scrub.c 110.1 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		ref_count;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114 115
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195 196 197
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

198
struct scrub_fixup_nodatasum {
199
	struct scrub_ctx	*sctx;
200
	struct btrfs_device	*dev;
201 202 203 204 205 206
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

207 208 209 210 211 212 213
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

214 215 216 217 218 219
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
220
	struct list_head	inodes;
221 222 223
	struct btrfs_work	work;
};

224 225 226 227 228 229 230 231 232
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
239
				     struct btrfs_fs_info *fs_info,
240
				     struct scrub_block *original_sblock,
241
				     u64 length, u64 logical,
242
				     struct scrub_block *sblocks_for_recheck);
243 244 245
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
246
				u16 csum_size, int retry_failed_mirror);
247 248 249 250 251 252
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
253
					     struct scrub_block *sblock_good);
254 255 256
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
257 258 259
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
260 261 262 263 264
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
265 266
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
267 268
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
269 270
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
271
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
272
		       u64 physical, struct btrfs_device *dev, u64 flags,
273 274
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
275
static void scrub_bio_end_io(struct bio *bio, int err);
276 277
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
297
				      struct scrub_copy_nocow_ctx *ctx);
298 299 300
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
301
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
303 304


305 306 307 308 309 310 311 312 313 314 315
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

316
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
317 318 319 320 321 322 323 324 325
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

326 327 328 329 330 331 332 333 334 335 336 337 338
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
360 361 362 363 364 365 366 367 368 369

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

391
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
392
{
393
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
394
		struct btrfs_ordered_sum *sum;
395
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
396 397 398 399 400 401
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

402
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
403 404 405
{
	int i;

406
	if (!sctx)
A
Arne Jansen 已提交
407 408
		return;

409 410
	scrub_free_wr_ctx(&sctx->wr_ctx);

411
	/* this can happen when scrub is cancelled */
412 413
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
414 415

		for (i = 0; i < sbio->page_count; i++) {
416
			WARN_ON(!sbio->pagev[i]->page);
417 418 419 420 421
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

422
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
423
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
424 425 426 427 428 429

		if (!sbio)
			break;
		kfree(sbio);
	}

430 431
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
432 433 434
}

static noinline_for_stack
435
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
436
{
437
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
438 439
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
440 441
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
442

443 444 445 446 447 448 449 450 451 452 453 454
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
455 456
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
457
		goto nomem;
458
	sctx->is_dev_replace = is_dev_replace;
459
	sctx->pages_per_rd_bio = pages_per_rd_bio;
460
	sctx->curr = -1;
461
	sctx->dev_root = dev->dev_root;
462
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
463 464 465 466 467
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
468
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
469 470

		sbio->index = i;
471
		sbio->sctx = sctx;
472
		sbio->page_count = 0;
473 474
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
475

476
		if (i != SCRUB_BIOS_PER_SCTX - 1)
477
			sctx->bios[i]->next_free = i + 1;
478
		else
479 480 481 482 483
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
484 485
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
486 487 488 489 490 491 492
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
493 494 495 496 497 498 499

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
500
	return sctx;
A
Arne Jansen 已提交
501 502

nomem:
503
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
504 505 506
	return ERR_PTR(-ENOMEM);
}

507 508
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
509 510 511 512 513 514 515
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
516
	struct scrub_warning *swarn = warn_ctx;
517 518 519 520
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
521
	struct btrfs_key key;
522 523 524 525 526 527 528 529 530 531

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

532 533 534
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
535 536 537 538 539
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
540 541 542 543 544 545 546 547 548 549 550 551 552
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
553 554 555 556 557
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
558 559 560 561 562 563 564 565 566 567
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
568
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
569 570
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
571
			swarn->logical, rcu_str_deref(swarn->dev->name),
572 573
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
574
			(char *)(unsigned long)ipath->fspath->val[i]);
575 576 577 578 579

	free_ipath(ipath);
	return 0;

err:
580
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
581 582
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
583
		swarn->logical, rcu_str_deref(swarn->dev->name),
584 585 586 587 588 589
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

590
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
591
{
592 593
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
594 595 596 597 598
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
599 600 601
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
602
	u64 ref_root;
603
	u32 item_size;
604
	u8 ref_level;
605
	int ret;
606

607
	WARN_ON(sblock->page_count < 1);
608
	dev = sblock->pagev[0]->dev;
609 610
	fs_info = sblock->sctx->dev_root->fs_info;

611
	path = btrfs_alloc_path();
612 613
	if (!path)
		return;
614

615 616
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
617
	swarn.errstr = errstr;
618
	swarn.dev = NULL;
619

620 621
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
622 623 624
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
625
	extent_item_pos = swarn.logical - found_key.objectid;
626 627 628 629 630 631
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

