scrub.c 122.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57 58
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

59
struct scrub_recover {
60
	refcount_t		refs;
61
	struct btrfs_io_context	*bioc;
62 63 64
	u64			map_length;
};

65
struct scrub_sector {
66 67
	struct scrub_block	*sblock;
	struct page		*page;
68
	struct btrfs_device	*dev;
69
	struct list_head	list;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		refs;
76
	u8			mirror_num;
77 78
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
79
	u8			csum[BTRFS_CSUM_SIZE];
80 81

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
82 83 84 85
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88
	struct bio		*bio;
89
	blk_status_t		status;
A
Arne Jansen 已提交
90 91
	u64			logical;
	u64			physical;
92 93
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
94
	int			next_free;
95
	struct work_struct	work;
A
Arne Jansen 已提交
96 97
};

98
struct scrub_block {
99 100 101 102 103
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
104
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
105 106 107 108
	/* Logical bytenr of the sblock */
	u64			logical;
	/* Length of sblock in bytes */
	u32			len;
109
	int			sector_count;
110

111
	atomic_t		outstanding_sectors;
112
	refcount_t		refs; /* free mem on transition to zero */
113
	struct scrub_ctx	*sctx;
114
	struct scrub_parity	*sparity;
115 116 117 118
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
119
		unsigned int	generation_error:1; /* also sets header_error */
120 121 122 123

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
124
	};
125
	struct work_struct	work;
126 127
};

128 129 130 131 132 133 134 135 136 137 138 139
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

140
	u32			stripe_len;
141

142
	refcount_t		refs;
143

144
	struct list_head	sectors_list;
145 146

	/* Work of parity check and repair */
147
	struct work_struct	work;
148 149

	/* Mark the parity blocks which have data */
150
	unsigned long		dbitmap;
151 152 153 154 155

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
156
	unsigned long		ebitmap;
157 158
};

159
struct scrub_ctx {
160
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
161
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
162 163
	int			first_free;
	int			curr;
164 165
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
166 167 168 169
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
170
	int			readonly;
171
	int			sectors_per_bio;
172

173 174 175 176
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

177
	int			is_dev_replace;
178
	u64			write_pointer;
179 180 181 182

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
183
	bool                    flush_all_writes;
184

A
Arne Jansen 已提交
185 186 187 188 189
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
190 191 192 193 194 195 196 197

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
198
	refcount_t              refs;
A
Arne Jansen 已提交
199 200
};

201 202 203 204
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
205
	u64			physical;
206 207 208 209
	u64			logical;
	struct btrfs_device	*dev;
};

210 211 212 213 214 215 216
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#ifndef CONFIG_64BIT
/* This structure is for archtectures whose (void *) is smaller than u64 */
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, u64 logical)
256 257 258 259 260 261 262 263
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
264
	sblock->logical = logical;
265
	sblock->no_io_error_seen = 1;
266 267 268 269
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
270 271 272
	return sblock;
}

273 274 275 276 277 278 279
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
					       u64 logical, gfp_t gfp)
280
{
281
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
282 283 284 285 286
	struct scrub_sector *ssector;

	ssector = kzalloc(sizeof(*ssector), gfp);
	if (!ssector)
		return NULL;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

		sblock->pages[page_index] = alloc_page(gfp);
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
305
	}
306

307 308 309 310
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
311 312
	ssector->logical = logical;

313 314 315 316 317 318 319 320 321
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;

	return ssector;
}

322
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
323
				     struct scrub_block *sblocks_for_recheck[]);
324
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
325 326
				struct scrub_block *sblock,
				int retry_failed_mirror);
327
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
328
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
329
					     struct scrub_block *sblock_good);
330
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
331
					    struct scrub_block *sblock_good,
332
					    int sector_num, int force_write);
333
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
334 335
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
336 337 338 339
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
340 341
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
342 343
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
344 345 346 347
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
348
static void scrub_bio_end_io(struct bio *bio);
349
static void scrub_bio_end_io_worker(struct work_struct *work);
350
static void scrub_block_complete(struct scrub_block *sblock);
351 352 353 354 355
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
356 357
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
358
static void scrub_wr_submit(struct scrub_ctx *sctx);
359
static void scrub_wr_bio_end_io(struct bio *bio);
360
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
361
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
362

363
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
364
{
365 366
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
367
}
S
Stefan Behrens 已提交
368

369 370
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
371
	refcount_inc(&sctx->refs);
372 373 374 375 376 377 378
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
379
	scrub_put_ctx(sctx);
380 381
}

382
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
383 384 385 386 387 388 389 390 391
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

392
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
393 394 395
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
396
}
397

398 399
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
400 401 402 403 404 405 406 407
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

408 409 410 411 412 413
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

433
	lockdep_assert_held(&locks_root->lock);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

449 450 451
	/*
	 * Insert new lock.
	 */
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

477
	lockdep_assert_held(&locks_root->lock);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
497
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
498 499 500 501 502 503 504 505 506 507 508 509 510
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
511 512
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
530
	struct btrfs_block_group *bg_cache;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
577
	struct btrfs_block_group *bg_cache;
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

631
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
632
{
633
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
634
		struct btrfs_ordered_sum *sum;
635
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
636 637 638 639 640 641
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

642
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
643 644 645
{
	int i;

646
	if (!sctx)
A
Arne Jansen 已提交
647 648
		return;

649
	/* this can happen when scrub is cancelled */
650 651
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
652

653 654 655
		for (i = 0; i < sbio->sector_count; i++) {
			WARN_ON(!sbio->sectors[i]->page);
			scrub_block_put(sbio->sectors[i]->sblock);
656 657 658 659
		}
		bio_put(sbio->bio);
	}

660
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
661
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
662 663 664 665 666 667

		if (!sbio)
			break;
		kfree(sbio);
	}

668
	kfree(sctx->wr_curr_bio);
669 670
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
671 672
}

673 674
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
675
	if (refcount_dec_and_test(&sctx->refs))
676 677 678
		scrub_free_ctx(sctx);
}

679 680
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
681
{
682
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
683 684
	int		i;

685
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
686
	if (!sctx)
A
Arne Jansen 已提交
687
		goto nomem;
688
	refcount_set(&sctx->refs, 1);
689
	sctx->is_dev_replace = is_dev_replace;
690
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
691
	sctx->curr = -1;
692
	sctx->fs_info = fs_info;
693
	INIT_LIST_HEAD(&sctx->csum_list);
694
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
695 696
		struct scrub_bio *sbio;

697
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
698 699
		if (!sbio)
			goto nomem;
700
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
701 702

		sbio->index = i;
703
		sbio->sctx = sctx;
704
		sbio->sector_count = 0;
705
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
706

707
		if (i != SCRUB_BIOS_PER_SCTX - 1)
708
			sctx->bios[i]->next_free = i + 1;
709
		else
710 711 712
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
713 714
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
715 716 717 718 719
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
720
	sctx->throttle_deadline = 0;
721

722 723 724
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
725
	if (is_dev_replace) {
726 727
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
728
		sctx->flush_all_writes = false;
729
	}
730

731
	return sctx;
A
Arne Jansen 已提交
732 733

nomem:
734
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
735 736 737
	return ERR_PTR(-ENOMEM);
}

738 739
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
740 741 742 743
{
	u32 nlink;
	int ret;
	int i;
744
	unsigned nofs_flag;
745 746
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
747
	struct scrub_warning *swarn = warn_ctx;
748
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
749 750
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
751
	struct btrfs_key key;
752

D
David Sterba 已提交
753
	local_root = btrfs_get_fs_root(fs_info, root, true);
754 755 756 757 758
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

759 760 761
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
762 763 764 765 766
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
767
	if (ret) {
768
		btrfs_put_root(local_root);
769 770 771 772 773 774 775 776 777 778
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

