scrub.c 112.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167 168

	int			is_dev_replace;
169
	u64			write_pointer;
170 171 172 173 174

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
175
	bool                    flush_all_writes;
176

A
Arne Jansen 已提交
177 178 179 180 181
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
182 183 184 185 186 187 188 189

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
190
	refcount_t              refs;
A
Arne Jansen 已提交
191 192
};

193 194 195 196
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
197
	u64			physical;
198 199 200 201
	u64			logical;
	struct btrfs_device	*dev;
};

202 203 204 205 206 207 208
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

209
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
210
				     struct scrub_block *sblocks_for_recheck);
211
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
212 213
				struct scrub_block *sblock,
				int retry_failed_mirror);
214
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
215
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
216
					     struct scrub_block *sblock_good);
217 218 219
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
220 221 222
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
223 224 225 226
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
227 228
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
229 230
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
231
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
232
		       u64 physical, struct btrfs_device *dev, u64 flags,
233
		       u64 gen, int mirror_num, u8 *csum,
234
		       u64 physical_for_dev_replace);
235
static void scrub_bio_end_io(struct bio *bio);
236 237
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
238
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
239
			       u64 extent_logical, u32 extent_len,
240 241 242 243 244 245
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
246
static void scrub_wr_bio_end_io(struct bio *bio);
247
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
248
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
249

250
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
251
{
252 253
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
254
}
S
Stefan Behrens 已提交
255

256 257
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
258
	refcount_inc(&sctx->refs);
259 260 261 262 263 264 265
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
266
	scrub_put_ctx(sctx);
267 268
}

269
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
270 271 272 273 274 275 276 277 278
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

279
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
280 281 282
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
283
}
284

285 286
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
287 288 289 290 291 292 293 294
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

295 296 297 298 299 300
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

320
	lockdep_assert_held(&locks_root->lock);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

336 337 338
	/*
	 * Insert new lock.
	 */
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

364
	lockdep_assert_held(&locks_root->lock);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
384
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
385 386 387 388 389 390 391 392 393 394 395 396 397
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
398 399
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
417
	struct btrfs_block_group *bg_cache;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
464
	struct btrfs_block_group *bg_cache;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

518
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
519
{
520
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
521
		struct btrfs_ordered_sum *sum;
522
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
523 524 525 526 527 528
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

529
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
530 531 532
{
	int i;

533
	if (!sctx)
A
Arne Jansen 已提交
534 535
		return;

536
	/* this can happen when scrub is cancelled */
537 538
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
539 540

		for (i = 0; i < sbio->page_count; i++) {
541
			WARN_ON(!sbio->pagev[i]->page);
542 543 544 545 546
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

547
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
548
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
549 550 551 552 553 554

		if (!sbio)
			break;
		kfree(sbio);
	}

555
	kfree(sctx->wr_curr_bio);
556 557
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
558 559
}

560 561
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
562
	if (refcount_dec_and_test(&sctx->refs))
563 564 565
		scrub_free_ctx(sctx);
}

566 567
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
568
{
569
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
570 571
	int		i;

572
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
573
	if (!sctx)
A
Arne Jansen 已提交
574
		goto nomem;
575
	refcount_set(&sctx->refs, 1);
576
	sctx->is_dev_replace = is_dev_replace;
577
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
578
	sctx->curr = -1;
579
	sctx->fs_info = fs_info;
580
	INIT_LIST_HEAD(&sctx->csum_list);
581
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
582 583
		struct scrub_bio *sbio;

584
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
585 586
		if (!sbio)
			goto nomem;
587
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
588 589

		sbio->index = i;
590
		sbio->sctx = sctx;
591
		sbio->page_count = 0;
592 593
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
594

595
		if (i != SCRUB_BIOS_PER_SCTX - 1)
596
			sctx->bios[i]->next_free = i + 1;
597
		else
598 599 600
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
601 602
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
603 604 605 606 607
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
608

609 610 611
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
612
	if (is_dev_replace) {
613
		WARN_ON(!fs_info->dev_replace.tgtdev);
614
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
615
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
616
		sctx->flush_all_writes = false;
617
	}
618

619
	return sctx;
A
Arne Jansen 已提交
620 621

nomem:
622
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
623 624 625
	return ERR_PTR(-ENOMEM);
}

626 627
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
628 629 630 631 632
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
633
	unsigned nofs_flag;
634 635
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
636
	struct scrub_warning *swarn = warn_ctx;
637
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
638 639
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
640
	struct btrfs_key key;
641

D
David Sterba 已提交
642
	local_root = btrfs_get_fs_root(fs_info, root, true);
643 644 645 646 647
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

648 649 650
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
651 652 653 654 655
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
656
	if (ret) {
657
		btrfs_put_root(local_root);
658 659 660 661 662 663 664 665 666 667 668
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

669 670 671 672 673 674
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
675
	ipath = init_ipath(4096, local_root, swarn->path);
676
	memalloc_nofs_restore(nofs_flag);
677
	if (IS_ERR(ipath)) {
678
		btrfs_put_root(local_root);
679 680 681 682
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
683 684 685 686 687 688 689 690 691 692
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
693
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
694
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
695 696
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
697
				  swarn->physical,
J
Jeff Mahoney 已提交
698 699 700
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
701

702
	btrfs_put_root(local_root);
703 704 705 706
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
707
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
708
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
709 710
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
711
			  swarn->physical,
J
Jeff Mahoney 已提交
712
			  root, inum, offset, ret);
713 714 715 716 717

	free_ipath(ipath);
	return 0;
}

718
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
719
{
720 721
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
722 723 724 725 726
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
727 728 729
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
730
	u64 ref_root;
731
	u32 item_size;
732
	u8 ref_level = 0;
733
	int ret;
734

735
	WARN_ON(sblock->page_count < 1);
736
	dev = sblock->pagev[0]->dev;
737
	fs_info = sblock->sctx->fs_info;
738

739
	path = btrfs_alloc_path();
740 741
	if (!path)
		return;
742

D
David Sterba 已提交
743
	swarn.physical = sblock->pagev[0]->physical;
744
	swarn.logical = sblock->pagev[0]->logical;
745
	swarn.errstr = errstr;
746
	swarn.dev = NULL;
747

748 749
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
750 751 752
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
753
	extent_item_pos = swarn.logical - found_key.objectid;
754 755 756 757 758 759
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

760
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
761
		do {
762 763 764
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
765
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
766
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
767
				errstr, swarn.logical,
768
				rcu_str_deref(dev->name),
D
David Sterba 已提交
769
				swarn.physical,
770 771 772 773
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
774
		btrfs_release_path(path);
775
	} else {
776
		btrfs_release_path(path);
777
		swarn.path = path;
778
		swarn.dev = dev;
779 780
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
781
					scrub_print_warning_inode, &swarn, false);
782 783 784 785 786 787
	}

out:
	btrfs_free_path(path);
}

788 789
static inline void scrub_get_recover(struct scrub_recover *recover)
{
790
	refcount_inc(&recover->refs);
791 792
}

