replace =
2120
			&sbio->sctx->fs_info->dev_replace;
2121

2122 2123
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2124

2125
			sector->io_error = 1;
2126
			atomic64_inc(&dev_replace->num_write_errors);
2127 2128 2129
		}
	}

2130 2131 2132 2133 2134 2135
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
2136
		scrub_sector_put(sbio->sectors[i]);
2137
	}
2138 2139 2140 2141 2142 2143 2144

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2145 2146 2147 2148
{
	u64 flags;
	int ret;

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2161 2162
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
2163 2164 2165 2166 2167 2168
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2169
		ret = scrub_checksum_super(sblock);
2170 2171 2172 2173
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2174 2175

	return ret;
A
Arne Jansen 已提交
2176 2177
}

2178
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2179
{
2180
	struct scrub_ctx *sctx = sblock->sctx;
2181 2182
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
2183
	u8 csum[BTRFS_CSUM_SIZE];
2184
	struct scrub_sector *sector;
2185
	char *kaddr;
A
Arne Jansen 已提交
2186

2187
	BUG_ON(sblock->sector_count < 1);
2188 2189
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
2190 2191
		return 0;

2192
	kaddr = scrub_sector_get_kaddr(sector);
2193

2194 2195
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
2196

2197
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
2198

2199
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2200
		sblock->checksum_error = 1;
2201
	return sblock->checksum_error;
A
Arne Jansen 已提交
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;

	return stripe->pages[page_index];
}

static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
						 int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
}

2220
static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	struct btrfs_header *header;

	/*
	 * Here we don't have a good way to attach the pages (and subpages)
	 * to a dummy extent buffer, thus we have to directly grab the members
	 * from pages.
	 */
	header = (struct btrfs_header *)(page_address(first_page) + first_off);
	memcpy(on_disk_csum, header->csum, fs_info->csum_size);

	if (logical != btrfs_stack_header_bytenr(header)) {
		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_bytenr(header), logical);
		return;
	}
	if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->fsid, fs_info->fs_devices->fsid);
		return;
	}
	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		return;
	}

	/* Now check tree block csum. */
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, page_address(first_page) + first_off +
			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);

	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
		struct page *page = scrub_stripe_get_page(stripe, i);
		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);

		crypto_shash_update(shash, page_address(page) + page_off,
				    fs_info->sectorsize);
	}

	crypto_shash_final(shash, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      logical, stripe->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		return;
	}
	if (stripe->sectors[sector_nr].generation !=
	    btrfs_stack_header_generation(header)) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_generation(header),
			      stripe->sectors[sector_nr].generation);
		return;
	}
	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
	u8 csum_buf[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);

	/* Sector not utilized, skip it. */
	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
		return;

	/* IO error, no need to check. */
	if (test_bit(sector_nr, &stripe->io_error_bitmap))
		return;

	/* Metadata, verify the full tree block. */
	if (sector->is_metadata) {
		/*
		 * Check if the tree block crosses the stripe boudary.  If
		 * crossed the boundary, we cannot verify it but only give a
		 * warning.
		 *
		 * This can only happen on a very old filesystem where chunks
		 * are not ensured to be stripe aligned.
		 */
		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
			btrfs_warn_rl(fs_info,
			"tree block at %llu crosses stripe boundary %llu",
				      stripe->logical +
				      (sector_nr << fs_info->sectorsize_bits),
				      stripe->logical);
			return;
		}
		scrub_verify_one_metadata(stripe, sector_nr);
		return;
	}

	/*
	 * Data is easier, we just verify the data csum (if we have it).  For
	 * cases without csum, we have no other choice but to trust it.
	 */
	if (!sector->csum) {
		clear_bit(sector_nr, &stripe->error_bitmap);
		return;
	}

	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
	if (ret < 0) {
		set_bit(sector_nr, &stripe->csum_error_bitmap);
		set_bit(sector_nr, &stripe->error_bitmap);
	} else {
		clear_bit(sector_nr, &stripe->csum_error_bitmap);
		clear_bit(sector_nr, &stripe->error_bitmap);
	}
}

/* Verify specified sectors of a stripe. */
2372
static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	int sector_nr;

	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
		scrub_verify_one_sector(stripe, sector_nr);
		if (stripe->sectors[sector_nr].is_metadata)
			sector_nr += sectors_per_tree - 1;
	}
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
{
	int i;

	for (i = 0; i < stripe->nr_sectors; i++) {
		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
			break;
	}
	ASSERT(i < stripe->nr_sectors);
	return i;
}

/*
 * Repair read is different to the regular read:
 *
 * - Only reads the failed sectors
 * - May have extra blocksize limits
 */
static void scrub_repair_read_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	ASSERT(sector_nr < stripe->nr_sectors);

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		bitmap_set(&stripe->error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
			     bio_size >> fs_info->sectorsize_bits);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

static int calc_next_mirror(int mirror, int num_copies)
{
	ASSERT(mirror <= num_copies);
	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
}

static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
					    int mirror, int blocksize, bool wait)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	const unsigned long old_error_bitmap = stripe->error_bitmap;
	int i;

	ASSERT(stripe->mirror_num >= 1);
	ASSERT(atomic_read(&stripe->pending_io) == 0);

	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
		struct page *page;
		int pgoff;
		int ret;

		page = scrub_stripe_get_page(stripe, i);
		pgoff = scrub_stripe_get_page_offset(stripe, i);

		/* The current sector cannot be merged, submit the bio. */
		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
			     bbio->bio.bi_iter.bi_size >= blocksize)) {
			ASSERT(bbio->bio.bi_iter.bi_size);
			atomic_inc(&stripe->pending_io);
			btrfs_submit_bio(bbio, mirror);
			if (wait)
				wait_scrub_stripe_io(stripe);
			bbio = NULL;
		}

		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
				fs_info, scrub_repair_read_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
		}

		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
	if (bbio) {
		ASSERT(bbio->bio.bi_iter.bi_size);
		atomic_inc(&stripe->pending_io);
		btrfs_submit_bio(bbio, mirror);
		if (wait)
			wait_scrub_stripe_io(stripe);
	}
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
				       struct scrub_stripe *stripe)
{
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_device *dev = NULL;
	u64 physical = 0;
	int nr_data_sectors = 0;
	int nr_meta_sectors = 0;
	int nr_nodatacsum_sectors = 0;
	int nr_repaired_sectors = 0;
	int sector_nr;

2501 2502 2503
	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
		return;

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	/*
	 * Init needed infos for error reporting.
	 *
	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
	 * thus no need for dev/physical, error reporting still needs dev and physical.
	 */
	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
		u64 mapped_len = fs_info->sectorsize;
		struct btrfs_io_context *bioc = NULL;
		int stripe_index = stripe->mirror_num - 1;
		int ret;