779 780 781 782 783 784
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
785
	ipath = init_ipath(4096, local_root, swarn->path);
786
	memalloc_nofs_restore(nofs_flag);
787
	if (IS_ERR(ipath)) {
788
		btrfs_put_root(local_root);
789 790 791 792
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
793 794 795 796 797 798 799 800 801 802
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
803
		btrfs_warn_in_rcu(fs_info,
804
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
805 806
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
807
				  swarn->physical,
J
Jeff Mahoney 已提交
808
				  root, inum, offset,
809
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
810
				  (char *)(unsigned long)ipath->fspath->val[i]);
811

812
	btrfs_put_root(local_root);
813 814 815 816
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
817
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
818
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
819 820
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
821
			  swarn->physical,
J
Jeff Mahoney 已提交
822
			  root, inum, offset, ret);
823 824 825 826 827

	free_ipath(ipath);
	return 0;
}

828
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
829
{
830 831
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
832 833 834 835 836
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
837 838 839
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
840
	u64 ref_root;
841
	u32 item_size;
842
	u8 ref_level = 0;
843
	int ret;
844

845 846
	WARN_ON(sblock->sector_count < 1);
	dev = sblock->sectors[0]->dev;
847
	fs_info = sblock->sctx->fs_info;
848

849 850 851 852 853 854 855
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
			errstr, rcu_str_deref(dev->name),
			sblock->sectors[0]->physical);
		return;
	}
856
	path = btrfs_alloc_path();
857 858
	if (!path)
		return;
859

860 861
	swarn.physical = sblock->sectors[0]->physical;
	swarn.logical = sblock->sectors[0]->logical;
862
	swarn.errstr = errstr;
863
	swarn.dev = NULL;
864

865 866
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
867 868 869
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
870
	extent_item_pos = swarn.logical - found_key.objectid;
871 872 873 874
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
875
	item_size = btrfs_item_size(eb, path->slots[0]);
876

877
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
878
		do {
879 880 881
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
882
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
883
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
884
				errstr, swarn.logical,
885
				rcu_str_deref(dev->name),
D
David Sterba 已提交
886
				swarn.physical,
887 888 889 890
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
891
		btrfs_release_path(path);
892
	} else {
893
		btrfs_release_path(path);
894
		swarn.path = path;
895
		swarn.dev = dev;
896 897
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
898
					scrub_print_warning_inode, &swarn, false);
899 900 901 902 903 904
	}

out:
	btrfs_free_path(path);
}

905 906
static inline void scrub_get_recover(struct scrub_recover *recover)
{
907
	refcount_inc(&recover->refs);
908 909
}

910 911
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
912
{
913
	if (refcount_dec_and_test(&recover->refs)) {
914
		btrfs_bio_counter_dec(fs_info);
915
		btrfs_put_bioc(recover->bioc);
916 917 918 919
		kfree(recover);
	}
}

A
Arne Jansen 已提交
920
/*
921
 * scrub_handle_errored_block gets called when either verification of the
922 923
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
924 925 926
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
927
 */
928
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
929
{
930
	struct scrub_ctx *sctx = sblock_to_check->sctx;
931
	struct btrfs_device *dev = sblock_to_check->sectors[0]->dev;
932 933 934 935 936
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
937 938
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
939 940 941
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
942
	int sector_num;
943
	int success;
944
	bool full_stripe_locked;
945
	unsigned int nofs_flag;
946
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
947 948
				      DEFAULT_RATELIMIT_BURST);

949
	BUG_ON(sblock_to_check->sector_count < 1);
950
	fs_info = sctx->fs_info;
951
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
952
		/*
953
		 * If we find an error in a super block, we just report it.
954 955 956
		 * They will get written with the next transaction commit
		 * anyway
		 */
957
		scrub_print_warning("super block error", sblock_to_check);
958 959 960
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
961
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
962 963
		return 0;
	}
964 965 966 967
	logical = sblock_to_check->sectors[0]->logical;
	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->sectors[0]->flags &
968
			BTRFS_EXTENT_FLAG_DATA);
969
	have_csum = sblock_to_check->sectors[0]->have_csum;
970

971 972
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
973

974 975 976 977 978 979
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
980
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
981 982 983
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
984 985 986 987 988 989 990 991 992
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
993
		memalloc_nofs_restore(nofs_flag);
994 995 996 997 998 999 1000 1001 1002
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1003 1004 1005 1006
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1007
	 * sector by sector this time in order to know which sectors
1008 1009 1010 1011
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1022 1023 1024
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1025
	 * Only if this is not possible, the sectors are picked from
1026 1027 1028 1029 1030
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1031
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1032 1033 1034 1035 1036 1037 1038
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
		 */
1039
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, logical);
1040 1041 1042 1043 1044 1045 1046 1047 1048
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1049 1050
	}

1051
	/* Setup the context, map the logical blocks and alloc the sectors */
1052
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1053
	if (ret) {
1054 1055 1056 1057
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1058
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1059 1060 1061
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1062
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1063

1064
	/* build and submit the bios for the failed mirror, check checksums */
1065
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1066

1067 1068 1069
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1070
		 * The error disappeared after reading sector by sector, or
1071 1072 1073 1074 1075 1076
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1077 1078
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1079
		sblock_to_check->data_corrected = 1;
1080
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1081

1082 1083
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1084
		goto out;
A
Arne Jansen 已提交
1085 1086
	}

1087
	if (!sblock_bad->no_io_error_seen) {
1088 1089 1090
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1091
		if (__ratelimit(&rs))
1092
			scrub_print_warning("i/o error", sblock_to_check);
1093
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1094
	} else if (sblock_bad->checksum_error) {
1095 1096 1097
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1098
		if (__ratelimit(&rs))
1099
			scrub_print_warning("checksum error", sblock_to_check);
1100
		btrfs_dev_stat_inc_and_print(dev,
1101
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1102
	} else if (sblock_bad->header_error) {
1103 1104 1105
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1106
		if (__ratelimit(&rs))
1107 1108
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1109
		if (sblock_bad->generation_error)
1110
			btrfs_dev_stat_inc_and_print(dev,
1111 1112
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1113
			btrfs_dev_stat_inc_and_print(dev,
1114
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1115
	}
A
Arne Jansen 已提交
1116

1117 1118 1119 1120
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1121

1122 1123
	/*
	 * now build and submit the bios for the other mirrors, check
1124 1125
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1126 1127 1128 1129 1130
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1131
	 * checksum is present, only those sectors are rewritten that had
1132
	 * an I/O error in the block to be repaired, since it cannot be
1133 1134
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1135 1136
	 * overwritten by a bad one).
	 */
1137
	for (mirror_index = 0; ;mirror_index++) {
1138
		struct scrub_block *sblock_other;
1139

1140 1141
		if (mirror_index == failed_mirror_index)
			continue;
1142 1143

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1144
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1145 1146
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1147
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1148 1149
				break;

1150
			sblock_other = sblocks_for_recheck[mirror_index];
1151
		} else {
1152
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1153
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1154 1155 1156

			if (mirror_index >= max_allowed)
				break;
1157
			if (!sblocks_for_recheck[1]->sector_count)
1158 1159 1160
				break;

			ASSERT(failed_mirror_index == 0);
1161
			sblock_other = sblocks_for_recheck[1];
1162
			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1163
		}
1164 1165

		/* build and submit the bios, check checksums */
1166
		scrub_recheck_block(fs_info, sblock_other, 0);
1167 1168

		if (!sblock_other->header_error &&
1169 1170
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1171 1172
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1173
				goto corrected_error;
1174 1175
			} else {
				ret = scrub_repair_block_from_good_copy(
1176 1177 1178
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1179
			}
1180 1181
		}
	}
A
Arne Jansen 已提交
1182