793 794
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
795
{
796
	if (refcount_dec_and_test(&recover->refs)) {
797
		btrfs_bio_counter_dec(fs_info);
798
		btrfs_put_bbio(recover->bbio);
799 800 801 802
		kfree(recover);
	}
}

A
Arne Jansen 已提交
803
/*
804 805 806 807 808 809
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
810
 */
811
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
812
{
813
	struct scrub_ctx *sctx = sblock_to_check->sctx;
814
	struct btrfs_device *dev;
815 816 817 818 819 820 821 822 823 824 825
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
826
	bool full_stripe_locked;
827
	unsigned int nofs_flag;
828
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
829 830 831
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
832
	fs_info = sctx->fs_info;
833 834 835 836 837 838 839 840 841 842 843
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
844 845 846 847
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
848
			BTRFS_EXTENT_FLAG_DATA);
849 850
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
851

852 853 854
	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
		return btrfs_repair_one_zone(fs_info, logical);

855 856 857 858 859 860 861 862 863 864
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
865 866 867 868 869 870 871 872 873
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
874
		memalloc_nofs_restore(nofs_flag);
875 876 877 878 879 880 881 882 883
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

913
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
914
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
915
	if (!sblocks_for_recheck) {
916 917 918 919 920
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
921
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
922
		goto out;
A
Arne Jansen 已提交
923 924
	}

925
	/* setup the context, map the logical blocks and alloc the pages */
926
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
927
	if (ret) {
928 929 930 931
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
932
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
933 934 935 936
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
937

938
	/* build and submit the bios for the failed mirror, check checksums */
939
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
940

941 942 943 944 945 946 947 948 949 950
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
951 952
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
953
		sblock_to_check->data_corrected = 1;
954
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
955

956 957
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
958
		goto out;
A
Arne Jansen 已提交
959 960
	}

961
	if (!sblock_bad->no_io_error_seen) {
962 963 964
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
965
		if (__ratelimit(&rs))
966
			scrub_print_warning("i/o error", sblock_to_check);
967
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
968
	} else if (sblock_bad->checksum_error) {
969 970 971
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
972
		if (__ratelimit(&rs))
973
			scrub_print_warning("checksum error", sblock_to_check);
974
		btrfs_dev_stat_inc_and_print(dev,
975
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
976
	} else if (sblock_bad->header_error) {
977 978 979
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
980
		if (__ratelimit(&rs))
981 982
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
983
		if (sblock_bad->generation_error)
984
			btrfs_dev_stat_inc_and_print(dev,
985 986
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
987
			btrfs_dev_stat_inc_and_print(dev,
988
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
989
	}
A
Arne Jansen 已提交
990

991 992 993 994
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
995

996 997
	/*
	 * now build and submit the bios for the other mirrors, check
998 999
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1011
	for (mirror_index = 0; ;mirror_index++) {
1012
		struct scrub_block *sblock_other;
1013

1014 1015
		if (mirror_index == failed_mirror_index)
			continue;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1039 1040

		/* build and submit the bios, check checksums */
1041
		scrub_recheck_block(fs_info, sblock_other, 0);
1042 1043

		if (!sblock_other->header_error &&
1044 1045
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1046 1047
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1048
				goto corrected_error;
1049 1050
			} else {
				ret = scrub_repair_block_from_good_copy(
1051 1052 1053
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1054
			}
1055 1056
		}
	}
A
Arne Jansen 已提交
1057

1058 1059
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1060 1061 1062

	/*
	 * In case of I/O errors in the area that is supposed to be
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1075
	 * the final checksum succeeds. But this would be a rare
1076 1077 1078 1079 1080 1081 1082 1083
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1084
	 */
1085
	success = 1;
1086 1087
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1088
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1089
		struct scrub_block *sblock_other = NULL;
1090

1091
		/* skip no-io-error page in scrub */
1092
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1093
			continue;
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1104
		} else if (spage_bad->io_error) {
1105
			/* try to find no-io-error page in mirrors */
1106 1107 1108 1109 1110 1111 1112 1113 1114
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1115 1116
				}
			}
1117 1118
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1119
		}
A
Arne Jansen 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1134
				atomic64_inc(
1135
					&fs_info->dev_replace.num_write_errors);
1136 1137 1138 1139 1140 1141 1142
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1143
				spage_bad->io_error = 0;
1144 1145
			else
				success = 0;
1146
		}
A
Arne Jansen 已提交
1147 1148
	}

1149
	if (success && !sctx->is_dev_replace) {
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1160
			scrub_recheck_block(fs_info, sblock_bad, 1);
1161
			if (!sblock_bad->header_error &&
1162 1163 1164 1165 1166 1167 1168
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1169 1170
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1171
			sblock_to_check->data_corrected = 1;
1172
			spin_unlock(&sctx->stat_lock);
1173 1174
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1175
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1176
		}
1177 1178
	} else {
did_not_correct_error:
1179 1180 1181
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1182 1183
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1184
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1185
	}
A
Arne Jansen 已提交
1186

1187 1188 1189 1190 1191 1192
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1193
			struct scrub_recover *recover;
1194 1195
			int page_index;

1196 1197 1198
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1199 1200
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1201
					scrub_put_recover(fs_info, recover);
1202 1203 1204
					sblock->pagev[page_index]->recover =
									NULL;
				}
1205 1206
				scrub_page_put(sblock->pagev[page_index]);
			}
1207 1208 1209
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1210

1211
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1212
	memalloc_nofs_restore(nofs_flag);
1213 1214
	if (ret < 0)
		return ret;
1215 1216
	return 0;
}
A
Arne Jansen 已提交
1217

1218
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1219
{
Z
Zhao Lei 已提交
1220 1221 1222 1223 1224
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1225 1226 1227
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1228 1229
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1230 1231 1232 1233 1234 1235 1236
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1237
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1258
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1259 1260
				     struct scrub_block *sblocks_for_recheck)
{
1261
	struct scrub_ctx *sctx = original_sblock->sctx;
1262
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1263 1264
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1265 1266 1267
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1268 1269 1270 1271 1272 1273
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1274
	int page_index = 0;
1275
	int mirror_index;
1276
	int nmirrors;
1277 1278 1279
	int ret;

	/*
1280
	 * note: the two members refs and outstanding_pages
1281 1282 1283 1284 1285
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1286 1287 1288
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1289

1290 1291 1292 1293
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1294
		btrfs_bio_counter_inc_blocked(fs_info);
1295
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1296
				logical, &mapped_length, &bbio);
1297
		if (ret || !bbio || mapped_length < sublen) {
1298
			btrfs_put_bbio(bbio);
1299
			btrfs_bio_counter_dec(fs_info);
1300 1301
			return -EIO;
		}
A
Arne Jansen 已提交
1302