		/* For scrub, our mirror_num should always start at 1. */
		ASSERT(stripe->mirror_num >= 1);
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				       stripe->logical, &mapped_len, &bioc);
		/*
		 * If we failed, dev will be NULL, and later detailed reports
		 * will just be skipped.
		 */
		if (ret < 0)
			goto skip;
		physical = bioc->stripes[stripe_index].physical;
		dev = bioc->stripes[stripe_index].dev;
		btrfs_put_bioc(bioc);
	}

skip:
	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
		bool repaired = false;

		if (stripe->sectors[sector_nr].is_metadata) {
			nr_meta_sectors++;
		} else {
			nr_data_sectors++;
			if (!stripe->sectors[sector_nr].csum)
				nr_nodatacsum_sectors++;
		}

		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
		    !test_bit(sector_nr, &stripe->error_bitmap)) {
			nr_repaired_sectors++;
			repaired = true;
		}

		/* Good sector from the beginning, nothing need to be done. */
		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
			continue;

		/*
		 * Report error for the corrupted sectors.  If repaired, just
		 * output the message of repaired message.
		 */
		if (repaired) {
			if (dev) {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
			} else {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
			}
			continue;
		}

		/* The remaining are all for unrepaired. */
		if (dev) {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
		} else {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
		}

		if (test_bit(sector_nr, &stripe->io_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("i/o error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("checksum error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("header error", dev, false,
						     stripe->logical, physical);
	}

	spin_lock(&sctx->stat_lock);
	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
	sctx->stat.no_csum += nr_nodatacsum_sectors;
	sctx->stat.read_errors +=
		bitmap_weight(&stripe->io_error_bitmap, stripe->nr_sectors);
	sctx->stat.csum_errors +=
		bitmap_weight(&stripe->csum_error_bitmap, stripe->nr_sectors);
	sctx->stat.verify_errors +=
		bitmap_weight(&stripe->meta_error_bitmap, stripe->nr_sectors);
	sctx->stat.uncorrectable_errors +=
		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
	sctx->stat.corrected_errors += nr_repaired_sectors;
	spin_unlock(&sctx->stat_lock);
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * The main entrance for all read related scrub work, including:
 *
 * - Wait for the initial read to finish
 * - Verify and locate any bad sectors
 * - Go through the remaining mirrors and try to read as large blocksize as
 *   possible
 * - Go through all mirrors (including the failed mirror) sector-by-sector
 *
 * Writeback does not happen here, it needs extra synchronization.
 */
static void scrub_stripe_read_repair_worker(struct work_struct *work)
{
	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
					  stripe->bg->length);
	int mirror;
	int i;

	ASSERT(stripe->mirror_num > 0);

	wait_scrub_stripe_io(stripe);
	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
	/* Save the initial failed bitmap for later repair and report usage. */
	stripe->init_error_bitmap = stripe->error_bitmap;

	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
		goto out;

	/*
	 * Try all remaining mirrors.
	 *
	 * Here we still try to read as large block as possible, as this is
	 * faster and we have extra safety nets to rely on.
	 */
	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
	     mirror != stripe->mirror_num;
	     mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						BTRFS_STRIPE_LEN, false);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}

	/*
	 * Last safety net, try re-checking all mirrors, including the failed
	 * one, sector-by-sector.
	 *
	 * As if one sector failed the drive's internal csum, the whole read
	 * containing the offending sector would be marked as error.
	 * Thus here we do sector-by-sector read.
	 *
	 * This can be slow, thus we only try it as the last resort.
	 */

	for (i = 0, mirror = stripe->mirror_num;
	     i < num_copies;
	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						fs_info->sectorsize, true);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}
out:
2688
	scrub_stripe_report_errors(stripe->sctx, stripe);
2689 2690 2691 2692
	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
	wake_up(&stripe->repair_wait);
}

2693
static void scrub_read_endio(struct btrfs_bio *bbio)
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
{
	struct scrub_stripe *stripe = bbio->private;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io)) {
		wake_up(&stripe->io_wait);
		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
	}
}

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static void scrub_write_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		unsigned long flags;

		spin_lock_irqsave(&stripe->write_error_lock, flags);
		bitmap_set(&stripe->write_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
	}
	bio_put(&bbio->bio);

	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

/*
 * Submit the write bio(s) for the sectors specified by @write_bitmap.
 *
 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
 *
 * - Only needs logical bytenr and mirror_num
 *   Just like the scrub read path
 *
 * - Would only result in writes to the specified mirror
 *   Unlike the regular writeback path, which would write back to all stripes
 *
 * - Handle dev-replace and read-repair writeback differently
 */
2750 2751
static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
				unsigned long write_bitmap, bool dev_replace)
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	const bool zoned = btrfs_is_zoned(fs_info);
	int sector_nr;

	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
		int ret;

		/* We should only writeback sectors covered by an extent. */
		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));

		/* Cannot merge with previous sector, submit the current one. */
		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
			fill_writer_pointer_gap(sctx, stripe->physical +
					(sector_nr << fs_info->sectorsize_bits));
			atomic_inc(&stripe->pending_io);
			btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
			/* For zoned writeback, queue depth must be 1. */
			if (zoned)
				wait_scrub_stripe_io(stripe);
			bbio = NULL;
		}
		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
					       fs_info, scrub_write_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(sector_nr << fs_info->sectorsize_bits)) >>
				SECTOR_SHIFT;
		}
		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
	if (bbio) {
		fill_writer_pointer_gap(sctx, bbio->bio.bi_iter.bi_sector <<
					SECTOR_SHIFT);
		atomic_inc(&stripe->pending_io);
		btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
		if (zoned)
			wait_scrub_stripe_io(stripe);
	}
}

2797
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2798
{
2799
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2800
	struct btrfs_header *h;
2801
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2802
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2803 2804
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2805 2806 2807 2808 2809 2810 2811
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2812
	int i;
2813
	struct scrub_sector *sector;
2814
	char *kaddr;
2815

2816
	BUG_ON(sblock->sector_count < 1);
2817

2818
	/* Each member in sectors is just one sector */
2819
	ASSERT(sblock->sector_count == num_sectors);
2820

2821
	sector = sblock->sectors[0];
2822
	kaddr = scrub_sector_get_kaddr(sector);
2823
	h = (struct btrfs_header *)kaddr;
2824
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2825 2826 2827 2828 2829 2830

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2831
	if (sblock->logical != btrfs_stack_header_bytenr(h)) {
2832
		sblock->header_error = 1;
2833 2834 2835 2836 2837 2838
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_bytenr(h),
			      sblock->logical);
		goto out;
2839
	}
A
Arne Jansen 已提交
2840

2841
	if (!scrub_check_fsid(h->fsid, sector)) {
2842
		sblock->header_error = 1;
2843 2844 2845 2846 2847 2848
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->fsid, sblock->dev->fs_devices->fsid);
		goto out;
	}
A
Arne Jansen 已提交
2849

2850
	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) {
2851
		sblock->header_error = 1;
2852 2853 2854 2855 2856 2857
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		goto out;
	}
A
Arne Jansen 已提交
2858

2859 2860 2861
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2862
			    sectorsize - BTRFS_CSUM_SIZE);
2863

2864
	for (i = 1; i < num_sectors; i++) {
2865
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2866
		crypto_shash_update(shash, kaddr, sectorsize);
2867 2868
	}