632
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
633
		do {
634 635 636
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
637
			printk_in_rcu(KERN_WARNING
638
				"BTRFS: %s at logical %llu on dev %s, "
639
				"sector %llu: metadata %s (level %d) in tree "
640 641
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
642 643 644 645 646
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
647
		btrfs_release_path(path);
648
	} else {
649
		btrfs_release_path(path);
650
		swarn.path = path;
651
		swarn.dev = dev;
652 653
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
654 655 656 657 658 659 660
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

661
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
662
{
663
	struct page *page = NULL;
664
	unsigned long index;
665
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
666
	int ret;
667
	int corrected = 0;
668
	struct btrfs_key key;
669
	struct inode *inode = NULL;
670
	struct btrfs_fs_info *fs_info;
671 672
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
673
	int srcu_index;
674 675 676 677

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
678 679 680 681 682 683 684

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
685
		return PTR_ERR(local_root);
686
	}
687 688 689 690

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
691 692
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
693 694 695 696 697 698
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
725
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
726
					fixup->logical, page,
727
					offset - page_offset(page),
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
762 763

	iput(inode);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
783
	struct scrub_ctx *sctx;
784 785 786 787 788
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
789
	sctx = fixup->sctx;
790 791 792

	path = btrfs_alloc_path();
	if (!path) {
793 794 795
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

824 825 826
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
827 828 829 830 831

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
832 833 834
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
835 836 837
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
838 839
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
840
			fixup->logical, rcu_str_deref(fixup->dev->name));
841 842 843 844 845
	}

	btrfs_free_path(path);
	kfree(fixup);

846
	scrub_pending_trans_workers_dec(sctx);
847 848
}

849 850 851 852 853 854 855 856
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
857
		btrfs_put_bbio(recover->bbio);
858 859 860 861
		kfree(recover);
	}
}

A
Arne Jansen 已提交
862
/*
863 864 865 866 867 868
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
869
 */
870
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
871
{
872
	struct scrub_ctx *sctx = sblock_to_check->sctx;
873
	struct btrfs_device *dev;
874 875 876 877 878 879 880 881 882 883 884 885 886 887
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
888
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
889 890 891
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
892
	fs_info = sctx->dev_root->fs_info;
893 894 895 896 897 898 899 900 901 902 903
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
904
	length = sblock_to_check->page_count * PAGE_SIZE;
905 906 907 908 909
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
910
			BTRFS_EXTENT_FLAG_DATA);
911 912 913
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
914

915 916 917 918 919
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
953 954 955 956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
958
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
959
		goto out;
A
Arne Jansen 已提交
960 961
	}

962
	/* setup the context, map the logical blocks and alloc the pages */
963
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
964 965
					logical, sblocks_for_recheck);
	if (ret) {
966 967 968 969
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
970
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 972 973 974
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
975

976
	/* build and submit the bios for the failed mirror, check checksums */
977
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
978
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
979

980 981 982 983 984 985 986 987 988 989
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
990 991
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
992
		sblock_to_check->data_corrected = 1;
993
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
994

995 996
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
997
		goto out;
A
Arne Jansen 已提交
998 999
	}

1000
	if (!sblock_bad->no_io_error_seen) {
1001 1002 1003
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1004 1005
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1006
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1007
	} else if (sblock_bad->checksum_error) {
1008 1009 1010
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1011 1012
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1013
		btrfs_dev_stat_inc_and_print(dev,
1014
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1015
	} else if (sblock_bad->header_error) {
1016 1017 1018
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1019 1020 1021
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1022
		if (sblock_bad->generation_error)
1023
			btrfs_dev_stat_inc_and_print(dev,
1024 1025
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1026
			btrfs_dev_stat_inc_and_print(dev,
1027
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028
	}
A
Arne Jansen 已提交
1029

1030 1031 1032 1033
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1034

1035 1036
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1037

1038 1039
		WARN_ON(sctx->is_dev_replace);

1040 1041
nodatasum_case:

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1052
		fixup_nodatasum->sctx = sctx;
1053
		fixup_nodatasum->dev = dev;
1054 1055 1056
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1057
		scrub_pending_trans_workers_inc(sctx);
1058 1059
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1060 1061
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1062
		goto out;
A
Arne Jansen 已提交
1063 1064
	}

1065 1066
	/*
	 * now build and submit the bios for the other mirrors, check
1067 1068
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1084
		struct scrub_block *sblock_other;
1085

1086 1087 1088 1089 1090
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1091 1092
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1093
				    sctx->csum_size, 0);
1094 1095

		if (!sblock_other->header_error &&
1096 1097
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1098 1099
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1100
				goto corrected_error;
1101 1102
			} else {
				ret = scrub_repair_block_from_good_copy(
1103 1104 1105
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1106
			}
1107 1108
		}
	}
A
Arne Jansen 已提交
1109 1110

	/*
1111 1112 1113 1114 1115 1116
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
1117
			struct scrub_block *sblock_other = NULL;
1118 1119 1120 1121 1122

			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
1123 1124 1125 1126 1127
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1128 1129 1130
				}
			}

1131
			if (!sblock_other) {
1132 1133 1134 1135 1136 1137 1138
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
				sblock_other = sblock_bad;
				success = 0;
			}