1303 1304
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1305
			btrfs_put_bbio(bbio);
1306
			btrfs_bio_counter_dec(fs_info);
1307 1308 1309
			return -ENOMEM;
		}

1310
		refcount_set(&recover->refs, 1);
1311 1312 1313
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1314
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1315

1316
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1317

1318
		for (mirror_index = 0; mirror_index < nmirrors;
1319 1320
		     mirror_index++) {
			struct scrub_block *sblock;
1321
			struct scrub_page *spage;
1322 1323

			sblock = sblocks_for_recheck + mirror_index;
1324
			sblock->sctx = sctx;
1325

1326 1327
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1328
leave_nomem:
1329 1330 1331
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1332
				scrub_put_recover(fs_info, recover);
1333 1334
				return -ENOMEM;
			}
1335 1336 1337 1338 1339 1340 1341
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1342
			if (have_csum)
1343
				memcpy(spage->csum,
1344
				       original_sblock->pagev[0]->csum,
1345
				       sctx->fs_info->csum_size);
1346

Z
Zhao Lei 已提交
1347 1348 1349
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1350
						      mapped_length,
1351 1352
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1353 1354 1355
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1356
			spage->physical = bbio->stripes[stripe_index].physical +
1357
					 stripe_offset;
1358
			spage->dev = bbio->stripes[stripe_index].dev;
1359

1360
			BUG_ON(page_index >= original_sblock->page_count);
1361
			spage->physical_for_dev_replace =
1362 1363
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1364
			/* for missing devices, dev->bdev is NULL */
1365
			spage->mirror_num = mirror_index + 1;
1366
			sblock->page_count++;
1367 1368
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1369
				goto leave_nomem;
1370 1371

			scrub_get_recover(recover);
1372
			spage->recover = recover;
1373
		}
1374
		scrub_put_recover(fs_info, recover);
1375 1376 1377 1378 1379 1380
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1381 1382
}

1383
static void scrub_bio_wait_endio(struct bio *bio)
1384
{
1385
	complete(bio->bi_private);
1386 1387 1388 1389
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1390
					struct scrub_page *spage)
1391
{
1392
	DECLARE_COMPLETION_ONSTACK(done);
1393
	int ret;
1394
	int mirror_num;
1395

1396
	bio->bi_iter.bi_sector = spage->logical >> 9;
1397 1398 1399
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1400 1401 1402
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1403
				    mirror_num, 0);
1404 1405 1406
	if (ret)
		return ret;

1407 1408
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1409 1410
}

L
Liu Bo 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1423
	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1424 1425 1426
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1427
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1428

1429 1430
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1450 1451 1452 1453 1454 1455 1456
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1457
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1458 1459
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1460
{
1461
	int page_num;
I
Ilya Dryomov 已提交
1462

1463
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1464

L
Liu Bo 已提交
1465 1466 1467 1468
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1469 1470
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1471
		struct scrub_page *spage = sblock->pagev[page_num];
1472

1473 1474
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1475 1476 1477 1478
			sblock->no_io_error_seen = 0;
			continue;
		}

1479
		WARN_ON(!spage->page);
1480
		bio = btrfs_io_bio_alloc(1);
1481
		bio_set_dev(bio, spage->dev->bdev);
1482

1483 1484
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1485
		bio->bi_opf = REQ_OP_READ;
1486

L
Liu Bo 已提交
1487
		if (btrfsic_submit_bio_wait(bio)) {
1488
			spage->io_error = 1;
L
Liu Bo 已提交
1489
			sblock->no_io_error_seen = 0;
1490
		}
1491

1492 1493
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1494

1495
	if (sblock->no_io_error_seen)
1496
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1497 1498
}

M
Miao Xie 已提交
1499 1500 1501 1502 1503 1504
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1505
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1506 1507 1508
	return !ret;
}

1509
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1510
{
1511 1512 1513
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1514

1515 1516 1517 1518
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1519 1520
}

1521
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1522
					     struct scrub_block *sblock_good)
1523 1524 1525
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1526

1527 1528
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1529

1530 1531
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1532
							   page_num, 1);
1533 1534
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1535
	}
1536 1537 1538 1539 1540 1541 1542 1543

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1544 1545
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1546
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1547

1548 1549
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1550
	if (force_write || sblock_bad->header_error ||
1551
	    sblock_bad->checksum_error || spage_bad->io_error) {
1552 1553 1554
		struct bio *bio;
		int ret;

1555
		if (!spage_bad->dev->bdev) {
1556
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1557
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1558 1559 1560
			return -EIO;
		}

1561
		bio = btrfs_io_bio_alloc(1);
1562 1563
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1564
		bio->bi_opf = REQ_OP_WRITE;
1565

1566
		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1567 1568 1569
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1570
		}
1571

1572
		if (btrfsic_submit_bio_wait(bio)) {
1573
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1574
				BTRFS_DEV_STAT_WRITE_ERRS);
1575
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1576 1577 1578
			bio_put(bio);
			return -EIO;
		}
1579
		bio_put(bio);
A
Arne Jansen 已提交
1580 1581
	}

1582 1583 1584
	return 0;
}

1585 1586
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1587
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1588 1589
	int page_num;

1590 1591 1592 1593 1594 1595 1596
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1597 1598 1599 1600 1601
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1602
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1603 1604 1605 1606 1607 1608 1609 1610 1611
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1612 1613
	if (spage->io_error)
		clear_page(page_address(spage->page));
1614 1615 1616 1617

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1618 1619 1620 1621 1622 1623 1624 1625
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1626 1627 1628
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1640 1641 1642 1643 1644 1645
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1646
	mutex_lock(&sctx->wr_lock);
1647
again:
1648 1649
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1650
					      GFP_KERNEL);
1651 1652
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1653 1654
			return -ENOMEM;
		}
1655 1656
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1657
	}
1658
	sbio = sctx->wr_curr_bio;
1659 1660 1661
	if (sbio->page_count == 0) {
		struct bio *bio;

1662 1663 1664 1665 1666 1667 1668
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1669 1670
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1671
		sbio->dev = sctx->wr_tgtdev;
1672 1673
		bio = sbio->bio;
		if (!bio) {
1674
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1675 1676 1677 1678 1679
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1680
		bio_set_dev(bio, sbio->dev->bdev);
1681
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1682
		bio->bi_opf = REQ_OP_WRITE;
1683
		sbio->status = 0;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1697
			mutex_unlock(&sctx->wr_lock);
1698 1699 1700 1701 1702 1703 1704 1705 1706
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1707
	if (sbio->page_count == sctx->pages_per_wr_bio)
1708
		scrub_wr_submit(sctx);
1709
	mutex_unlock(&sctx->wr_lock);
1710 1711 1712 1713 1714 1715 1716 1717

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1718
	if (!sctx->wr_curr_bio)
1719 1720
		return;