2869
	crypto_shash_final(shash, calculated_csum);
2870
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) {
2871
		sblock->checksum_error = 1;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      sblock->logical, sblock->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		goto out;
	}

	if (sector->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_generation(h),
			      sector->generation);
	}
A
Arne Jansen 已提交
2889

2890
out:
2891
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2892 2893
}

2894
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2895 2896
{
	struct btrfs_super_block *s;
2897
	struct scrub_ctx *sctx = sblock->sctx;
2898 2899
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2900
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2901
	struct scrub_sector *sector;
2902
	char *kaddr;
2903 2904
	int fail_gen = 0;
	int fail_cor = 0;
2905

2906
	BUG_ON(sblock->sector_count < 1);
2907
	sector = sblock->sectors[0];
2908
	kaddr = scrub_sector_get_kaddr(sector);
2909
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2910

2911
	if (sblock->logical != btrfs_super_bytenr(s))
2912
		++fail_cor;
A
Arne Jansen 已提交
2913

2914
	if (sector->generation != btrfs_super_generation(s))
2915
		++fail_gen;
A
Arne Jansen 已提交
2916

2917
	if (!scrub_check_fsid(s->fsid, sector))
2918
		++fail_cor;
A
Arne Jansen 已提交
2919

2920 2921 2922 2923
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2924

2925
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2926
		++fail_cor;
A
Arne Jansen 已提交
2927

2928
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2929 2930
}

2931 2932
static void scrub_block_put(struct scrub_block *sblock)
{
2933
	if (refcount_dec_and_test(&sblock->refs)) {
2934 2935
		int i;

2936 2937 2938
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2939
		for (i = 0; i < sblock->sector_count; i++)
2940
			scrub_sector_put(sblock->sectors[i]);
2941 2942 2943 2944 2945 2946
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2947 2948 2949 2950
		kfree(sblock);
	}
}

2951
static void scrub_sector_get(struct scrub_sector *sector)
2952
{
2953
	atomic_inc(&sector->refs);
2954 2955
}

2956
static void scrub_sector_put(struct scrub_sector *sector)
2957
{
2958
	if (atomic_dec_and_test(&sector->refs))
2959
		kfree(sector);
2960 2961
}

2962 2963
static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
				  unsigned int bio_size)
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
{
	const int time_slice = 1000;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
2992
		sctx->throttle_sent += bio_size;
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio = sctx->bios[sctx->curr];

	scrub_throttle_dev_io(sctx, sbio->dev, sbio->bio->bi_iter.bi_size);
}

3025
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
3026 3027 3028
{
	struct scrub_bio *sbio;

3029
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
3030
		return;
A
Arne Jansen 已提交
3031

3032 3033
	scrub_throttle(sctx);

3034 3035
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
3036
	scrub_pending_bio_inc(sctx);
3037 3038
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
3039 3040
}

3041 3042
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
3043
{
3044
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
3045
	struct scrub_bio *sbio;
3046
	const u32 sectorsize = sctx->fs_info->sectorsize;
3047
	int ret;
A
Arne Jansen 已提交
3048 3049 3050 3051 3052

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
3053 3054 3055 3056 3057 3058
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
3059
			sctx->bios[sctx->curr]->sector_count = 0;
3060
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
3061
		} else {
3062 3063
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
3064 3065
		}
	}
3066
	sbio = sctx->bios[sctx->curr];
3067
	if (sbio->sector_count == 0) {
3068 3069 3070
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
3071 3072 3073
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
3074
		}
3075 3076 3077
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
3078
		sbio->status = 0;
3079
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
3080
		   sblock->physical + sector->offset ||
3081
		   sbio->logical + sbio->sector_count * sectorsize !=
3082 3083
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
3084
		scrub_submit(sctx);
A
Arne Jansen 已提交
3085 3086
		goto again;
	}
3087

3088
	sbio->sectors[sbio->sector_count] = sector;
3089
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
3090
	if (ret != sectorsize) {
3091
		if (sbio->sector_count < 1) {
3092 3093 3094 3095
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
3096
		scrub_submit(sctx);
3097 3098 3099
		goto again;
	}

3100
	scrub_block_get(sblock); /* one for the page added to the bio */
3101
	atomic_inc(&sblock->outstanding_sectors);
3102 3103
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
3104
		scrub_submit(sctx);
3105 3106 3107 3108

	return 0;
}

3109
static void scrub_bio_end_io(struct bio *bio)
3110 3111
{
	struct scrub_bio *sbio = bio->bi_private;
3112
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
3113

3114
	sbio->status = bio->bi_status;
3115 3116
	sbio->bio = bio;

3117
	queue_work(fs_info->scrub_workers, &sbio->work);
3118 3119
}

3120
static void scrub_bio_end_io_worker(struct work_struct *work)
3121 3122
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
3123
	struct scrub_ctx *sctx = sbio->sctx;
3124 3125
	int i;

3126
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
3127
	if (sbio->status) {
3128 3129
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
3130

3131 3132
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
3133 3134 3135
		}
	}

3136
	/* Now complete the scrub_block items that have all pages completed */
3137 3138
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
3139
		struct scrub_block *sblock = sector->sblock;
3140

3141
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
3142 3143 3144 3145 3146 3147
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
3148 3149 3150 3151
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
3152

3153
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
3154
		mutex_lock(&sctx->wr_lock);
3155
		scrub_wr_submit(sctx);
3156
		mutex_unlock(&sctx->wr_lock);
3157 3158
	}

3159
	scrub_pending_bio_dec(sctx);
3160 3161
}

3162 3163
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
3164
				       u64 start, u32 len)
3165
{
3166
	u64 offset;
3167
	u32 nsectors;
3168
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
3169 3170 3171 3172 3173 3174 3175

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
3176
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
3177
	offset = offset >> sectorsize_bits;
3178
	nsectors = len >> sectorsize_bits;
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
3190
						   u64 start, u32 len)
3191
{
3192
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
3193 3194 3195
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
3196
						  u64 start, u32 len)
3197
{
3198
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
3199 3200
}

3201 3202
static void scrub_block_complete(struct scrub_block *sblock)
{
3203 3204
	int corrupted = 0;

3205
	if (!sblock->no_io_error_seen) {
3206
		corrupted = 1;
3207
		scrub_handle_errored_block(sblock);
3208 3209 3210 3211 3212 3213
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
3214 3215
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
3216 3217
			scrub_write_block_to_dev_replace(sblock);
	}
3218 3219

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
3220 3221 3222
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
3223
			  sblock->sctx->fs_info->sectorsize;
3224

3225
		ASSERT(end - start <= U32_MAX);
3226 3227 3228
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
3229 3230
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
3243
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
3244 3245 3246 3247 3248
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
3249
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
3250
{
3251
	bool found = false;
A
Arne Jansen 已提交
3252

3253
	while (!list_empty(&sctx->csum_list)) {
3254 3255 3256 3257
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

3258
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
3259
				       struct btrfs_ordered_sum, list);
3260
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
3261 3262 3263
		if (sum->bytenr > logical)
			break;

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
3274

3275 3276 3277 3278
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
3279

3280 3281 3282 3283 3284 3285 3286
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
3287
	}
3288 3289
	if (!found)
		return 0;
3290
	return 1;
A
Arne Jansen 已提交
3291 3292
}