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
				success = 0;
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1180 1181
	 */

1182 1183 1184 1185 1186 1187
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1188
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1189 1190

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1191
			continue;
1192 1193 1194 1195 1196 1197 1198

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1199 1200
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1201 1202 1203 1204 1205 1206 1207 1208 1209

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1210
		}
A
Arne Jansen 已提交
1211

1212 1213 1214 1215
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1216 1217
	}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1229 1230
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1231
					    generation, sctx->csum_size, 1);
1232
			if (!sblock_bad->header_error &&
1233 1234 1235 1236 1237 1238 1239
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1240 1241
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1242
			sblock_to_check->data_corrected = 1;
1243
			spin_unlock(&sctx->stat_lock);
1244
			printk_ratelimited_in_rcu(KERN_ERR
1245
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1246
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1247
		}
1248 1249
	} else {
did_not_correct_error:
1250 1251 1252
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1253
		printk_ratelimited_in_rcu(KERN_ERR
1254
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1255
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1256
	}
A
Arne Jansen 已提交
1257

1258 1259 1260 1261 1262 1263
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1264
			struct scrub_recover *recover;
1265 1266
			int page_index;

1267 1268 1269
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1270 1271 1272 1273 1274 1275
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1276 1277
				scrub_page_put(sblock->pagev[page_index]);
			}
1278 1279 1280
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1281

1282 1283
	return 0;
}
A
Arne Jansen 已提交
1284

1285
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1286
{
1287
	if (bbio->raid_map) {
1288 1289
		int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;

1290
		if (bbio->raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1328
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1329
				     struct btrfs_fs_info *fs_info,
1330
				     struct scrub_block *original_sblock,
1331 1332 1333
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
1334 1335 1336 1337 1338 1339
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1340 1341
	int page_index;
	int mirror_index;
1342
	int nmirrors;
1343 1344 1345
	int ret;

	/*
1346
	 * note: the two members ref_count and outstanding_pages
1347 1348 1349 1350 1351 1352
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
1353 1354 1355
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1356

1357 1358 1359 1360
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1361
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1362
				       &mapped_length, &bbio, 0, 1);
1363
		if (ret || !bbio || mapped_length < sublen) {
1364
			btrfs_put_bbio(bbio);
1365 1366
			return -EIO;
		}
A
Arne Jansen 已提交
1367

1368 1369
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1370
			btrfs_put_bbio(bbio);
1371 1372 1373 1374 1375 1376 1377
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1378
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1379

1380
		nmirrors = scrub_nr_raid_mirrors(bbio);
1381
		for (mirror_index = 0; mirror_index < nmirrors;
1382 1383 1384 1385 1386
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
1387
				break;
1388 1389

			sblock = sblocks_for_recheck + mirror_index;
1390 1391 1392 1393
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1394 1395 1396
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1397
				scrub_put_recover(recover);
1398 1399
				return -ENOMEM;
			}
1400 1401 1402
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1403

1404
			scrub_stripe_index_and_offset(logical, bbio->raid_map,
1405
						      mapped_length,
1406 1407
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1408 1409 1410 1411 1412 1413 1414
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1415 1416 1417 1418
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1419 1420
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1421
			sblock->page_count++;
1422 1423 1424
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1425 1426 1427

			scrub_get_recover(recover);
			page->recover = recover;
1428
		}
1429
		scrub_put_recover(recover);
1430 1431 1432 1433 1434 1435
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
1453
	return page->recover && page->recover->bbio->raid_map;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1471
				    page->mirror_num, 0);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1482 1483 1484 1485 1486 1487 1488
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1489 1490 1491
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1492
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1493
{
1494
	int page_num;
I
Ilya Dryomov 已提交
1495

1496 1497 1498
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1499

1500 1501
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1502
		struct scrub_page *page = sblock->pagev[page_num];
1503

1504
		if (page->dev->bdev == NULL) {
1505 1506 1507 1508 1509
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1510
		WARN_ON(!page->page);
1511
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1512 1513 1514 1515 1516
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1517
		bio->bi_bdev = page->dev->bdev;
1518

1519
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1520 1521 1522 1523 1524 1525 1526 1527 1528
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1529

1530 1531
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1532

1533 1534 1535 1536 1537
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1538
	return;
A
Arne Jansen 已提交
1539 1540
}

M
Miao Xie 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1551 1552 1553 1554 1555
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1556
{
1557 1558 1559 1560 1561
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1562
	WARN_ON(!sblock->pagev[0]->page);
1563 1564 1565
	if (is_metadata) {
		struct btrfs_header *h;

1566
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1567 1568
		h = (struct btrfs_header *)mapped_buffer;

1569
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1570
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1571
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1572
			   BTRFS_UUID_SIZE)) {
1573
			sblock->header_error = 1;
1574
		} else if (generation != btrfs_stack_header_generation(h)) {
1575 1576 1577
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1578 1579 1580 1581
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1582