1721 1722
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1723
	WARN_ON(!sbio->bio->bi_bdev);
1724 1725 1726 1727 1728
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1729
	btrfsic_submit_bio(sbio->bio);
1730 1731 1732

	if (btrfs_is_zoned(sctx->fs_info))
		sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE;
1733 1734
}

1735
static void scrub_wr_bio_end_io(struct bio *bio)
1736 1737
{
	struct scrub_bio *sbio = bio->bi_private;
1738
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1739

1740
	sbio->status = bio->bi_status;
1741 1742
	sbio->bio = bio;

1743
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1744
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1745 1746 1747 1748 1749 1750 1751 1752 1753
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1754
	if (sbio->status) {
1755
		struct btrfs_dev_replace *dev_replace =
1756
			&sbio->sctx->fs_info->dev_replace;
1757 1758 1759 1760 1761

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1762
			atomic64_inc(&dev_replace->num_write_errors);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1775 1776 1777 1778
{
	u64 flags;
	int ret;

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1791 1792
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1804 1805

	return ret;
A
Arne Jansen 已提交
1806 1807
}

1808
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1809
{
1810
	struct scrub_ctx *sctx = sblock->sctx;
1811 1812
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1813
	u8 csum[BTRFS_CSUM_SIZE];
1814
	struct scrub_page *spage;
1815
	char *kaddr;
A
Arne Jansen 已提交
1816

1817
	BUG_ON(sblock->page_count < 1);
1818 1819
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1820 1821
		return 0;

1822
	kaddr = page_address(spage->page);
1823

1824 1825
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1826

1827 1828 1829 1830 1831
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1832

1833 1834
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1835
	return sblock->checksum_error;
A
Arne Jansen 已提交
1836 1837
}

1838
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1839
{
1840
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1841
	struct btrfs_header *h;
1842
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1843
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1844 1845
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1846 1847 1848 1849 1850 1851 1852
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1853
	int i;
1854
	struct scrub_page *spage;
1855
	char *kaddr;
1856

1857
	BUG_ON(sblock->page_count < 1);
1858 1859 1860 1861

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1862 1863
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1864
	h = (struct btrfs_header *)kaddr;
1865
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1866 1867 1868 1869 1870 1871

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1872
	if (spage->logical != btrfs_stack_header_bytenr(h))
1873
		sblock->header_error = 1;
A
Arne Jansen 已提交
1874

1875
	if (spage->generation != btrfs_stack_header_generation(h)) {
1876 1877 1878
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1879

1880
	if (!scrub_check_fsid(h->fsid, spage))
1881
		sblock->header_error = 1;
A
Arne Jansen 已提交
1882 1883 1884

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1885
		sblock->header_error = 1;
A
Arne Jansen 已提交
1886

1887 1888 1889
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1890
			    sectorsize - BTRFS_CSUM_SIZE);
1891

1892
	for (i = 1; i < num_sectors; i++) {
1893
		kaddr = page_address(sblock->pagev[i]->page);
1894
		crypto_shash_update(shash, kaddr, sectorsize);
1895 1896
	}

1897
	crypto_shash_final(shash, calculated_csum);
1898
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1899
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1900

1901
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1902 1903
}

1904
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1905 1906
{
	struct btrfs_super_block *s;
1907
	struct scrub_ctx *sctx = sblock->sctx;
1908 1909
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1910
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1911
	struct scrub_page *spage;
1912
	char *kaddr;
1913 1914
	int fail_gen = 0;
	int fail_cor = 0;
1915

1916
	BUG_ON(sblock->page_count < 1);
1917 1918
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1919
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1920

1921
	if (spage->logical != btrfs_super_bytenr(s))
1922
		++fail_cor;
A
Arne Jansen 已提交
1923

1924
	if (spage->generation != btrfs_super_generation(s))
1925
		++fail_gen;
A
Arne Jansen 已提交
1926

1927
	if (!scrub_check_fsid(s->fsid, spage))
1928
		++fail_cor;
A
Arne Jansen 已提交
1929

1930 1931 1932 1933
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1934

1935
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1936
		++fail_cor;
A
Arne Jansen 已提交
1937

1938
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1939 1940 1941 1942 1943
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1944 1945 1946
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1947
		if (fail_cor)
1948
			btrfs_dev_stat_inc_and_print(spage->dev,
1949 1950
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1951
			btrfs_dev_stat_inc_and_print(spage->dev,
1952
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1953 1954
	}

1955
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1956 1957
}

1958 1959
static void scrub_block_get(struct scrub_block *sblock)
{
1960
	refcount_inc(&sblock->refs);
1961 1962 1963 1964
}

static void scrub_block_put(struct scrub_block *sblock)
{
1965
	if (refcount_dec_and_test(&sblock->refs)) {
1966 1967
		int i;

1968 1969 1970
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1971
		for (i = 0; i < sblock->page_count; i++)
1972
			scrub_page_put(sblock->pagev[i]);
1973 1974 1975 1976
		kfree(sblock);
	}
}

1977 1978
static void scrub_page_get(struct scrub_page *spage)
{
1979
	atomic_inc(&spage->refs);
1980 1981 1982 1983
}

static void scrub_page_put(struct scrub_page *spage)
{
1984
	if (atomic_dec_and_test(&spage->refs)) {
1985 1986 1987 1988 1989 1990
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1991
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1992 1993 1994
{
	struct scrub_bio *sbio;

1995
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1996
		return;
A
Arne Jansen 已提交
1997

1998 1999
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2000
	scrub_pending_bio_inc(sctx);
2001
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2002 2003
}

2004 2005
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2006
{
2007
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2008
	struct scrub_bio *sbio;
2009
	int ret;
A
Arne Jansen 已提交
2010 2011 2012 2013 2014

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2015 2016 2017 2018 2019 2020 2021 2022
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2023
		} else {
2024 2025
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2026 2027
		}
	}
2028
	sbio = sctx->bios[sctx->curr];
2029
	if (sbio->page_count == 0) {
2030 2031
		struct bio *bio;

2032 2033
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2034
		sbio->dev = spage->dev;
2035 2036
		bio = sbio->bio;
		if (!bio) {
2037
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2038 2039
			sbio->bio = bio;
		}
2040 2041 2042

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2043
		bio_set_dev(bio, sbio->dev->bdev);
2044
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2045
		bio->bi_opf = REQ_OP_READ;
2046
		sbio->status = 0;
2047 2048 2049
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2050 2051
		   spage->logical ||
		   sbio->dev != spage->dev) {
2052
		scrub_submit(sctx);
A
Arne Jansen 已提交
2053 2054
		goto again;
	}
2055

2056 2057 2058 2059 2060 2061 2062 2063
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2064
		scrub_submit(sctx);
2065 2066 2067
		goto again;
	}