3293
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
3294
				  u64 logical, u32 len,
3295 3296 3297 3298 3299
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
3300
	const u32 sectorsize = sctx->fs_info->sectorsize;
3301 3302
	int index;

3303 3304
	ASSERT(IS_ALIGNED(len, sectorsize));

3305
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
3317
		struct scrub_sector *sector;
3318

3319
		sector = alloc_scrub_sector(sblock, logical);
3320
		if (!sector) {
3321 3322 3323 3324 3325 3326
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
3327
		sblock->sectors[index] = sector;
3328
		/* For scrub parity */
3329 3330 3331 3332
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
3333
		if (csum) {
3334 3335
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
3336
		} else {
3337
			sector->have_csum = 0;
3338
		}
3339 3340 3341 3342 3343

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
3344 3345
	}

3346 3347
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
3348
		struct scrub_sector *sector = sblock->sectors[index];
3349 3350
		int ret;

3351
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
3352 3353 3354 3355 3356 3357
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

3358
	/* Last one frees, either here or in bio completion for last sector */
3359 3360 3361 3362 3363
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
3364
				   u64 logical, u32 len,
3365 3366 3367 3368 3369 3370 3371 3372
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

3373
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
3374 3375 3376 3377
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

3378
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
3379
		blocksize = sparity->stripe_len;
3380
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
3381
		blocksize = sparity->stripe_len;
3382
	} else {
3383
		blocksize = sctx->fs_info->sectorsize;
3384 3385 3386 3387
		WARN_ON(1);
	}

	while (len) {
3388
		u32 l = min(len, blocksize);
3389 3390 3391 3392
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
3393
			have_csum = scrub_find_csum(sctx, logical, csum);
3394 3395 3396
			if (have_csum == 0)
				goto skip;
		}
3397
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
3398 3399 3400 3401
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
3402
skip:
3403 3404 3405 3406 3407 3408 3409
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

3410 3411 3412 3413 3414 3415 3416 3417
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
3418 3419
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
3420 3421 3422 3423
{
	int i;
	int j = 0;
	u64 last_offset;
3424
	const int data_stripes = nr_data_stripes(map);
3425

3426
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
3427 3428 3429
	if (stripe_start)
		*stripe_start = last_offset;

3430
	*offset = last_offset;
3431
	for (i = 0; i < data_stripes; i++) {
3432 3433 3434 3435
		u32 stripe_nr;
		u32 stripe_index;
		u32 rot;

3436
		*offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT);
3437

3438
		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
3439 3440

		/* Work out the disk rotation on this stripe-set */
3441 3442
		rot = stripe_nr % map->num_stripes;
		stripe_nr /= map->num_stripes;
3443 3444
		/* calculate which stripe this data locates */
		rot += i;
3445
		stripe_index = rot % map->num_stripes;
3446 3447 3448 3449 3450
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
3451
	*offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT);
3452 3453 3454
	return 1;
}

3455 3456 3457
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3458
	struct scrub_sector *curr, *next;
3459 3460
	int nbits;

3461
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
3462 3463 3464 3465 3466 3467 3468
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

3469
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
3470
		list_del_init(&curr->list);
3471
		scrub_sector_put(curr);
3472 3473 3474 3475 3476
	}

	kfree(sparity);
}

3477
static void scrub_parity_bio_endio_worker(struct work_struct *work)
3478 3479 3480 3481 3482
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

3483
	btrfs_bio_counter_dec(sctx->fs_info);
3484 3485 3486 3487
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3488
static void scrub_parity_bio_endio(struct bio *bio)
3489
{
Y
Yu Zhe 已提交
3490
	struct scrub_parity *sparity = bio->bi_private;
3491
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3492

3493
	if (bio->bi_status)
3494 3495
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
3496 3497

	bio_put(bio);
3498

3499 3500
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
3501 3502 3503 3504 3505
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3506
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3507 3508
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
3509
	struct btrfs_io_context *bioc = NULL;
3510 3511 3512
	u64 length;
	int ret;

3513 3514
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
3515 3516
		goto out;

3517
	length = sparity->logic_end - sparity->logic_start;
3518 3519

	btrfs_bio_counter_inc_blocked(fs_info);
3520
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3521
			       &length, &bioc);
3522
	if (ret || !bioc)
3523
		goto bioc_out;
3524

3525
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
3526 3527 3528 3529
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3530
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
3531
					      sparity->scrub_dev,
3532
					      &sparity->dbitmap,
3533
					      sparity->nsectors);
3534
	btrfs_put_bioc(bioc);
3535 3536 3537 3538 3539 3540 3541 3542 3543
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
3544
bioc_out:
3545
	btrfs_bio_counter_dec(fs_info);
3546
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3557
	refcount_inc(&sparity->refs);
3558 3559 3560 3561
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3562
	if (!refcount_dec_and_test(&sparity->refs))
3563 3564 3565 3566 3567
		return;

	scrub_parity_check_and_repair(sparity);
}

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3694 3695 3696 3697 3698 3699 3700 3701 3702
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3713
	u64 cur_logical = logical;
3714 3715 3716 3717 3718 3719 3720
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3721
	while (cur_logical < logical + BTRFS_STRIPE_LEN) {
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3732
		ret = find_first_extent_item(extent_root, path, cur_logical,
3733
					     logical + BTRFS_STRIPE_LEN - cur_logical);
3734 3735 3736
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3737 3738
			break;
		}
3739
		if (ret < 0)
3740
			break;
3741 3742
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3743

3744
		/* Metadata should not cross stripe boundaries */
3745
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3746
		    does_range_cross_boundary(extent_start, extent_size,
3747
					      logical, BTRFS_STRIPE_LEN)) {
3748
			btrfs_err(fs_info,
3749 3750
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3751 3752 3753
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3754 3755
			cur_logical += extent_size;
			continue;
3756 3757
		}

3758 3759
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3760

3761 3762
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
3763
				  logical + BTRFS_STRIPE_LEN) - cur_logical;
3764 3765
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

3785 3786 3787
		ret = btrfs_lookup_csums_list(csum_root, extent_start,
					      extent_start + extent_size - 1,
					      &sctx->csum_list, 1, false);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3807
		cur_logical += extent_size;
3808 3809 3810 3811 3812
	}
	btrfs_release_path(path);
	return ret;
}

3813 3814
int scrub_raid56_parity(struct scrub_ctx *sctx, struct map_lookup *map,
			struct btrfs_device *sdev, u64 logic_start, u64 logic_end)
3815
{
3816
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3817
	struct btrfs_path *path;
3818
	u64 cur_logical;
3819 3820 3821 3822
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3833
	nsectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
3834 3835
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3836 3837 3838 3839
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3840
		btrfs_free_path(path);
3841 3842 3843
		return -ENOMEM;
	}

