scrub.c 119.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

63
struct scrub_sector {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
92
	int			next_free;
93
	struct work_struct	work;
A
Arne Jansen 已提交
94 95
};

96
struct scrub_block {
97
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98
	int			sector_count;
99
	atomic_t		outstanding_sectors;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct work_struct	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131

132
	struct list_head	sectors_list;
133 134

	/* Work of parity check and repair */
135
	struct work_struct	work;
136 137

	/* Mark the parity blocks which have data */
138
	unsigned long		dbitmap;
139 140 141 142 143

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
144
	unsigned long		ebitmap;
145 146
};

147
struct scrub_ctx {
148
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
149
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
150 151
	int			first_free;
	int			curr;
152 153
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
154 155 156 157
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
158
	int			readonly;
159
	int			sectors_per_bio;
160

161 162 163 164
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

165
	int			is_dev_replace;
166
	u64			write_pointer;
167 168 169 170

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
171
	bool                    flush_all_writes;
172

A
Arne Jansen 已提交
173 174 175 176 177
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
178 179 180 181 182 183 184 185

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
186
	refcount_t              refs;
A
Arne Jansen 已提交
187 188
};

189 190 191 192
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
193
	u64			physical;
194 195 196 197
	u64			logical;
	struct btrfs_device	*dev;
};

198 199 200 201 202 203 204
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

205
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
206
				     struct scrub_block *sblocks_for_recheck);
207
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
208 209
				struct scrub_block *sblock,
				int retry_failed_mirror);
210
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
211
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212
					     struct scrub_block *sblock_good);
213
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
214
					    struct scrub_block *sblock_good,
215
					    int sector_num, int force_write);
216
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217 218
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
219 220 221 222
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
223 224
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
225 226
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
227 228 229 230
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
231
static void scrub_bio_end_io(struct bio *bio);
232
static void scrub_bio_end_io_worker(struct work_struct *work);
233
static void scrub_block_complete(struct scrub_block *sblock);
234 235 236 237 238
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
239 240
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
241
static void scrub_wr_submit(struct scrub_ctx *sctx);
242
static void scrub_wr_bio_end_io(struct bio *bio);
243
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
244
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
245

246
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
247
{
248 249
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
250
}
S
Stefan Behrens 已提交
251

252 253
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
254
	refcount_inc(&sctx->refs);
255 256 257 258 259 260 261
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
262
	scrub_put_ctx(sctx);
263 264
}

265
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
266 267 268 269 270 271 272 273 274
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

275
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
276 277 278
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
279
}
280

281 282
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
283 284 285 286 287 288 289 290
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

291 292 293 294 295 296
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

316
	lockdep_assert_held(&locks_root->lock);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

332 333 334
	/*
	 * Insert new lock.
	 */
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

360
	lockdep_assert_held(&locks_root->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
380
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
381 382 383 384 385 386 387 388 389 390 391 392 393
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
394 395
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
413
	struct btrfs_block_group *bg_cache;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
460
	struct btrfs_block_group *bg_cache;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

514
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
515
{
516
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
517
		struct btrfs_ordered_sum *sum;
518
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
519 520 521 522 523 524
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

525
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
526 527 528
{
	int i;

529
	if (!sctx)
A
Arne Jansen 已提交
530 531
		return;

532
	/* this can happen when scrub is cancelled */
533 534
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
535

536 537 538
		for (i = 0; i < sbio->sector_count; i++) {
			WARN_ON(!sbio->sectors[i]->page);
			scrub_block_put(sbio->sectors[i]->sblock);
539 540 541 542
		}
		bio_put(sbio->bio);
	}

543
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
544
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
545 546 547 548 549 550

		if (!sbio)
			break;
		kfree(sbio);
	}

551
	kfree(sctx->wr_curr_bio);
552 553
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
554 555
}

556 557
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
558
	if (refcount_dec_and_test(&sctx->refs))
559 560 561
		scrub_free_ctx(sctx);
}

562 563
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
564
{
565
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
566 567
	int		i;

568
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
569
	if (!sctx)
A
Arne Jansen 已提交
570
		goto nomem;
571
	refcount_set(&sctx->refs, 1);
572
	sctx->is_dev_replace = is_dev_replace;
573
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
574
	sctx->curr = -1;
575
	sctx->fs_info = fs_info;
576
	INIT_LIST_HEAD(&sctx->csum_list);
577
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
578 579
		struct scrub_bio *sbio;

580
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
581 582
		if (!sbio)
			goto nomem;
583
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
584 585

		sbio->index = i;
586
		sbio->sctx = sctx;
587
		sbio->sector_count = 0;
588
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
589

590
		if (i != SCRUB_BIOS_PER_SCTX - 1)
591
			sctx->bios[i]->next_free = i + 1;
592
		else
593 594 595
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
596 597
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
598 599 600 601 602
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
603
	sctx->throttle_deadline = 0;
604

605 606 607
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
608
	if (is_dev_replace) {
609 610
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
611
		sctx->flush_all_writes = false;
612
	}
613

614
	return sctx;
A
Arne Jansen 已提交
615 616

nomem:
617
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
618 619 620
	return ERR_PTR(-ENOMEM);
}

621 622
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
623 624 625 626
{
	u32 nlink;
	int ret;
	int i;
627
	unsigned nofs_flag;
628 629
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
630
	struct scrub_warning *swarn = warn_ctx;
631
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
632 633
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
634
	struct btrfs_key key;
635

D
David Sterba 已提交
636
	local_root = btrfs_get_fs_root(fs_info, root, true);
637 638 639 640 641
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

642 643 644
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
645 646 647 648 649
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
650
	if (ret) {
651
		btrfs_put_root(local_root);
652 653 654 655 656 657 658 659 660 661
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

662 663 664 665 666 667
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
668
	ipath = init_ipath(4096, local_root, swarn->path);
669
	memalloc_nofs_restore(nofs_flag);
670
	if (IS_ERR(ipath)) {
671
		btrfs_put_root(local_root);
672 673 674 675
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
676 677 678 679 680 681 682 683 684 685
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
686
		btrfs_warn_in_rcu(fs_info,
687
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
688 689
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
690
				  swarn->physical,
J
Jeff Mahoney 已提交
691
				  root, inum, offset,
692
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
693
				  (char *)(unsigned long)ipath->fspath->val[i]);
694

695
	btrfs_put_root(local_root);
696 697 698 699
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
700
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
701
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
702 703
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
704
			  swarn->physical,
J
Jeff Mahoney 已提交
705
			  root, inum, offset, ret);
706 707 708 709 710

	free_ipath(ipath);
	return 0;
}

711
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
712
{
713 714
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
715 716 717 718 719
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
720 721 722
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
723
	u64 ref_root;
724
	u32 item_size;
725
	u8 ref_level = 0;
726
	int ret;
727

728 729
	WARN_ON(sblock->sector_count < 1);
	dev = sblock->sectors[0]->dev;
730
	fs_info = sblock->sctx->fs_info;
731

732
	path = btrfs_alloc_path();
733 734
	if (!path)
		return;
735

736 737
	swarn.physical = sblock->sectors[0]->physical;
	swarn.logical = sblock->sectors[0]->logical;
738
	swarn.errstr = errstr;
739
	swarn.dev = NULL;
740

741 742
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
743 744 745
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
746
	extent_item_pos = swarn.logical - found_key.objectid;
747 748 749 750
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
751
	item_size = btrfs_item_size(eb, path->slots[0]);
752

753
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
754
		do {
755 756 757
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
758
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
759
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
760
				errstr, swarn.logical,
761
				rcu_str_deref(dev->name),
D
David Sterba 已提交
762
				swarn.physical,
763 764 765 766
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
767
		btrfs_release_path(path);
768
	} else {
769
		btrfs_release_path(path);
770
		swarn.path = path;
771
		swarn.dev = dev;
772 773
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
774
					scrub_print_warning_inode, &swarn, false);
775 776 777 778 779 780
	}

out:
	btrfs_free_path(path);
}

781 782
static inline void scrub_get_recover(struct scrub_recover *recover)
{
783
	refcount_inc(&recover->refs);
784 785
}