2068
	scrub_block_get(sblock); /* one for the page added to the bio */
2069 2070
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2071
	if (sbio->page_count == sctx->pages_per_rd_bio)
2072
		scrub_submit(sctx);
2073 2074 2075 2076

	return 0;
}

2077
static void scrub_missing_raid56_end_io(struct bio *bio)
2078 2079
{
	struct scrub_block *sblock = bio->bi_private;
2080
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2081

2082
	if (bio->bi_status)
2083 2084
		sblock->no_io_error_seen = 0;

2085 2086
	bio_put(bio);

2087 2088 2089 2090 2091 2092 2093
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2094
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2095 2096 2097 2098 2099 2100
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2101
	if (sblock->no_io_error_seen)
2102
		scrub_recheck_block_checksum(sblock);
2103 2104 2105 2106 2107

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2108
		btrfs_err_rl_in_rcu(fs_info,
2109
			"IO error rebuilding logical %llu for dev %s",
2110 2111 2112 2113 2114
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2115
		btrfs_err_rl_in_rcu(fs_info,
2116
			"failed to rebuild valid logical %llu for dev %s",
2117 2118 2119 2120 2121
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2122
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2123
		mutex_lock(&sctx->wr_lock);
2124
		scrub_wr_submit(sctx);
2125
		mutex_unlock(&sctx->wr_lock);
2126 2127
	}

2128
	scrub_block_put(sblock);
2129 2130 2131 2132 2133 2134
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2135
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 2137
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2138
	struct btrfs_bio *bbio = NULL;
2139 2140 2141 2142 2143
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2144
	btrfs_bio_counter_inc_blocked(fs_info);
2145
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2146
			&length, &bbio);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2161
	bio = btrfs_io_bio_alloc(0);
2162 2163 2164 2165
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2166
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2167 2168 2169 2170 2171 2172 2173 2174 2175
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2176
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2177 2178 2179 2180 2181 2182 2183 2184
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2185
	btrfs_bio_counter_dec(fs_info);
2186 2187 2188 2189 2190 2191
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2192
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2193
		       u64 physical, struct btrfs_device *dev, u64 flags,
2194
		       u64 gen, int mirror_num, u8 *csum,
2195
		       u64 physical_for_dev_replace)
2196 2197
{
	struct scrub_block *sblock;
2198
	const u32 sectorsize = sctx->fs_info->sectorsize;
2199 2200
	int index;

2201
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2202
	if (!sblock) {
2203 2204 2205
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2206
		return -ENOMEM;
A
Arne Jansen 已提交
2207
	}
2208

2209 2210
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2211
	refcount_set(&sblock->refs, 1);
2212
	sblock->sctx = sctx;
2213 2214 2215
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2216
		struct scrub_page *spage;
2217 2218 2219 2220 2221 2222
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2223

2224
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2225 2226
		if (!spage) {
leave_nomem:
2227 2228 2229
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2230
			scrub_block_put(sblock);
2231 2232
			return -ENOMEM;
		}
2233 2234 2235
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2236
		spage->sblock = sblock;
2237
		spage->dev = dev;
2238 2239 2240 2241
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2242
		spage->physical_for_dev_replace = physical_for_dev_replace;
2243 2244 2245
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2246
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2247 2248 2249 2250
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2251
		spage->page = alloc_page(GFP_KERNEL);
2252 2253
		if (!spage->page)
			goto leave_nomem;
2254 2255 2256
		len -= l;
		logical += l;
		physical += l;
2257
		physical_for_dev_replace += l;
2258 2259
	}

2260
	WARN_ON(sblock->page_count == 0);
2261
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2262 2263 2264 2265 2266 2267 2268 2269 2270
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2271

2272 2273 2274 2275 2276
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2277
		}
A
Arne Jansen 已提交
2278

2279
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2280 2281
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2282

2283 2284
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2285 2286 2287
	return 0;
}

2288
static void scrub_bio_end_io(struct bio *bio)
2289 2290
{
	struct scrub_bio *sbio = bio->bi_private;
2291
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2292

2293
	sbio->status = bio->bi_status;
2294 2295
	sbio->bio = bio;

2296
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2297 2298 2299 2300 2301
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2302
	struct scrub_ctx *sctx = sbio->sctx;
2303 2304
	int i;

2305
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2306
	if (sbio->status) {
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2327 2328 2329 2330
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2331

2332
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2333
		mutex_lock(&sctx->wr_lock);
2334
		scrub_wr_submit(sctx);
2335
		mutex_unlock(&sctx->wr_lock);
2336 2337
	}

2338
	scrub_pending_bio_dec(sctx);
2339 2340
}

2341 2342
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2343
				       u64 start, u32 len)
2344
{
2345
	u64 offset;
2346
	u32 nsectors;
2347
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2348 2349 2350 2351 2352 2353 2354

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2355
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2356
	offset = offset >> sectorsize_bits;
2357
	nsectors = len >> sectorsize_bits;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2369
						   u64 start, u32 len)
2370 2371 2372 2373 2374
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2375
						  u64 start, u32 len)
2376 2377 2378 2379
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2380 2381
static void scrub_block_complete(struct scrub_block *sblock)
{
2382 2383
	int corrupted = 0;

2384
	if (!sblock->no_io_error_seen) {
2385
		corrupted = 1;
2386
		scrub_handle_errored_block(sblock);
2387 2388 2389 2390 2391 2392
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2393 2394
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2395 2396
			scrub_write_block_to_dev_replace(sblock);
	}
2397 2398 2399 2400 2401 2402

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

2403
		ASSERT(end - start <= U32_MAX);
2404 2405 2406
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2427
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2428
{
2429
	bool found = false;
A
Arne Jansen 已提交
2430

2431
	while (!list_empty(&sctx->csum_list)) {
2432 2433 2434 2435
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2436
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2437
				       struct btrfs_ordered_sum, list);
2438
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2439 2440 2441
		if (sum->bytenr > logical)
			break;

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2452

2453 2454 2455 2456
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2457

2458 2459 2460 2461 2462 2463 2464
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2465
	}
2466 2467
	if (!found)
		return 0;
2468
	return 1;
A
Arne Jansen 已提交
2469 2470 2471
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2472
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2473
			u64 logical, u32 len,
2474
			u64 physical, struct btrfs_device *dev, u64 flags,
2475
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2476 2477 2478
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2479 2480 2481
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2482 2483 2484 2485
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2486 2487 2488 2489
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2490
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2491 2492 2493 2494
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2495 2496 2497 2498
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2499
	} else {
2500
		blocksize = sctx->fs_info->sectorsize;
2501
		WARN_ON(1);
2502
	}
A
Arne Jansen 已提交
2503 2504

	while (len) {
2505
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2506 2507 2508 2509
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2510
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2511
			if (have_csum == 0)
2512
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2513
		}
2514
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2515
				  mirror_num, have_csum ? csum : NULL,
2516
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2517 2518 2519 2520 2521
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2522
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2523 2524 2525 2526
	}
	return 0;
}