3844
	sparity->stripe_len = BTRFS_STRIPE_LEN;
3845 3846 3847 3848 3849
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3850
	refcount_set(&sparity->refs, 1);
3851
	INIT_LIST_HEAD(&sparity->sectors_list);
3852 3853

	ret = 0;
3854
	for (cur_logical = logic_start; cur_logical < logic_end;
3855
	     cur_logical += BTRFS_STRIPE_LEN) {
3856 3857
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3858 3859
		if (ret < 0)
			break;
3860
	}
3861

3862 3863
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3864
	mutex_lock(&sctx->wr_lock);
3865
	scrub_wr_submit(sctx);
3866
	mutex_unlock(&sctx->wr_lock);
3867

3868
	btrfs_free_path(path);
3869 3870 3871
	return ret < 0 ? ret : 0;
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
				 struct scrub_stripe *stripe,
				 u64 extent_start, u64 extent_len,
				 u64 extent_flags, u64 extent_gen)
{
	for (u64 cur_logical = max(stripe->logical, extent_start);
	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
			       extent_start + extent_len);
	     cur_logical += fs_info->sectorsize) {
		const int nr_sector = (cur_logical - stripe->logical) >>
				      fs_info->sectorsize_bits;
		struct scrub_sector_verification *sector =
						&stripe->sectors[nr_sector];

		set_bit(nr_sector, &stripe->extent_sector_bitmap);
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			sector->is_metadata = true;
			sector->generation = extent_gen;
		}
	}
}

static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
	stripe->extent_sector_bitmap = 0;
	stripe->init_error_bitmap = 0;
	stripe->error_bitmap = 0;
	stripe->io_error_bitmap = 0;
	stripe->csum_error_bitmap = 0;
	stripe->meta_error_bitmap = 0;
}

/*
 * Locate one stripe which has at least one extent in its range.
 *
 * Return 0 if found such stripe, and store its info into @stripe.
 * Return >0 if there is no such stripe in the specified range.
 * Return <0 for error.
 */
3937 3938 3939 3940 3941
static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
					struct btrfs_device *dev, u64 physical,
					int mirror_num, u64 logical_start,
					u32 logical_len,
					struct scrub_stripe *stripe)
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
{
	struct btrfs_fs_info *fs_info = bg->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	const u64 logical_end = logical_start + logical_len;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	u64 stripe_end;
	u64 extent_start;
	u64 extent_len;
	u64 extent_flags;
	u64 extent_gen;
	int ret;

	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
				   stripe->nr_sectors);
	scrub_stripe_reset_bitmaps(stripe);

	/* The range must be inside the bg. */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;

	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
	/* Either error or not found. */
	if (ret)
		goto out;
	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
3971 3972 3973 3974
	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		stripe->nr_meta_extents++;
	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
		stripe->nr_data_extents++;
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	cur_logical = max(extent_start, cur_logical);

	/*
	 * Round down to stripe boundary.
	 *
	 * The extra calculation against bg->start is to handle block groups
	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
	 */
	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
			  bg->start;
	stripe->physical = physical + stripe->logical - logical_start;
	stripe->dev = dev;
	stripe->bg = bg;
	stripe->mirror_num = mirror_num;
	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;

	/* Fill the first extent info into stripe->sectors[] array. */
	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
			     extent_flags, extent_gen);
	cur_logical = extent_start + extent_len;

	/* Fill the extent info for the remaining sectors. */
	while (cur_logical <= stripe_end) {
		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     stripe_end - cur_logical + 1);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
4008 4009 4010 4011
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			stripe->nr_meta_extents++;
		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
			stripe->nr_data_extents++;
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
				     extent_flags, extent_gen);
		cur_logical = extent_start + extent_len;
	}

	/* Now fill the data csum. */
	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
		int sector_nr;
		unsigned long csum_bitmap = 0;

		/* Csum space should have already been allocated. */
		ASSERT(stripe->csums);

		/*
		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
		 * should contain at most 16 sectors.
		 */
		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);

		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
						stripe_end, stripe->csums,
						&csum_bitmap, true);
		if (ret < 0)
			goto out;
		if (ret > 0)
			ret = 0;

		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
			stripe->sectors[sector_nr].csum = stripe->csums +
				sector_nr * fs_info->csum_size;
		}
	}
	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
out:
	btrfs_release_path(&path);
	return ret;
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
static void scrub_reset_stripe(struct scrub_stripe *stripe)
{
	scrub_stripe_reset_bitmaps(stripe);

	stripe->nr_meta_extents = 0;
	stripe->nr_data_extents = 0;
	stripe->state = 0;

	for (int i = 0; i < stripe->nr_sectors; i++) {
		stripe->sectors[i].is_metadata = false;
		stripe->sectors[i].csum = NULL;
		stripe->sectors[i].generation = 0;
	}
}

static void scrub_submit_initial_read(struct scrub_ctx *sctx,
				      struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_bio *bbio;
	int mirror = stripe->mirror_num;

	ASSERT(stripe->bg);
	ASSERT(stripe->mirror_num > 0);
	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));

	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
			       scrub_read_endio, stripe);

	/* Read the whole stripe. */
	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
		int ret;

		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
		/* We should have allocated enough bio vectors. */
		ASSERT(ret == PAGE_SIZE);
	}
	atomic_inc(&stripe->pending_io);

	/*
	 * For dev-replace, either user asks to avoid the source dev, or
	 * the device is missing, we try the next mirror instead.
	 */
	if (sctx->is_dev_replace &&
	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
	     !stripe->dev->bdev)) {
		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
						  stripe->bg->length);

		mirror = calc_next_mirror(mirror, num_copies);
	}
	btrfs_submit_bio(bbio, mirror);
}

static void flush_scrub_stripes(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct scrub_stripe *stripe;
	const int nr_stripes = sctx->cur_stripe;

	if (!nr_stripes)
		return;

	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
4116 4117 4118

	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
			      nr_stripes << BTRFS_STRIPE_LEN_SHIFT);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];
		scrub_submit_initial_read(sctx, stripe);
	}

	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}

	/*
	 * Submit the repaired sectors.  For zoned case, we cannot do repair
	 * in-place, but queue the bg to be relocated.
	 */
	if (btrfs_is_zoned(fs_info)) {
		for (int i = 0; i < nr_stripes; i++) {
			stripe = &sctx->stripes[i];

			if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
				btrfs_repair_one_zone(fs_info,
						      sctx->stripes[0].bg->start);
				break;
			}
		}
	} else {
		for (int i = 0; i < nr_stripes; i++) {
			unsigned long repaired;

			stripe = &sctx->stripes[i];

			bitmap_andnot(&repaired, &stripe->init_error_bitmap,
				      &stripe->error_bitmap, stripe->nr_sectors);
			scrub_write_sectors(sctx, stripe, repaired, false);
		}
	}

	/* Submit for dev-replace. */
	if (sctx->is_dev_replace) {
		for (int i = 0; i < nr_stripes; i++) {
			unsigned long good;

			stripe = &sctx->stripes[i];

			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);

			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
				      &stripe->error_bitmap, stripe->nr_sectors);
			scrub_write_sectors(sctx, stripe, good, true);
		}
	}

	/* Wait for the above writebacks to finish. */
	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_scrub_stripe_io(stripe);
		scrub_reset_stripe(stripe);
	}
	sctx->cur_stripe = 0;
}