1583
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1584
	}
A
Arne Jansen 已提交
1585

1586 1587
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1588
			crc = btrfs_csum_data(
1589 1590 1591
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1592
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1593

1594
		kunmap_atomic(mapped_buffer);
1595 1596 1597
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1598
		WARN_ON(!sblock->pagev[page_num]->page);
1599

1600
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1601 1602 1603 1604 1605
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1606 1607
}

1608
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1609
					     struct scrub_block *sblock_good)
1610 1611 1612
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1613

1614 1615
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1616

1617 1618
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1619
							   page_num, 1);
1620 1621
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1622
	}
1623 1624 1625 1626 1627 1628 1629 1630

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1631 1632
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1633

1634 1635
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1636 1637 1638 1639 1640
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1641
		if (!page_bad->dev->bdev) {
1642 1643 1644
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1645 1646 1647
			return -EIO;
		}

1648
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1649 1650
		if (!bio)
			return -EIO;
1651
		bio->bi_bdev = page_bad->dev->bdev;
1652
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1653 1654 1655 1656 1657

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1658
		}
1659

1660
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1661 1662
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1663 1664 1665
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1666 1667 1668
			bio_put(bio);
			return -EIO;
		}
1669
		bio_put(bio);
A
Arne Jansen 已提交
1670 1671
	}

1672 1673 1674
	return 0;
}

1675 1676 1677 1678
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1679 1680 1681 1682 1683 1684 1685
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1741
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1752
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1811 1812
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1813
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1845 1846 1847 1848
{
	u64 flags;
	int ret;

1849 1850
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1862 1863

	return ret;
A
Arne Jansen 已提交
1864 1865
}

1866
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1867
{
1868
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1869
	u8 csum[BTRFS_CSUM_SIZE];
1870 1871 1872
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1873 1874
	u32 crc = ~(u32)0;
	int fail = 0;
1875 1876
	u64 len;
	int index;
A
Arne Jansen 已提交
1877

1878
	BUG_ON(sblock->page_count < 1);
1879
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1880 1881
		return 0;

1882 1883
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1884
	buffer = kmap_atomic(page);
1885

1886
	len = sctx->sectorsize;
1887 1888 1889 1890
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1891
		crc = btrfs_csum_data(buffer, crc, l);
1892
		kunmap_atomic(buffer);
1893 1894 1895 1896 1897
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1898 1899
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1900
		buffer = kmap_atomic(page);
1901 1902
	}

A
Arne Jansen 已提交
1903
	btrfs_csum_final(crc, csum);
1904
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1905 1906 1907 1908 1909
		fail = 1;

	return fail;
}

1910
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1911
{
1912
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1913
	struct btrfs_header *h;
1914
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1915
	struct btrfs_fs_info *fs_info = root->fs_info;
1916 1917 1918 1919 1920 1921
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1922 1923 1924
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1925 1926 1927 1928
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1929
	page = sblock->pagev[0]->page;
1930
	mapped_buffer = kmap_atomic(page);
1931
	h = (struct btrfs_header *)mapped_buffer;
1932
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1933 1934 1935 1936 1937 1938 1939

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1940
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1941 1942
		++fail;

1943
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1944 1945
		++fail;

M
Miao Xie 已提交
1946
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1947 1948 1949 1950 1951 1952
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1953
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1954 1955 1956 1957 1958 1959
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1960
		crc = btrfs_csum_data(p, crc, l);
1961
		kunmap_atomic(mapped_buffer);
1962 1963 1964 1965 1966
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1967 1968
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1969
		mapped_buffer = kmap_atomic(page);
1970 1971 1972 1973 1974
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1975
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1976 1977 1978 1979 1980
		++crc_fail;

	return fail || crc_fail;
}

1981
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1982 1983
{
	struct btrfs_super_block *s;
1984
	struct scrub_ctx *sctx = sblock->sctx;
1985 1986 1987 1988 1989 1990
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1991
	u32 crc = ~(u32)0;
1992 1993
	int fail_gen = 0;
	int fail_cor = 0;
1994 1995
	u64 len;
	int index;
A
Arne Jansen 已提交
1996

1997
	BUG_ON(sblock->page_count < 1);
1998
	page = sblock->pagev[0]->page;
1999
	mapped_buffer = kmap_atomic(page);
2000
	s = (struct btrfs_super_block *)mapped_buffer;
2001
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2002

2003
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2004
		++fail_cor;
A
Arne Jansen 已提交
2005

2006
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2007
		++fail_gen;
A
Arne Jansen 已提交
2008

M
Miao Xie 已提交
2009
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2010
		++fail_cor;
A
Arne Jansen 已提交
2011

2012 2013 2014 2015 2016 2017 2018
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2019
		crc = btrfs_csum_data(p, crc, l);
2020
		kunmap_atomic(mapped_buffer);
2021 2022 2023 2024 2025
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2026 2027
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2028
		mapped_buffer = kmap_atomic(page);
2029 2030 2031 2032 2033
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2034
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2035
		++fail_cor;
A
Arne Jansen 已提交
2036