2527
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2528
				  u64 logical, u32 len,
2529 2530 2531 2532 2533
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2534
	const u32 sectorsize = sctx->fs_info->sectorsize;
2535 2536
	int index;

2537 2538
	ASSERT(IS_ALIGNED(len, sectorsize));

2539
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2540 2541 2542 2543 2544 2545 2546 2547 2548
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2549
	refcount_set(&sblock->refs, 1);
2550 2551 2552 2553 2554 2555 2556 2557
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2558
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2583
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2584 2585 2586 2587
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2588
		spage->page = alloc_page(GFP_KERNEL);
2589 2590
		if (!spage->page)
			goto leave_nomem;
2591 2592 2593 2594 2595 2596


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2617
				   u64 logical, u32 len,
2618 2619 2620 2621 2622 2623 2624 2625
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2626
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2627 2628 2629 2630
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2631
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2632
		blocksize = sparity->stripe_len;
2633
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2634
		blocksize = sparity->stripe_len;
2635
	} else {
2636
		blocksize = sctx->fs_info->sectorsize;
2637 2638 2639 2640
		WARN_ON(1);
	}

	while (len) {
2641
		u32 l = min(len, blocksize);
2642 2643 2644 2645
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2646
			have_csum = scrub_find_csum(sctx, logical, csum);
2647 2648 2649 2650 2651 2652 2653 2654
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2655
skip:
2656 2657 2658 2659 2660 2661 2662
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2663 2664 2665 2666 2667 2668 2669 2670
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2671 2672
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2673 2674 2675 2676 2677
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2678 2679
	u32 stripe_index;
	u32 rot;
2680
	const int data_stripes = nr_data_stripes(map);
2681

2682
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2683 2684 2685
	if (stripe_start)
		*stripe_start = last_offset;

2686
	*offset = last_offset;
2687
	for (i = 0; i < data_stripes; i++) {
2688 2689
		*offset = last_offset + i * map->stripe_len;

2690
		stripe_nr = div64_u64(*offset, map->stripe_len);
2691
		stripe_nr = div_u64(stripe_nr, data_stripes);
2692 2693

		/* Work out the disk rotation on this stripe-set */
2694
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2695 2696
		/* calculate which stripe this data locates */
		rot += i;
2697
		stripe_index = rot % map->num_stripes;
2698 2699 2700 2701 2702 2703 2704 2705 2706
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2739
static void scrub_parity_bio_endio(struct bio *bio)
2740 2741
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2742
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2743

2744
	if (bio->bi_status)
2745 2746 2747 2748
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2749

2750 2751
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2752
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2753 2754 2755 2756 2757
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2758
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2769
	length = sparity->logic_end - sparity->logic_start;
2770 2771

	btrfs_bio_counter_inc_blocked(fs_info);
2772
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2773
			       &length, &bbio);
2774
	if (ret || !bbio || !bbio->raid_map)
2775 2776
		goto bbio_out;

2777
	bio = btrfs_io_bio_alloc(0);
2778 2779 2780 2781
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2782
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2783
					      length, sparity->scrub_dev,
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2796
	btrfs_bio_counter_dec(fs_info);
2797
	btrfs_put_bbio(bbio);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2809
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2810 2811 2812 2813
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2814
	refcount_inc(&sparity->refs);
2815 2816 2817 2818
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2819
	if (!refcount_dec_and_test(&sparity->refs))
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2832
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2833 2834 2835
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2836
	struct btrfs_bio *bbio = NULL;
2837 2838 2839 2840 2841 2842 2843 2844
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2845 2846
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2847
	u64 mapped_length;
2848 2849 2850 2851 2852 2853 2854
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2855
	ASSERT(map->stripe_len <= U32_MAX);
2856
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2867
	ASSERT(map->stripe_len <= U32_MAX);
2868 2869 2870 2871 2872 2873
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2874
	refcount_set(&sparity->refs, 1);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2923 2924 2925 2926
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2927
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2928
				bytes = fs_info->nodesize;
2929 2930 2931 2932 2933 2934
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2935
			if (key.objectid >= logic_end) {
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2948 2949 2950 2951
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2952 2953
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2954
					  key.objectid, logic_start);
2955 2956 2957
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2958 2959 2960 2961
				goto next;
			}
again:
			extent_logical = key.objectid;
2962
			ASSERT(bytes <= U32_MAX);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2978
			mapped_length = extent_len;
2979
			bbio = NULL;
2980 2981 2982
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3009 3010 3011

			scrub_free_csums(sctx);

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3041 3042
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3043
		scrub_parity_mark_sectors_error(sparity, logic_start,
3044
						logic_end - logic_start);
3045
	}
3046 3047
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3048
	mutex_lock(&sctx->wr_lock);
3049
	scrub_wr_submit(sctx);
3050
	mutex_unlock(&sctx->wr_lock);
3051 3052 3053 3054 3055

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3096
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3097 3098
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3099 3100
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3101
{
3102
	struct btrfs_path *path, *ppath;
3103
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3104 3105 3106
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3107
	struct blk_plug plug;
A
Arne Jansen 已提交
3108 3109 3110 3111 3112 3113 3114
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3115
	u64 logic_end;
3116
	u64 physical_end;
A
Arne Jansen 已提交
3117
	u64 generation;
3118
	int mirror_num;
A
Arne Jansen 已提交
3119 3120
	struct reada_control *reada1;
	struct reada_control *reada2;
3121
	struct btrfs_key key;
A
Arne Jansen 已提交
3122
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3123 3124
	u64 increment = map->stripe_len;
	u64 offset;
3125 3126
	u64 extent_logical;
	u64 extent_physical;
3127 3128 3129 3130 3131
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3132 3133
	u64 stripe_logical;
	u64 stripe_end;
3134 3135
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3136
	int stop_loop = 0;
D
David Woodhouse 已提交
3137

3138
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3139
	offset = 0;
3140
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3141 3142 3143
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3144
		mirror_num = 1;
A
Arne Jansen 已提交
3145 3146 3147 3148
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3149
		mirror_num = num % map->sub_stripes + 1;
3150
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3151
		increment = map->stripe_len;
3152
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3153 3154
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3155
		mirror_num = num % map->num_stripes + 1;
3156
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3157
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3158 3159
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3160 3161
	} else {
		increment = map->stripe_len;
3162
		mirror_num = 1;
A
Arne Jansen 已提交
3163 3164 3165 3166 3167 3168
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3169 3170
	ppath = btrfs_alloc_path();
	if (!ppath) {
3171
		btrfs_free_path(path);
3172 3173 3174
		return -ENOMEM;
	}

3175 3176 3177 3178 3179
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3180 3181 3182
	path->search_commit_root = 1;
	path->skip_locking = 1;