786 787
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
788
{
789
	if (refcount_dec_and_test(&recover->refs)) {
790
		btrfs_bio_counter_dec(fs_info);
791
		btrfs_put_bioc(recover->bioc);
792 793 794 795
		kfree(recover);
	}
}

A
Arne Jansen 已提交
796
/*
797
 * scrub_handle_errored_block gets called when either verification of the
798 799
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
800 801 802
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
803
 */
804
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
805
{
806
	struct scrub_ctx *sctx = sblock_to_check->sctx;
807
	struct btrfs_device *dev;
808 809 810 811 812 813 814 815 816
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
817
	int sector_num;
818
	int success;
819
	bool full_stripe_locked;
820
	unsigned int nofs_flag;
821
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
822 823
				      DEFAULT_RATELIMIT_BURST);

824
	BUG_ON(sblock_to_check->sector_count < 1);
825
	fs_info = sctx->fs_info;
826
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
827 828 829 830 831 832 833 834 835 836
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
837 838 839 840
	logical = sblock_to_check->sectors[0]->logical;
	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->sectors[0]->flags &
841
			BTRFS_EXTENT_FLAG_DATA);
842 843
	have_csum = sblock_to_check->sectors[0]->have_csum;
	dev = sblock_to_check->sectors[0]->dev;
844

845 846
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
847

848 849 850 851 852 853
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
854
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
855 856 857
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
858 859 860 861 862 863 864 865 866
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
867
		memalloc_nofs_restore(nofs_flag);
868 869 870 871 872 873 874 875 876
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

877 878 879 880
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
881
	 * sector by sector this time in order to know which sectors
882 883 884 885
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
886 887 888 889 890 891 892 893 894 895
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
896 897 898
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
899
	 * Only if this is not possible, the sectors are picked from
900 901 902 903 904 905
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

906
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
907
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
908
	if (!sblocks_for_recheck) {
909 910 911 912 913
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
914
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915
		goto out;
A
Arne Jansen 已提交
916 917
	}

918
	/* Setup the context, map the logical blocks and alloc the sectors */
919
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920
	if (ret) {
921 922 923 924
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
925
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 927 928 929
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
930

931
	/* build and submit the bios for the failed mirror, check checksums */
932
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
933

934 935 936
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
937
		 * The error disappeared after reading sector by sector, or
938 939 940 941 942 943
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
944 945
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
946
		sblock_to_check->data_corrected = 1;
947
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
948

949 950
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
951
		goto out;
A
Arne Jansen 已提交
952 953
	}

954
	if (!sblock_bad->no_io_error_seen) {
955 956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
958
		if (__ratelimit(&rs))
959
			scrub_print_warning("i/o error", sblock_to_check);
960
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961
	} else if (sblock_bad->checksum_error) {
962 963 964
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
965
		if (__ratelimit(&rs))
966
			scrub_print_warning("checksum error", sblock_to_check);
967
		btrfs_dev_stat_inc_and_print(dev,
968
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
969
	} else if (sblock_bad->header_error) {
970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
973
		if (__ratelimit(&rs))
974 975
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
976
		if (sblock_bad->generation_error)
977
			btrfs_dev_stat_inc_and_print(dev,
978 979
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
980
			btrfs_dev_stat_inc_and_print(dev,
981
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
982
	}
A
Arne Jansen 已提交
983

984 985 986 987
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
988

989 990
	/*
	 * now build and submit the bios for the other mirrors, check
991 992
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
993 994 995 996 997
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
998
	 * checksum is present, only those sectors are rewritten that had
999
	 * an I/O error in the block to be repaired, since it cannot be
1000 1001
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1002 1003
	 * overwritten by a bad one).
	 */
1004
	for (mirror_index = 0; ;mirror_index++) {
1005
		struct scrub_block *sblock_other;
1006

1007 1008
		if (mirror_index == failed_mirror_index)
			continue;
1009 1010

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1011
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1012 1013
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1014
			if (!sblocks_for_recheck[mirror_index].sector_count)
1015 1016 1017 1018
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
1019
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1020
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1021 1022 1023

			if (mirror_index >= max_allowed)
				break;
1024
			if (!sblocks_for_recheck[1].sector_count)
1025 1026 1027 1028
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
1029
			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1030
		}
1031 1032

		/* build and submit the bios, check checksums */
1033
		scrub_recheck_block(fs_info, sblock_other, 0);
1034 1035

		if (!sblock_other->header_error &&
1036 1037
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1038 1039
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1040
				goto corrected_error;
1041 1042
			} else {
				ret = scrub_repair_block_from_good_copy(
1043 1044 1045
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1046
			}
1047 1048
		}
	}
A
Arne Jansen 已提交
1049

1050 1051
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1052 1053 1054

	/*
	 * In case of I/O errors in the area that is supposed to be
1055 1056
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1057 1058 1059 1060 1061
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1062
	 * all possible combinations of sectors from the different mirrors
1063
	 * until the checksum verification succeeds. For example, when
1064
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1065
	 * of mirror #2 is readable but the final checksum test fails,
1066
	 * then the 2nd sector of mirror #3 could be tried, whether now
1067
	 * the final checksum succeeds. But this would be a rare
1068 1069 1070 1071
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1072
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1073
	 * mirror could be repaired by taking 512 byte of a different
1074
	 * mirror, even if other 512 byte sectors in the same sectorsize
1075
	 * area are unreadable.
A
Arne Jansen 已提交
1076
	 */
1077
	success = 1;
1078 1079
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1080
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1081
		struct scrub_block *sblock_other = NULL;
1082

1083 1084
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1085
			continue;
1086

1087
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1088 1089 1090 1091 1092 1093 1094 1095
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1096 1097
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1098 1099
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1100
			     sblocks_for_recheck[mirror_index].sector_count > 0;
1101 1102
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
1103
				    sectors[sector_num]->io_error) {
1104 1105 1106
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1107 1108
				}
			}
1109 1110
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1111
		}
A
Arne Jansen 已提交
1112

1113 1114
		if (sctx->is_dev_replace) {
			/*
1115 1116 1117 1118
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1119 1120 1121 1122
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1123 1124
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1125
				atomic64_inc(
1126
					&fs_info->dev_replace.num_write_errors);
1127 1128 1129
				success = 0;
			}
		} else if (sblock_other) {
1130 1131 1132
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1133
			if (0 == ret)
1134
				sector_bad->io_error = 0;
1135 1136
			else
				success = 0;
1137
		}
A
Arne Jansen 已提交
1138 1139
	}

1140
	if (success && !sctx->is_dev_replace) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1151
			scrub_recheck_block(fs_info, sblock_bad, 1);
1152
			if (!sblock_bad->header_error &&
1153 1154 1155 1156 1157 1158 1159
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1160 1161
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1162
			sblock_to_check->data_corrected = 1;
1163
			spin_unlock(&sctx->stat_lock);
1164 1165
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1166
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1167
		}
1168 1169
	} else {
did_not_correct_error:
1170 1171 1172
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1173 1174
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1175
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1176
	}
A
Arne Jansen 已提交
1177

1178 1179 1180 1181 1182 1183
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1184
			struct scrub_recover *recover;
1185
			int i;
1186

1187 1188 1189
			for (i = 0; i < sblock->sector_count; i++) {
				sblock->sectors[i]->sblock = NULL;
				recover = sblock->sectors[i]->recover;
1190
				if (recover) {
1191
					scrub_put_recover(fs_info, recover);
1192
					sblock->sectors[i]->recover = NULL;
1193
				}
1194
				scrub_sector_put(sblock->sectors[i]);
1195
			}
1196 1197 1198
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1199