2037
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2038 2039 2040 2041 2042
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2043 2044 2045
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2046
		if (fail_cor)
2047
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2048 2049
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2050
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2051
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2052 2053
	}

2054
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2067 2068 2069
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2070
		for (i = 0; i < sblock->page_count; i++)
2071
			scrub_page_put(sblock->pagev[i]);
2072 2073 2074 2075
		kfree(sblock);
	}
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2090
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2091 2092 2093
{
	struct scrub_bio *sbio;

2094
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2095
		return;
A
Arne Jansen 已提交
2096

2097 2098
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2099
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2110
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2111 2112 2113 2114
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2115 2116
}

2117 2118
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2119
{
2120
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2121
	struct scrub_bio *sbio;
2122
	int ret;
A
Arne Jansen 已提交
2123 2124 2125 2126 2127

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2128 2129 2130 2131 2132 2133 2134 2135
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2136
		} else {
2137 2138
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2139 2140
		}
	}
2141
	sbio = sctx->bios[sctx->curr];
2142
	if (sbio->page_count == 0) {
2143 2144
		struct bio *bio;

2145 2146
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2147
		sbio->dev = spage->dev;
2148 2149
		bio = sbio->bio;
		if (!bio) {
2150
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2151 2152 2153 2154
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2155 2156 2157

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2158
		bio->bi_bdev = sbio->dev->bdev;
2159
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2160
		sbio->err = 0;
2161 2162 2163
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2164 2165
		   spage->logical ||
		   sbio->dev != spage->dev) {
2166
		scrub_submit(sctx);
A
Arne Jansen 已提交
2167 2168
		goto again;
	}
2169

2170 2171 2172 2173 2174 2175 2176 2177
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2178
		scrub_submit(sctx);
2179 2180 2181
		goto again;
	}

2182
	scrub_block_get(sblock); /* one for the page added to the bio */
2183 2184
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2185
	if (sbio->page_count == sctx->pages_per_rd_bio)
2186
		scrub_submit(sctx);
2187 2188 2189 2190

	return 0;
}

2191
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2192
		       u64 physical, struct btrfs_device *dev, u64 flags,
2193 2194
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2195 2196 2197 2198 2199 2200
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2201 2202 2203
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2204
		return -ENOMEM;
A
Arne Jansen 已提交
2205
	}
2206

2207 2208
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2209
	atomic_set(&sblock->ref_count, 1);
2210
	sblock->sctx = sctx;
2211 2212 2213
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2214
		struct scrub_page *spage;
2215 2216
		u64 l = min_t(u64, len, PAGE_SIZE);

2217 2218 2219
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2220 2221 2222
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2223
			scrub_block_put(sblock);
2224 2225
			return -ENOMEM;
		}
2226 2227 2228
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2229
		spage->sblock = sblock;
2230
		spage->dev = dev;
2231 2232 2233 2234
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2235
		spage->physical_for_dev_replace = physical_for_dev_replace;
2236 2237 2238
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2239
			memcpy(spage->csum, csum, sctx->csum_size);
2240 2241 2242 2243
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2244 2245 2246
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2247 2248 2249
		len -= l;
		logical += l;
		physical += l;
2250
		physical_for_dev_replace += l;
2251 2252
	}

2253
	WARN_ON(sblock->page_count == 0);
2254
	for (index = 0; index < sblock->page_count; index++) {
2255
		struct scrub_page *spage = sblock->pagev[index];
2256 2257
		int ret;

2258
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2259 2260
		if (ret) {
			scrub_block_put(sblock);
2261
			return ret;
2262
		}
2263
	}
A
Arne Jansen 已提交
2264

2265
	if (force)
2266
		scrub_submit(sctx);
A
Arne Jansen 已提交
2267

2268 2269
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2270 2271 2272
	return 0;
}

2273 2274 2275
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2276
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2277 2278 2279 2280

	sbio->err = err;
	sbio->bio = bio;

2281
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2282 2283 2284 2285 2286
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2287
	struct scrub_ctx *sctx = sbio->sctx;
2288 2289
	int i;

2290
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2312 2313 2314 2315
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2316 2317 2318 2319 2320 2321 2322 2323

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2324
	scrub_pending_bio_dec(sctx);
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2366 2367
static void scrub_block_complete(struct scrub_block *sblock)
{
2368 2369
	int corrupted = 0;

2370
	if (!sblock->no_io_error_seen) {
2371
		corrupted = 1;
2372
		scrub_handle_errored_block(sblock);
2373 2374 2375 2376 2377 2378
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2379 2380
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2381 2382
			scrub_write_block_to_dev_replace(sblock);
	}
2383 2384 2385 2386 2387 2388 2389 2390 2391

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2392 2393
}

2394
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2395 2396 2397
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2398
	unsigned long index;
A
Arne Jansen 已提交
2399 2400
	unsigned long num_sectors;