3183 3184
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3185
	/*
A
Arne Jansen 已提交
3186 3187 3188
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3189 3190
	 */
	logical = base + offset;
3191
	physical_end = physical + nstripes * map->stripe_len;
3192
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3193
		get_raid56_logic_offset(physical_end, num,
3194
					map, &logic_end, NULL);
3195 3196 3197 3198
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3199
	wait_event(sctx->list_wait,
3200
		   atomic_read(&sctx->bios_in_flight) == 0);
3201
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3202 3203

	/* FIXME it might be better to start readahead at commit root */
3204 3205 3206
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3207
	key_end.objectid = logic_end;
3208 3209
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3210
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3223 3224 3225

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3226
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3227 3228
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3229 3230 3231 3232 3233

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3234
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3235

3236 3237 3238 3239 3240 3241 3242 3243
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3244 3245 3246 3247
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3248
	while (physical < physical_end) {
A
Arne Jansen 已提交
3249 3250 3251 3252
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3253
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3254 3255 3256 3257 3258 3259 3260 3261
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3262
			sctx->flush_all_writes = true;
3263
			scrub_submit(sctx);
3264
			mutex_lock(&sctx->wr_lock);
3265
			scrub_wr_submit(sctx);
3266
			mutex_unlock(&sctx->wr_lock);
3267
			wait_event(sctx->list_wait,
3268
				   atomic_read(&sctx->bios_in_flight) == 0);
3269
			sctx->flush_all_writes = false;
3270
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3271 3272
		}

3273 3274 3275 3276 3277 3278
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3279
				/* it is parity strip */
3280
				stripe_logical += base;
3281
				stripe_end = stripe_logical + increment;
3282 3283 3284 3285 3286 3287 3288 3289 3290
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3291 3292 3293 3294
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3295
		key.objectid = logical;
L
Liu Bo 已提交
3296
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3297 3298 3299 3300

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3301

3302
		if (ret > 0) {
3303
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3304 3305
			if (ret < 0)
				goto out;
3306 3307 3308 3309 3310 3311 3312 3313 3314
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3315 3316
		}

L
Liu Bo 已提交
3317
		stop_loop = 0;
A
Arne Jansen 已提交
3318
		while (1) {
3319 3320
			u64 bytes;

A
Arne Jansen 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3330
				stop_loop = 1;
A
Arne Jansen 已提交
3331 3332 3333 3334
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3335 3336 3337 3338
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3339
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3340
				bytes = fs_info->nodesize;
3341 3342 3343 3344
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3345 3346
				goto next;

L
Liu Bo 已提交
3347 3348 3349 3350 3351 3352
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3368 3369 3370 3371 3372
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3373 3374 3375 3376
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3377
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3378
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3379
				       key.objectid, logical);
3380 3381 3382
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3383 3384 3385
				goto next;
			}

L
Liu Bo 已提交
3386 3387
again:
			extent_logical = key.objectid;
3388
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3389 3390
			extent_len = bytes;

A
Arne Jansen 已提交
3391 3392 3393
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3394 3395 3396
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3397
			}
L
Liu Bo 已提交
3398
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3399
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3400 3401
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3402 3403
			}

L
Liu Bo 已提交
3404
			extent_physical = extent_logical - logical + physical;
3405 3406
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3407
			if (sctx->is_dev_replace)
3408 3409 3410 3411
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3412

3413 3414 3415 3416 3417 3418 3419 3420
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3421

L
Liu Bo 已提交
3422
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3423 3424
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3425
					   extent_logical - logical + physical);
3426 3427 3428

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3429 3430 3431
			if (ret)
				goto out;

3432 3433 3434
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3435 3436
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3437
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3438 3439 3440 3441
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3452
								increment;
3453 3454 3455 3456 3457 3458 3459 3460
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3461 3462 3463 3464
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3465 3466 3467 3468 3469
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3470
				if (physical >= physical_end) {
L
Liu Bo 已提交
3471 3472 3473 3474
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3475 3476 3477
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3478
		btrfs_release_path(path);
3479
skip:
A
Arne Jansen 已提交
3480 3481
		logical += increment;
		physical += map->stripe_len;
3482
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3483 3484 3485 3486 3487
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3488
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3489 3490
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3491
	}
3492
out:
A
Arne Jansen 已提交
3493
	/* push queued extents */
3494
	scrub_submit(sctx);
3495
	mutex_lock(&sctx->wr_lock);
3496
	scrub_wr_submit(sctx);
3497
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3498

3499
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3500
	btrfs_free_path(path);
3501
	btrfs_free_path(ppath);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3513 3514 3515
	return ret < 0 ? ret : 0;
}

3516
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3517 3518
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3519
					  u64 dev_offset,
3520
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3521
{
3522
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3523
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3524 3525 3526
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3527
	int ret = 0;
A
Arne Jansen 已提交
3528

3529 3530 3531
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3545

3546
	map = em->map_lookup;
A
Arne Jansen 已提交
3547 3548 3549 3550 3551 3552 3553
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3554
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3555
		    map->stripes[i].physical == dev_offset) {
3556
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3557
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3587
static noinline_for_stack
3588
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3589
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3590 3591 3592
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3593 3594
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3595 3596
	u64 length;
	u64 chunk_offset;
3597
	int ret = 0;
3598
	int ro_set;
A
Arne Jansen 已提交
3599 3600 3601 3602
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3603
	struct btrfs_block_group *cache;
3604
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3605 3606 3607 3608 3609

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3610
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3611 3612 3613
	path->search_commit_root = 1;
	path->skip_locking = 1;

3614
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3615 3616 3617 3618 3619 3620
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3621 3622 3623 3624 3625
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3626 3627 3628 3629
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3630
					break;
3631 3632 3633
				}
			} else {
				ret = 0;
3634 3635
			}
		}
A
Arne Jansen 已提交
3636 3637 3638 3639 3640 3641

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3642
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3643 3644
			break;

3645
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3657 3658
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3659 3660 3661 3662 3663 3664 3665 3666

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3667 3668 3669 3670 3671 3672

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
				ro_set = 0;
				goto done;
			}
			spin_unlock(&cache->lock);
		}

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3697
		btrfs_freeze_block_group(cache);
3698 3699
		spin_unlock(&cache->lock);

3700 3701 3702 3703 3704 3705 3706 3707 3708
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3739
		 */
3740
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3751 3752
		if (ret == 0) {
			ro_set = 1;
3753
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3754 3755 3756
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3757
			 * It is not a problem for scrub, because
3758 3759 3760 3761
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3762 3763 3764 3765 3766 3767 3768
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3769
		} else {
J
Jeff Mahoney 已提交
3770
			btrfs_warn(fs_info,
3771
				   "failed setting block group ro: %d", ret);
3772
			btrfs_unfreeze_block_group(cache);
3773
			btrfs_put_block_group(cache);
3774
			scrub_pause_off(fs_info);
3775 3776 3777
			break;
		}