1200
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1201
	memalloc_nofs_restore(nofs_flag);
1202 1203
	if (ret < 0)
		return ret;
1204 1205
	return 0;
}
A
Arne Jansen 已提交
1206

1207
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1208
{
1209
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1210
		return 2;
1211
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1212 1213
		return 3;
	else
1214
		return (int)bioc->num_stripes;
1215 1216
}

Z
Zhao Lei 已提交
1217 1218
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1219 1220 1221 1222 1223 1224
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1225
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1226 1227 1228 1229 1230 1231 1232
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1233
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1246
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1247 1248
				     struct scrub_block *sblocks_for_recheck)
{
1249
	struct scrub_ctx *sctx = original_sblock->sctx;
1250
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1251 1252 1253 1254 1255
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = original_sblock->sectors[0]->logical;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1256
	struct scrub_recover *recover;
1257
	struct btrfs_io_context *bioc;
1258 1259 1260 1261
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1262
	int sector_index = 0;
1263
	int mirror_index;
1264
	int nmirrors;
1265 1266 1267
	int ret;

	/*
1268 1269
	 * Note: the two members refs and outstanding_sectors are not used (and
	 * not set) in the blocks that are used for the recheck procedure.
1270 1271 1272
	 */

	while (length > 0) {
1273
		sublen = min_t(u64, length, fs_info->sectorsize);
1274
		mapped_length = sublen;
1275
		bioc = NULL;
A
Arne Jansen 已提交
1276

1277
		/*
1278 1279
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1280
		 */
1281
		btrfs_bio_counter_inc_blocked(fs_info);
1282
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1283 1284 1285
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1286
			btrfs_bio_counter_dec(fs_info);
1287 1288
			return -EIO;
		}
A
Arne Jansen 已提交
1289

1290 1291
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1292
			btrfs_put_bioc(bioc);
1293
			btrfs_bio_counter_dec(fs_info);
1294 1295 1296
			return -ENOMEM;
		}

1297
		refcount_set(&recover->refs, 1);
1298
		recover->bioc = bioc;
1299 1300
		recover->map_length = mapped_length;

1301
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1302

1303
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1304

1305
		for (mirror_index = 0; mirror_index < nmirrors;
1306 1307
		     mirror_index++) {
			struct scrub_block *sblock;
1308
			struct scrub_sector *sector;
1309 1310

			sblock = sblocks_for_recheck + mirror_index;
1311
			sblock->sctx = sctx;
1312

1313 1314
			sector = kzalloc(sizeof(*sector), GFP_NOFS);
			if (!sector) {
1315
leave_nomem:
1316 1317 1318
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1319
				scrub_put_recover(fs_info, recover);
1320 1321
				return -ENOMEM;
			}
1322 1323 1324 1325 1326 1327 1328
			scrub_sector_get(sector);
			sblock->sectors[sector_index] = sector;
			sector->sblock = sblock;
			sector->flags = flags;
			sector->generation = generation;
			sector->logical = logical;
			sector->have_csum = have_csum;
1329
			if (have_csum)
1330
				memcpy(sector->csum,
1331
				       original_sblock->sectors[0]->csum,
1332
				       sctx->fs_info->csum_size);
1333

Z
Zhao Lei 已提交
1334
			scrub_stripe_index_and_offset(logical,
1335 1336 1337 1338
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1339 1340 1341
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1342
			sector->physical = bioc->stripes[stripe_index].physical +
1343
					 stripe_offset;
1344
			sector->dev = bioc->stripes[stripe_index].dev;
1345

1346
			BUG_ON(sector_index >= original_sblock->sector_count);
1347
			sector->physical_for_dev_replace =
1348
				original_sblock->sectors[sector_index]->
1349
				physical_for_dev_replace;
1350 1351
			/* For missing devices, dev->bdev is NULL */
			sector->mirror_num = mirror_index + 1;
1352
			sblock->sector_count++;
1353 1354
			sector->page = alloc_page(GFP_NOFS);
			if (!sector->page)
1355
				goto leave_nomem;
1356 1357

			scrub_get_recover(recover);
1358
			sector->recover = recover;
1359
		}
1360
		scrub_put_recover(fs_info, recover);
1361 1362
		length -= sublen;
		logical += sublen;
1363
		sector_index++;
1364 1365 1366
	}

	return 0;
I
Ilya Dryomov 已提交
1367 1368
}

1369
static void scrub_bio_wait_endio(struct bio *bio)
1370
{
1371
	complete(bio->bi_private);
1372 1373 1374 1375
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1376
					struct scrub_sector *sector)
1377
{
1378
	DECLARE_COMPLETION_ONSTACK(done);
1379

1380
	bio->bi_iter.bi_sector = sector->logical >> 9;
1381 1382
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1383 1384
	raid56_parity_recover(bio, sector->recover->bioc,
			      sector->sblock->sectors[0]->mirror_num, false);
1385

1386 1387
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1388 1389
}

L
Liu Bo 已提交
1390 1391 1392
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1393
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1394
	struct bio *bio;
1395
	int i;
L
Liu Bo 已提交
1396

1397 1398 1399
	/* All sectors in sblock belong to the same stripe on the same device. */
	ASSERT(first_sector->dev);
	if (!first_sector->dev->bdev)
L
Liu Bo 已提交
1400 1401
		goto out;

1402
	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1403

1404
	for (i = 0; i < sblock->sector_count; i++) {
1405
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1406

1407 1408
		WARN_ON(!sector->page);
		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1409 1410
	}

1411
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1422 1423
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1424 1425 1426 1427

	sblock->no_io_error_seen = 0;
}

1428
/*
1429 1430 1431 1432 1433
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1434
 */
1435
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1436 1437
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1438
{
1439
	int i;
I
Ilya Dryomov 已提交
1440

1441
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1442

L
Liu Bo 已提交
1443
	/* short cut for raid56 */
1444
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1445 1446
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1447
	for (i = 0; i < sblock->sector_count; i++) {
1448
		struct scrub_sector *sector = sblock->sectors[i];
1449 1450
		struct bio bio;
		struct bio_vec bvec;
1451

1452 1453
		if (sector->dev->bdev == NULL) {
			sector->io_error = 1;
1454 1455 1456 1457
			sblock->no_io_error_seen = 0;
			continue;
		}

1458
		WARN_ON(!sector->page);
1459 1460 1461
		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
		bio.bi_iter.bi_sector = sector->physical >> 9;
1462

1463 1464
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1465
			sector->io_error = 1;
L
Liu Bo 已提交
1466
			sblock->no_io_error_seen = 0;
1467
		}
1468

1469
		bio_uninit(&bio);
1470
	}
I
Ilya Dryomov 已提交
1471

1472
	if (sblock->no_io_error_seen)
1473
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1474 1475
}

1476
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1477
{
1478
	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
M
Miao Xie 已提交
1479 1480
	int ret;

1481
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1482 1483 1484
	return !ret;
}

1485
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1486
{
1487 1488 1489
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1490

1491
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1492 1493 1494
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1495 1496
}

1497
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1498
					     struct scrub_block *sblock_good)
1499
{
1500
	int i;
1501
	int ret = 0;
I
Ilya Dryomov 已提交
1502

1503
	for (i = 0; i < sblock_bad->sector_count; i++) {
1504
		int ret_sub;
I
Ilya Dryomov 已提交
1505

1506 1507
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1508 1509
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1510
	}
1511 1512 1513 1514

	return ret;
}

1515 1516 1517
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1518
{
1519 1520
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1521
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1522
	const u32 sectorsize = fs_info->sectorsize;
1523