4182 4183 4184 4185 4186
static void raid56_scrub_wait_endio(struct bio *bio)
{
	complete(bio->bi_private);
}

4187 4188 4189
static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
			      struct btrfs_device *dev, int mirror_num,
			      u64 logical, u32 length, u64 physical)
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
{
	struct scrub_stripe *stripe;
	int ret;

	/* No available slot, submit all stripes and wait for them. */
	if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX)
		flush_scrub_stripes(sctx);

	stripe = &sctx->stripes[sctx->cur_stripe];

	/* We can queue one stripe using the remaining slot. */
	scrub_reset_stripe(stripe);
	ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
					   logical, length, stripe);
	/* Either >0 as no more extents or <0 for error. */
	if (ret)
		return ret;
	sctx->cur_stripe++;
	return 0;
}

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
				      struct btrfs_device *scrub_dev,
				      struct btrfs_block_group *bg,
				      struct map_lookup *map,
				      u64 full_stripe_start)
{
	DECLARE_COMPLETION_ONSTACK(io_done);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_raid_bio *rbio;
	struct btrfs_io_context *bioc = NULL;
	struct bio *bio;
	struct scrub_stripe *stripe;
	bool all_empty = true;
	const int data_stripes = nr_data_stripes(map);
	unsigned long extent_bitmap = 0;
	u64 length = data_stripes << BTRFS_STRIPE_LEN_SHIFT;
	int ret;

	ASSERT(sctx->raid56_data_stripes);

	for (int i = 0; i < data_stripes; i++) {
		int stripe_index;
		int rot;
		u64 physical;

		stripe = &sctx->raid56_data_stripes[i];
		rot = div_u64(full_stripe_start - bg->start,
			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
		stripe_index = (i + rot) % map->num_stripes;
		physical = map->stripes[stripe_index].physical +
			   (rot << BTRFS_STRIPE_LEN_SHIFT);

		scrub_reset_stripe(stripe);
		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
		ret = scrub_find_fill_first_stripe(bg,
				map->stripes[stripe_index].dev, physical, 1,
				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT),
				BTRFS_STRIPE_LEN, stripe);
		if (ret < 0)
			goto out;
		/*
		 * No extent in this data stripe, need to manually mark them
		 * initialized to make later read submission happy.
		 */
		if (ret > 0) {
			stripe->logical = full_stripe_start +
					  (i << BTRFS_STRIPE_LEN_SHIFT);
			stripe->dev = map->stripes[stripe_index].dev;
			stripe->mirror_num = 1;
			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
		}
	}

	/* Check if all data stripes are empty. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
			all_empty = false;
			break;
		}
	}
	if (all_empty) {
		ret = 0;
		goto out;
	}

	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		scrub_submit_initial_read(sctx, stripe);
	}
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}
	/* For now, no zoned support for RAID56. */
	ASSERT(!btrfs_is_zoned(sctx->fs_info));

	/* Writeback for the repaired sectors. */
	for (int i = 0; i < data_stripes; i++) {
		unsigned long repaired;

		stripe = &sctx->raid56_data_stripes[i];

		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
			      &stripe->error_bitmap, stripe->nr_sectors);
		scrub_write_sectors(sctx, stripe, repaired, false);
	}

	/* Wait for the above writebacks to finish. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		wait_scrub_stripe_io(stripe);
	}

	/*
	 * Now all data stripes are properly verified. Check if we have any
	 * unrepaired, if so abort immediately or we could further corrupt the
	 * P/Q stripes.
	 *
	 * During the loop, also populate extent_bitmap.
	 */
	for (int i = 0; i < data_stripes; i++) {
		unsigned long error;

		stripe = &sctx->raid56_data_stripes[i];

		/*
		 * We should only check the errors where there is an extent.
		 * As we may hit an empty data stripe while it's missing.
		 */
		bitmap_and(&error, &stripe->error_bitmap,
			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
		if (!bitmap_empty(&error, stripe->nr_sectors)) {
			btrfs_err(fs_info,
"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
				  full_stripe_start, i, stripe->nr_sectors,
				  &error);
			ret = -EIO;
			goto out;
		}
		bitmap_or(&extent_bitmap, &extent_bitmap,
			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
	}

	/* Now we can check and regenerate the P/Q stripe. */
	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
	bio->bi_private = &io_done;
	bio->bi_end_io = raid56_scrub_wait_endio;

	btrfs_bio_counter_inc_blocked(fs_info);
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
			       &length, &bioc);
	if (ret < 0) {
		btrfs_put_bioc(bioc);
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
	btrfs_put_bioc(bioc);
	if (!rbio) {
		ret = -ENOMEM;
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	raid56_parity_submit_scrub_rbio(rbio);
	wait_for_completion_io(&io_done);
	ret = blk_status_to_errno(bio->bi_status);
	bio_put(bio);
	btrfs_bio_counter_dec(fs_info);

out:
	return ret;
}

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
4399
		u64 cur_physical = physical + cur_logical - logical_start;
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
4422
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
4423 4424 4425 4426 4427 4428
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

4429 4430 4431
		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
					 cur_logical, logical_end - cur_logical,
					 cur_physical);
4432 4433 4434 4435 4436 4437 4438 4439 4440
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;

4441 4442 4443 4444
		ASSERT(sctx->cur_stripe > 0);
		cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
			      + BTRFS_STRIPE_LEN;

4445 4446 4447 4448 4449 4450 4451
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

4452 4453 4454 4455 4456 4457
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

4458
	return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
4474 4475
	return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) +
	       bg->start;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
4509 4510 4511
		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
					  BTRFS_STRIPE_LEN, device, cur_physical,
					  mirror_num);
4512 4513 4514 4515 4516
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
4517
		cur_physical += BTRFS_STRIPE_LEN;
4518 4519 4520 4521
	}
	return ret;
}

4522
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
4523
					   struct btrfs_block_group *bg,
4524
					   struct extent_map *em,
4525
					   struct btrfs_device *scrub_dev,
4526
					   int stripe_index)
A
Arne Jansen 已提交
4527
{
4528
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4529
	struct map_lookup *map = em->map_lookup;
4530
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
4531
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
4532
	int ret;
4533
	u64 physical = map->stripes[stripe_index].physical;
4534 4535
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
4536
	u64 logical;
L
Liu Bo 已提交
4537
	u64 logic_end;
4538
	/* The logical increment after finishing one stripe */
4539
	u64 increment;
4540
	/* Offset inside the chunk */
A
Arne Jansen 已提交
4541
	u64 offset;
4542
	u64 stripe_logical;
4543
	int stop_loop = 0;
D
David Woodhouse 已提交
4544

4545
	wait_event(sctx->list_wait,
4546
		   atomic_read(&sctx->bios_in_flight) == 0);
4547
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4548

4549 4550 4551 4552 4553 4554 4555 4556
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	/* Prepare the extra data stripes used by RAID56. */
	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ASSERT(sctx->raid56_data_stripes == NULL);