1183 1184
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1185 1186 1187

	/*
	 * In case of I/O errors in the area that is supposed to be
1188 1189
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1190 1191 1192 1193 1194
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1195
	 * all possible combinations of sectors from the different mirrors
1196
	 * until the checksum verification succeeds. For example, when
1197
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1198
	 * of mirror #2 is readable but the final checksum test fails,
1199
	 * then the 2nd sector of mirror #3 could be tried, whether now
1200
	 * the final checksum succeeds. But this would be a rare
1201 1202 1203 1204
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1205
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1206
	 * mirror could be repaired by taking 512 byte of a different
1207
	 * mirror, even if other 512 byte sectors in the same sectorsize
1208
	 * area are unreadable.
A
Arne Jansen 已提交
1209
	 */
1210
	success = 1;
1211 1212
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1213
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1214
		struct scrub_block *sblock_other = NULL;
1215

1216 1217
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1218
			continue;
1219

1220
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1221 1222 1223 1224 1225 1226 1227 1228
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1229 1230
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1231 1232
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1233
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1234
			     mirror_index++) {
1235
				if (!sblocks_for_recheck[mirror_index]->
1236
				    sectors[sector_num]->io_error) {
1237
					sblock_other = sblocks_for_recheck[mirror_index];
1238
					break;
1239 1240
				}
			}
1241 1242
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1243
		}
A
Arne Jansen 已提交
1244

1245 1246
		if (sctx->is_dev_replace) {
			/*
1247 1248 1249 1250
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1251 1252 1253 1254
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1255 1256
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1257
				atomic64_inc(
1258
					&fs_info->dev_replace.num_write_errors);
1259 1260 1261
				success = 0;
			}
		} else if (sblock_other) {
1262 1263 1264
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1265
			if (0 == ret)
1266
				sector_bad->io_error = 0;
1267 1268
			else
				success = 0;
1269
		}
A
Arne Jansen 已提交
1270 1271
	}

1272
	if (success && !sctx->is_dev_replace) {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1283
			scrub_recheck_block(fs_info, sblock_bad, 1);
1284
			if (!sblock_bad->header_error &&
1285 1286 1287 1288 1289 1290 1291
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1292 1293
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1294
			sblock_to_check->data_corrected = 1;
1295
			spin_unlock(&sctx->stat_lock);
1296 1297
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1298
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1299
		}
1300 1301
	} else {
did_not_correct_error:
1302 1303 1304
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1305 1306
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1307
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1308
	}
A
Arne Jansen 已提交
1309

1310
out:
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1330
			}
1331
		}
1332
		scrub_block_put(sblock);
1333
	}
A
Arne Jansen 已提交
1334

1335
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1336
	memalloc_nofs_restore(nofs_flag);
1337 1338
	if (ret < 0)
		return ret;
1339 1340
	return 0;
}
A
Arne Jansen 已提交
1341

1342
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1343
{
1344
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1345
		return 2;
1346
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1347 1348
		return 3;
	else
1349
		return (int)bioc->num_stripes;
1350 1351
}

Z
Zhao Lei 已提交
1352 1353
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1354 1355 1356 1357 1358 1359
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1360
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1361 1362 1363 1364 1365 1366 1367
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1368
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1381
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1382
				     struct scrub_block *sblocks_for_recheck[])
1383
{
1384
	struct scrub_ctx *sctx = original_sblock->sctx;
1385
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1386 1387 1388 1389 1390
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = original_sblock->sectors[0]->logical;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1391
	struct scrub_recover *recover;
1392
	struct btrfs_io_context *bioc;
1393 1394 1395 1396
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1397
	int sector_index = 0;
1398
	int mirror_index;
1399
	int nmirrors;
1400 1401 1402
	int ret;

	while (length > 0) {
1403
		sublen = min_t(u64, length, fs_info->sectorsize);
1404
		mapped_length = sublen;
1405
		bioc = NULL;
A
Arne Jansen 已提交
1406

1407
		/*
1408 1409
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1410
		 */
1411
		btrfs_bio_counter_inc_blocked(fs_info);
1412
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1413 1414 1415
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1416
			btrfs_bio_counter_dec(fs_info);
1417 1418
			return -EIO;
		}
A
Arne Jansen 已提交
1419

1420 1421
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1422
			btrfs_put_bioc(bioc);
1423
			btrfs_bio_counter_dec(fs_info);
1424 1425 1426
			return -ENOMEM;
		}

1427
		refcount_set(&recover->refs, 1);
1428
		recover->bioc = bioc;
1429 1430
		recover->map_length = mapped_length;

1431
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1432

1433
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1434

1435
		for (mirror_index = 0; mirror_index < nmirrors;
1436 1437
		     mirror_index++) {
			struct scrub_block *sblock;
1438
			struct scrub_sector *sector;
1439

1440
			sblock = sblocks_for_recheck[mirror_index];
1441
			sblock->sctx = sctx;
1442

1443
			sector = alloc_scrub_sector(sblock, logical, GFP_NOFS);
1444
			if (!sector) {
1445 1446 1447
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1448
				scrub_put_recover(fs_info, recover);
1449 1450
				return -ENOMEM;
			}
1451 1452 1453
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1454
			if (have_csum)
1455
				memcpy(sector->csum,
1456
				       original_sblock->sectors[0]->csum,
1457
				       sctx->fs_info->csum_size);
1458

Z
Zhao Lei 已提交
1459
			scrub_stripe_index_and_offset(logical,
1460 1461 1462 1463
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1464 1465 1466
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1467
			sector->physical = bioc->stripes[stripe_index].physical +
1468
					 stripe_offset;
1469
			sector->dev = bioc->stripes[stripe_index].dev;
1470

1471
			BUG_ON(sector_index >= original_sblock->sector_count);
1472
			sector->physical_for_dev_replace =
1473
				original_sblock->sectors[sector_index]->
1474
				physical_for_dev_replace;
1475 1476
			/* For missing devices, dev->bdev is NULL */
			sector->mirror_num = mirror_index + 1;
1477
			scrub_get_recover(recover);
1478
			sector->recover = recover;
1479
		}
1480
		scrub_put_recover(fs_info, recover);
1481 1482
		length -= sublen;
		logical += sublen;
1483
		sector_index++;
1484 1485 1486
	}

	return 0;
I
Ilya Dryomov 已提交
1487 1488
}

1489
static void scrub_bio_wait_endio(struct bio *bio)
1490
{
1491
	complete(bio->bi_private);
1492 1493 1494 1495
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1496
					struct scrub_sector *sector)
1497
{
1498
	DECLARE_COMPLETION_ONSTACK(done);
1499

1500
	bio->bi_iter.bi_sector = sector->logical >> 9;
1501 1502
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1503 1504
	raid56_parity_recover(bio, sector->recover->bioc,
			      sector->sblock->sectors[0]->mirror_num, false);
1505

1506 1507
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1508 1509
}

L
Liu Bo 已提交
1510 1511 1512
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1513
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1514
	struct bio *bio;
1515
	int i;
L
Liu Bo 已提交
1516

1517 1518 1519
	/* All sectors in sblock belong to the same stripe on the same device. */
	ASSERT(first_sector->dev);
	if (!first_sector->dev->bdev)
L
Liu Bo 已提交
1520 1521
		goto out;

1522
	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1523

1524
	for (i = 0; i < sblock->sector_count; i++) {
1525
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1526

1527 1528
		WARN_ON(!sector->page);
		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1529 1530
	}

1531
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1542 1543
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1544 1545 1546 1547

	sblock->no_io_error_seen = 0;
}

1548
/*
1549 1550 1551 1552 1553
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1554
 */
1555
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1556 1557
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1558
{
1559
	int i;
I
Ilya Dryomov 已提交
1560

1561
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1562

L
Liu Bo 已提交
1563
	/* short cut for raid56 */
1564
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1565 1566
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1567
	for (i = 0; i < sblock->sector_count; i++) {
1568
		struct scrub_sector *sector = sblock->sectors[i];
1569 1570
		struct bio bio;
		struct bio_vec bvec;
1571

1572 1573
		if (sector->dev->bdev == NULL) {
			sector->io_error = 1;
1574 1575 1576 1577
			sblock->no_io_error_seen = 0;
			continue;
		}

1578
		WARN_ON(!sector->page);
1579 1580 1581
		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
		bio.bi_iter.bi_sector = sector->physical >> 9;
1582