1524 1525
	BUG_ON(sector_bad->page == NULL);
	BUG_ON(sector_good->page == NULL);
1526
	if (force_write || sblock_bad->header_error ||
1527
	    sblock_bad->checksum_error || sector_bad->io_error) {
1528 1529
		struct bio bio;
		struct bio_vec bvec;
1530 1531
		int ret;

1532
		if (!sector_bad->dev->bdev) {
1533
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1534
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1535 1536 1537
			return -EIO;
		}

1538 1539 1540
		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1541

1542 1543 1544
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1545

1546
		if (ret) {
1547
			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1548
				BTRFS_DEV_STAT_WRITE_ERRS);
1549
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1550 1551
			return -EIO;
		}
A
Arne Jansen 已提交
1552 1553
	}

1554 1555 1556
	return 0;
}

1557 1558
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1559
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1560
	int i;
1561

1562 1563 1564 1565 1566 1567 1568
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1569
	for (i = 0; i < sblock->sector_count; i++) {
1570 1571
		int ret;

1572
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1573
		if (ret)
1574
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1575 1576 1577
	}
}

1578
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1579
{
1580
	struct scrub_sector *sector = sblock->sectors[sector_num];
1581

1582 1583 1584
	BUG_ON(sector->page == NULL);
	if (sector->io_error)
		clear_page(page_address(sector->page));
1585

1586
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1597 1598 1599
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1611 1612
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1613 1614 1615
{
	struct scrub_bio *sbio;
	int ret;
1616
	const u32 sectorsize = sctx->fs_info->sectorsize;
1617

1618
	mutex_lock(&sctx->wr_lock);
1619
again:
1620 1621
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1622
					      GFP_KERNEL);
1623 1624
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1625 1626
			return -ENOMEM;
		}
1627
		sctx->wr_curr_bio->sctx = sctx;
1628
		sctx->wr_curr_bio->sector_count = 0;
1629
	}
1630
	sbio = sctx->wr_curr_bio;
1631
	if (sbio->sector_count == 0) {
1632
		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1633 1634 1635 1636 1637
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1638 1639
		sbio->physical = sector->physical_for_dev_replace;
		sbio->logical = sector->logical;
1640
		sbio->dev = sctx->wr_tgtdev;
1641 1642 1643
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1644
		}
1645 1646 1647
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1648
		sbio->status = 0;
1649
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1650
		   sector->physical_for_dev_replace ||
1651
		   sbio->logical + sbio->sector_count * sectorsize !=
1652
		   sector->logical) {
1653 1654 1655 1656
		scrub_wr_submit(sctx);
		goto again;
	}

1657
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1658
	if (ret != sectorsize) {
1659
		if (sbio->sector_count < 1) {
1660 1661
			bio_put(sbio->bio);
			sbio->bio = NULL;
1662
			mutex_unlock(&sctx->wr_lock);
1663 1664 1665 1666 1667 1668
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1669
	sbio->sectors[sbio->sector_count] = sector;
1670
	scrub_sector_get(sector);
1671 1672
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1673
		scrub_wr_submit(sctx);
1674
	mutex_unlock(&sctx->wr_lock);
1675 1676 1677 1678 1679 1680 1681 1682

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1683
	if (!sctx->wr_curr_bio)
1684 1685
		return;

1686 1687
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1688 1689 1690 1691 1692
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1693 1694
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1695 1696

	if (btrfs_is_zoned(sctx->fs_info))
1697
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1698
			sctx->fs_info->sectorsize;
1699 1700
}

1701
static void scrub_wr_bio_end_io(struct bio *bio)
1702 1703
{
	struct scrub_bio *sbio = bio->bi_private;
1704
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1705

1706
	sbio->status = bio->bi_status;
1707 1708
	sbio->bio = bio;

1709 1710
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1711 1712
}

1713
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1714 1715 1716 1717 1718
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1719
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1720
	if (sbio->status) {
1721
		struct btrfs_dev_replace *dev_replace =
1722
			&sbio->sctx->fs_info->dev_replace;
1723

1724 1725
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1726

1727
			sector->io_error = 1;
1728
			atomic64_inc(&dev_replace->num_write_errors);
1729 1730 1731
		}
	}

1732 1733
	for (i = 0; i < sbio->sector_count; i++)
		scrub_sector_put(sbio->sectors[i]);
1734 1735 1736 1737 1738 1739 1740

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1741 1742 1743 1744
{
	u64 flags;
	int ret;

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1757 1758
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1770 1771

	return ret;
A
Arne Jansen 已提交
1772 1773
}

1774
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1775
{
1776
	struct scrub_ctx *sctx = sblock->sctx;
1777 1778
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1779
	u8 csum[BTRFS_CSUM_SIZE];
1780
	struct scrub_sector *sector;
1781
	char *kaddr;
A
Arne Jansen 已提交
1782

1783
	BUG_ON(sblock->sector_count < 1);
1784 1785
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1786 1787
		return 0;

1788
	kaddr = page_address(sector->page);
1789

1790 1791
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1792

1793
	/*
1794
	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1795 1796 1797
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1798

1799
	if (memcmp(csum, sector->csum, fs_info->csum_size))
1800
		sblock->checksum_error = 1;
1801
	return sblock->checksum_error;
A
Arne Jansen 已提交
1802 1803
}

1804
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1805
{
1806
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1807
	struct btrfs_header *h;
1808
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1809
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1810 1811
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1812 1813 1814 1815 1816 1817 1818
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1819
	int i;
1820
	struct scrub_sector *sector;
1821
	char *kaddr;
1822

1823
	BUG_ON(sblock->sector_count < 1);
1824

1825
	/* Each member in sectors is just one sector */
1826
	ASSERT(sblock->sector_count == num_sectors);
1827

1828 1829
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1830
	h = (struct btrfs_header *)kaddr;
1831
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1832 1833 1834 1835 1836 1837

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1838
	if (sector->logical != btrfs_stack_header_bytenr(h))
1839
		sblock->header_error = 1;
A
Arne Jansen 已提交
1840

1841
	if (sector->generation != btrfs_stack_header_generation(h)) {
1842 1843 1844
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1845

1846
	if (!scrub_check_fsid(h->fsid, sector))
1847
		sblock->header_error = 1;
A
Arne Jansen 已提交
1848 1849 1850

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1851
		sblock->header_error = 1;
A
Arne Jansen 已提交
1852

1853 1854 1855
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1856
			    sectorsize - BTRFS_CSUM_SIZE);
1857

1858
	for (i = 1; i < num_sectors; i++) {
1859
		kaddr = page_address(sblock->sectors[i]->page);
1860
		crypto_shash_update(shash, kaddr, sectorsize);
1861 1862
	}

1863
	crypto_shash_final(shash, calculated_csum);
1864
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1865
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1866

1867
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1868 1869
}

1870
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1871 1872
{
	struct btrfs_super_block *s;
1873
	struct scrub_ctx *sctx = sblock->sctx;
1874 1875
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1876
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1877
	struct scrub_sector *sector;
1878
	char *kaddr;
1879 1880
	int fail_gen = 0;
	int fail_cor = 0;
1881

1882
	BUG_ON(sblock->sector_count < 1);
1883 1884
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1885
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1886

1887
	if (sector->logical != btrfs_super_bytenr(s))
1888
		++fail_cor;
A
Arne Jansen 已提交
1889

1890
	if (sector->generation != btrfs_super_generation(s))
1891
		++fail_gen;
A
Arne Jansen 已提交
1892

1893
	if (!scrub_check_fsid(s->fsid, sector))
1894
		++fail_cor;
A
Arne Jansen 已提交
1895

1896 1897 1898 1899
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1900

1901
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1902
		++fail_cor;
A
Arne Jansen 已提交
1903

1904
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1905 1906 1907 1908 1909
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1910 1911 1912
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1913
		if (fail_cor)
1914
			btrfs_dev_stat_inc_and_print(sector->dev,
1915 1916
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1917
			btrfs_dev_stat_inc_and_print(sector->dev,
1918
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1919 1920
	}