		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
						    sizeof(struct scrub_stripe),
						    GFP_KERNEL);
		if (!sctx->raid56_data_stripes) {
			ret = -ENOMEM;
			goto out;
		}
		for (int i = 0; i < nr_data_stripes(map); i++) {
			ret = init_scrub_stripe(fs_info,
						&sctx->raid56_data_stripes[i]);
			if (ret < 0)
				goto out;
			sctx->raid56_data_stripes[i].bg = bg;
			sctx->raid56_data_stripes[i].sctx = sctx;
		}
	}
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
4594 4595
		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
				scrub_dev, map->stripes[stripe_index].physical,
4596
				stripe_index + 1);
4597
		offset = 0;
4598 4599
		goto out;
	}
4600
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4601
		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
4602
		offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
4603 4604 4605 4606 4607
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
4608
	ret = 0;
4609 4610 4611 4612 4613 4614 4615 4616

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
4617
	increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
4618

4619 4620 4621 4622
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
4623
	while (physical < physical_end) {
4624 4625
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
4626 4627 4628 4629
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
4630 4631
			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
							 map, stripe_logical);
4632 4633
			if (ret)
				goto out;
4634
			goto next;
4635 4636
		}

4637 4638 4639 4640 4641 4642 4643 4644
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
4645
		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
4646
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
4647 4648 4649 4650
		if (ret < 0)
			goto out;
next:
		logical += increment;
4651
		physical += BTRFS_STRIPE_LEN;
4652
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
4653
		if (stop_loop)
4654 4655
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
4656 4657
		else
			sctx->stat.last_physical = physical;
4658
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
4659 4660
		if (stop_loop)
			break;
A
Arne Jansen 已提交
4661
	}
4662
out:
A
Arne Jansen 已提交
4663
	/* push queued extents */
4664
	scrub_submit(sctx);
4665
	mutex_lock(&sctx->wr_lock);
4666
	scrub_wr_submit(sctx);
4667
	mutex_unlock(&sctx->wr_lock);
4668
	flush_scrub_stripes(sctx);
4669 4670 4671 4672 4673 4674
	if (sctx->raid56_data_stripes) {
		for (int i = 0; i < nr_data_stripes(map); i++)
			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
		kfree(sctx->raid56_data_stripes);
		sctx->raid56_data_stripes = NULL;
	}
4675 4676 4677 4678

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

4679 4680 4681 4682
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
4683 4684 4685 4686
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
4687 4688 4689
	return ret < 0 ? ret : 0;
}

4690
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
4691
					  struct btrfs_block_group *bg,
4692
					  struct btrfs_device *scrub_dev,
4693
					  u64 dev_offset,
4694
					  u64 dev_extent_len)
A
Arne Jansen 已提交
4695
{
4696
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4697
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
4698 4699 4700
	struct map_lookup *map;
	struct extent_map *em;
	int i;
4701
	int ret = 0;
A
Arne Jansen 已提交
4702

4703
	read_lock(&map_tree->lock);
4704
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
4705
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
4706

4707 4708 4709 4710 4711
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
4712
		spin_lock(&bg->lock);
4713
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
4714
			ret = -EINVAL;
4715
		spin_unlock(&bg->lock);
4716 4717 4718

		return ret;
	}
4719
	if (em->start != bg->start)
A
Arne Jansen 已提交
4720
		goto out;
4721
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
4722 4723
		goto out;

4724
	map = em->map_lookup;
A
Arne Jansen 已提交
4725
	for (i = 0; i < map->num_stripes; ++i) {
4726
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
4727
		    map->stripes[i].physical == dev_offset) {
4728
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
4758
static noinline_for_stack
4759
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
4760
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
4761 4762 4763
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
4764 4765
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
4766
	u64 chunk_offset;
4767
	int ret = 0;
4768
	int ro_set;
A
Arne Jansen 已提交
4769 4770 4771 4772
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
4773
	struct btrfs_block_group *cache;
4774
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
4775 4776 4777 4778 4779

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4780
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
4781 4782 4783
	path->search_commit_root = 1;
	path->skip_locking = 1;

4784
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
4785 4786 4787 4788
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
4789 4790
		u64 dev_extent_len;

A
Arne Jansen 已提交
4791 4792
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
4793 4794 4795 4796 4797
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
4798 4799 4800 4801
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
4802
					break;
4803 4804 4805
				}
			} else {
				ret = 0;
4806 4807
			}
		}
A
Arne Jansen 已提交
4808 4809 4810 4811 4812 4813

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

4814
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
4815 4816
			break;

4817
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4827
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
4828

4829
		if (found_key.offset + dev_extent_len <= start)
4830
			goto skip;
A
Arne Jansen 已提交
4831 4832 4833 4834 4835 4836 4837 4838

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
4839 4840 4841 4842 4843 4844

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

4870
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
4871
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
4872 4873
				btrfs_put_block_group(cache);
				goto skip;
4874 4875 4876
			}
		}

4877 4878 4879 4880 4881 4882 4883 4884 4885
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
4886
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
4887 4888 4889 4890
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
4891
		btrfs_freeze_block_group(cache);
4892 4893
		spin_unlock(&cache->lock);

4894 4895 4896 4897 4898 4899 4900 4901 4902
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
4933
		 */
4934
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

4945 4946
		if (ret == 0) {
			ro_set = 1;
4947
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4948 4949 4950
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4951
			 * It is not a problem for scrub, because
4952 4953 4954 4955
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4956 4957 4958 4959 4960 4961 4962
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4963
		} else {
J
Jeff Mahoney 已提交
4964
			btrfs_warn(fs_info,
4965
				   "failed setting block group ro: %d", ret);
4966
			btrfs_unfreeze_block_group(cache);
4967
			btrfs_put_block_group(cache);
4968
			scrub_pause_off(fs_info);
4969 4970 4971
			break;
		}

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4984
		down_write(&dev_replace->rwsem);
4985
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4986 4987
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4988 4989
		up_write(&dev_replace->rwsem);

4990 4991
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
5003
		sctx->flush_all_writes = true;
5004
		scrub_submit(sctx);
5005
		mutex_lock(&sctx->wr_lock);
5006
		scrub_wr_submit(sctx);
5007
		mutex_unlock(&sctx->wr_lock);
5008 5009 5010

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
5011 5012

		scrub_pause_on(fs_info);
5013 5014 5015 5016 5017 5018

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
5019 5020
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
5021
		sctx->flush_all_writes = false;
5022

5023
		scrub_pause_off(fs_info);
5024

5025 5026 5027 5028 5029
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

5030
		down_write(&dev_replace->rwsem);
5031 5032
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
5033
		up_write(&dev_replace->rwsem);
5034

5035
		if (ro_set)
5036
			btrfs_dec_block_group_ro(cache);
5037

5038 5039 5040 5041 5042 5043 5044 5045
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
5046 5047
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
5048
			spin_unlock(&cache->lock);
5049 5050 5051 5052 5053
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
5054 5055 5056
		} else {
			spin_unlock(&cache->lock);
		}
5057
skip_unfreeze:
5058
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
5059 5060 5061
		btrfs_put_block_group(cache);
		if (ret)
			break;
5062
		if (sctx->is_dev_replace &&
5063
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
5064 5065 5066 5067 5068 5069 5070
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
5071
skip:
5072
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
5073
		btrfs_release_path(path);
A
Arne Jansen 已提交
5074 5075 5076
	}

	btrfs_free_path(path);
5077

5078
	return ret;
A
Arne Jansen 已提交
5079 5080
}

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
			   struct page *page, u64 physical, u64 generation)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct bio_vec bvec;
	struct bio bio;
	struct btrfs_super_block *sb = page_address(page);
	int ret;