1583 1584
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1585
			sector->io_error = 1;
L
Liu Bo 已提交
1586
			sblock->no_io_error_seen = 0;
1587
		}
1588

1589
		bio_uninit(&bio);
1590
	}
I
Ilya Dryomov 已提交
1591

1592
	if (sblock->no_io_error_seen)
1593
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1594 1595
}

1596
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1597
{
1598
	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
M
Miao Xie 已提交
1599 1600
	int ret;

1601
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1602 1603 1604
	return !ret;
}

1605
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1606
{
1607 1608 1609
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1610

1611
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1612 1613 1614
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1615 1616
}

1617
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1618
					     struct scrub_block *sblock_good)
1619
{
1620
	int i;
1621
	int ret = 0;
I
Ilya Dryomov 已提交
1622

1623
	for (i = 0; i < sblock_bad->sector_count; i++) {
1624
		int ret_sub;
I
Ilya Dryomov 已提交
1625

1626 1627
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1628 1629
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1630
	}
1631 1632 1633 1634

	return ret;
}

1635 1636 1637
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1638
{
1639 1640
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1641
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1642
	const u32 sectorsize = fs_info->sectorsize;
1643

1644 1645
	BUG_ON(sector_bad->page == NULL);
	BUG_ON(sector_good->page == NULL);
1646
	if (force_write || sblock_bad->header_error ||
1647
	    sblock_bad->checksum_error || sector_bad->io_error) {
1648 1649
		struct bio bio;
		struct bio_vec bvec;
1650 1651
		int ret;

1652
		if (!sector_bad->dev->bdev) {
1653
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1654
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1655 1656 1657
			return -EIO;
		}

1658 1659 1660
		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1661

1662 1663 1664
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1665

1666
		if (ret) {
1667
			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1668
				BTRFS_DEV_STAT_WRITE_ERRS);
1669
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1670 1671
			return -EIO;
		}
A
Arne Jansen 已提交
1672 1673
	}

1674 1675 1676
	return 0;
}

1677 1678
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1679
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1680
	int i;
1681

1682 1683 1684 1685 1686 1687 1688
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1689
	for (i = 0; i < sblock->sector_count; i++) {
1690 1691
		int ret;

1692
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1693
		if (ret)
1694
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1695 1696 1697
	}
}

1698
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1699
{
1700
	struct scrub_sector *sector = sblock->sectors[sector_num];
1701

1702 1703 1704
	BUG_ON(sector->page == NULL);
	if (sector->io_error)
		clear_page(page_address(sector->page));
1705

1706
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1717 1718 1719
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1731 1732 1733 1734 1735
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1736 1737
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1738 1739 1740
{
	struct scrub_bio *sbio;
	int ret;
1741
	const u32 sectorsize = sctx->fs_info->sectorsize;
1742

1743
	mutex_lock(&sctx->wr_lock);
1744
again:
1745 1746
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1747
					      GFP_KERNEL);
1748 1749
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1750 1751
			return -ENOMEM;
		}
1752
		sctx->wr_curr_bio->sctx = sctx;
1753
		sctx->wr_curr_bio->sector_count = 0;
1754
	}
1755
	sbio = sctx->wr_curr_bio;
1756
	if (sbio->sector_count == 0) {
1757
		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1758 1759 1760 1761 1762
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1763 1764
		sbio->physical = sector->physical_for_dev_replace;
		sbio->logical = sector->logical;
1765
		sbio->dev = sctx->wr_tgtdev;
1766 1767 1768
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1769
		}
1770 1771 1772
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1773
		sbio->status = 0;
1774
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1775
		   sector->physical_for_dev_replace ||
1776
		   sbio->logical + sbio->sector_count * sectorsize !=
1777
		   sector->logical) {
1778 1779 1780 1781
		scrub_wr_submit(sctx);
		goto again;
	}

1782
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1783
	if (ret != sectorsize) {
1784
		if (sbio->sector_count < 1) {
1785 1786
			bio_put(sbio->bio);
			sbio->bio = NULL;
1787
			mutex_unlock(&sctx->wr_lock);
1788 1789 1790 1791 1792 1793
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1794
	sbio->sectors[sbio->sector_count] = sector;
1795
	scrub_sector_get(sector);
1796 1797 1798 1799 1800 1801 1802
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

1803 1804
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1805
		scrub_wr_submit(sctx);
1806
	mutex_unlock(&sctx->wr_lock);
1807 1808 1809 1810 1811 1812 1813 1814

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1815
	if (!sctx->wr_curr_bio)
1816 1817
		return;

1818 1819
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1820 1821 1822 1823 1824
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1825 1826
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1827 1828

	if (btrfs_is_zoned(sctx->fs_info))
1829
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1830
			sctx->fs_info->sectorsize;
1831 1832
}

1833
static void scrub_wr_bio_end_io(struct bio *bio)
1834 1835
{
	struct scrub_bio *sbio = bio->bi_private;
1836
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1837

1838
	sbio->status = bio->bi_status;
1839 1840
	sbio->bio = bio;

1841 1842
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1843 1844
}

1845
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1846 1847 1848 1849 1850
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1851
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1852
	if (sbio->status) {
1853
		struct btrfs_dev_replace *dev_replace =
1854
			&sbio->sctx->fs_info->dev_replace;
1855

1856 1857
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1858

1859
			sector->io_error = 1;
1860
			atomic64_inc(&dev_replace->num_write_errors);
1861 1862 1863
		}
	}

1864 1865 1866 1867 1868 1869
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
1870
		scrub_sector_put(sbio->sectors[i]);
1871
	}
1872 1873 1874 1875 1876 1877 1878

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1879 1880 1881 1882
{
	u64 flags;
	int ret;

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1895 1896
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1897 1898 1899 1900 1901 1902
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1903
		ret = scrub_checksum_super(sblock);
1904 1905 1906 1907
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1908 1909

	return ret;
A
Arne Jansen 已提交
1910 1911
}

1912
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1913
{
1914
	struct scrub_ctx *sctx = sblock->sctx;
1915 1916
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1917
	u8 csum[BTRFS_CSUM_SIZE];
1918
	struct scrub_sector *sector;
1919
	char *kaddr;
A
Arne Jansen 已提交
1920

1921
	BUG_ON(sblock->sector_count < 1);
1922 1923
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1924 1925
		return 0;

1926
	kaddr = page_address(sector->page);
1927

1928 1929
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1930

1931
	/*
1932
	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1933 1934 1935
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1936

1937
	if (memcmp(csum, sector->csum, fs_info->csum_size))
1938
		sblock->checksum_error = 1;
1939
	return sblock->checksum_error;
A
Arne Jansen 已提交
1940 1941
}

1942
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1943
{
1944
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1945
	struct btrfs_header *h;
1946
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1947
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1948 1949
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1950 1951 1952 1953 1954 1955 1956
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1957
	int i;
1958
	struct scrub_sector *sector;
1959
	char *kaddr;
1960

1961
	BUG_ON(sblock->sector_count < 1);
1962

1963
	/* Each member in sectors is just one sector */
1964
	ASSERT(sblock->sector_count == num_sectors);
1965

1966 1967
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1968
	h = (struct btrfs_header *)kaddr;
1969
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1970 1971 1972 1973 1974 1975

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1976
	if (sector->logical != btrfs_stack_header_bytenr(h))
1977
		sblock->header_error = 1;
A
Arne Jansen 已提交
1978

1979
	if (sector->generation != btrfs_stack_header_generation(h)) {
1980 1981 1982
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1983

1984
	if (!scrub_check_fsid(h->fsid, sector))
1985
		sblock->header_error = 1;
A
Arne Jansen 已提交
1986 1987 1988

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1989
		sblock->header_error = 1;
A
Arne Jansen 已提交
1990

1991 1992 1993
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1994
			    sectorsize - BTRFS_CSUM_SIZE);
1995

1996
	for (i = 1; i < num_sectors; i++) {
1997
		kaddr = page_address(sblock->sectors[i]->page);
1998
		crypto_shash_update(shash, kaddr, sectorsize);
1999 2000
	}