1921
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1922 1923
}

1924 1925
static void scrub_block_get(struct scrub_block *sblock)
{
1926
	refcount_inc(&sblock->refs);
1927 1928 1929 1930
}

static void scrub_block_put(struct scrub_block *sblock)
{
1931
	if (refcount_dec_and_test(&sblock->refs)) {
1932 1933
		int i;

1934 1935 1936
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1937
		for (i = 0; i < sblock->sector_count; i++)
1938
			scrub_sector_put(sblock->sectors[i]);
1939 1940 1941 1942
		kfree(sblock);
	}
}

1943
static void scrub_sector_get(struct scrub_sector *sector)
1944
{
1945
	atomic_inc(&sector->refs);
1946 1947
}

1948
static void scrub_sector_put(struct scrub_sector *sector)
1949
{
1950 1951 1952 1953
	if (atomic_dec_and_test(&sector->refs)) {
		if (sector->page)
			__free_page(sector->page);
		kfree(sector);
1954 1955 1956
	}
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2016
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2017 2018 2019
{
	struct scrub_bio *sbio;

2020
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2021
		return;
A
Arne Jansen 已提交
2022

2023 2024
	scrub_throttle(sctx);

2025 2026
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2027
	scrub_pending_bio_inc(sctx);
2028 2029
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2030 2031
}

2032 2033
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2034
{
2035
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2036
	struct scrub_bio *sbio;
2037
	const u32 sectorsize = sctx->fs_info->sectorsize;
2038
	int ret;
A
Arne Jansen 已提交
2039 2040 2041 2042 2043

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2044 2045 2046 2047 2048 2049
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2050
			sctx->bios[sctx->curr]->sector_count = 0;
2051
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2052
		} else {
2053 2054
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2055 2056
		}
	}
2057
	sbio = sctx->bios[sctx->curr];
2058
	if (sbio->sector_count == 0) {
2059 2060 2061
		sbio->physical = sector->physical;
		sbio->logical = sector->logical;
		sbio->dev = sector->dev;
2062 2063 2064
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2065
		}
2066 2067 2068
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2069
		sbio->status = 0;
2070
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2071
		   sector->physical ||
2072
		   sbio->logical + sbio->sector_count * sectorsize !=
2073 2074
		   sector->logical ||
		   sbio->dev != sector->dev) {
2075
		scrub_submit(sctx);
A
Arne Jansen 已提交
2076 2077
		goto again;
	}
2078

2079
	sbio->sectors[sbio->sector_count] = sector;
2080
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2081
	if (ret != sectorsize) {
2082
		if (sbio->sector_count < 1) {
2083 2084 2085 2086
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2087
		scrub_submit(sctx);
2088 2089 2090
		goto again;
	}

2091
	scrub_block_get(sblock); /* one for the page added to the bio */
2092
	atomic_inc(&sblock->outstanding_sectors);
2093 2094
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2095
		scrub_submit(sctx);
2096 2097 2098 2099

	return 0;
}

2100
static void scrub_missing_raid56_end_io(struct bio *bio)
2101 2102
{
	struct scrub_block *sblock = bio->bi_private;
2103
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2104

2105
	if (bio->bi_status)
2106 2107
		sblock->no_io_error_seen = 0;

2108 2109
	bio_put(bio);

2110
	queue_work(fs_info->scrub_workers, &sblock->work);
2111 2112
}

2113
static void scrub_missing_raid56_worker(struct work_struct *work)
2114 2115 2116
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2117
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2118 2119 2120
	u64 logical;
	struct btrfs_device *dev;

2121 2122
	logical = sblock->sectors[0]->logical;
	dev = sblock->sectors[0]->dev;
2123

2124
	if (sblock->no_io_error_seen)
2125
		scrub_recheck_block_checksum(sblock);
2126 2127 2128 2129 2130

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2131
		btrfs_err_rl_in_rcu(fs_info,
2132
			"IO error rebuilding logical %llu for dev %s",
2133 2134 2135 2136 2137
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2138
		btrfs_err_rl_in_rcu(fs_info,
2139
			"failed to rebuild valid logical %llu for dev %s",
2140 2141 2142 2143 2144
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2145
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2146
		mutex_lock(&sctx->wr_lock);
2147
		scrub_wr_submit(sctx);
2148
		mutex_unlock(&sctx->wr_lock);
2149 2150
	}

2151
	scrub_block_put(sblock);
2152 2153 2154 2155 2156 2157
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2158
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2159 2160
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = sblock->sectors[0]->logical;
2161
	struct btrfs_io_context *bioc = NULL;
2162 2163 2164 2165 2166
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2167
	btrfs_bio_counter_inc_blocked(fs_info);
2168
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2169 2170 2171
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2172 2173

	if (WARN_ON(!sctx->is_dev_replace ||
2174
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2175 2176 2177 2178
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2179
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2180
		 */
2181
		goto bioc_out;
2182 2183
	}

2184
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2185 2186 2187 2188
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2189
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2190 2191 2192
	if (!rbio)
		goto rbio_out;

2193
	for (i = 0; i < sblock->sector_count; i++) {
2194
		struct scrub_sector *sector = sblock->sectors[i];
2195

2196 2197 2198 2199 2200
		/*
		 * For now, our scrub is still one page per sector, so pgoff
		 * is always 0.
		 */
		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2201 2202
	}

2203
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2204 2205 2206 2207 2208 2209 2210
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2211
bioc_out:
2212
	btrfs_bio_counter_dec(fs_info);
2213
	btrfs_put_bioc(bioc);
2214 2215 2216 2217 2218
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2219
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2220
		       u64 physical, struct btrfs_device *dev, u64 flags,
2221
		       u64 gen, int mirror_num, u8 *csum,
2222
		       u64 physical_for_dev_replace)
2223 2224
{
	struct scrub_block *sblock;
2225
	const u32 sectorsize = sctx->fs_info->sectorsize;
2226 2227
	int index;

2228
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229
	if (!sblock) {
2230 2231 2232
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2233
		return -ENOMEM;
A
Arne Jansen 已提交
2234
	}
2235

2236 2237
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2238
	refcount_set(&sblock->refs, 1);
2239
	sblock->sctx = sctx;
2240 2241 2242
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2243
		struct scrub_sector *sector;
2244 2245 2246 2247 2248 2249
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2250

2251 2252
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2253
leave_nomem:
2254 2255 2256
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2257
			scrub_block_put(sblock);
2258 2259
			return -ENOMEM;
		}
2260
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->physical_for_dev_replace = physical_for_dev_replace;
		sector->mirror_num = mirror_num;
2271
		if (csum) {
2272 2273
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2274
		} else {
2275
			sector->have_csum = 0;
2276
		}
2277
		sblock->sector_count++;
2278 2279
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2280
			goto leave_nomem;
2281 2282 2283
		len -= l;
		logical += l;
		physical += l;
2284
		physical_for_dev_replace += l;
2285 2286
	}

2287
	WARN_ON(sblock->sector_count == 0);
2288
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2289 2290 2291 2292 2293 2294
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2295
		for (index = 0; index < sblock->sector_count; index++) {
2296
			struct scrub_sector *sector = sblock->sectors[index];
2297
			int ret;
2298

2299
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2300 2301 2302 2303
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2304
		}
A
Arne Jansen 已提交
2305

2306
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2307 2308
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2309

2310 2311
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2312 2313 2314
	return 0;
}

2315
static void scrub_bio_end_io(struct bio *bio)
2316 2317
{
	struct scrub_bio *sbio = bio->bi_private;
2318
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2319

2320
	sbio->status = bio->bi_status;
2321 2322
	sbio->bio = bio;

2323
	queue_work(fs_info->scrub_workers, &sbio->work);
2324 2325
}

2326
static void scrub_bio_end_io_worker(struct work_struct *work)
2327 2328
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2329
	struct scrub_ctx *sctx = sbio->sctx;
2330 2331
	int i;