2401 2402
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2403 2404 2405 2406 2407 2408
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2409
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2410 2411 2412 2413 2414 2415 2416
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2417
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2418
	num_sectors = sum->len / sctx->sectorsize;
2419 2420
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2421 2422 2423
		list_del(&sum->list);
		kfree(sum);
	}
2424
	return 1;
A
Arne Jansen 已提交
2425 2426 2427
}

/* scrub extent tries to collect up to 64 kB for each bio */
2428
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2429
			u64 physical, struct btrfs_device *dev, u64 flags,
2430
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2431 2432 2433
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2434 2435 2436
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2437 2438 2439 2440 2441
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2442
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2443 2444 2445 2446 2447
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2448
	} else {
2449
		blocksize = sctx->sectorsize;
2450
		WARN_ON(1);
2451
	}
A
Arne Jansen 已提交
2452 2453

	while (len) {
2454
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2455 2456 2457 2458
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2459
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2460
			if (have_csum == 0)
2461
				++sctx->stat.no_csum;
2462 2463 2464 2465 2466 2467
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2468
		}
2469
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2470 2471 2472
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2473 2474 2475 2476 2477
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2478
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2479 2480 2481 2482
	}
	return 0;
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2601
skip:
2602 2603 2604 2605 2606 2607 2608
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2609 2610 2611 2612 2613 2614 2615 2616
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2617 2618
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2629 2630 2631
	if (stripe_start)
		*stripe_start = last_offset;

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2644
		stripe_index = rot % map->num_stripes;
2645 2646 2647 2648 2649 2650 2651 2652 2653
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2705
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2706
			       sparity->logic_start,
2707 2708
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2720
					      length, sparity->scrub_dev,
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2737
	btrfs_put_bbio(bbio);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2968
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2969 2970
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2971 2972
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2973
{
2974
	struct btrfs_path *path, *ppath;
2975
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2976 2977 2978
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2979
	struct blk_plug plug;
A
Arne Jansen 已提交
2980 2981 2982 2983 2984 2985 2986 2987
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2988
	u64 logic_end;
2989
	u64 physical_end;
A
Arne Jansen 已提交
2990
	u64 generation;
2991
	int mirror_num;
A
Arne Jansen 已提交
2992 2993 2994 2995
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2996 2997
	u64 increment = map->stripe_len;
	u64 offset;
2998 2999 3000
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3001 3002
	u64 stripe_logical;
	u64 stripe_end;
3003 3004
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3005
	int stop_loop = 0;
D
David Woodhouse 已提交
3006

A
Arne Jansen 已提交
3007
	nstripes = length;
3008
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3009 3010 3011 3012 3013
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3014
		mirror_num = 1;
A
Arne Jansen 已提交
3015 3016 3017 3018
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3019
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3020 3021
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3022
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3023 3024
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3025
		mirror_num = num % map->num_stripes + 1;
3026 3027
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
3028
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3029 3030
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3031 3032
	} else {
		increment = map->stripe_len;
3033
		mirror_num = 1;
A
Arne Jansen 已提交
3034 3035 3036 3037 3038 3039
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3040 3041 3042 3043 3044 3045
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3046 3047 3048 3049 3050
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3051 3052 3053 3054
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3055 3056 3057
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3058 3059
	 */
	logical = base + offset;
3060 3061 3062 3063
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3064
					map, &logic_end, NULL);
3065 3066 3067 3068
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3069
	wait_event(sctx->list_wait,
3070
		   atomic_read(&sctx->bios_in_flight) == 0);
3071
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3072 3073 3074 3075 3076

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3077
	key_end.objectid = logic_end;
3078 3079
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3080 3081 3082 3083 3084 3085 3086
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3087
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3088 3089 3090 3091 3092 3093 3094
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3095 3096 3097 3098 3099

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3100
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3101 3102 3103 3104 3105

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3106 3107 3108 3109 3110
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3111
					map, &logical, &stripe_logical);
3112
			logical += base;
3113 3114 3115 3116 3117 3118 3119 3120
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3121
				goto skip;
3122
			}
3123
		}
A
Arne Jansen 已提交
3124 3125 3126 3127
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3128
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3129 3130 3131 3132 3133 3134 3135 3136
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3137
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3138
			scrub_submit(sctx);
3139 3140 3141
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3142
			wait_event(sctx->list_wait,
3143
				   atomic_read(&sctx->bios_in_flight) == 0);
3144
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3145
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3146 3147
		}

3148 3149 3150 3151
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3152
		key.objectid = logical;
L
Liu Bo 已提交
3153
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3154 3155 3156 3157

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3158

3159
		if (ret > 0) {
3160
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3161 3162
			if (ret < 0)
				goto out;
3163 3164 3165 3166 3167 3168 3169 3170 3171
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3172 3173
		}

L
Liu Bo 已提交
3174
		stop_loop = 0;
A
Arne Jansen 已提交
3175
		while (1) {
3176 3177
			u64 bytes;