2001
	crypto_shash_final(shash, calculated_csum);
2002
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2003
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2004

2005
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2006 2007
}

2008
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2009 2010
{
	struct btrfs_super_block *s;
2011
	struct scrub_ctx *sctx = sblock->sctx;
2012 2013
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2014
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2015
	struct scrub_sector *sector;
2016
	char *kaddr;
2017 2018
	int fail_gen = 0;
	int fail_cor = 0;
2019

2020
	BUG_ON(sblock->sector_count < 1);
2021 2022
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
2023
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2024

2025
	if (sector->logical != btrfs_super_bytenr(s))
2026
		++fail_cor;
A
Arne Jansen 已提交
2027

2028
	if (sector->generation != btrfs_super_generation(s))
2029
		++fail_gen;
A
Arne Jansen 已提交
2030

2031
	if (!scrub_check_fsid(s->fsid, sector))
2032
		++fail_cor;
A
Arne Jansen 已提交
2033

2034 2035 2036 2037
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2038

2039
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2040
		++fail_cor;
A
Arne Jansen 已提交
2041

2042
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2043 2044
}

2045 2046
static void scrub_block_put(struct scrub_block *sblock)
{
2047
	if (refcount_dec_and_test(&sblock->refs)) {
2048 2049
		int i;

2050 2051 2052
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2053
		for (i = 0; i < sblock->sector_count; i++)
2054
			scrub_sector_put(sblock->sectors[i]);
2055 2056 2057 2058 2059 2060
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2061 2062 2063 2064
		kfree(sblock);
	}
}

2065
static void scrub_sector_get(struct scrub_sector *sector)
2066
{
2067
	atomic_inc(&sector->refs);
2068 2069
}

2070
static void scrub_sector_put(struct scrub_sector *sector)
2071
{
2072 2073 2074 2075
	if (atomic_dec_and_test(&sector->refs)) {
		if (sector->page)
			__free_page(sector->page);
		kfree(sector);
2076 2077 2078
	}
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2138
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2139 2140 2141
{
	struct scrub_bio *sbio;

2142
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2143
		return;
A
Arne Jansen 已提交
2144

2145 2146
	scrub_throttle(sctx);

2147 2148
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2149
	scrub_pending_bio_inc(sctx);
2150 2151
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2152 2153
}

2154 2155
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2156
{
2157
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2158
	struct scrub_bio *sbio;
2159
	const u32 sectorsize = sctx->fs_info->sectorsize;
2160
	int ret;
A
Arne Jansen 已提交
2161 2162 2163 2164 2165

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2166 2167 2168 2169 2170 2171
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2172
			sctx->bios[sctx->curr]->sector_count = 0;
2173
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2174
		} else {
2175 2176
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2177 2178
		}
	}
2179
	sbio = sctx->bios[sctx->curr];
2180
	if (sbio->sector_count == 0) {
2181 2182 2183
		sbio->physical = sector->physical;
		sbio->logical = sector->logical;
		sbio->dev = sector->dev;
2184 2185 2186
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2187
		}
2188 2189 2190
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2191
		sbio->status = 0;
2192
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2193
		   sector->physical ||
2194
		   sbio->logical + sbio->sector_count * sectorsize !=
2195 2196
		   sector->logical ||
		   sbio->dev != sector->dev) {
2197
		scrub_submit(sctx);
A
Arne Jansen 已提交
2198 2199
		goto again;
	}
2200

2201
	sbio->sectors[sbio->sector_count] = sector;
2202
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2203
	if (ret != sectorsize) {
2204
		if (sbio->sector_count < 1) {
2205 2206 2207 2208
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2209
		scrub_submit(sctx);
2210 2211 2212
		goto again;
	}

2213
	scrub_block_get(sblock); /* one for the page added to the bio */
2214
	atomic_inc(&sblock->outstanding_sectors);
2215 2216
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2217
		scrub_submit(sctx);
2218 2219 2220 2221

	return 0;
}

2222
static void scrub_missing_raid56_end_io(struct bio *bio)
2223 2224
{
	struct scrub_block *sblock = bio->bi_private;
2225
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2226

2227
	if (bio->bi_status)
2228 2229
		sblock->no_io_error_seen = 0;

2230 2231
	bio_put(bio);

2232
	queue_work(fs_info->scrub_workers, &sblock->work);
2233 2234
}

2235
static void scrub_missing_raid56_worker(struct work_struct *work)
2236 2237 2238
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2239
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2240 2241 2242
	u64 logical;
	struct btrfs_device *dev;

2243 2244
	logical = sblock->sectors[0]->logical;
	dev = sblock->sectors[0]->dev;
2245

2246
	if (sblock->no_io_error_seen)
2247
		scrub_recheck_block_checksum(sblock);
2248 2249 2250 2251 2252

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2253
		btrfs_err_rl_in_rcu(fs_info,
2254
			"IO error rebuilding logical %llu for dev %s",
2255 2256 2257 2258 2259
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2260
		btrfs_err_rl_in_rcu(fs_info,
2261
			"failed to rebuild valid logical %llu for dev %s",
2262 2263 2264 2265 2266
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2267
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2268
		mutex_lock(&sctx->wr_lock);
2269
		scrub_wr_submit(sctx);
2270
		mutex_unlock(&sctx->wr_lock);
2271 2272
	}

2273
	scrub_block_put(sblock);
2274 2275 2276 2277 2278 2279
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2280
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2281 2282
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = sblock->sectors[0]->logical;
2283
	struct btrfs_io_context *bioc = NULL;
2284 2285 2286 2287 2288
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2289
	btrfs_bio_counter_inc_blocked(fs_info);
2290
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2291 2292 2293
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2294 2295

	if (WARN_ON(!sctx->is_dev_replace ||
2296
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2297 2298 2299 2300
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2301
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2302
		 */
2303
		goto bioc_out;
2304 2305
	}

2306
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2307 2308 2309 2310
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2311
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2312 2313 2314
	if (!rbio)
		goto rbio_out;

2315
	for (i = 0; i < sblock->sector_count; i++) {
2316
		struct scrub_sector *sector = sblock->sectors[i];
2317

2318 2319 2320 2321 2322
		/*
		 * For now, our scrub is still one page per sector, so pgoff
		 * is always 0.
		 */
		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2323 2324
	}

2325
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2326 2327 2328 2329 2330 2331 2332
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2333
bioc_out:
2334
	btrfs_bio_counter_dec(fs_info);
2335
	btrfs_put_bioc(bioc);
2336 2337 2338 2339 2340
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2341
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2342
		       u64 physical, struct btrfs_device *dev, u64 flags,
2343
		       u64 gen, int mirror_num, u8 *csum,
2344
		       u64 physical_for_dev_replace)
2345 2346
{
	struct scrub_block *sblock;
2347
	const u32 sectorsize = sctx->fs_info->sectorsize;
2348 2349
	int index;

2350
	sblock = alloc_scrub_block(sctx, logical);
2351
	if (!sblock) {
2352 2353 2354
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2355
		return -ENOMEM;
A
Arne Jansen 已提交
2356
	}
2357 2358

	for (index = 0; len > 0; index++) {
2359
		struct scrub_sector *sector;
2360 2361 2362 2363 2364 2365
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2366

2367
		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2368
		if (!sector) {
2369 2370 2371
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2372
			scrub_block_put(sblock);
2373 2374
			return -ENOMEM;
		}
2375 2376 2377 2378 2379 2380
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->physical = physical;
		sector->physical_for_dev_replace = physical_for_dev_replace;
		sector->mirror_num = mirror_num;
2381
		if (csum) {
2382 2383
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2384
		} else {
2385
			sector->have_csum = 0;
2386 2387 2388 2389
		}
		len -= l;
		logical += l;
		physical += l;
2390
		physical_for_dev_replace += l;
2391 2392
	}