2332
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2333
	if (sbio->status) {
2334 2335
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2336

2337 2338
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2339 2340 2341
		}
	}

2342
	/* Now complete the scrub_block items that have all pages completed */
2343 2344
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2345
		struct scrub_block *sblock = sector->sblock;
2346

2347
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2348 2349 2350 2351 2352 2353
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2354 2355 2356 2357
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2358

2359
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2360
		mutex_lock(&sctx->wr_lock);
2361
		scrub_wr_submit(sctx);
2362
		mutex_unlock(&sctx->wr_lock);
2363 2364
	}

2365
	scrub_pending_bio_dec(sctx);
2366 2367
}

2368 2369
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2370
				       u64 start, u32 len)
2371
{
2372
	u64 offset;
2373
	u32 nsectors;
2374
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2375 2376 2377 2378 2379 2380 2381

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2382
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383
	offset = offset >> sectorsize_bits;
2384
	nsectors = len >> sectorsize_bits;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396
						   u64 start, u32 len)
2397
{
2398
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2399 2400 2401
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402
						  u64 start, u32 len)
2403
{
2404
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2405 2406
}

2407 2408
static void scrub_block_complete(struct scrub_block *sblock)
{
2409 2410
	int corrupted = 0;

2411
	if (!sblock->no_io_error_seen) {
2412
		corrupted = 1;
2413
		scrub_handle_errored_block(sblock);
2414 2415 2416 2417 2418 2419
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2420 2421
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2422 2423
			scrub_write_block_to_dev_replace(sblock);
	}
2424 2425

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2426 2427
		u64 start = sblock->sectors[0]->logical;
		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2428
			  sblock->sctx->fs_info->sectorsize;
2429

2430
		ASSERT(end - start <= U32_MAX);
2431 2432 2433
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2434 2435
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2448
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2449 2450 2451 2452 2453
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2454
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2455
{
2456
	bool found = false;
A
Arne Jansen 已提交
2457

2458
	while (!list_empty(&sctx->csum_list)) {
2459 2460 2461 2462
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2463
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2464
				       struct btrfs_ordered_sum, list);
2465
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2466 2467 2468
		if (sum->bytenr > logical)
			break;

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2479

2480 2481 2482 2483
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2484

2485 2486 2487 2488 2489 2490 2491
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2492
	}
2493 2494
	if (!found)
		return 0;
2495
	return 1;
A
Arne Jansen 已提交
2496 2497 2498
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2499
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2500
			u64 logical, u32 len,
2501
			u64 physical, struct btrfs_device *dev, u64 flags,
2502
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2503
{
2504 2505 2506
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2507 2508
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2509 2510 2511
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2512 2513 2514 2515
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2516 2517 2518 2519
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2520
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2521 2522 2523 2524
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2525 2526 2527 2528
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2529
	} else {
2530
		blocksize = sctx->fs_info->sectorsize;
2531
		WARN_ON(1);
2532
	}
A
Arne Jansen 已提交
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2546
	while (len) {
2547
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2548 2549 2550 2551
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2552
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2553
			if (have_csum == 0)
2554
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2555
		}
2556 2557 2558
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2559 2560 2561 2562 2563
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2564
		src_physical += l;
A
Arne Jansen 已提交
2565 2566 2567 2568
	}
	return 0;
}

2569
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2570
				  u64 logical, u32 len,
2571 2572 2573 2574 2575
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2576
	const u32 sectorsize = sctx->fs_info->sectorsize;
2577 2578
	int index;

2579 2580
	ASSERT(IS_ALIGNED(len, sectorsize));

2581
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2582 2583 2584 2585 2586 2587 2588 2589 2590
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2591
	refcount_set(&sblock->refs, 1);
2592 2593 2594 2595 2596 2597
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2598
		struct scrub_sector *sector;
2599

2600 2601
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2602 2603 2604 2605 2606 2607 2608
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2609
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2610
		/* For scrub block */
2611 2612
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
2613
		/* For scrub parity */
2614 2615 2616 2617 2618 2619 2620 2621 2622
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->mirror_num = mirror_num;
2623
		if (csum) {
2624 2625
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2626
		} else {
2627
			sector->have_csum = 0;
2628
		}
2629
		sblock->sector_count++;
2630 2631
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2632
			goto leave_nomem;
2633 2634 2635 2636 2637 2638


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2639 2640
	}

2641 2642
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2643
		struct scrub_sector *sector = sblock->sectors[index];
2644 2645
		int ret;

2646
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2647 2648 2649 2650 2651 2652
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2653
	/* Last one frees, either here or in bio completion for last sector */
2654 2655 2656 2657 2658
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2659
				   u64 logical, u32 len,
2660 2661 2662 2663 2664 2665 2666 2667
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2668
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2669 2670 2671 2672
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2673
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2674
		blocksize = sparity->stripe_len;
2675
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2676
		blocksize = sparity->stripe_len;
2677
	} else {
2678
		blocksize = sctx->fs_info->sectorsize;
2679 2680 2681 2682
		WARN_ON(1);
	}

	while (len) {
2683
		u32 l = min(len, blocksize);
2684 2685 2686 2687
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2688
			have_csum = scrub_find_csum(sctx, logical, csum);
2689 2690 2691
			if (have_csum == 0)
				goto skip;
		}
2692
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2693 2694 2695 2696
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2697
skip:
2698 2699 2700 2701 2702 2703 2704
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2705 2706 2707 2708 2709 2710 2711 2712
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2713 2714
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2715 2716 2717 2718 2719
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2720 2721
	u32 stripe_index;
	u32 rot;
2722
	const int data_stripes = nr_data_stripes(map);
2723

2724
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2725 2726 2727
	if (stripe_start)
		*stripe_start = last_offset;

2728
	*offset = last_offset;
2729
	for (i = 0; i < data_stripes; i++) {
2730 2731
		*offset = last_offset + i * map->stripe_len;

2732
		stripe_nr = div64_u64(*offset, map->stripe_len);
2733
		stripe_nr = div_u64(stripe_nr, data_stripes);
2734 2735

		/* Work out the disk rotation on this stripe-set */
2736
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2737 2738
		/* calculate which stripe this data locates */
		rot += i;
2739
		stripe_index = rot % map->num_stripes;
2740 2741 2742 2743 2744 2745 2746 2747 2748
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2749 2750 2751
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2752
	struct scrub_sector *curr, *next;
2753 2754
	int nbits;

2755
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2756 2757 2758 2759 2760 2761 2762
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2763
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2764
		list_del_init(&curr->list);
2765
		scrub_sector_put(curr);
2766 2767 2768 2769 2770
	}

	kfree(sparity);
}

2771
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2772 2773 2774 2775 2776 2777 2778 2779 2780
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2781
static void scrub_parity_bio_endio(struct bio *bio)
2782
{
Y
Yu Zhe 已提交
2783
	struct scrub_parity *sparity = bio->bi_private;
2784
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2785

2786
	if (bio->bi_status)
2787 2788
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2789 2790

	bio_put(bio);
2791

2792 2793
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2794 2795 2796 2797 2798
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2799
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2800 2801
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2802
	struct btrfs_io_context *bioc = NULL;
2803 2804 2805
	u64 length;
	int ret;

2806 2807
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
2808 2809
		goto out;

2810
	length = sparity->logic_end - sparity->logic_start;
2811 2812

	btrfs_bio_counter_inc_blocked(fs_info);
2813
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2814 2815 2816
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2817