A
Arne Jansen 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3187
				stop_loop = 1;
A
Arne Jansen 已提交
3188 3189 3190 3191
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3192
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3193
				bytes = root->nodesize;
3194 3195 3196 3197
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3198 3199
				goto next;

L
Liu Bo 已提交
3200 3201 3202
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3203

L
Liu Bo 已提交
3204 3205 3206 3207 3208 3209
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3210 3211 3212 3213 3214 3215 3216 3217

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3218 3219 3220
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3221
				       key.objectid, logical);
A
Arne Jansen 已提交
3222 3223 3224
				goto next;
			}

L
Liu Bo 已提交
3225 3226 3227 3228
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3229 3230 3231
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3232 3233 3234
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3235
			}
L
Liu Bo 已提交
3236
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3237
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3238 3239
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3240 3241
			}

L
Liu Bo 已提交
3242
			extent_physical = extent_logical - logical + physical;
3243 3244 3245 3246 3247 3248 3249
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3250 3251 3252 3253 3254 3255 3256

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3257 3258 3259
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3260
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3261 3262 3263
			if (ret)
				goto out;

3264
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3265 3266
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3267 3268 3269 3270 3271 3272
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3292 3293 3294 3295
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3296 3297 3298 3299 3300
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3301
				if (physical >= physical_end) {
L
Liu Bo 已提交
3302 3303 3304 3305
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3306 3307 3308
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3309
		btrfs_release_path(path);
3310
skip:
A
Arne Jansen 已提交
3311 3312
		logical += increment;
		physical += map->stripe_len;
3313
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3314 3315 3316 3317 3318
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3319
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3320 3321
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3322
	}
3323
out:
A
Arne Jansen 已提交
3324
	/* push queued extents */
3325
	scrub_submit(sctx);
3326 3327 3328
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3329

3330
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3331
	btrfs_free_path(path);
3332
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3333 3334 3335
	return ret < 0 ? ret : 0;
}

3336
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3337 3338 3339
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3340
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3341 3342
{
	struct btrfs_mapping_tree *map_tree =
3343
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3344 3345 3346
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3347
	int ret = 0;
A
Arne Jansen 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3364
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3365
		    map->stripes[i].physical == dev_offset) {
3366
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3367 3368
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3380
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3381 3382
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3383 3384 3385
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3386
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3398
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3408
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3409 3410 3411 3412 3413 3414
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3415 3416 3417 3418 3419 3420 3421 3422 3423
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3424 3425 3426 3427 3428 3429

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3430
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3431 3432
			break;

3433
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3445 3446
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3457 3458 3459 3460 3461 3462

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3463 3464 3465
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3466
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3488 3489 3490 3491 3492 3493 3494 3495
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3496 3497
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3498 3499 3500 3501 3502 3503 3504
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3505

A
Arne Jansen 已提交
3506 3507 3508
		btrfs_put_block_group(cache);
		if (ret)
			break;
3509 3510
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3511 3512 3513 3514 3515 3516 3517
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3518

3519 3520
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3521
skip:
A
Arne Jansen 已提交
3522
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3523
		btrfs_release_path(path);
A
Arne Jansen 已提交
3524 3525 3526
	}

	btrfs_free_path(path);
3527 3528 3529 3530 3531 3532

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3533 3534
}

3535 3536
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3537 3538 3539 3540 3541
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3542
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3543

3544
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3545 3546
		return -EIO;

3547 3548 3549 3550 3551
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3552 3553 3554

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3555 3556
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3557 3558
			break;

3559
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3560
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3561
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3562 3563 3564
		if (ret)
			return ret;
	}
3565
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3566 3567 3568 3569 3570 3571 3572

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3573 3574
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3575
{
3576
	int ret = 0;
3577 3578
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3579

A
Arne Jansen 已提交
3580
	if (fs_info->scrub_workers_refcnt == 0) {
3581
		if (is_dev_replace)
3582 3583 3584
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3585
		else
3586 3587 3588 3589 3590
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3591
			goto out;
3592 3593 3594 3595 3596 3597
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3598
			goto out;
3599 3600 3601 3602 3603
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3604
			goto out;
3605
		}
A
Arne Jansen 已提交
3606
	}
A
Arne Jansen 已提交
3607
	++fs_info->scrub_workers_refcnt;
3608 3609
out:
	return ret;
A
Arne Jansen 已提交
3610 3611
}

3612
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3613
{
3614
	if (--fs_info->scrub_workers_refcnt == 0) {
3615 3616 3617
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3618
	}
A
Arne Jansen 已提交
3619 3620 3621
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3622 3623
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3624
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3625
{
3626
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3627 3628
	int ret;
	struct btrfs_device *dev;
3629
	struct rcu_string *name;
A
Arne Jansen 已提交
3630

3631
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3632 3633
		return -EINVAL;

3634
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3635 3636 3637 3638 3639
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3640 3641
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3642
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3643 3644 3645
		return -EINVAL;
	}