2393
	WARN_ON(sblock->sector_count == 0);
2394
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2395 2396 2397 2398 2399 2400
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2401
		for (index = 0; index < sblock->sector_count; index++) {
2402
			struct scrub_sector *sector = sblock->sectors[index];
2403
			int ret;
2404

2405
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2406 2407 2408 2409
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2410
		}
A
Arne Jansen 已提交
2411

2412
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2413 2414
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2415

2416 2417
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2418 2419 2420
	return 0;
}

2421
static void scrub_bio_end_io(struct bio *bio)
2422 2423
{
	struct scrub_bio *sbio = bio->bi_private;
2424
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2425

2426
	sbio->status = bio->bi_status;
2427 2428
	sbio->bio = bio;

2429
	queue_work(fs_info->scrub_workers, &sbio->work);
2430 2431
}

2432
static void scrub_bio_end_io_worker(struct work_struct *work)
2433 2434
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2435
	struct scrub_ctx *sctx = sbio->sctx;
2436 2437
	int i;

2438
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2439
	if (sbio->status) {
2440 2441
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2442

2443 2444
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2445 2446 2447
		}
	}

2448
	/* Now complete the scrub_block items that have all pages completed */
2449 2450
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2451
		struct scrub_block *sblock = sector->sblock;
2452

2453
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2454 2455 2456 2457 2458 2459
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2460 2461 2462 2463
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2464

2465
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2466
		mutex_lock(&sctx->wr_lock);
2467
		scrub_wr_submit(sctx);
2468
		mutex_unlock(&sctx->wr_lock);
2469 2470
	}

2471
	scrub_pending_bio_dec(sctx);
2472 2473
}

2474 2475
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2476
				       u64 start, u32 len)
2477
{
2478
	u64 offset;
2479
	u32 nsectors;
2480
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2481 2482 2483 2484 2485 2486 2487

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2488
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2489
	offset = offset >> sectorsize_bits;
2490
	nsectors = len >> sectorsize_bits;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2502
						   u64 start, u32 len)
2503
{
2504
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2505 2506 2507
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2508
						  u64 start, u32 len)
2509
{
2510
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2511 2512
}

2513 2514
static void scrub_block_complete(struct scrub_block *sblock)
{
2515 2516
	int corrupted = 0;

2517
	if (!sblock->no_io_error_seen) {
2518
		corrupted = 1;
2519
		scrub_handle_errored_block(sblock);
2520 2521 2522 2523 2524 2525
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2526 2527
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2528 2529
			scrub_write_block_to_dev_replace(sblock);
	}
2530 2531

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2532 2533
		u64 start = sblock->sectors[0]->logical;
		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2534
			  sblock->sctx->fs_info->sectorsize;
2535

2536
		ASSERT(end - start <= U32_MAX);
2537 2538 2539
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2554
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2555 2556 2557 2558 2559
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2560
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2561
{
2562
	bool found = false;
A
Arne Jansen 已提交
2563

2564
	while (!list_empty(&sctx->csum_list)) {
2565 2566 2567 2568
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2569
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2570
				       struct btrfs_ordered_sum, list);
2571
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2572 2573 2574
		if (sum->bytenr > logical)
			break;

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2585

2586 2587 2588 2589
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2590

2591 2592 2593 2594 2595 2596 2597
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2598
	}
2599 2600
	if (!found)
		return 0;
2601
	return 1;
A
Arne Jansen 已提交
2602 2603 2604
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2605
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2606
			u64 logical, u32 len,
2607
			u64 physical, struct btrfs_device *dev, u64 flags,
2608
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2609
{
2610 2611 2612
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2613 2614
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2615 2616 2617
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2618 2619 2620 2621
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2622 2623 2624 2625
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2626
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2627 2628 2629 2630
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2631 2632 2633 2634
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2635
	} else {
2636
		blocksize = sctx->fs_info->sectorsize;
2637
		WARN_ON(1);
2638
	}
A
Arne Jansen 已提交
2639

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2652
	while (len) {
2653
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2654 2655 2656 2657
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2658
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2659
			if (have_csum == 0)
2660
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2661
		}
2662 2663 2664
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2665 2666 2667 2668 2669
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2670
		src_physical += l;
A
Arne Jansen 已提交
2671 2672 2673 2674
	}
	return 0;
}

2675
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2676
				  u64 logical, u32 len,
2677 2678 2679 2680 2681
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2682
	const u32 sectorsize = sctx->fs_info->sectorsize;
2683 2684
	int index;

2685 2686
	ASSERT(IS_ALIGNED(len, sectorsize));

2687
	sblock = alloc_scrub_block(sctx, logical);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2699
		struct scrub_sector *sector;
2700

2701
		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2702
		if (!sector) {
2703 2704 2705 2706 2707 2708
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2709
		sblock->sectors[index] = sector;
2710
		/* For scrub parity */
2711 2712 2713 2714 2715 2716 2717
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->physical = physical;
		sector->mirror_num = mirror_num;
2718
		if (csum) {
2719 2720
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2721
		} else {
2722
			sector->have_csum = 0;
2723
		}
2724 2725 2726 2727 2728

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2729 2730
	}

2731 2732
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2733
		struct scrub_sector *sector = sblock->sectors[index];
2734 2735
		int ret;

2736
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2737 2738 2739 2740 2741 2742
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2743
	/* Last one frees, either here or in bio completion for last sector */
2744 2745 2746 2747 2748
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2749
				   u64 logical, u32 len,
2750 2751 2752 2753 2754 2755 2756 2757
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2758
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2759 2760 2761 2762
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2763
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2764
		blocksize = sparity->stripe_len;
2765
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2766
		blocksize = sparity->stripe_len;
2767
	} else {
2768
		blocksize = sctx->fs_info->sectorsize;
2769 2770 2771 2772
		WARN_ON(1);
	}

	while (len) {
2773
		u32 l = min(len, blocksize);
2774 2775 2776 2777
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2778
			have_csum = scrub_find_csum(sctx, logical, csum);
2779 2780 2781
			if (have_csum == 0)
				goto skip;
		}
2782
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2783 2784 2785 2786
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2787
skip:
2788 2789 2790 2791 2792 2793 2794
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2795 2796 2797 2798 2799 2800 2801 2802
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2803 2804
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2805 2806 2807 2808 2809
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2810 2811
	u32 stripe_index;
	u32 rot;
2812
	const int data_stripes = nr_data_stripes(map);
2813

2814
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2815 2816 2817
	if (stripe_start)
		*stripe_start = last_offset;

2818
	*offset = last_offset;
2819
	for (i = 0; i < data_stripes; i++) {
2820 2821
		*offset = last_offset + i * map->stripe_len;

2822
		stripe_nr = div64_u64(*offset, map->stripe_len);
2823
		stripe_nr = div_u64(stripe_nr, data_stripes);
2824 2825

		/* Work out the disk rotation on this stripe-set */
2826
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2827 2828
		/* calculate which stripe this data locates */
		rot += i;
2829
		stripe_index = rot % map->num_stripes;
2830 2831 2832 2833 2834 2835 2836 2837 2838
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2839 2840 2841
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2842
	struct scrub_sector *curr, *next;
2843 2844
	int nbits;

2845
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2846 2847 2848 2849 2850 2851 2852
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2853
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2854
		list_del_init(&curr->list);
2855
		scrub_sector_put(curr);
2856 2857 2858 2859 2860
	}

	kfree(sparity);
}

2861
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2862 2863 2864 2865 2866 2867 2868 2869 2870
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2871
static void scrub_parity_bio_endio(struct bio *bio)
2872
{
Y
Yu Zhe 已提交
2873
	struct scrub_parity *sparity = bio->bi_private;
2874
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2875

2876
	if (bio->bi_status)
2877 2878
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2879 2880

	bio_put(bio);
2881

2882 2883
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2884 2885 2886 2887 2888
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2889
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2890 2891
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2892
	struct btrfs_io_context *bioc = NULL;
2893 2894 2895
	u64 length;
	int ret;

2896 2897
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
2898 2899
		goto out;