2818
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2819 2820 2821 2822
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2823
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2824
					      sparity->scrub_dev,
2825
					      &sparity->dbitmap,
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2836
bioc_out:
2837
	btrfs_bio_counter_dec(fs_info);
2838
	btrfs_put_bioc(bioc);
2839
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2850
	refcount_inc(&sparity->refs);
2851 2852 2853 2854
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2855
	if (!refcount_dec_and_test(&sparity->refs))
2856 2857 2858 2859 2860
		return;

	scrub_parity_check_and_repair(sparity);
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

2987 2988 2989 2990 2991 2992 2993 2994 2995
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3006
	u64 cur_logical = logical;
3007 3008 3009 3010 3011 3012 3013
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3014
	while (cur_logical < logical + map->stripe_len) {
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3025 3026 3027 3028 3029
		ret = find_first_extent_item(extent_root, path, cur_logical,
					     logical + map->stripe_len - cur_logical);
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3030 3031
			break;
		}
3032
		if (ret < 0)
3033
			break;
3034 3035
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3036

3037
		/* Metadata should not cross stripe boundaries */
3038
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3039 3040
		    does_range_cross_boundary(extent_start, extent_size,
					      logical, map->stripe_len)) {
3041
			btrfs_err(fs_info,
3042 3043
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3044 3045 3046
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3047 3048
			cur_logical += extent_size;
			continue;
3049 3050
		}

3051 3052
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3053

3054 3055 3056 3057 3058
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
				  logical + map->stripe_len) - cur_logical;
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

		ret = btrfs_lookup_csums_range(csum_root, extent_start,
					       extent_start + extent_size - 1,
					       &sctx->csum_list, 1);
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3100
		cur_logical += extent_size;
3101 3102 3103 3104 3105
	}
	btrfs_release_path(path);
	return ret;
}

3106 3107 3108 3109 3110 3111
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3112
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3113
	struct btrfs_path *path;
3114
	u64 cur_logical;
3115 3116 3117 3118
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3129
	ASSERT(map->stripe_len <= U32_MAX);
3130
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3131 3132
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3133 3134 3135 3136
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3137
		btrfs_free_path(path);
3138 3139 3140
		return -ENOMEM;
	}

3141
	ASSERT(map->stripe_len <= U32_MAX);
3142 3143 3144 3145 3146 3147
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3148
	refcount_set(&sparity->refs, 1);
3149
	INIT_LIST_HEAD(&sparity->sectors_list);
3150 3151

	ret = 0;
3152 3153 3154 3155
	for (cur_logical = logic_start; cur_logical < logic_end;
	     cur_logical += map->stripe_len) {
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3156 3157
		if (ret < 0)
			break;
3158
	}
3159

3160 3161
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3162
	mutex_lock(&sctx->wr_lock);
3163
	scrub_wr_submit(sctx);
3164
	mutex_unlock(&sctx->wr_lock);
3165

3166
	btrfs_free_path(path);
3167 3168 3169
	return ret < 0 ? ret : 0;
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
		if (bg->removed) {
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
					&sctx->csum_list, 1);
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3322 3323 3324 3325
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3410
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3411
					   struct btrfs_block_group *bg,
3412
					   struct extent_map *em,
3413
					   struct btrfs_device *scrub_dev,
3414
					   int stripe_index)
A
Arne Jansen 已提交
3415
{
3416
	struct btrfs_path *path;
3417
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3418
	struct btrfs_root *root;
3419
	struct btrfs_root *csum_root;
3420
	struct blk_plug plug;
3421
	struct map_lookup *map = em->map_lookup;
3422
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3423
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3424
	int ret;
3425
	u64 physical = map->stripes[stripe_index].physical;
3426 3427
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3428
	u64 logical;
L
Liu Bo 已提交
3429
	u64 logic_end;
3430
	/* The logical increment after finishing one stripe */
3431
	u64 increment;
3432
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3433
	u64 offset;
3434 3435
	u64 stripe_logical;
	u64 stripe_end;
3436
	int stop_loop = 0;
D
David Woodhouse 已提交
3437

A
Arne Jansen 已提交
3438 3439 3440 3441
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3442 3443 3444 3445 3446
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3447 3448
	path->search_commit_root = 1;
	path->skip_locking = 1;
3449
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3450

3451
	wait_event(sctx->list_wait,
3452
		   atomic_read(&sctx->bios_in_flight) == 0);
3453
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3454

3455 3456
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3457

A
Arne Jansen 已提交
3458 3459 3460 3461
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3462
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3463

3464 3465 3466 3467 3468 3469 3470 3471
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3493
		offset = 0;
3494 3495
		goto out;
	}
3496 3497 3498
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3499
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3500 3501 3502 3503 3504
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3505
	ret = 0;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3516 3517 3518 3519
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3520
	while (physical < physical_end) {
3521 3522
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3533
			goto next;
3534 3535
		}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3547 3548 3549 3550 3551
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3552
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3553
		if (stop_loop)
3554 3555
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3556 3557
		else
			sctx->stat.last_physical = physical;
3558
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3559 3560
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3561
	}
3562
out:
A
Arne Jansen 已提交
3563
	/* push queued extents */
3564
	scrub_submit(sctx);
3565
	mutex_lock(&sctx->wr_lock);
3566
	scrub_wr_submit(sctx);
3567
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3568

3569
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3570
	btrfs_free_path(path);
3571 3572 3573 3574

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3575 3576 3577 3578
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3579 3580 3581 3582
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3583 3584 3585
	return ret < 0 ? ret : 0;
}

3586
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3587
					  struct btrfs_block_group *bg,
3588
					  struct btrfs_device *scrub_dev,
3589
					  u64 dev_offset,
3590
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3591
{
3592
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3593
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3594 3595 3596
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3597
	int ret = 0;
A
Arne Jansen 已提交
3598

3599
	read_lock(&map_tree->lock);
3600
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3601
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3602

3603 3604 3605 3606 3607
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3608 3609
		spin_lock(&bg->lock);
		if (!bg->removed)
3610
			ret = -EINVAL;
3611
		spin_unlock(&bg->lock);
3612 3613 3614

		return ret;
	}
3615
	if (em->start != bg->start)
A
Arne Jansen 已提交
3616
		goto out;
3617
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3618 3619
		goto out;

3620
	map = em->map_lookup;
A
Arne Jansen 已提交
3621
	for (i = 0; i < map->num_stripes; ++i) {
3622
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3623
		    map->stripes[i].physical == dev_offset) {
3624
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3654
static noinline_for_stack
3655
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3656
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3657 3658 3659
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3660 3661
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3662
	u64 chunk_offset;
3663
	int ret = 0;
3664
	int ro_set;
A
Arne Jansen 已提交
3665 3666 3667 3668
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3669
	struct btrfs_block_group *cache;
3670
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3671 3672 3673 3674 3675

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3676
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3677 3678 3679
	path->search_commit_root = 1;
	path->skip_locking = 1;

3680
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3681 3682 3683 3684
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3685 3686
		u64 dev_extent_len;

A
Arne Jansen 已提交
3687 3688
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3689 3690 3691 3692 3693
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3694 3695 3696 3697
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3698
					break;
3699 3700 3701
				}
			} else {
				ret = 0;
3702 3703
			}
		}
A
Arne Jansen 已提交
3704 3705 3706 3707 3708 3709

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3710
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3711 3712
			break;

3713
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3723
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3724

3725
		if (found_key.offset + dev_extent_len <= start)
3726
			goto skip;
A
Arne Jansen 已提交
3727 3728 3729 3730 3731 3732 3733 3734

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3735 3736 3737 3738 3739 3740

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3766 3767 3768 3769
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3770 3771
				btrfs_put_block_group(cache);
				goto skip;
3772 3773 3774 3775
			}
			spin_unlock(&cache->lock);
		}

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3790
		btrfs_freeze_block_group(cache);
3791 3792
		spin_unlock(&cache->lock);