	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
	ret = submit_bio_wait(&bio);
	bio_uninit(&bio);

	if (ret < 0)
		return ret;
	ret = btrfs_check_super_csum(fs_info, sb);
	if (ret != 0) {
		btrfs_err_rl(fs_info,
			"super block at physical %llu devid %llu has bad csum",
			physical, dev->devid);
		return -EIO;
	}
	if (btrfs_super_generation(sb) != generation) {
		btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
			     physical, dev->devid,
			     btrfs_super_generation(sb), generation);
		return -EUCLEAN;
	}

	return btrfs_validate_super(fs_info, sb, -1);
}

5116 5117
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
5118 5119 5120 5121
{
	int	i;
	u64	bytenr;
	u64	gen;
5122 5123
	int ret = 0;
	struct page *page;
5124
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
5125

J
Josef Bacik 已提交
5126
	if (BTRFS_FS_ERROR(fs_info))
5127
		return -EROFS;
5128

5129 5130 5131 5132 5133 5134 5135 5136
	page = alloc_page(GFP_KERNEL);
	if (!page) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

5137
	/* Seed devices of a new filesystem has their own generation. */
5138
	if (scrub_dev->fs_devices != fs_info->fs_devices)
5139 5140
		gen = scrub_dev->generation;
	else
5141
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
5142 5143 5144

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
5145 5146
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
5147
			break;
5148 5149
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
5150

5151 5152 5153 5154 5155 5156
		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
		if (ret) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.super_errors++;
			spin_unlock(&sctx->stat_lock);
		}
A
Arne Jansen 已提交
5157
	}
5158
	__free_page(page);
A
Arne Jansen 已提交
5159 5160 5161
	return 0;
}

5162 5163 5164 5165
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
5166 5167 5168 5169 5170
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
5171 5172 5173 5174 5175 5176

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

5177 5178 5179 5180 5181 5182
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
5183 5184 5185
	}
}

A
Arne Jansen 已提交
5186 5187 5188
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
5189 5190
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
5191
{
5192 5193 5194
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
5195
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
5196
	int max_active = fs_info->thread_pool_size;
5197
	int ret = -ENOMEM;
A
Arne Jansen 已提交
5198

5199 5200
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
5201

5202 5203
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
5204 5205
	if (!scrub_workers)
		goto fail_scrub_workers;
5206

5207
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
5208 5209
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
5210

5211
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
5223
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
5224 5225
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
5226
	}
5227 5228 5229
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
5230

5231
	ret = 0;
5232
	destroy_workqueue(scrub_parity);
5233
fail_scrub_parity_workers:
5234
	destroy_workqueue(scrub_wr_comp);
5235
fail_scrub_wr_completion_workers:
5236
	destroy_workqueue(scrub_workers);
5237
fail_scrub_workers:
5238
	return ret;
A
Arne Jansen 已提交
5239 5240
}

5241 5242
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
5243
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
5244
{
5245
	struct btrfs_dev_lookup_args args = { .devid = devid };
5246
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
5247 5248
	int ret;
	struct btrfs_device *dev;
5249
	unsigned int nofs_flag;
5250
	bool need_commit = false;
A
Arne Jansen 已提交
5251

5252
	if (btrfs_fs_closing(fs_info))
5253
		return -EAGAIN;
A
Arne Jansen 已提交
5254

5255 5256
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
5257

5258 5259 5260 5261 5262 5263 5264
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
5265

5266 5267 5268 5269
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
5270

5271 5272 5273 5274
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

5275
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5276
	dev = btrfs_find_device(fs_info->fs_devices, &args);
5277 5278
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
5279
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5280
		ret = -ENODEV;
5281
		goto out;
A
Arne Jansen 已提交
5282 5283
	}

5284 5285
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5286
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5287 5288
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
5289
				 devid, btrfs_dev_name(dev));
5290
		ret = -EROFS;
5291
		goto out;
5292 5293
	}

5294
	mutex_lock(&fs_info->scrub_lock);
5295
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
5296
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
5297
		mutex_unlock(&fs_info->scrub_lock);
5298
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5299
		ret = -EIO;
5300
		goto out;
A
Arne Jansen 已提交
5301 5302
	}

5303
	down_read(&fs_info->dev_replace.rwsem);
5304
	if (dev->scrub_ctx ||
5305 5306
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
5307
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
5308
		mutex_unlock(&fs_info->scrub_lock);
5309
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5310
		ret = -EINPROGRESS;
5311
		goto out;
A
Arne Jansen 已提交
5312
	}
5313
	up_read(&fs_info->dev_replace.rwsem);
5314

5315
	sctx->readonly = readonly;
5316
	dev->scrub_ctx = sctx;
5317
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
5318

5319 5320 5321 5322
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
5323
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
5324 5325 5326
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

5327 5328 5329
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
5330
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
5331 5332 5333 5334 5335 5336
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
5337
	if (!is_dev_replace) {
5338 5339 5340 5341 5342 5343
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

5344
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
5345 5346 5347 5348
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
5349
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
5350
		ret = scrub_supers(sctx, dev);
5351
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
5362
	}
A
Arne Jansen 已提交
5363 5364

	if (!ret)
5365
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
5366
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
5367

5368
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
5369 5370 5371
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

5372
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
5373

A
Arne Jansen 已提交
5374
	if (progress)
5375
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
5376

5377 5378 5379 5380
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
5381
	mutex_lock(&fs_info->scrub_lock);
5382
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
5383 5384
	mutex_unlock(&fs_info->scrub_lock);

5385
	scrub_workers_put(fs_info);
5386
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
5387

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
5407
	return ret;
5408 5409
out:
	scrub_workers_put(fs_info);
5410 5411 5412
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
5413 5414 5415
	return ret;
}

5416
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

5431
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
5432 5433 5434 5435 5436
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

5437
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

5458
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
5459
{
5460
	struct btrfs_fs_info *fs_info = dev->fs_info;
5461
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
5462 5463

	mutex_lock(&fs_info->scrub_lock);
5464
	sctx = dev->scrub_ctx;
5465
	if (!sctx) {
A
Arne Jansen 已提交
5466 5467 5468
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
5469
	atomic_inc(&sctx->cancel_req);
5470
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
5471 5472
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
5473
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
5474 5475 5476 5477 5478 5479
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
5480

5481
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
5482 5483
			 struct btrfs_scrub_progress *progress)
{
5484
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
5485
	struct btrfs_device *dev;
5486
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
5487

5488
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5489
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
5490
	if (dev)
5491
		sctx = dev->scrub_ctx;
5492 5493
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
5494
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
5495

5496
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
5497
}