2900
	length = sparity->logic_end - sparity->logic_start;
2901 2902

	btrfs_bio_counter_inc_blocked(fs_info);
2903
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2904 2905 2906
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2907

2908
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2909 2910 2911 2912
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2913
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2914
					      sparity->scrub_dev,
2915
					      &sparity->dbitmap,
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2926
bioc_out:
2927
	btrfs_bio_counter_dec(fs_info);
2928
	btrfs_put_bioc(bioc);
2929
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2940
	refcount_inc(&sparity->refs);
2941 2942 2943 2944
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2945
	if (!refcount_dec_and_test(&sparity->refs))
2946 2947 2948 2949 2950
		return;

	scrub_parity_check_and_repair(sparity);
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3077 3078 3079 3080 3081 3082 3083 3084 3085
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3096
	u64 cur_logical = logical;
3097 3098 3099 3100 3101 3102 3103
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3104
	while (cur_logical < logical + map->stripe_len) {
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3115 3116 3117 3118 3119
		ret = find_first_extent_item(extent_root, path, cur_logical,
					     logical + map->stripe_len - cur_logical);
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3120 3121
			break;
		}
3122
		if (ret < 0)
3123
			break;
3124 3125
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3126

3127
		/* Metadata should not cross stripe boundaries */
3128
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3129 3130
		    does_range_cross_boundary(extent_start, extent_size,
					      logical, map->stripe_len)) {
3131
			btrfs_err(fs_info,
3132 3133
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3134 3135 3136
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3137 3138
			cur_logical += extent_size;
			continue;
3139 3140
		}

3141 3142
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3143

3144 3145 3146 3147 3148
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
				  logical + map->stripe_len) - cur_logical;
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

		ret = btrfs_lookup_csums_range(csum_root, extent_start,
					       extent_start + extent_size - 1,
					       &sctx->csum_list, 1);
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3190
		cur_logical += extent_size;
3191 3192 3193 3194 3195
	}
	btrfs_release_path(path);
	return ret;
}

3196 3197 3198 3199 3200 3201
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3202
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3203
	struct btrfs_path *path;
3204
	u64 cur_logical;
3205 3206 3207 3208
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3219
	ASSERT(map->stripe_len <= U32_MAX);
3220
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3221 3222
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3223 3224 3225 3226
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3227
		btrfs_free_path(path);
3228 3229 3230
		return -ENOMEM;
	}

3231
	ASSERT(map->stripe_len <= U32_MAX);
3232 3233 3234 3235 3236 3237
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3238
	refcount_set(&sparity->refs, 1);
3239
	INIT_LIST_HEAD(&sparity->sectors_list);
3240 3241

	ret = 0;
3242 3243 3244 3245
	for (cur_logical = logic_start; cur_logical < logic_end;
	     cur_logical += map->stripe_len) {
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3246 3247
		if (ret < 0)
			break;
3248
	}
3249

3250 3251
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3252
	mutex_lock(&sctx->wr_lock);
3253
	scrub_wr_submit(sctx);
3254
	mutex_unlock(&sctx->wr_lock);
3255

3256
	btrfs_free_path(path);
3257 3258 3259
	return ret < 0 ? ret : 0;
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3359
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
					&sctx->csum_list, 1);
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3412 3413 3414 3415
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3500
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3501
					   struct btrfs_block_group *bg,
3502
					   struct extent_map *em,
3503
					   struct btrfs_device *scrub_dev,
3504
					   int stripe_index)
A
Arne Jansen 已提交
3505
{
3506
	struct btrfs_path *path;
3507
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3508
	struct btrfs_root *root;
3509
	struct btrfs_root *csum_root;
3510
	struct blk_plug plug;
3511
	struct map_lookup *map = em->map_lookup;
3512
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3513
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3514
	int ret;
3515
	u64 physical = map->stripes[stripe_index].physical;
3516 3517
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3518
	u64 logical;
L
Liu Bo 已提交
3519
	u64 logic_end;
3520
	/* The logical increment after finishing one stripe */
3521
	u64 increment;
3522
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3523
	u64 offset;
3524 3525
	u64 stripe_logical;
	u64 stripe_end;
3526
	int stop_loop = 0;
D
David Woodhouse 已提交
3527

A
Arne Jansen 已提交
3528 3529 3530 3531
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3532 3533 3534 3535 3536
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3537 3538
	path->search_commit_root = 1;
	path->skip_locking = 1;
3539
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3540

3541
	wait_event(sctx->list_wait,
3542
		   atomic_read(&sctx->bios_in_flight) == 0);
3543
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3544

3545 3546
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3547

A
Arne Jansen 已提交
3548 3549 3550 3551
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3552
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3553

3554 3555 3556 3557 3558 3559 3560 3561
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3583
		offset = 0;
3584 3585
		goto out;
	}
3586 3587 3588
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3589
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3590 3591 3592 3593 3594
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3595
	ret = 0;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3606 3607 3608 3609
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3610
	while (physical < physical_end) {
3611 3612
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3623
			goto next;
3624 3625
		}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3637 3638 3639 3640 3641
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3642
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3643
		if (stop_loop)
3644 3645
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3646 3647
		else
			sctx->stat.last_physical = physical;
3648
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3649 3650
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3651
	}
3652
out:
A
Arne Jansen 已提交
3653
	/* push queued extents */
3654
	scrub_submit(sctx);
3655
	mutex_lock(&sctx->wr_lock);
3656
	scrub_wr_submit(sctx);
3657
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3658

3659
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3660
	btrfs_free_path(path);
3661 3662 3663 3664

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3665 3666 3667 3668
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3669 3670 3671 3672
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3673 3674 3675
	return ret < 0 ? ret : 0;
}

3676
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3677
					  struct btrfs_block_group *bg,
3678
					  struct btrfs_device *scrub_dev,
3679
					  u64 dev_offset,
3680
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3681
{
3682
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3683
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3684 3685 3686
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3687
	int ret = 0;
A
Arne Jansen 已提交
3688

3689
	read_lock(&map_tree->lock);
3690
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3691
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3692

3693 3694 3695 3696 3697
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3698
		spin_lock(&bg->lock);
3699
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3700
			ret = -EINVAL;
3701
		spin_unlock(&bg->lock);
3702 3703 3704

		return ret;
	}
3705
	if (em->start != bg->start)
A
Arne Jansen 已提交
3706
		goto out;
3707
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3708 3709
		goto out;

3710
	map = em->map_lookup;
A
Arne Jansen 已提交
3711
	for (i = 0; i < map->num_stripes; ++i) {
3712
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3713
		    map->stripes[i].physical == dev_offset) {
3714
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3744
static noinline_for_stack
3745
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3746
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3747 3748 3749
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3750 3751
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3752
	u64 chunk_offset;
3753
	int ret = 0;
3754
	int ro_set;
A
Arne Jansen 已提交
3755 3756 3757 3758
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3759
	struct btrfs_block_group *cache;
3760
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3761 3762 3763 3764 3765

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3766
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3767 3768 3769
	path->search_commit_root = 1;
	path->skip_locking = 1;

3770
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3771 3772 3773 3774
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3775 3776
		u64 dev_extent_len;

A
Arne Jansen 已提交
3777 3778
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3779 3780 3781 3782 3783
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3784 3785 3786 3787
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3788
					break;
3789 3790 3791
				}
			} else {
				ret = 0;
3792 3793
			}
		}
A
Arne Jansen 已提交
3794 3795 3796 3797 3798 3799

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3800
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3801 3802
			break;

3803
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3813
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3814

3815
		if (found_key.offset + dev_extent_len <= start)
3816
			goto skip;
A
Arne Jansen 已提交
3817 3818 3819 3820 3821 3822 3823 3824

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3825 3826 3827 3828 3829 3830

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3856
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3857
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3858
				spin_unlock(&cache->lock);
3859 3860
				btrfs_put_block_group(cache);
				goto skip;
3861 3862 3863
			}
		}