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3790
		down_write(&dev_replace->rwsem);
3791 3792 3793
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3794 3795
		up_write(&dev_replace->rwsem);

3796
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3797
				  found_key.offset, cache);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3809
		sctx->flush_all_writes = true;
3810
		scrub_submit(sctx);
3811
		mutex_lock(&sctx->wr_lock);
3812
		scrub_wr_submit(sctx);
3813
		mutex_unlock(&sctx->wr_lock);
3814 3815 3816

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3817 3818

		scrub_pause_on(fs_info);
3819 3820 3821 3822 3823 3824

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3825 3826
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3827
		sctx->flush_all_writes = false;
3828

3829
		scrub_pause_off(fs_info);
3830

3831 3832 3833 3834 3835 3836
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

done:
3837
		down_write(&dev_replace->rwsem);
3838 3839
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3840
		up_write(&dev_replace->rwsem);
3841

3842
		if (ro_set)
3843
			btrfs_dec_block_group_ro(cache);
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3854
		    cache->used == 0) {
3855
			spin_unlock(&cache->lock);
3856 3857 3858 3859 3860
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3861 3862 3863
		} else {
			spin_unlock(&cache->lock);
		}
3864
skip_unfreeze:
3865
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3866 3867 3868
		btrfs_put_block_group(cache);
		if (ret)
			break;
3869
		if (sctx->is_dev_replace &&
3870
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3871 3872 3873 3874 3875 3876 3877
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3878
skip:
A
Arne Jansen 已提交
3879
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3880
		btrfs_release_path(path);
A
Arne Jansen 已提交
3881 3882 3883
	}

	btrfs_free_path(path);
3884

3885
	return ret;
A
Arne Jansen 已提交
3886 3887
}

3888 3889
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3890 3891 3892 3893 3894
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3895
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3896

3897
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3898
		return -EROFS;
3899

3900
	/* Seed devices of a new filesystem has their own generation. */
3901
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3902 3903
		gen = scrub_dev->generation;
	else
3904
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3905 3906 3907

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3908 3909
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3910
			break;
3911 3912
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3913

3914
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3915
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3916
				  NULL, bytenr);
A
Arne Jansen 已提交
3917 3918 3919
		if (ret)
			return ret;
	}
3920
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3921 3922 3923 3924

	return 0;
}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3948 3949 3950
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3951 3952
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3953
{
3954 3955 3956
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
3957
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3958
	int max_active = fs_info->thread_pool_size;
3959
	int ret = -ENOMEM;
A
Arne Jansen 已提交
3960

3961 3962
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
3963

3964 3965 3966 3967
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
3968

3969
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3970
					      max_active, 2);
3971 3972
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
3987
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3988 3989
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
3990
	}
3991 3992 3993
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
3994

3995 3996
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
3997
fail_scrub_parity_workers:
3998
	btrfs_destroy_workqueue(scrub_wr_comp);
3999
fail_scrub_wr_completion_workers:
4000
	btrfs_destroy_workqueue(scrub_workers);
4001
fail_scrub_workers:
4002
	return ret;
A
Arne Jansen 已提交
4003 4004
}

4005 4006
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4007
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4008
{
4009
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4010 4011
	int ret;
	struct btrfs_device *dev;
4012
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4013

4014
	if (btrfs_fs_closing(fs_info))
4015
		return -EAGAIN;
A
Arne Jansen 已提交
4016

4017
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4018 4019 4020 4021 4022
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4023 4024
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4025 4026
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4027 4028 4029
		return -EINVAL;
	}

4030
	if (fs_info->nodesize >
4031
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4032
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4033 4034 4035 4036
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4037 4038
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4039
		       fs_info->nodesize,
4040
		       SCRUB_MAX_PAGES_PER_BLOCK,
4041
		       fs_info->sectorsize,
4042 4043 4044 4045
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4046 4047 4048 4049
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4050

4051 4052 4053 4054
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4055
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4056
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4057 4058
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4059
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4060
		ret = -ENODEV;
4061
		goto out;
A
Arne Jansen 已提交
4062 4063
	}

4064 4065
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4066
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4067 4068 4069
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4070
		ret = -EROFS;
4071
		goto out;
4072 4073
	}

4074
	mutex_lock(&fs_info->scrub_lock);
4075
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4076
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4077
		mutex_unlock(&fs_info->scrub_lock);
4078
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4079
		ret = -EIO;
4080
		goto out;
A
Arne Jansen 已提交
4081 4082
	}

4083
	down_read(&fs_info->dev_replace.rwsem);
4084
	if (dev->scrub_ctx ||
4085 4086
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4087
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4088
		mutex_unlock(&fs_info->scrub_lock);
4089
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090
		ret = -EINPROGRESS;
4091
		goto out;
A
Arne Jansen 已提交
4092
	}
4093
	up_read(&fs_info->dev_replace.rwsem);
4094

4095
	sctx->readonly = readonly;
4096
	dev->scrub_ctx = sctx;
4097
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4098

4099 4100 4101 4102
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4103
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4104 4105 4106
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4117
	if (!is_dev_replace) {
4118
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4119 4120 4121 4122
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4123
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4124
		ret = scrub_supers(sctx, dev);
4125
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4126
	}
A
Arne Jansen 已提交
4127 4128

	if (!ret)
4129
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4130
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4131

4132
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4133 4134 4135
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4136
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4137

A
Arne Jansen 已提交
4138
	if (progress)
4139
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4140

4141 4142 4143 4144
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4145
	mutex_lock(&fs_info->scrub_lock);
4146
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4147 4148
	mutex_unlock(&fs_info->scrub_lock);

4149
	scrub_workers_put(fs_info);
4150
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4151

4152
	return ret;
4153 4154
out:
	scrub_workers_put(fs_info);
4155 4156 4157
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4158 4159 4160
	return ret;
}

4161
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4176
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4177 4178 4179 4180 4181
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4182
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4203
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4204
{
4205
	struct btrfs_fs_info *fs_info = dev->fs_info;
4206
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4207 4208

	mutex_lock(&fs_info->scrub_lock);
4209
	sctx = dev->scrub_ctx;
4210
	if (!sctx) {
A
Arne Jansen 已提交
4211 4212 4213
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4214
	atomic_inc(&sctx->cancel_req);
4215
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4216 4217
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4218
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4219 4220 4221 4222 4223 4224
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4225

4226
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4227 4228 4229
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4230
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4231

4232
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4233
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4234
	if (dev)
4235
		sctx = dev->scrub_ctx;
4236 4237
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4238
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4239

4240
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4241
}
4242 4243

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4244
			       u64 extent_logical, u32 extent_len,
4245 4246 4247 4248 4249 4250 4251 4252 4253
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4254
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4255 4256 4257
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4258
		btrfs_put_bbio(bbio);
4259 4260 4261 4262 4263 4264
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4265
	btrfs_put_bbio(bbio);
4266
}