3646
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3647
		/* not supported for data w/o checksums */
3648 3649 3650
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3651
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3652 3653 3654
		return -EINVAL;
	}

3655 3656 3657 3658 3659 3660 3661 3662
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3663 3664
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3665 3666 3667 3668 3669 3670 3671
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3672

3673 3674
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3675
	if (!dev || (dev->missing && !is_dev_replace)) {
3676
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3677 3678 3679
		return -ENODEV;
	}

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3690
	mutex_lock(&fs_info->scrub_lock);
3691
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3692
		mutex_unlock(&fs_info->scrub_lock);
3693 3694
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3695 3696
	}

3697 3698 3699 3700 3701
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3702
		mutex_unlock(&fs_info->scrub_lock);
3703
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3704 3705
		return -EINPROGRESS;
	}
3706
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3707 3708 3709 3710 3711 3712 3713 3714

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3715
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3716
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3717
		mutex_unlock(&fs_info->scrub_lock);
3718 3719
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3720
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3721
	}
3722 3723
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3724
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3725

3726 3727 3728 3729
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3730
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3731 3732 3733
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3734
	if (!is_dev_replace) {
3735 3736 3737 3738
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3739
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3740
		ret = scrub_supers(sctx, dev);
3741
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3742
	}
A
Arne Jansen 已提交
3743 3744

	if (!ret)
3745 3746
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3747

3748
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3749 3750 3751
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3752
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3753

A
Arne Jansen 已提交
3754
	if (progress)
3755
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3756 3757 3758

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3759
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3760 3761
	mutex_unlock(&fs_info->scrub_lock);

3762
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3763 3764 3765 3766

	return ret;
}

3767
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3784
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3785 3786 3787 3788 3789 3790 3791
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3792
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3813 3814
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3815
{
3816
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3817 3818

	mutex_lock(&fs_info->scrub_lock);
3819 3820
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3821 3822 3823
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3824
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3835

A
Arne Jansen 已提交
3836 3837 3838 3839
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3840
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3841 3842

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3843
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3844
	if (dev)
3845 3846 3847
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3848 3849
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3850
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3851
}
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3868
		btrfs_put_bbio(bbio);
3869 3870 3871 3872 3873 3874
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3875
	btrfs_put_bbio(bbio);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3928 3929
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3930
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3931 3932
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3933 3934 3935 3936

	return 0;
}

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3989
					  record_inode_for_nocow, nocow_ctx);
3990
	if (ret != 0 && ret != -ENOENT) {
3991 3992
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3993 3994
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3995 3996 3997 3998
		not_written = 1;
		goto out;
	}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4017
out:
4018 4019 4020 4021 4022 4023 4024 4025
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4082 4083
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4084
{
4085
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4086
	struct btrfs_key key;
4087 4088
	struct inode *inode;
	struct page *page;
4089
	struct btrfs_root *local_root;
4090
	struct extent_io_tree *io_tree;
4091
	u64 physical_for_dev_replace;
4092
	u64 nocow_ctx_logical;
4093
	u64 len = nocow_ctx->len;
4094
	unsigned long index;
4095
	int srcu_index;
4096 4097
	int ret = 0;
	int err = 0;
4098 4099 4100 4101

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4102 4103 4104

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4105
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4106 4107
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4108
		return PTR_ERR(local_root);
4109
	}
4110 4111 4112 4113 4114

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4115
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4116 4117 4118
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4119 4120 4121 4122
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4123
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4124
	io_tree = &BTRFS_I(inode)->io_tree;
4125
	nocow_ctx_logical = nocow_ctx->logical;
4126

4127 4128 4129 4130
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4131 4132
	}

4133 4134
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4135
again:
4136 4137
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4138
			btrfs_err(fs_info, "find_or_create_page() failed");
4139
			ret = -ENOMEM;
4140
			goto out;
4141 4142 4143 4144 4145 4146 4147
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4148
			err = extent_read_full_page(io_tree, page,
4149 4150
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4151 4152
			if (err) {
				ret = err;
4153 4154
				goto next_page;
			}
4155

4156
			lock_page(page);
4157 4158 4159 4160 4161 4162 4163
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4164
				unlock_page(page);
4165 4166 4167
				page_cache_release(page);
				goto again;
			}
4168 4169 4170 4171 4172
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4173 4174 4175 4176 4177 4178 4179 4180

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4181 4182 4183 4184
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4185
next_page:
4186 4187 4188 4189 4190 4191
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4192 4193
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4194
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4195 4196
		len -= PAGE_CACHE_SIZE;
	}
4197
	ret = COPY_COMPLETE;
4198
out:
4199
	mutex_unlock(&inode->i_mutex);
4200
	iput(inode);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4216
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4217 4218
		return -EIO;
	}
4219
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4220 4221 4222 4223 4224 4225
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4226 4227
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4228 4229 4230 4231 4232 4233 4234 4235 4236
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4237
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4238 4239 4240 4241 4242
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}