3793 3794 3795 3796 3797 3798 3799 3800 3801
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3832
		 */
3833
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3844 3845
		if (ret == 0) {
			ro_set = 1;
3846
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3847 3848 3849
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3850
			 * It is not a problem for scrub, because
3851 3852 3853 3854
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3855 3856 3857 3858 3859 3860 3861
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3862
		} else {
J
Jeff Mahoney 已提交
3863
			btrfs_warn(fs_info,
3864
				   "failed setting block group ro: %d", ret);
3865
			btrfs_unfreeze_block_group(cache);
3866
			btrfs_put_block_group(cache);
3867
			scrub_pause_off(fs_info);
3868 3869 3870
			break;
		}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3883
		down_write(&dev_replace->rwsem);
3884
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3885 3886
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3887 3888
		up_write(&dev_replace->rwsem);

3889 3890
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3902
		sctx->flush_all_writes = true;
3903
		scrub_submit(sctx);
3904
		mutex_lock(&sctx->wr_lock);
3905
		scrub_wr_submit(sctx);
3906
		mutex_unlock(&sctx->wr_lock);
3907 3908 3909

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3910 3911

		scrub_pause_on(fs_info);
3912 3913 3914 3915 3916 3917

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3918 3919
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3920
		sctx->flush_all_writes = false;
3921

3922
		scrub_pause_off(fs_info);
3923

3924 3925 3926 3927 3928
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3929
		down_write(&dev_replace->rwsem);
3930 3931
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3932
		up_write(&dev_replace->rwsem);
3933

3934
		if (ro_set)
3935
			btrfs_dec_block_group_ro(cache);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3946
		    cache->used == 0) {
3947
			spin_unlock(&cache->lock);
3948 3949 3950 3951 3952
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3953 3954 3955
		} else {
			spin_unlock(&cache->lock);
		}
3956
skip_unfreeze:
3957
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3958 3959 3960
		btrfs_put_block_group(cache);
		if (ret)
			break;
3961
		if (sctx->is_dev_replace &&
3962
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3963 3964 3965 3966 3967 3968 3969
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3970
skip:
3971
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
3972
		btrfs_release_path(path);
A
Arne Jansen 已提交
3973 3974 3975
	}

	btrfs_free_path(path);
3976

3977
	return ret;
A
Arne Jansen 已提交
3978 3979
}

3980 3981
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3982 3983 3984 3985 3986
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3987
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3988

J
Josef Bacik 已提交
3989
	if (BTRFS_FS_ERROR(fs_info))
3990
		return -EROFS;
3991

3992
	/* Seed devices of a new filesystem has their own generation. */
3993
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3994 3995
		gen = scrub_dev->generation;
	else
3996
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3997 3998 3999

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4000 4001
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4002
			break;
4003 4004
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4005

4006 4007 4008
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4009 4010 4011
		if (ret)
			return ret;
	}
4012
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4013 4014 4015 4016

	return 0;
}

4017 4018 4019 4020
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4021 4022 4023 4024 4025
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4026 4027 4028 4029 4030 4031

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4032 4033 4034 4035 4036 4037
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4038 4039 4040
	}
}

A
Arne Jansen 已提交
4041 4042 4043
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4044 4045
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4046
{
4047 4048 4049
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4050
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4051
	int max_active = fs_info->thread_pool_size;
4052
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4053

4054 4055
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4056

4057 4058
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4059 4060
	if (!scrub_workers)
		goto fail_scrub_workers;
4061

4062
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4063 4064
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4065

4066
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4078
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4079 4080
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4081
	}
4082 4083 4084
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4085

4086
	ret = 0;
4087
	destroy_workqueue(scrub_parity);
4088
fail_scrub_parity_workers:
4089
	destroy_workqueue(scrub_wr_comp);
4090
fail_scrub_wr_completion_workers:
4091
	destroy_workqueue(scrub_workers);
4092
fail_scrub_workers:
4093
	return ret;
A
Arne Jansen 已提交
4094 4095
}

4096 4097
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4098
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4099
{
4100
	struct btrfs_dev_lookup_args args = { .devid = devid };
4101
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4102 4103
	int ret;
	struct btrfs_device *dev;
4104
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4105

4106
	if (btrfs_fs_closing(fs_info))
4107
		return -EAGAIN;
A
Arne Jansen 已提交
4108

4109
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4110 4111 4112 4113 4114
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4115 4116
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4117 4118
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4119 4120 4121
		return -EINVAL;
	}

4122
	if (fs_info->nodesize >
4123 4124
	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4125
		/*
4126
		 * Would exhaust the array bounds of sectorv member in
4127 4128
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4129
		btrfs_err(fs_info,
4130 4131 4132
"scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4133 4134 4135
		return -EINVAL;
	}

4136 4137 4138 4139
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4140

4141 4142 4143 4144
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4145
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4146
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4147 4148
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4149
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4150
		ret = -ENODEV;
4151
		goto out;
A
Arne Jansen 已提交
4152 4153
	}

4154 4155
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4156
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4157 4158 4159
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4160
		ret = -EROFS;
4161
		goto out;
4162 4163
	}

4164
	mutex_lock(&fs_info->scrub_lock);
4165
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4166
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4167
		mutex_unlock(&fs_info->scrub_lock);
4168
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169
		ret = -EIO;
4170
		goto out;
A
Arne Jansen 已提交
4171 4172
	}

4173
	down_read(&fs_info->dev_replace.rwsem);
4174
	if (dev->scrub_ctx ||
4175 4176
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4177
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4178
		mutex_unlock(&fs_info->scrub_lock);
4179
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4180
		ret = -EINPROGRESS;
4181
		goto out;
A
Arne Jansen 已提交
4182
	}
4183
	up_read(&fs_info->dev_replace.rwsem);
4184

4185
	sctx->readonly = readonly;
4186
	dev->scrub_ctx = sctx;
4187
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4188

4189 4190 4191 4192
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4193
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4194 4195 4196
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4197 4198 4199
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4200
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4201 4202 4203 4204 4205 4206
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4207
	if (!is_dev_replace) {
4208
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4209 4210 4211 4212
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4213
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4214
		ret = scrub_supers(sctx, dev);
4215
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4216
	}
A
Arne Jansen 已提交
4217 4218

	if (!ret)
4219
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4220
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4221

4222
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4223 4224 4225
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4226
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4227

A
Arne Jansen 已提交
4228
	if (progress)
4229
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4230

4231 4232 4233 4234
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4235
	mutex_lock(&fs_info->scrub_lock);
4236
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4237 4238
	mutex_unlock(&fs_info->scrub_lock);

4239
	scrub_workers_put(fs_info);
4240
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4241

4242
	return ret;
4243 4244
out:
	scrub_workers_put(fs_info);
4245 4246 4247
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4248 4249 4250
	return ret;
}

4251
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4266
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4267 4268 4269 4270 4271
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4272
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4293
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4294
{
4295
	struct btrfs_fs_info *fs_info = dev->fs_info;
4296
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4297 4298

	mutex_lock(&fs_info->scrub_lock);
4299
	sctx = dev->scrub_ctx;
4300
	if (!sctx) {
A
Arne Jansen 已提交
4301 4302 4303
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4304
	atomic_inc(&sctx->cancel_req);
4305
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4306 4307
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4308
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4309 4310 4311 4312 4313 4314
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4315

4316
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4317 4318
			 struct btrfs_scrub_progress *progress)
{
4319
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4320
	struct btrfs_device *dev;
4321
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4322

4323
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4324
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4325
	if (dev)
4326
		sctx = dev->scrub_ctx;
4327 4328
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4329
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4330

4331
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4332
}
4333

4334 4335 4336 4337 4338
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4339 4340
{
	u64 mapped_length;
4341
	struct btrfs_io_context *bioc = NULL;
4342 4343 4344
	int ret;

	mapped_length = extent_len;
4345
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4346 4347 4348 4349
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4350 4351 4352
		return;
	}

4353 4354 4355 4356
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4357
}