3864 3865 3866 3867 3868 3869 3870 3871 3872
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
3873
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3874 3875 3876 3877
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3878
		btrfs_freeze_block_group(cache);
3879 3880
		spin_unlock(&cache->lock);

3881 3882 3883 3884 3885 3886 3887 3888 3889
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3920
		 */
3921
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3932 3933
		if (ret == 0) {
			ro_set = 1;
3934
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3935 3936 3937
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3938
			 * It is not a problem for scrub, because
3939 3940 3941 3942
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3943 3944 3945 3946 3947 3948 3949
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3950
		} else {
J
Jeff Mahoney 已提交
3951
			btrfs_warn(fs_info,
3952
				   "failed setting block group ro: %d", ret);
3953
			btrfs_unfreeze_block_group(cache);
3954
			btrfs_put_block_group(cache);
3955
			scrub_pause_off(fs_info);
3956 3957 3958
			break;
		}

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3971
		down_write(&dev_replace->rwsem);
3972
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3973 3974
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3975 3976
		up_write(&dev_replace->rwsem);

3977 3978
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3990
		sctx->flush_all_writes = true;
3991
		scrub_submit(sctx);
3992
		mutex_lock(&sctx->wr_lock);
3993
		scrub_wr_submit(sctx);
3994
		mutex_unlock(&sctx->wr_lock);
3995 3996 3997

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3998 3999

		scrub_pause_on(fs_info);
4000 4001 4002 4003 4004 4005

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4006 4007
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4008
		sctx->flush_all_writes = false;
4009

4010
		scrub_pause_off(fs_info);
4011

4012 4013 4014 4015 4016
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4017
		down_write(&dev_replace->rwsem);
4018 4019
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4020
		up_write(&dev_replace->rwsem);
4021

4022
		if (ro_set)
4023
			btrfs_dec_block_group_ro(cache);
4024

4025 4026 4027 4028 4029 4030 4031 4032
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4033 4034
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4035
			spin_unlock(&cache->lock);
4036 4037 4038 4039 4040
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4041 4042 4043
		} else {
			spin_unlock(&cache->lock);
		}
4044
skip_unfreeze:
4045
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4046 4047 4048
		btrfs_put_block_group(cache);
		if (ret)
			break;
4049
		if (sctx->is_dev_replace &&
4050
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4051 4052 4053 4054 4055 4056 4057
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4058
skip:
4059
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4060
		btrfs_release_path(path);
A
Arne Jansen 已提交
4061 4062 4063
	}

	btrfs_free_path(path);
4064

4065
	return ret;
A
Arne Jansen 已提交
4066 4067
}

4068 4069
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4070 4071 4072 4073 4074
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4075
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4076

J
Josef Bacik 已提交
4077
	if (BTRFS_FS_ERROR(fs_info))
4078
		return -EROFS;
4079

4080
	/* Seed devices of a new filesystem has their own generation. */
4081
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4082 4083
		gen = scrub_dev->generation;
	else
4084
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4085 4086 4087

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4088 4089
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4090
			break;
4091 4092
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4093

4094 4095 4096
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4097 4098 4099
		if (ret)
			return ret;
	}
4100
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4101 4102 4103 4104

	return 0;
}

4105 4106 4107 4108
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4109 4110 4111 4112 4113
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4114 4115 4116 4117 4118 4119

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4120 4121 4122 4123 4124 4125
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4126 4127 4128
	}
}

A
Arne Jansen 已提交
4129 4130 4131
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4132 4133
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4134
{
4135 4136 4137
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4138
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4139
	int max_active = fs_info->thread_pool_size;
4140
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4141

4142 4143
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4144

4145 4146
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4147 4148
	if (!scrub_workers)
		goto fail_scrub_workers;
4149

4150
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4151 4152
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4153

4154
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4166
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4167 4168
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4169
	}
4170 4171 4172
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4173

4174
	ret = 0;
4175
	destroy_workqueue(scrub_parity);
4176
fail_scrub_parity_workers:
4177
	destroy_workqueue(scrub_wr_comp);
4178
fail_scrub_wr_completion_workers:
4179
	destroy_workqueue(scrub_workers);
4180
fail_scrub_workers:
4181
	return ret;
A
Arne Jansen 已提交
4182 4183
}

4184 4185
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4186
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4187
{
4188
	struct btrfs_dev_lookup_args args = { .devid = devid };
4189
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4190 4191
	int ret;
	struct btrfs_device *dev;
4192
	unsigned int nofs_flag;
4193
	bool need_commit = false;
A
Arne Jansen 已提交
4194

4195
	if (btrfs_fs_closing(fs_info))
4196
		return -EAGAIN;
A
Arne Jansen 已提交
4197

4198 4199
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4200

4201 4202 4203 4204 4205 4206 4207
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4208

4209 4210 4211 4212
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4213

4214 4215 4216 4217
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4218
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4219
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4220 4221
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4222
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4223
		ret = -ENODEV;
4224
		goto out;
A
Arne Jansen 已提交
4225 4226
	}

4227 4228
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4229
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4230 4231 4232
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4233
		ret = -EROFS;
4234
		goto out;
4235 4236
	}

4237
	mutex_lock(&fs_info->scrub_lock);
4238
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4239
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4240
		mutex_unlock(&fs_info->scrub_lock);
4241
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4242
		ret = -EIO;
4243
		goto out;
A
Arne Jansen 已提交
4244 4245
	}

4246
	down_read(&fs_info->dev_replace.rwsem);
4247
	if (dev->scrub_ctx ||
4248 4249
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4250
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4251
		mutex_unlock(&fs_info->scrub_lock);
4252
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4253
		ret = -EINPROGRESS;
4254
		goto out;
A
Arne Jansen 已提交
4255
	}
4256
	up_read(&fs_info->dev_replace.rwsem);
4257

4258
	sctx->readonly = readonly;
4259
	dev->scrub_ctx = sctx;
4260
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4261

4262 4263 4264 4265
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4266
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4267 4268 4269
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4270 4271 4272
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4273
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4274 4275 4276 4277 4278 4279
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4280
	if (!is_dev_replace) {
4281 4282 4283 4284 4285 4286
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4287
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4288 4289 4290 4291
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4292
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4293
		ret = scrub_supers(sctx, dev);
4294
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4305
	}
A
Arne Jansen 已提交
4306 4307

	if (!ret)
4308
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4309
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4310

4311
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4312 4313 4314
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4315
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4316

A
Arne Jansen 已提交
4317
	if (progress)
4318
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4319

4320 4321 4322 4323
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4324
	mutex_lock(&fs_info->scrub_lock);
4325
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4326 4327
	mutex_unlock(&fs_info->scrub_lock);

4328
	scrub_workers_put(fs_info);
4329
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4350
	return ret;
4351 4352
out:
	scrub_workers_put(fs_info);
4353 4354 4355
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4356 4357 4358
	return ret;
}

4359
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4374
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4375 4376 4377 4378 4379
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4380
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4401
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4402
{
4403
	struct btrfs_fs_info *fs_info = dev->fs_info;
4404
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4405 4406

	mutex_lock(&fs_info->scrub_lock);
4407
	sctx = dev->scrub_ctx;
4408
	if (!sctx) {
A
Arne Jansen 已提交
4409 4410 4411
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4412
	atomic_inc(&sctx->cancel_req);
4413
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4414 4415
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4416
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4417 4418 4419 4420 4421 4422
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4423

4424
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4425 4426
			 struct btrfs_scrub_progress *progress)
{
4427
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4428
	struct btrfs_device *dev;
4429
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4430

4431
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4432
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4433
	if (dev)
4434
		sctx = dev->scrub_ctx;
4435 4436
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4437
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4438

4439
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4440
}
4441

4442 4443 4444 4445 4446
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4447 4448
{
	u64 mapped_length;
4449
	struct btrfs_io_context *bioc = NULL;
4450 4451 4452
	int ret;

	mapped_length = extent_len;
4453
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4454 4455 4456 4457
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4458 4459 4460
		return;
	}

4461 4462 4463 4464
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4465
}